
         Building A Generic Architecture for the 
Internet of Things 

           Wei Wang, Kevin Lee, David Murray 

School of Information Technology, Murdoch University, 

Murdoch 6150, Western Australia, Australia 

{W.Wang, Kevin.Lee, D.Murray}@murdoch.edu.au 

 
Abstract—The Internet of Things (IoT) allows physical objects to 
be connected on the Internet. Objects in the IoT have identities, 
attributes and personalities in the virtual world. These objects 
are integrated together using intelligent interfaces. The IoT has a 
lot of challenges and issues that require further research before 
achieving a global scale. This paper presents a generic IoT 
architecture to modularize physical objects into the digital world. 
It demonstrates that the future IoT can be designed based on 
component-based communication and existing communication 
standards. To achieve integration both on a device and semantic 
level, physical objects and services can be virtualised in stated 
middleware components. By building ontologies, third-parties 
can also customize objects and services.  
Keywords—Internet of Things, Web of Things, Wireless Sensor 
Networks, WSNs, RFID, Integration.   

I. INTRODUCTION 

The Internet is mainly used for people-to-people 
communication; Web pages, emails and online games. In 
sensor networks, people can also use the Internet to interact 
with the physical world. Environmental data can be collected 
by sensors and then transmitted via the Internet. However, 
these sensed physical parameters are isolated. The aim of 
Internet of Things (IoT) is to connect physical objects, sensors, 
actuators, and other technologies, to provide people-to-object 
and object-to-object communication [1]. 

The IoT enables physical objects to exchange and process 
information in a self-organized way. For example, self-driving 
cars can negotiate with other cars to co-design better travel 
paths. The U.S. National Intelligence Council lists the IoT as 
one of six technologies that will impact U.S. national power 
by 2025 [2]. The Chinese government is also promoting the 
IoT in Wuxi which was named as “The Smart City” in 2010 
[2]. If each person owns 6 connected devices on the earth, 
there will be 36 billion of objects connected on the Internet. 
The numerous connections will require new abilities to create, 
process and exchange a large amount of real-time information.     

One of major problems is to integrate heterogeneous 
sensing devices including Wireless Sensor Networks (WSNs) 
and Radiofrequency Identification (RFID). Some solutions try 
to define standards such as 6lowPAN to encapsulate sensed 
data over IPv6 communication.  However, equipping sensors 
with IP stacks may not be suitable for resource-constrained 
devices such as passive RFID tags. Another solution is to 
interpret standards by different adapters. However, it is 
inefficient to design O(N^2) adapters to support the integration 
among N standards. New standards are also incompatible with  

existing adapters. This paper proposes to abstract objects and 
services in a middleware layer, and shields the IoT system and 
users from the complexity of directly dealing with 
heterogeneous sensing devices, which can make it easier for 
users to compose services across different platforms.   

Object-to-object communications are exchanging messages 
based on negotiated rules. For the IoT, the descriptions of 
objects’ attributes and their relationships are called ontologies 
[3]. By building ontologies for virtual objects, the IoT system 
can understand the messages with different formats from 
different objects via semantic analysis.  

This paper will address some key challenges of IoT, and 
then propose a generic IoT architecture to attempt to eliminate 
these issues. The proposed architecture can integrate any type 
of sensors/RFIDs by running their virtual components in 
middleware. Message size is minimized to support resource-
constrained devices. Objects’ virtual representation can either 
be customized by users or detected at runtime by systems.   

The remainder of this paper is structured as follows. Section 
II introduces the background of IoT and analyses its key 
challenges. Section III proposes a generic framework to build 
the IoT. Section IV then extends the IoT to Web of Things 
(WoT) using a case study. Section V evaluates a prototype 
implementation based on the case study in Section IV. Finally, 
the conclusion is presented in section VI. 

II. BACKGROUND OF INTERNET OF THINGS 

The concept of IoT was first introduced by the MIT Auto-
ID Centre in 1999 [3]. The aim of the Auto-ID Labs was to 
design a global network where all physical objects with RFID 
tags are connected, and each object has a globally unique ID. 
The IoT is emerging due to the developments of network 
bandwidth, Cloud Computing, hardware manufacture and the 
decrease of size and cost of chips in the last decade [1]. 

The IoT faces many issues and challenges across different 
domains. This paper tries to resolve the problems as follows: 

1) Resource-constrained scenarios: Battery-constrained 
sensor devices can last from few days to years [4]. Energy can 
be saved in various ways:  a) Moving processing ability from 
sensors to the Cloud; b) Using light-weight sensory devices. c) 
Reducing messages’ size through energy-efficient encryption 
or caching; d) Improving batteries’ capacity.  

2) Observation and data measurement: The IoT will use 
different type of sensors/RFIDs, requiring a mechanism to 
observe and measure data from heterogeneous APIs. Some 



models such as [5] use different adaptors to communicate with 
different sensing devices. Users require technical API details 
specified in the Device Ontology to access their services, 
which adds too much complexity. Via reasoning for 
heterogeneous APIs, observation and data measurement can 
be automatically implemented by coordinating a group of 
adaptors [6]. However, this approach lacks scalability, as the 
device ontology cannot recognize new APIs. This paper 
proposes an effective approach using middleware, shielding 
users from the complexity of devices’ heterogeneous APIs. 

3) Customization: Personalization can meet user demands 
and improve service experience to deliver customized services 
[7]. The future IoT consists of billions of objects connected to 
the Internet. It is difficult to predesign all object and service 
by large organizations. It should follow Web 2.0 principles to 
allow users to create contents and discover services easily [8].  
Some ontology models are only designed for a specific area 
and users are not allowed to customize domain knowledge. 
For example, OBOE [9] is only limited for coastal ecosystems. 
The proposed architecture gives users much flexibility to 
extend domain knowledge and ontologies. 

4) Inefficient runtime discovery: Because a large amount of 
sensing devices are deployed or deactivated on runtime, they 
keep running in dynamical states. It is inefficient to preload all 
sensor states from a central knowledge database. The IoT 
models [6] send event notifications to update changes in a 
knowledge base. These updates are queued for processing. 
However, some time-sensitive services require an immediate 
response. It is necessary to design an IoT model that can 
efficiently discover objects’ dynamic states on runtime. This 
paper proposes to use component-based communication for 
the IoT. By retrieving objects’ real-time states directly from 
running components, it can perform better than indirectly 
retrieving from a central knowledge database. 

III. A GENERIC ARCHITECTURE OF THE GLOBAL IOT 

This paper proposes a generic architecture to integrate 
physical objects into the IoT systems. This architecture is 
designed based on component-based communication. It can 
integrate any type of sensors/RFIDs by running their virtual 
components in middleware, which is especially suitable for 
resources-constrained devices. By building ontologies for 
objects and services, the physical objects in different domains 
can be described and modularized in the IoT systems.   
A. Methodology 

The design of global IoT systems is challenging as many 
heterogeneous components are involved. Web-based model 
and component-based model can be compared as follows. 

a)Performance: Component-based communication performs 
better than Web-based communication [10]. Component-
based communication uses proprietary protocols with a lower 
overhead and does not need to parse data. Comparatively, 
web-based communication partly uses other web services that 
result in adding much overhead for data encapsulation [11]. 
The global IoT will involve billions of objects and each object 
is modularized as a fine-grained component. Distributing so 
many fine-grained objects would cause a non-negligible 
impact to the whole system [10]. For example, the RESTful 

IoT architecture requires users to indirectly access a central 
server to retrieve tremendous fine-grained data encapsulated 
by 6lowPAN [12]. This paper proposes to use component-
based model for the IoT to improve the overall performance.  

b) Loose coupling: The global IoT systems will involve 
many primitive services. With loose coupling, these service 
components can be combined to create new services. Both 
web-based architecture and component-based architecture can 
provide loose coupling. However, the services in web-based 
model cannot reach a long link, because the accumulated high 
latency is intolerable in some real-time scenarios [10]. From 
this angle, component-based model is also suitable for the IoT. 

c) Provide and discover services: The most remarkable 
advantage of web-based communication is that third parties 
can provide and discover services on the Internet, such as the 
applications of Web 2.0 [10]. The Web of Things (WoT) can 
be extended to create and discover services for the IoT.  

d) Integration: To achieve integration, web-based model 
uses HTTP or 6lowPAN to encapsulate sensed data [11]. The 
component-based model exchanges data via proprietary APIs, 
which impedes the integration of heterogeneous devices. For 
example, NesC [13] runs on TinyOS. This paper extends 
previous work [14] that can integrate any type of WSN.  

B. Self-described Messaging  for Component-based Model  
Standard resource representation formats are beneficial for 

decentralized systems in which clients and servers can interact 
without individual negotiations. For example, a XML file 
describes a carton of milk in Fig. 1. Its attribute values are 
concluded in standard tags which are understandable for XML 
parser. Fig. 2 describes the milk based on JSON which is a 
lightweight format used to describe objects. However, it still 
adds much overhead for resource-constrained sensory devices.  

        
    Fig. 1 Milk is described in XML               Fig. 2 Milk is described in JSON 

Reducing messages’ size can save energy for sensory 
devices. An improvement is replacing the attributes by a URI. 
Fig.3 describes a compressed message. “FOOD6862” is a URI 
that links to an object template on web servers. The template 
describes the milk’s schema and attributes.  

 
Fig. 3 A compressed message with a URI 

C. A Message-oriented, Component-based IoT Model  
If sensor components run in middleware, the integration for 

heterogeneous sensors/RFIDs can be handled via the inherent 
APIs of the middleware. Self-described messages contain 
objects’ template URI, which is also benefit for semantic 
integration. Considering these virtues, this paper introduces a 
message-oriented, component-based (MOCB) architecture for 
the future IoT. Fig.4 demonstrates the overall architecture. 



 
Fig. 4 The overall architecture 

Perception Tier:  On this layer, various types of sensors and 
RFIDs are used to gather raw values from distributed objects. 
The IoT system cannot distinguish a message is received from 
a passive RFID tag or from a heavyweight Java-based sensors, 
as these messages do not contain any data used to describe 
sensors/RFIDs. The benefit is that the complexity of sensory 
devices can be shield from end users without Device Ontology.  

Gateway Tier: The purpose of the gateway layer is to 
establish communication channels for heterogeneous sensors 
and RFIDs. A dedicated gateway can discover and connect to 
sensors/RFIDs with open wireless standards such as 802.15.4, 
Wi-Fi and Bluetooth. If the sensory devices use proprietary 
protocols, proxies can be used to read and route messages. 
With the popularity of wireless communication, mobile phone, 
laptop, or other mobile devices can also play a role of gateway.  
In this way, any sensory devices can connect to the IoT 
system anywhere and anytime. The aggregated messages from 
distributed objects are routed to the IoT system finally. 

Middleware Tier: The IoT systems run on the middleware 
tier. To modularise the physical objects, the Proxy can map 
objects’ messages to their logical components in middleware. 
These running components are the virtual representations for 
physical objects and services. They are dynamically generated 
in the Proxy and then interact with other components via 
inherited APIs of the middleware. The Proxy can run on local 
machines or in the cloud if elastic resources are required. The 
Ontology Server contains the templates used to describe 
objects, services and relations. The Lookup Server provides a 
public platform to discover objects and services.  

D. IoT Systems 
The framework of IoT systems is illustrated in Fig. 5. It 

includes the following components.  

 
Fig.5 The framework of IoT Systems 

Component Factory: The Component Factory is used to 
parameterize the gathered messages from objects and then 
dynamically generate logical components for the objects and 
services in middleware [14]. The gathered messages contain 
multiple-lines of text, and each message is received from a 
sensory device attached on an object. Each message consists 
of two types of data: 1) raw values that collected from objects; 
and 2) a URL links to an object template on web servers.  

The Component Factory can read received real-time 
messages one at a time. If a message from a new object 
emerged, the Component Factory dynamically generates a 
component for the object. If a message is from existing 
objects in the IoT systems, the messages will be routed to its 
logical component. By mapping objects’ messages to their 
logical components in middleware, physical objects can be 
virtualized and modularized on an abstracted level. Moreover, 
heterogeneous sensory devices are also effectively integrated 
by shielding their proprietary APIs in the IoT systems.  

Service: The raw data collected from sensors/RFIDs can be 
filtered, aggregated, and converted to deliver customized 
services. The Functional Components are the primitive 
elements of services. They can process data and then generate 
outputs for further process. As this architecture is component-
based, these Functional Components can reach a long link to 
combine various services with lower latency. The Functional 
Components are also dynamically generated by the 
Component Factory to meet users’ customization. Both object 
components and functional components exist in intermediate 
state. The benefit is that the unused system resource can be 
released when objects are removed or services are terminated. 

Templates Repository: To save energy, the messages do not 
contain any information used to describe objects’ scheme, 
attributes and supported services. The ontologies are stored as 
Templates in the Template Repository. The templates are the 
primitive units to form the Ontologies. Each template 
describes one object or service. Similar with the URIs in 
RESTful architecture, the Template ID in each message links 
to a global unique template. By matching objects’ messages 
with the templates in ontologies, the messages’ semantic 
meaning can be precisely interpreted by the IoT system.  



Customization: In the physical world, each object can be 
classified into multiple categories when it shares some 
common attributes with other objects. The Lookup Server 
allows users to discover objects’ generic templates based on 
objects’ classification. The users can add objects’ private 
attributes to the generic templates via Templates Editing Tools, 
which result in generating a new customized sub-template. 
The new sub-template then is registered in the Templates 
Repository, and a new URI is provided to access it. Similarly, 
services can also be customized by editing their templates. For 
example, Temperature Filter is a generic service used to filter 
temperature data within predefined range. With the Template 
Editing Tools, users can configure temperature’s thresholds as 
required or design other new services.  

Public services and private services: To reuse the 
Component Templates, any users can discover, download and 
edit generic templates on Lookup Servers. These templates are 
considered as public services. Oppositely, users can also own 
their private templates which cannot be accessed by others. 
These services are considered as private services. 

Global connectivity: To connect billions of objects, each 
object component in middleware is supposed to have its 
global connectivity. IP connectivity will enable the object 
components to communicate with each other globally. As the 
IPv4 address is almost exhausted but it is still dominating 
computer networks, a combination of “object ID + IPv4 
address” can also represent a global unique address. In this 
architecture, each object component is allocated a global 
object ID by the system. The object components in the same 
network can share an IP address. 

Cloud Layer: The global IoT system is required to process 
large amount of real-time information to guarantee the Quality 
of Service (QoS). Dynamically generating components in 
middleware also needs processing power to compile 
components [14]. Previous work [15] demonstrates that Cloud 
Computing can provide elastic resource to process real-time 
data from sensory devices.  

IV. A CASE STUDY OF THE WEB OF THINGS 

The IoT can be considered as a connectivity enabler to 
integrate heterogeneous sensory devices. The aim of WoT is 
to provide a public platform to create and discover services on 
the Internet. To explain the concept of WoT and ontology, this 
section uses a case study to validate the proposed architecture. 
A. Entity Ontology 

The Entity Ontology or object ontology is used to describe 
physical objects in the IoT system.  Different physical objects 
have different attributes such as length, weight, or temperature. 
Objects can be categorized into same group as they share a set 
of common attributes. For example, refrigerators can be 
classified into appliances. If the objects’ attributes are the 
same, an identical template can be used. 

In this case, a refrigerator and a bottle of milk are 
connected to the IoT system. Both of them are attached with 
sensors/RFIDs to sense environmental change. The sensors in 
the refrigerator can sense two types of data: temperature and 
voltage. The RFID tag on the milk can only sense temperature 
data. Fig.6 shows the two messages received from two objects.  

 
Fig.6 The received messages from two objects 

These two messages only contain the raw values measured 
from objects. At the first field of messages, FOOD6862 and 
APP3486 are the Template ID links to two object templates in 
the Template Repository. The objects’ schemas, attributes and 
measure units are described in the object templates. Fig. 7 
illustrates the hierarchical structure of Entity Ontology.  

 
                                      Fig. 7 the Entity Ontology 

The Refrigerator and Chicken both have a generic object 
template which can be discovered in the Templates Repository. 
As the user adds their private attributes into these templates, 
new sub-templates FOOD6862 and APP3468 are generated to 
expand the object ontology. Object templates are the primitive 
elements to form the Entity Ontology. Each object template 
describes one type of object, and provides a unique Template 
ID used to access it. When the IoT system is interpreting the 
received messages, these object templates are referenced to 
understand each field’s semantic meaning. Fig. 8 shows how a 
message from a carton of milk is interpreted by a template. 

 
Fig. 8 The milk’s object templates 

Striping objects’ attributes from messages has three virtues: 
1) By reducing messages’ size to a maximum, lightweight 

sensors or passive RFIDs can also be supported.  
2)  Energy saving for resource-constrained sensory devices. 
3) Describing objects in shared templates rather than in 

self-described messages, the objects’ descriptive vocabularies 
are consistent globally. It is benefit for interpreting objects’ 
semantic meaning correctly and precisely.  



B. Pattern Marching  
The Lookup Server can provide a tool to help users to 

design objects’ messages. The users do not need to know 
messages’ patterns and object’s templates. When users input a 
set of attributes, the Lookup Server can intelligently find the 
templates most suitable for the objects, and then dynamically 
generate a message pattern. The proposed architecture also 
has the intelligence to reason messages’ pattern. For example, 
if the IoT system receives a message without “Template ID”, 
it can intelligently match the message to an appropriate object 
template by analysing the message’s attributes. 

C. Unit Ontology 

        
Fig. 9 Unit Ontology                    Fig. 10 Temperature Monitor’s template 

The field “<unit>”in the Fig. 8 refers to Unit Ontology 
which is used to describe measure units for object’s attributes. 
By removing measure units from messages, messages’ size 
can be reduced further, and to guarantee the consistency of 
units’ semantic meaning as well. The Fig. 9 demonstrates a 
XML schema to describe the Unit Ontology for temperature.  

D. Service Ontology 
The field “Services” in the Fig. 8 contains the Services IDs 

which are linked to Service Ontology. The purpose of Service 
Ontology is to describe and constrain the service types for 
different objects. The relationship between Entity Ontology 
and Service Ontology is many to many. One type of object 
can use multiple services, and one service can also support 
multiple types of objects. However, one service can only 
support limited types of objects. For example, the service of 
Speed Monitor used for vehicles cannot be utilized for milk.  

The refrigerator supports three services: Temperature 
monitor will send a notification to users if the refrigerator’s 
temperature is below a defined threshold; Voltage Monitor 
can watch if the refrigerator is working within a normal 
voltage range. Expiration manager can check the expiration 
date of the food in the refrigerator, and then send notifications 
to users if any food is expired. The milk supports two types of 
services: Temperature Monitor and Expiration Manager. Fig. 
10 shows the service template for Temperature Monitor. 

Users are also allowed to customize services. The milk and 
refrigerator both support the service of Temperature Monitor. 
By editing the threshold value on their service templates, the 
Temperature Monitor can be reused by different objects.  

If objects are added with new attributes, the new generated 
sub-templates can also support the services inherited from 
their parent-templates. In this case, the services for the object 
FOOD6862 and APP3468 are inherited from the generic 
object templates used to describe the refrigerator and milk. 
Therefore, in this architecture, the Entity Ontology can be 
expanded indefinitely without losing the inherited services.  

E. Service Compositor 
The Service Compositor is used to generate and deliver 

combined services based on users’ requirements. As the 
proposed architecture is loosely-coupled, it is able to create 
various new services by combining existing services. 

In this case, the component of Expiration Manager can 
check if the milk is expired by comparing the expiration date 
with the refrigerator’s local data. To deliver the combined 
service, the Service Compositor can intelligently bind the 
components of refrigerator and milk with the component of 
Expiration Manager. By building the connections among three 
components, the Expiration Manager can receive the messages 
from the milk and the refrigerator. Then the two dates from 
the two objects can be compared by interpreting the date fields 
in two messages. The Fig.11 demonstrates the process. 

 
Fig. 11 The process of service composition 

 
V. EVALUATION 

The proposed generic architecture is suitable for many 
domains. As this IoT architecture is device-independent, any 
type of sensory device can support it. This section outlines the 
implementation details of the proof-of-concept prototype 
based on the case study in Section IV. All resources in this 
evaluation are open-source and representative.  
A. Experiment Setup 

An Arduino UNO, a Zigbee Xbee and several electronics 
were combined together to simulate a generic wireless sensor 
or a RFID tag. A ZigBee USB explorer was used to simulate a 
gateway. It can collect messages and then route the aggregated 
messages to the IoT. LooCI-OSGi v1.0 was selected as the 
middleware. The LooCI components can be reconfigured on 
runtime, which is especially suitable for the dynamic states of 
the IoT. Compared with other middleware such as OpenCOM, 
LooCI supports multiple threads among multiple components. 
To provide combined services, the proposed architecture also 
needs to support multiple components communication.  

A standard dual-core PC with Windows XP was used as the 
Proxy, and a USB port was connected to the gateway to route 
aggregated messages. Openjdk 1.7 was installed to design the 
Component Factory and Service Compositor.  

XML was used to describe the ontologies and templates. In 
this implementation, four templates were designed including 
two object templates for the refrigerator and the milk, and two 
service templates for Expiration Manager and Temperature 
monitor. The templates are illustrated in the Fig. 8 and Fig. 10. 



The ontology was developed based on the core concept of 
proposed architecture. It uses a hierarchal structure links to its 
sub-ontologies including Object Ontology, Service Ontology 
and Unit Ontology. These ontologies are inter-connected by 
referencing Template IDs to form a mesh network.  

B. Building Ontologies  
Previous work [14] has demonstrated dynamic generation 

of sensor components in proxies to integrate heterogeneous 
sensors/RFIDs. The main purpose of this evaluation is to 
investigate the feasibility of building ontologies for the IoT. 
The process of this evaluation was based on the case study in 
section IV. Two messages in Fig. 6 were written into sensors 
to describe the refrigerator and the milk. These messages were 
sent to the gateway every two seconds. In the LooCI 
middleware, two object components were generated to map 
the messages from two objects, and two service components 
were deployed to simulate the service of Expiration Manager 
and Temperature Monitor. The Service Compositor bound 
these components together to deliver the combined services.  

C. Evaluation Results 
The first evaluation is to test the Expiration Manager. The 

milk’s expiration date was configured as “09-06-2012” in 
messages, while the local date of refrigerator was set as “16-

06-2012”. As “ 09-06-2012” is before “16-06-2012”, the 
screen displayed a notification of “Your milk is still fresh”. 
By changing the milk’s expired data to “18-06-2012”, and 
then the notification turned into “Your milk is expired”. 

The second evaluation is used to validate the Temperature 
Monitor. If the refrigerator’s temperature is above the 
predefined threshold “-2”, a notification of “Your refrigerator 
is too hot” will be sent. Otherwise, the notification is “Your 
refrigerator works well”. By adjusting the temperature value 
on the sensor, the evaluation result also turned as expected.  

C. Reducing Messages’ Size 
Reducing messages’ size can achieve energy saving for 

battery-driven devices. The proposed IoT architecture can 
minimize messages’ size to fit lightweight sensors/RFIDs. 
Assuming the messages from the milk and refrigerator are 
encoded based on ASCII, the messages’ size can be measured 
by using a ASCII calculator [16]. The Fig 12 shows the 
proposed architecture (MOCB) can dramatically reduce 
messages’ size compared with using XML and JSON to 
describe objects.  

 
Fig. 12 Messages’ size in different micro formats 

 

VI. CONCLUSION 
This paper proposes a generic architecture for building 

ontologies for the IoT. It can integrate any type of sensory 
device in a component-based middleware. The minimized 
messages can fit resource-constrained devices, such as passive 
RFID tags. By building the ontologies in the IoT system, the 
semantic meaning of received messages can be interpreted, 
and generate logical components for physical objects and 
services. These components are bound together on event bus 
to deliver various combined services. The proposed 
architecture provides a mechanism for third-parties to 
customize objects and services. The evaluation demonstrates 
that it is feasible to design such a generic IoT architecture 
based on existing infrastructure and communication standards. 
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