
 Building A Generic Architecture for the
Internet of Things

 Wei Wang, Kevin Lee, David Murray

School of Information Technology, Murdoch University,

Murdoch 6150, Western Australia, Australia

{W.Wang, Kevin.Lee, D.Murray}@murdoch.edu.au

Abstract—The Internet of Things (IoT) allows physical objects to
be connected on the Internet. Objects in the IoT have identities,
attributes and personalities in the virtual world. These objects
are integrated together using intelligent interfaces. The IoT has a
lot of challenges and issues that require further research before
achieving a global scale. This paper presents a generic IoT
architecture to modularize physical objects into the digital world.
It demonstrates that the future IoT can be designed based on
component-based communication and existing communication
standards. To achieve integration both on a device and semantic
level, physical objects and services can be virtualised in stated
middleware components. By building ontologies, third-parties
can also customize objects and services.
Keywords—Internet of Things, Web of Things, Wireless Sensor
Networks, WSNs, RFID, Integration.

I. INTRODUCTION

The Internet is mainly used for people-to-people
communication; Web pages, emails and online games. In
sensor networks, people can also use the Internet to interact
with the physical world. Environmental data can be collected
by sensors and then transmitted via the Internet. However,
these sensed physical parameters are isolated. The aim of
Internet of Things (IoT) is to connect physical objects, sensors,
actuators, and other technologies, to provide people-to-object
and object-to-object communication [1].

The IoT enables physical objects to exchange and process
information in a self-organized way. For example, self-driving
cars can negotiate with other cars to co-design better travel
paths. The U.S. National Intelligence Council lists the IoT as
one of six technologies that will impact U.S. national power
by 2025 [2]. The Chinese government is also promoting the
IoT in Wuxi which was named as “The Smart City” in 2010
[2]. If each person owns 6 connected devices on the earth,
there will be 36 billion of objects connected on the Internet.
The numerous connections will require new abilities to create,
process and exchange a large amount of real-time information.

One of major problems is to integrate heterogeneous
sensing devices including Wireless Sensor Networks (WSNs)
and Radiofrequency Identification (RFID). Some solutions try
to define standards such as 6lowPAN to encapsulate sensed
data over IPv6 communication. However, equipping sensors
with IP stacks may not be suitable for resource-constrained
devices such as passive RFID tags. Another solution is to
interpret standards by different adapters. However, it is
inefficient to design O(N^2) adapters to support the integration
among N standards. New standards are also incompatible with

existing adapters. This paper proposes to abstract objects and
services in a middleware layer, and shields the IoT system and
users from the complexity of directly dealing with
heterogeneous sensing devices, which can make it easier for
users to compose services across different platforms.

Object-to-object communications are exchanging messages
based on negotiated rules. For the IoT, the descriptions of
objects’ attributes and their relationships are called ontologies
[3]. By building ontologies for virtual objects, the IoT system
can understand the messages with different formats from
different objects via semantic analysis.

This paper will address some key challenges of IoT, and
then propose a generic IoT architecture to attempt to eliminate
these issues. The proposed architecture can integrate any type
of sensors/RFIDs by running their virtual components in
middleware. Message size is minimized to support resource-
constrained devices. Objects’ virtual representation can either
be customized by users or detected at runtime by systems.

The remainder of this paper is structured as follows. Section
II introduces the background of IoT and analyses its key
challenges. Section III proposes a generic framework to build
the IoT. Section IV then extends the IoT to Web of Things
(WoT) using a case study. Section V evaluates a prototype
implementation based on the case study in Section IV. Finally,
the conclusion is presented in section VI.

II. BACKGROUND OF INTERNET OF THINGS

The concept of IoT was first introduced by the MIT Auto-
ID Centre in 1999 [3]. The aim of the Auto-ID Labs was to
design a global network where all physical objects with RFID
tags are connected, and each object has a globally unique ID.
The IoT is emerging due to the developments of network
bandwidth, Cloud Computing, hardware manufacture and the
decrease of size and cost of chips in the last decade [1].

The IoT faces many issues and challenges across different
domains. This paper tries to resolve the problems as follows:

1) Resource-constrained scenarios: Battery-constrained
sensor devices can last from few days to years [4]. Energy can
be saved in various ways: a) Moving processing ability from
sensors to the Cloud; b) Using light-weight sensory devices. c)
Reducing messages’ size through energy-efficient encryption
or caching; d) Improving batteries’ capacity.

2) Observation and data measurement: The IoT will use
different type of sensors/RFIDs, requiring a mechanism to
observe and measure data from heterogeneous APIs. Some

models such as [5] use different adaptors to communicate with
different sensing devices. Users require technical API details
specified in the Device Ontology to access their services,
which adds too much complexity. Via reasoning for
heterogeneous APIs, observation and data measurement can
be automatically implemented by coordinating a group of
adaptors [6]. However, this approach lacks scalability, as the
device ontology cannot recognize new APIs. This paper
proposes an effective approach using middleware, shielding
users from the complexity of devices’ heterogeneous APIs.

3) Customization: Personalization can meet user demands
and improve service experience to deliver customized services
[7]. The future IoT consists of billions of objects connected to
the Internet. It is difficult to predesign all object and service
by large organizations. It should follow Web 2.0 principles to
allow users to create contents and discover services easily [8].
Some ontology models are only designed for a specific area
and users are not allowed to customize domain knowledge.
For example, OBOE [9] is only limited for coastal ecosystems.
The proposed architecture gives users much flexibility to
extend domain knowledge and ontologies.

4) Inefficient runtime discovery: Because a large amount of
sensing devices are deployed or deactivated on runtime, they
keep running in dynamical states. It is inefficient to preload all
sensor states from a central knowledge database. The IoT
models [6] send event notifications to update changes in a
knowledge base. These updates are queued for processing.
However, some time-sensitive services require an immediate
response. It is necessary to design an IoT model that can
efficiently discover objects’ dynamic states on runtime. This
paper proposes to use component-based communication for
the IoT. By retrieving objects’ real-time states directly from
running components, it can perform better than indirectly
retrieving from a central knowledge database.

III. A GENERIC ARCHITECTURE OF THE GLOBAL IOT

This paper proposes a generic architecture to integrate
physical objects into the IoT systems. This architecture is
designed based on component-based communication. It can
integrate any type of sensors/RFIDs by running their virtual
components in middleware, which is especially suitable for
resources-constrained devices. By building ontologies for
objects and services, the physical objects in different domains
can be described and modularized in the IoT systems.
A. Methodology

The design of global IoT systems is challenging as many
heterogeneous components are involved. Web-based model
and component-based model can be compared as follows.

a)Performance: Component-based communication performs
better than Web-based communication [10]. Component-
based communication uses proprietary protocols with a lower
overhead and does not need to parse data. Comparatively,
web-based communication partly uses other web services that
result in adding much overhead for data encapsulation [11].
The global IoT will involve billions of objects and each object
is modularized as a fine-grained component. Distributing so
many fine-grained objects would cause a non-negligible
impact to the whole system [10]. For example, the RESTful

IoT architecture requires users to indirectly access a central
server to retrieve tremendous fine-grained data encapsulated
by 6lowPAN [12]. This paper proposes to use component-
based model for the IoT to improve the overall performance.

b) Loose coupling: The global IoT systems will involve
many primitive services. With loose coupling, these service
components can be combined to create new services. Both
web-based architecture and component-based architecture can
provide loose coupling. However, the services in web-based
model cannot reach a long link, because the accumulated high
latency is intolerable in some real-time scenarios [10]. From
this angle, component-based model is also suitable for the IoT.

c) Provide and discover services: The most remarkable
advantage of web-based communication is that third parties
can provide and discover services on the Internet, such as the
applications of Web 2.0 [10]. The Web of Things (WoT) can
be extended to create and discover services for the IoT.

d) Integration: To achieve integration, web-based model
uses HTTP or 6lowPAN to encapsulate sensed data [11]. The
component-based model exchanges data via proprietary APIs,
which impedes the integration of heterogeneous devices. For
example, NesC [13] runs on TinyOS. This paper extends
previous work [14] that can integrate any type of WSN.

B. Self-described Messaging for Component-based Model
Standard resource representation formats are beneficial for

decentralized systems in which clients and servers can interact
without individual negotiations. For example, a XML file
describes a carton of milk in Fig. 1. Its attribute values are
concluded in standard tags which are understandable for XML
parser. Fig. 2 describes the milk based on JSON which is a
lightweight format used to describe objects. However, it still
adds much overhead for resource-constrained sensory devices.

 Fig. 1 Milk is described in XML Fig. 2 Milk is described in JSON

Reducing messages’ size can save energy for sensory
devices. An improvement is replacing the attributes by a URI.
Fig.3 describes a compressed message. “FOOD6862” is a URI
that links to an object template on web servers. The template
describes the milk’s schema and attributes.

Fig. 3 A compressed message with a URI

C. A Message-oriented, Component-based IoT Model
If sensor components run in middleware, the integration for

heterogeneous sensors/RFIDs can be handled via the inherent
APIs of the middleware. Self-described messages contain
objects’ template URI, which is also benefit for semantic
integration. Considering these virtues, this paper introduces a
message-oriented, component-based (MOCB) architecture for
the future IoT. Fig.4 demonstrates the overall architecture.

Fig. 4 The overall architecture

Perception Tier: On this layer, various types of sensors and
RFIDs are used to gather raw values from distributed objects.
The IoT system cannot distinguish a message is received from
a passive RFID tag or from a heavyweight Java-based sensors,
as these messages do not contain any data used to describe
sensors/RFIDs. The benefit is that the complexity of sensory
devices can be shield from end users without Device Ontology.

Gateway Tier: The purpose of the gateway layer is to
establish communication channels for heterogeneous sensors
and RFIDs. A dedicated gateway can discover and connect to
sensors/RFIDs with open wireless standards such as 802.15.4,
Wi-Fi and Bluetooth. If the sensory devices use proprietary
protocols, proxies can be used to read and route messages.
With the popularity of wireless communication, mobile phone,
laptop, or other mobile devices can also play a role of gateway.
In this way, any sensory devices can connect to the IoT
system anywhere and anytime. The aggregated messages from
distributed objects are routed to the IoT system finally.

Middleware Tier: The IoT systems run on the middleware
tier. To modularise the physical objects, the Proxy can map
objects’ messages to their logical components in middleware.
These running components are the virtual representations for
physical objects and services. They are dynamically generated
in the Proxy and then interact with other components via
inherited APIs of the middleware. The Proxy can run on local
machines or in the cloud if elastic resources are required. The
Ontology Server contains the templates used to describe
objects, services and relations. The Lookup Server provides a
public platform to discover objects and services.

D. IoT Systems
The framework of IoT systems is illustrated in Fig. 5. It

includes the following components.

Fig.5 The framework of IoT Systems

Component Factory: The Component Factory is used to
parameterize the gathered messages from objects and then
dynamically generate logical components for the objects and
services in middleware [14]. The gathered messages contain
multiple-lines of text, and each message is received from a
sensory device attached on an object. Each message consists
of two types of data: 1) raw values that collected from objects;
and 2) a URL links to an object template on web servers.

The Component Factory can read received real-time
messages one at a time. If a message from a new object
emerged, the Component Factory dynamically generates a
component for the object. If a message is from existing
objects in the IoT systems, the messages will be routed to its
logical component. By mapping objects’ messages to their
logical components in middleware, physical objects can be
virtualized and modularized on an abstracted level. Moreover,
heterogeneous sensory devices are also effectively integrated
by shielding their proprietary APIs in the IoT systems.

Service: The raw data collected from sensors/RFIDs can be
filtered, aggregated, and converted to deliver customized
services. The Functional Components are the primitive
elements of services. They can process data and then generate
outputs for further process. As this architecture is component-
based, these Functional Components can reach a long link to
combine various services with lower latency. The Functional
Components are also dynamically generated by the
Component Factory to meet users’ customization. Both object
components and functional components exist in intermediate
state. The benefit is that the unused system resource can be
released when objects are removed or services are terminated.

Templates Repository: To save energy, the messages do not
contain any information used to describe objects’ scheme,
attributes and supported services. The ontologies are stored as
Templates in the Template Repository. The templates are the
primitive units to form the Ontologies. Each template
describes one object or service. Similar with the URIs in
RESTful architecture, the Template ID in each message links
to a global unique template. By matching objects’ messages
with the templates in ontologies, the messages’ semantic
meaning can be precisely interpreted by the IoT system.

Customization: In the physical world, each object can be
classified into multiple categories when it shares some
common attributes with other objects. The Lookup Server
allows users to discover objects’ generic templates based on
objects’ classification. The users can add objects’ private
attributes to the generic templates via Templates Editing Tools,
which result in generating a new customized sub-template.
The new sub-template then is registered in the Templates
Repository, and a new URI is provided to access it. Similarly,
services can also be customized by editing their templates. For
example, Temperature Filter is a generic service used to filter
temperature data within predefined range. With the Template
Editing Tools, users can configure temperature’s thresholds as
required or design other new services.

Public services and private services: To reuse the
Component Templates, any users can discover, download and
edit generic templates on Lookup Servers. These templates are
considered as public services. Oppositely, users can also own
their private templates which cannot be accessed by others.
These services are considered as private services.

Global connectivity: To connect billions of objects, each
object component in middleware is supposed to have its
global connectivity. IP connectivity will enable the object
components to communicate with each other globally. As the
IPv4 address is almost exhausted but it is still dominating
computer networks, a combination of “object ID + IPv4
address” can also represent a global unique address. In this
architecture, each object component is allocated a global
object ID by the system. The object components in the same
network can share an IP address.

Cloud Layer: The global IoT system is required to process
large amount of real-time information to guarantee the Quality
of Service (QoS). Dynamically generating components in
middleware also needs processing power to compile
components [14]. Previous work [15] demonstrates that Cloud
Computing can provide elastic resource to process real-time
data from sensory devices.

IV. A CASE STUDY OF THE WEB OF THINGS

The IoT can be considered as a connectivity enabler to
integrate heterogeneous sensory devices. The aim of WoT is
to provide a public platform to create and discover services on
the Internet. To explain the concept of WoT and ontology, this
section uses a case study to validate the proposed architecture.
A. Entity Ontology

The Entity Ontology or object ontology is used to describe
physical objects in the IoT system. Different physical objects
have different attributes such as length, weight, or temperature.
Objects can be categorized into same group as they share a set
of common attributes. For example, refrigerators can be
classified into appliances. If the objects’ attributes are the
same, an identical template can be used.

In this case, a refrigerator and a bottle of milk are
connected to the IoT system. Both of them are attached with
sensors/RFIDs to sense environmental change. The sensors in
the refrigerator can sense two types of data: temperature and
voltage. The RFID tag on the milk can only sense temperature
data. Fig.6 shows the two messages received from two objects.

Fig.6 The received messages from two objects

These two messages only contain the raw values measured
from objects. At the first field of messages, FOOD6862 and
APP3486 are the Template ID links to two object templates in
the Template Repository. The objects’ schemas, attributes and
measure units are described in the object templates. Fig. 7
illustrates the hierarchical structure of Entity Ontology.

 Fig. 7 the Entity Ontology

The Refrigerator and Chicken both have a generic object
template which can be discovered in the Templates Repository.
As the user adds their private attributes into these templates,
new sub-templates FOOD6862 and APP3468 are generated to
expand the object ontology. Object templates are the primitive
elements to form the Entity Ontology. Each object template
describes one type of object, and provides a unique Template
ID used to access it. When the IoT system is interpreting the
received messages, these object templates are referenced to
understand each field’s semantic meaning. Fig. 8 shows how a
message from a carton of milk is interpreted by a template.

Fig. 8 The milk’s object templates

Striping objects’ attributes from messages has three virtues:
1) By reducing messages’ size to a maximum, lightweight

sensors or passive RFIDs can also be supported.
2) Energy saving for resource-constrained sensory devices.
3) Describing objects in shared templates rather than in

self-described messages, the objects’ descriptive vocabularies
are consistent globally. It is benefit for interpreting objects’
semantic meaning correctly and precisely.

B. Pattern Marching
The Lookup Server can provide a tool to help users to

design objects’ messages. The users do not need to know
messages’ patterns and object’s templates. When users input a
set of attributes, the Lookup Server can intelligently find the
templates most suitable for the objects, and then dynamically
generate a message pattern. The proposed architecture also
has the intelligence to reason messages’ pattern. For example,
if the IoT system receives a message without “Template ID”,
it can intelligently match the message to an appropriate object
template by analysing the message’s attributes.

C. Unit Ontology

Fig. 9 Unit Ontology Fig. 10 Temperature Monitor’s template

The field “<unit>”in the Fig. 8 refers to Unit Ontology
which is used to describe measure units for object’s attributes.
By removing measure units from messages, messages’ size
can be reduced further, and to guarantee the consistency of
units’ semantic meaning as well. The Fig. 9 demonstrates a
XML schema to describe the Unit Ontology for temperature.

D. Service Ontology
The field “Services” in the Fig. 8 contains the Services IDs

which are linked to Service Ontology. The purpose of Service
Ontology is to describe and constrain the service types for
different objects. The relationship between Entity Ontology
and Service Ontology is many to many. One type of object
can use multiple services, and one service can also support
multiple types of objects. However, one service can only
support limited types of objects. For example, the service of
Speed Monitor used for vehicles cannot be utilized for milk.

The refrigerator supports three services: Temperature
monitor will send a notification to users if the refrigerator’s
temperature is below a defined threshold; Voltage Monitor
can watch if the refrigerator is working within a normal
voltage range. Expiration manager can check the expiration
date of the food in the refrigerator, and then send notifications
to users if any food is expired. The milk supports two types of
services: Temperature Monitor and Expiration Manager. Fig.
10 shows the service template for Temperature Monitor.

Users are also allowed to customize services. The milk and
refrigerator both support the service of Temperature Monitor.
By editing the threshold value on their service templates, the
Temperature Monitor can be reused by different objects.

If objects are added with new attributes, the new generated
sub-templates can also support the services inherited from
their parent-templates. In this case, the services for the object
FOOD6862 and APP3468 are inherited from the generic
object templates used to describe the refrigerator and milk.
Therefore, in this architecture, the Entity Ontology can be
expanded indefinitely without losing the inherited services.

E. Service Compositor
The Service Compositor is used to generate and deliver

combined services based on users’ requirements. As the
proposed architecture is loosely-coupled, it is able to create
various new services by combining existing services.

In this case, the component of Expiration Manager can
check if the milk is expired by comparing the expiration date
with the refrigerator’s local data. To deliver the combined
service, the Service Compositor can intelligently bind the
components of refrigerator and milk with the component of
Expiration Manager. By building the connections among three
components, the Expiration Manager can receive the messages
from the milk and the refrigerator. Then the two dates from
the two objects can be compared by interpreting the date fields
in two messages. The Fig.11 demonstrates the process.

Fig. 11 The process of service composition

V. EVALUATION

The proposed generic architecture is suitable for many
domains. As this IoT architecture is device-independent, any
type of sensory device can support it. This section outlines the
implementation details of the proof-of-concept prototype
based on the case study in Section IV. All resources in this
evaluation are open-source and representative.
A. Experiment Setup

An Arduino UNO, a Zigbee Xbee and several electronics
were combined together to simulate a generic wireless sensor
or a RFID tag. A ZigBee USB explorer was used to simulate a
gateway. It can collect messages and then route the aggregated
messages to the IoT. LooCI-OSGi v1.0 was selected as the
middleware. The LooCI components can be reconfigured on
runtime, which is especially suitable for the dynamic states of
the IoT. Compared with other middleware such as OpenCOM,
LooCI supports multiple threads among multiple components.
To provide combined services, the proposed architecture also
needs to support multiple components communication.

A standard dual-core PC with Windows XP was used as the
Proxy, and a USB port was connected to the gateway to route
aggregated messages. Openjdk 1.7 was installed to design the
Component Factory and Service Compositor.

XML was used to describe the ontologies and templates. In
this implementation, four templates were designed including
two object templates for the refrigerator and the milk, and two
service templates for Expiration Manager and Temperature
monitor. The templates are illustrated in the Fig. 8 and Fig. 10.

The ontology was developed based on the core concept of
proposed architecture. It uses a hierarchal structure links to its
sub-ontologies including Object Ontology, Service Ontology
and Unit Ontology. These ontologies are inter-connected by
referencing Template IDs to form a mesh network.

B. Building Ontologies
Previous work [14] has demonstrated dynamic generation

of sensor components in proxies to integrate heterogeneous
sensors/RFIDs. The main purpose of this evaluation is to
investigate the feasibility of building ontologies for the IoT.
The process of this evaluation was based on the case study in
section IV. Two messages in Fig. 6 were written into sensors
to describe the refrigerator and the milk. These messages were
sent to the gateway every two seconds. In the LooCI
middleware, two object components were generated to map
the messages from two objects, and two service components
were deployed to simulate the service of Expiration Manager
and Temperature Monitor. The Service Compositor bound
these components together to deliver the combined services.

C. Evaluation Results
The first evaluation is to test the Expiration Manager. The

milk’s expiration date was configured as “09-06-2012” in
messages, while the local date of refrigerator was set as “16-

06-2012”. As “ 09-06-2012” is before “16-06-2012”, the
screen displayed a notification of “Your milk is still fresh”.
By changing the milk’s expired data to “18-06-2012”, and
then the notification turned into “Your milk is expired”.

The second evaluation is used to validate the Temperature
Monitor. If the refrigerator’s temperature is above the
predefined threshold “-2”, a notification of “Your refrigerator
is too hot” will be sent. Otherwise, the notification is “Your
refrigerator works well”. By adjusting the temperature value
on the sensor, the evaluation result also turned as expected.

C. Reducing Messages’ Size
Reducing messages’ size can achieve energy saving for

battery-driven devices. The proposed IoT architecture can
minimize messages’ size to fit lightweight sensors/RFIDs.
Assuming the messages from the milk and refrigerator are
encoded based on ASCII, the messages’ size can be measured
by using a ASCII calculator [16]. The Fig 12 shows the
proposed architecture (MOCB) can dramatically reduce
messages’ size compared with using XML and JSON to
describe objects.

Fig. 12 Messages’ size in different micro formats

VI. CONCLUSION
This paper proposes a generic architecture for building

ontologies for the IoT. It can integrate any type of sensory
device in a component-based middleware. The minimized
messages can fit resource-constrained devices, such as passive
RFID tags. By building the ontologies in the IoT system, the
semantic meaning of received messages can be interpreted,
and generate logical components for physical objects and
services. These components are bound together on event bus
to deliver various combined services. The proposed
architecture provides a mechanism for third-parties to
customize objects and services. The evaluation demonstrates
that it is feasible to design such a generic IoT architecture
based on existing infrastructure and communication standards.

REFERENCE

[1] R. B. Kranenburg, D. Caprio, E. Anzelmo, S. Dodson, A. Bassi,
and M. Ratto, "The Internet of Things " presented at the 1st Berlin
Symposium on Internet and Society, Berlin, 2011.

[2] A. Iera, C. Floerkemeiea, J. Mitsugi, and G. Morabito, "The
Internet of Things," IEEE Wireless Communications, vol. 17, 2010.

[3] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, Vision
and Challenges for realising the Internet of Things European
Commission - Information Society and Media DG, 2010.

[4] F. N. Eduardo, A. F. L. Antonio, and C. F. Alejandro,
"Information fusion for wireless sensor networks:Methods, models,
and classifications," ACM Computing Surveys, vol. 39, 2007.

[5] S. De, P. Barnaghi, M. Bauer, and S. Meissner, "Service modelling
for the Internet of Things," in Computer Science and Information
Systems (FedCSIS), 2011, pp. 949-955.

[6] C. Barbero, P. D. Zovo, and B. Gobbi, "A Flexible Context Aware
Reasoning Approach for IoT Applications," in Mobile Data
Management (MDM), 2011, pp. 266-275.

[7] G. M. Lee and N. Crespi, "Shaping future service environments
with the cloud and internet of things: networking challenges and
service evolution," Leveraging applications of formal methods,
verification, and validation, vol.1, Heraklion, Crete, Greece, 2010.

[8] D. Uckelmann and M. Harrison, Architecting the Internet of
Things. Heidelberg, Germany: Springer, 2011.

[9] S. Bowers, J. S. Madin, and M. P. Schildhauer, "A Conceptual
Modeling Framework for Expressing Observational Data
Semantics," Conceptual Modeling, Barcelona, Spain, 2008.

[10] H. Petritsch., 2005, Service-Oriented Architecture (SOA) vs.
Component Based Architecture. Available:
http://worldcolleges.info/worldcolleges_new/sites/default/files/SO
A_vs_component_based.pdf

[11] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, "Tiny web
services: design and implementation of interoperable and
evolvable sensor networks," Embedded network sensor systems,
Raleigh, NC, USA, 2008.

[12] J. W. Hui and D. E. Culler, "IP is dead, long live IP for wireless
sensor networks," Embedded network sensor systems, 2008.

[13] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola, G.
Picco, T. Sivaharan, N. Weerasinghe, and S. Zachariadis, "The
RUNES Middleware for Networked Embedded Systems and its
Application in a Disaster Management Scenario," in Pervasive
Computing and Communications, 2007, pp. 69-78.

[14] W. Wang, K. Lee, and D. Murray, " Integrating Sensors with the
Cloud using Dynamic Proxies," presented at the 23rd Annual
IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC 2012), Sydney, 2012.

[15] K. Lee, D. Murray, D. Hughes, and W. Joosen, "Extending sensor
networks into the Cloud using Amazon Web Services," in
Networked Embedded Systems for Enterprise Applications, 2010.

[16] D. Hughes, P. Greenwood, G. Blair, G. Coulson, P. Grace, F.
Pappenberger, P. Smith, and K. Beven, "An experiment with
reflective middleware to support grid-based flood monitoring,"
Concurr. Comput. : Pract. Exper., vol. 20, pp. 1303-1316, 2008.

