
Integrating Sensors with the Cloud Using
Dynamic Proxies

Wei Wang, Kevin Lee, David Murray

 School of Information Technology, Murdoch University,

 Murdoch 6150, Western Australia, Australia

 {W.Wang, Kevin.Lee, D.Murray}@murdoch.edu.au

Abstract— Wireless Sensor Networks (WSNs) can have high
demands for real-time data transmission and processing, but this
is often constrained by limited resources. Cloud Computing can
act as the backend for WSNs to provide processing and storage
on demand. This paper proposes a generic architecture to
support the integration of sensors with the Cloud. It uses a
lightweight component model and dynamic proxy-based
approach to connect sensors to the Cloud. The feasibility of this
approach is evaluated experimentally.

Keywords— Wireless Sensor Networks, WSN, Cloud Computing

 I. INTRODUCTION

The Cloud Computing paradigm is being applied to many
domains, including, scientific computation [1], e-commerce
[2], online games [3] and industrial design [4]. The core
features of Cloud Computing include cost-saving,
virtualization, elastic resources, self-service interface and pay-
per-use pricing models. Conversely, WSNs have limitations:

 Limited computational resources that cannot meet the
requirement of elastic demand.

 Finite battery power
 The heterogeneous nature of WSN platforms can

cause interoperability problems.
 Due to the upfront investment, deploying short life-

cycle applications of WSNs is financially prohibitive
[5].

 The complementary characteristics of Cloud Computing
and WSNs indicate that there are many advantages to integrate
WSNs with Cloud Computing.

This paper introduces the Tangible Cloud as a new concept,
and extends prior work [6], enabling Cloud applications to
interact with WSNs and the physical world. Equally, WSNs
may also offload processing capabilities to Cloud resources.

This paper proposes a generic architecture for integrating
WSNs with the Cloud. It utilises an established loosely
coupled component model [7] with the addition of a dynamic
proxy-based approach to connect sensor motes to the Cloud.
Furthermore, it is demonstrated through evaluation that it is
feasible to deploy a universal architecture to integrate
lightweight sensors with the Cloud.

The remainder of this paper is structured as follows. Section
II introduces the background of Cloud Computing, WSNs, and
their integration methods. Section III describes the proposed
architecture using dynamic proxies to support lightweight
WSNs. Section IV evaluates the feasibility of deploying the
proposed architecture through experiments. Finally, Section V
presents some conclusions.

 II. BACKGROUND

A. Wireless Sensor Networks
 Wireless Sensor Networks (WSNs) consist of distributed
nodes with embedded CPUs and low-power radios. WSNs are
mainly used to monitor environmental conditions, such as
temperature, sound, and vibration and pressure [8]. The
applications of WSNs can be applied in many areas, such as
forest fire detection [9], medical monitoring [10] and pollution
monitoring [11]. A generic wireless sensor consists of several
components:

 A low-power CPU, a small amount of memory, and a
small solid-state storage.

 A radio transceiver with an antenna for transmitting
and receiving data.

 A microcontroller for interfacing with the sensors.
 Energy sources like batteries or other power supply.

 In WSNs, the gathered raw data may include a large
amount of irrelevant information. In order to reduce this
volume of data, this raw data needs to be filtered, aggregated
and processed [12]. WSNs have the following challenging
problems:

 The battery-powered sensors are resource-constrained
and depletion times vary from days to years.

 Nodes can be difficult to maintain in some
deployment scenarios, such as for seafloor
temperature monitoring.

 In the event of sensor node failure, the network must
adapt dynamically, often resulting in topology change.

 The integration of heterogeneous sensor nodes into
WSNs is not standardised.

 Scalability issues in large deployments.
 Complexity is a hindrance to the ease of deployment.

B. Cloud Computing
 Cloud Computing is a collection of virtualized resources

that can be assigned on demand. They use a pay-per-use model
with service license SLAs [2]. Cloud Computing can also be
considered as the convergence of Grid computing and service-
oriented computing. Cloud Computing has four characteristics:
‘abstracted or virtualized resources’, ‘Elastic resource
capacity’, ‘Programmable self-service interface’ and ‘Pay-per-
use pricing model’ [6].

 Cloud services can be classified into three types:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS) [13], described as follows.

 IaaS provides low-layer processing or data storage (e.g.
Amazon EC2 and Amazon S3).

 PaaS provides developers with a platform to design
their applications according to some specifications
without the concern of hardware layer.

 SaaS delivers various off-the-shelf services in a pay-
per-use pricing model. The service providers own and
manage the resources. The users just directly use the
services without the concern of complex cooperation
among multiple providers (e.g. Salesforce.com).

The focus of this paper is the computational resource
advantages of integrating WSNs and the Cloud; it therefore
falls into IaaS. Cloud Computing is used in various forms [2]:

 Public Clouds are owned by third parties and offer
services to paying clients.

 Private Clouds are Clouds owned by individuals or
organizations that have the characteristic of full
control by the owner.

 Hybrid Clouds are partly private and partly public,
they allow users to have the security of a private
Cloud and the resource potential of a public Cloud.

 Federated Cloud describes the cooperation of multiple
Clouds to provide a consistent service.

The main issues of using the Cloud as the backend for
WSNs are latency and the ability of the Cloud to support
periodic events. A private Cloud would lack elasticity if
thousands of wireless sensors were transmitting data to the
cloud simultaneously. Conversely, a public Cloud would have
high latency for interactive applications. In certain scenarios,
large latencies could have catastrophic consequences. For
example, the temperature monitoring in nuclear plants needs
very fast responses to emergencies. Thus, the hybrid cloud is
the logical choice for the WSN back-end as it can eliminate
both the disadvantages of public and private Clouds. This
paper proposes an architecture utilizing a hybrid Cloud,
Eucalyptus [14] and Amazon Web Services [15], to meet the
dynamic computational needs of WSN.

The elastic resources capability of the Cloud is the main
motivation for integration WSNs with the Cloud. In some
situations, elasticity is an operational requirement rather than
cost saving [2]. In the area of environmental monitoring,
exhaustion of resources could lead to untimely flood
prediction [16]. However, it is cost prohibitive to manually
update or re-task the infrastructure of emergency prediction.
From a software engineering perspective, large-scale sensing
applications can be made a reality when data is processed and
stored in the Cloud. Cloud Computing can provide elastic
resources to WSNs. Experiments have shown that Cloud
Computing services have sufficient elasticity to process the
collected data from periodic WSN events [5].

 III. INTEGRATION OF WSN AND THE CLOUD

The integration of WSNs and Cloud Computing can be seen
as the integration of WSNs with the traditional Internet with
the addition of load-balancing and resource elasticity. There
are six approaches to integrate WSNs with the Internet [17].
 The first approach is based on message-oriented
communication that uses low-level application-specific APIs
to exchange messages between sensors and motes running
platforms such as TinyOS [18] and Contiki [19]. These are
integrated with the Internet by using a lightweight IP stack.

This approach provides communication infrastructure, but
doesn’t provide application-level service distribution.

The second approach is to use SOAP-based Web services
such as Tiny web services [20]. The application layer
functionality of web services can be accessed via ports. The
ports are described using Web Service Description Language
(WSDL). Sensor data is encapsulated in SOAP packets that
lead to high complexity and resource requirements.

The third approach uses the HTTP RESTful paradigm to
control the status of wireless sensors. An example is
TinyREST [21] that uses a gateway to connect sensor nodes to
the Internet by mapping messages to HTTP requests. Another
example is CoAP [22], which reduces the HTTP overhead by
using a subset of HTTP. This approach adds overhead from
processing HTTP requests.
 The forth approach is based on the Universal Plug and Play
(UPnP) architecture. It allows wireless sensors to connect each
other in a universal environment [23]. However, as it is based
on TCP/IP, UDP and HTTP, it requires a complete networking
stack be present on the sensors.

The fifth approach uses socket communication, which adds
the minimum overhead. However, it is just a communication
mechanism with no application support.
 The last approach uses a component-based model that uses
RPC invocations in WSNs. For example, NesC [24] is a
component-based, event-driven model used to build
applications for the TinyOS platform. In this model,
components are statically bound together via their interfaces.
Predefining the static components allows for better analysis of
whole programs. However, NesC becomes a single monolithic
blob of code at compile time and only the full system image
can be replaced after compilation. In this way, the static
components cannot be reconfigured on runtime, thus not
suitable for the WSNs in dynamic environments. Compared
with NesC, OpenCOM [25] can support runtime
reconfiguration. It encapsulates the WSN resource into a
reusable component with predefined interface for discovery
and resource management. However, OpenCOM is designed
for relatively resource-rich platforms which are unsuitable for
lightweight sensor nodes. OpenCOM is based on traditional
RPC binding requiring developers to build relationships
between single nodes instead of multicasting relationships to a
group of nodes. Another example is LooCI [7], which provides
an extensible networking framework and an event bus
abstraction to bind reusable components. LooCI has a key
advantage that its communication is based on Inter Isolate
RPC (IIRPC). Its macro-components can support multiple
threads and utility libraries by running each macro component
in isolation [7]. LooCI can implement multicast to multiple
nodes network-wide. The LooCI middleware has been
deployed on a variety of platforms such as the SunSPOT,
Contiki and OSGi. The proposed architecture in this paper
adopts LooCI as its supporting middleware.

III. PROPOSED ARCHITECTURE FOR INTEGRATION

A. Aims
This paper proposes a new architecture that will allow the

integration of any lightweight sensors with the Cloud. The
proposed architecture is inspired by the advantages of both the
message-oriented and component-based approaches. It utilises

the publically available LooCI middleware for component
management and adds support for dynamic proxies. The
sensor components can be dynamically generated according to
the data structure messages; advantages include:

 Supporting generic lightweight sensors. The proposed
architecture completely moves the middleware to the
local proxy, saving energy on resource constrained
WSN nodes. Running the middleware on the proxy is
independent of the WSN platform.

 Individual connectivity and global interoperability:
each sensor component has its own individual
connectivity and can be accessed via a global
identifier, which is a combination of public IP
address and component ID.

 High-level programming APIs can be used to deploy
third-party components. The developers can design
their own components for different purposes. For
example, a third-party component is designed to
convert temperature from Kelvin to Celsius.

 Runtime reconfiguration can improve resource
management. As most wireless sensors are resource-
constrained devices, developers can only deploy the
required components and remove the unused
components on runtime.

 Overheads are reduced when compared with the
encapsulation/de-encapsulation of SOAP envelopes.

Fig. 1 The proposed architecture

B. The Overall Architecture

Fig. 1 illustrates the proposed generic architecture to
integrate lightweight sensors with the Cloud. At the Sensor
Tier, the sink node is used to gather the environmental data
from a group of wireless sensors. The aggregated sensor

messages are then sent to local proxy via a local
communication mechanism. At the Gateway Tier, the local
proxy parses received messages and then generates dynamic
components for each new sensor detected. Components can be
bound and unbound over the event bus. The gathered sensor
data can be modelled and relayed to the Cloud. The Cloud Tier
acts as a hybrid Cloud back-end of WSNs, combining
Eucalyptus Private Cloud [14] and Amazon Web Services [15].
The Eucalyptus Private Cloud can integrate with Amazon Web
Services via published APIs, thus integrating the private and
public Clouds [26]. Both the Gateway Tier and Cloud Tier are
implemented on the event bus of the LooCI middleware.

C. The Proposed Architecture
 Fig. 2 illustrates an overview of the proposed architecture –
based on the LooCI architecture with the addition of dynamic
proxies, which enables any sensors to connect to the Cloud
seamlessly – described as follows.

 Component Factory: The purpose of Component Factory is
to parameterize the gathered data and then dynamically
generate node components for different types of sensors. In the
proposed architecture, a group of sensors send data to a sink
node, and then the sink node passes a stream to the Component
Factory through a serial port. The gathered data contains
multiple-lines of text. Each line is received from a unique
sensor node with its own data structure. For example, a line of
text “NodeID 3 Pressure 101325 Date 2011-09-06 Time
12:05:56” represent a meaning of “Node3’s pressure was
101325KPa at 12:05:56 on 6th, September of 2011”. The
Component Factory can read real-time messages one at a time,
and then generate dynamic components for each sensor node
according to the data structures of each message.
 These generated data architectures can be registered and
put in “Component Templates” for reuse. The Component
Factory generates sensor components in three ways:

 If the type of received message is predefined in
Component Templates, the data will be sent to a
related template and then some of its parameters will
be replaced by the captured data (i.e. sensor ID and
sensor name). A new sensor component will then be
generated from the modified template.

 If the type of received message does not exist in
Component Templates, a new type of template will be
created and registered in the Component Templates.
The new template then will be used to generate sensor
components as well as the old templates.

 If the sensor node in the received message has already
been activated and wired to Component Factory, the
Component Factory just sends the required data to
related component on event bus.

 The generation of components also results in registration
with the Reconfiguration Engine and Event Bus of the LooCI
runtime. Once a component is registered, the Reconfiguration
Engine issues an ID to the component. The new component is
inactive when it is created, and can be activated. As the
Component Factory is implemented above the level of the
middleware, the middleware layer doesn’t need to be modified
and inherently supports the connections to other platforms,
such as SunSPOT, Contiki and OSGi.

Fig. 2 The proposed architecture

Dynamic Proxy Components: In Fig.2, The dynamic proxy

components are generated by the Component Factory and
include Node Components and Intermediate components.
They are both dynamically generated and terminated. WSN
nodes have a high chance of failure, which could be hardware
error or low battery. Subsequently, each component is
designed with an expiration date. If the Component Factory
has not received data from a registered sensor above a
predefined period of time, the status of the sensor will be
switched to “stop working”. Then the Component Factory will
send a failure report to the event bus. Consequently, the
dynamic node component will be terminated and unregistered.
The Intermediate Components only exist in an intermediate
state, and then will be replaced by a new component. The
generated Node Components can run in the proxy, and then
transmit to the cloud. Running components in the proxy is
beneficial. In some instances, local proxy based processing
will reduce the expense of large uploads to the cloud.

Workflow Manager: Workflow management can also be
achieved by rewiring the relationship between multiple
components. In the proposed architecture, the Workflow
Manager can coordinate and control the workflow of
components over the event bus. For example, if the raw
temperature data in Fig. 2’s Node2_Component_(Raw) needs
to be converted to Temperature °F, the raw data can be firstly
converted to Temperature °C and then further be converted to

Temperature °F. An intermediate component Temperature °C
exits in the middle status, benefiting workflow management.
 Reconfiguration Engine: The heart of the proposed
infrastructure that can register, control and introspect all
components [7]. Each component registers with a per-node
reconfiguration engine, and these components can be started,
stopped and resumed by invoking a set of standard methods in
a generic component base-class. In order to easily implement
run-time reconfiguration for all components, all the running
components store their reference of reconfiguration interface
in the Reconfiguration Engine. The Reconfiguration Engine
can inspect information at the node, component and binding
level over the event bus [7].
 Backup Centre: As wireless sensors have a high chance of
failure and new replacement, the Backup Centre is a recovery
mechanism with fault-tolerance. If a sensor node fails and is
replaced, the Backup centre can recover the previous reference
to a replaced node.
 Event: Each LooCI event has a globally unique identifier
which can identify the event in a global descriptive hierarchy
[7]. On the event bus, the Interfaces are responsible for
publishing events and the Receptacles subscribe the events. In
this publish-subscribe architecture, distributed Events can
travel over the whole event bus along wirings, which can be
seen as the logic connections between two components [7].

Event Manager: The Event Manager logically forms a
distributed ‘Event Bus’ to connect LooCI components. A per-
node instance of the LooCI Event Manager publishes and
subscribes events based on topic and event type. The event
system is a spanning tree structure to allow developers to
easily discover third-party components [7]. For instance,
"Event.Temperature.conventor.raw-_to_C" represents a tree
architecture which contains a component “raw_to_C”.

8) Network Manager: Network Manager is used to discover
the address of central node. In this architecture, all lightweight
sensors in a WSN share the same IP address with the central
node (i.e. each WSN uses a unique IP address).
 9) Wiring and Unwiring of components: A combination of
component ID, event ID and network address are used to bind
or unbind a component to a specified event [7].

 IV. EVALUATION
 To evaluate the feasibility of the proposed architecture in
Section III, the following experiments were performed.
A. Experiment Setup
 The proposed architecture is a generic architecture that
supports the integration of any WSN with the Cloud. A Zigbee
Xbee and an Arduino UNO were combined together to
simulate a lightweight WSN with eight temperature sensors.
The Arduino is an open-source microcontroller that has an
Atmel AVR processor and on-board I/O, is programmed in C
and used in multidisciplinary projects. ZigBee is a low-cost,
low-power, lightweight wireless mesh network standard
designed for personal wireless networks based on IEEE
802.15.4. “ZigBee + Arduino” is a platform that can support
projects such as monitoring of temperature, light, pressure, and
sound [27]. Messages from sensors were collected on the
Arduino board, and sent via ZigBee to the sink node. Each
message includes three elements: component ID, temperature

(°C) and sending time. Temperature (°C) can be further
converted to temperature (°F) in the Cloud.

A ZigBee USB explorer was used to collect data from the
WSN, and it also acts as the central node to bridge the WSN
with local proxy. Ubuntu 10.10 was installed in two virtual
machines on a local network. One machine was a proxy to
receive data from the central node of the WSN and connect to
the Cloud. Openjdk 1.6 and Java_Communications_3.0 was
installed as the API to read data from the USB port of proxy.
LooCI-OSGi v1.0 was installed on the two machines, which
are used for sending and receiving data respectively.
 The middleware (LooCI) was taken off-the-shelf to support
the proposed architecture, and was not implemented
specifically for it. In this experiment, two static LooCI
components were created in Java. The first component has two
functions: 1) Reading data from the central node of a ZigBee
network; 2) Sending the data to the second component. The
second component is used for receiving and displaying data.
The sending delay was configured as 200 milliseconds on the
Arduino board (i.e. sending data 5 times per second). The
evaluation results illustrate that this approach can be used to
successfully exchange data using Zigbee.

B. Individual Connectivity for Lightweight Sensors
 Lightweight WSNs aggregate data on a central node. The
advantage of lightweight WSNs is reduced energy
consumption due to lower complexity [28]. Unfortunately, if
individual sensors lose connectivity, it becomes difficult to
manage each sensor's data. The purpose of this experiment is
to evaluate the feasibility of establishing individual
connectivity for each sensor in the proposed architecture.
 In this experiment, the Component Factory was designed to
generate sensor components dynamically. A Perl script was
used to parse the real-time messages from the ZigBee network.
Predefined component templates were stored in Java files. If
the message is from a known type of sensor, the Component
Factory will replace some parameters of the template with
captured data from messages, such as the component ID and
component name. Then the modified template will be used to
create new components, such as Class files and Jar files. The
evaluation shows these generated sensor components can be
wired to the Component Factory and activated automatically.
The dynamic components of each node were generated based
on their data structures. The evaluation results shows that with
registered component IDs and IP addresses, the dynamically
generated components can also publish and subscribe to
services on the event bus.

C. Overhead Testing
 To evaluate the overhead of the proposed architecture, this
experiment tested the latency between two dynamic
components in two different virtual machines. The latency of
socket communication was measured as a benchmark for
comparison and repeated 20 times to get a precise result. Fig. 3
compares the latency for dynamic components, sockets and the
average of dynamic components.
 The latency of socket communication was 1ms. The latency
between two dynamic components fluctuated between 1ms
and 3ms. The average value was 1.6ms. It is observed that on
average, the proposed architecture only adds 0.6ms of latency

between two dynamic components. The additional 0.6 ms of
latency can be explained by the need to first transfer the data
to the core components [7].

Fig.3 Latency comparison

D. Memory Footprint

A minimal memory footprint is critical to wireless sensors
in embedded systems. Compared with the approach of running
middleware on sensors, in the proposed architecture, it is
running on the local proxy or in the Cloud. It can effectively
avoid the constraints of memory and energy on sensors.
However, the memory of the local proxy is still limited. The
purpose of this experiment is to measure the runtime memories
of the approach and the dynamically generated components.
The runtime memory of the middleware and the JVM was
observed as 18088 KB. This was tested using the 'ps'
command in Linux. Eight dynamic components were loaded
one after another. The evaluation result shows that upon
activation of additional dynamic components, the runtime size
of each component decreased. The first component used 196
KB to initialize loading components. After that, there was a
slow trend of increasing from the second component (82 KB)
and stabilising at the last component (28 KB).

The disparity of components’ runtime size can be explained
by the process of generating components from the same
template, and resultant memory allocation of the JVM.
Multiple components can share the same process in the
memory. It can be inferred that each component size is no
more than 28 KB when the number of dynamic component is
greater than 8. This is acceptable for a local proxy. A
computer with 8 GB of RAM can provide enough memory for
running 20000 dynamic components. This assumption is based
on the OS using 2 GB of memory. Fig. 4 illustrates the
variation of runtime memory for dynamic components.

Compared with the dynamic components in the local proxy,
previous experiments show they consume 44.5 KB of total
memory for each sensor [7]. The component itself only has a
footprint of 20.8 KB on one sensor, and the rest of 23.4 KB is
used for networking. It can be observed that, on average,
dynamic components consume less memory than running
middleware on sensors. Most importantly, as the proposal is
completely running on the local proxy, it can efficiently reduce
the energy consumption for resource-constrained sensors.

Fig. 4 Runtime memory of dynamic components

E. A Limitation and Optional Improvement
 The evaluation revealed a problem when dynamically
generating components. If a large number of sensor nodes
were found by the Component Factory the process of
generating components and compiling components may
consume a lot of CPU time. As a result, the processing speed
of the local proxy will be reduced. In this case, the
performance can be improved by moving the process of
generating components to the private Cloud.

 V. CONCLUSIONS

 This paper proposed a technique for the integration of
lightweight WSNs and Cloud Computing using dynamic
proxies. It aggregates the features of message-oriented and
component-based approaches. Each dynamic sensor
component has its own individual connectivity and global
interoperability. As the middleware is located in the proxy,
less energy is consumed. The evaluation demonstrated that the
architecture proposed is suited for resource-constrained
environments. The evaluation of this approach illustrates that
only 0.6 ms of latency is added and the memory usage is
minimised.

 REFERENCES

[1] E. Deelman, G. Singh, M. Livny, B. Berriman and J. Good, “The cost of
doing science on thecloud: the Montage example”, in Proceedings of
theACM/IEEE Conference on High PerformanceComputing . Austin,
Texas, USA. November 15-21, 2008.

[2] A. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, G. Lee, and
 M. Zaharia, “Above the Clouds: A Berkeley View of Cloud Computing”,

 California: EECS Department, Tech. Rep. UCB/EECS-2009-28, 2009.
[3] L. Liu, H. Wang, X. Liu, X. Jin, W. Bohe and Y. Chen, "GreenCloud: a

new architecture for green data center", ICAC-INDST '09 Proceedings
of the 6th international conference industry session on Autonomic
computing and communications industry session, New York, USA, 2009.

[4] K. Stanoevska-Slabeva and T.W. Ristol. Grid and Cloud Computing: A
 Business Perspective on Technology and Applications, pp.160-164, 2009.
[5] K. Lee, D. Murray, D. Hughes and W. Joosen, “Extending sensor

networks into the Cloud using Amazon Web Services”, In IEEE
International Conference Networked Embedded Systems for Enterprise
Applications, Suzhou, China, 2010.

[6] K. Lee and D. Hughes, “ System architecture directions for tangible
Cloud Computing”,International Workshop on Information Security
 and Applications, Qinhuangdao, China, October 22-25, 2010.

[7] D. Hughes, K. Thoelen, W. Horré, N. Matthys, S. Michiels, C. Huygen

and W. Joosen. “LooCI: A Loosely-coupled Component Infrastructure
for Networked Embedded Systems”, The 7th International Conference
on Advances in Mobile Computing & Multimedia, 2009.

[8] W. Dargie, and C. Poellabauer, Fundamentals of wireless sensor
networks:theory and practice, pp.168–183, 191–192, 2010.

[9] J. Lloret, M. Garcia, D. Bri and S. Sendra, "A Wireless Sensor Network
Deployment for Rural and Forest Fire Detection and Verification”,
Integrated Management Coastal Research Institute, Spain, 2009.

[10] J. A. Stankovic, Q. Cao, T. Doan, L. Fang, Z. He, R. Kiran, S. Lin,
 S. Son, R. Stoleru and A. Wood, “Wireless Sensor Networks for In-
 Home Healthcare: Potential and Challenges”, Workshop on High
 Confidence Medical Devices Software and Systems (HCMDSS), 2005.

[11] W. Tsujita, A. Yoshino, H. Ishida and T. Moriizumi, “Gas sensor
network for air-pollution monitoring”, Sensors andActuators B:
Chemical, vol.110, no.2, pp.304 – 311, 2005.

[12] F. N. Eduardo, A. F. L. Antonio, C. F. Alejandro, “Information fusion
for wireless sensor networks:Methods, models, and classifications”,
ACM Computing Surveys , vol.39, no.3, 2007.

 [13] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali,
 “Cloud Computing: Distributed Internet Computing for IT and

Scientific Research”, Internet Computing, IEEE, vol.13, no.5, 2009.
[14] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.

Youseff and D. Zagorodnov, “Eucalyptus : A technical report on an
elastic utility computing architecture linking your programs to useful
systems”, UCSB Technical Report, 2008.

[15] Amazon. (2012)Amazon Web Services. http://aws.amazon.com
[16] P. Smith, D. Hughes, K.J. Beven, P. Cross, W. Tych, G. Coulson and G.

Blair. “Towards the provision of site specific flood warnings using
wireless sensor networks” In Meteorological Applications, Special
Issue: Flood Forecasting and Warning, vol.16, no.1, pp.57–64, 2009.

[17] T. Amirhosein, R. Rouvoy and F. Eliassen, “A Component-based
 Approach for Service Distribution in Sensor Networks” in Proceedings

of the 5th International Workshop on Middleware Tools, Services and
Run-Time Support for Sensor Networks, 2010.

[18] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
 “System Architecture Directions for Networked Sensors,” SIGPLAN
 Not.,vol.35, no.11, pp.93–104, 2000.
[19] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
 flexible operating system for tiny networked sensors,” In LCN ’04:
 Proceedings of the 29th Annual IEEE International Conference on
 Local Computer Networks, Tampa, FL, USA, pp.455–462, 2004.
[20] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny Web
 Services: Design and Implementation of Interoperable and Evolvable
 Sensor Networks,” The 6th ACM Conference on Embedded Network
 Sensor Systems, Raleigh, NC, USA, pp.253–266, 2008.
[21] T. Luckenbach, P. Gober, K. Kotsopoulos, Andreas Kim, and S.

Arbanowski, “TinyREST: a Protocol for Integrating Sensor Networks
into theInternet,” In REALWSN’05: Proceedings of the Workshop on
Real-World WSNs, Stockholm, Sweden, 2005.

[22] W. Colitti, K. Steenhaut and N. D. Caro, "Integrating Wireless Sensor
Networks with the Web," In IP+SN, 2011.

[23] M. Marin-Perianu, “Decentralized Enterprise Systems: a Multi-Platform
Wireless Sensor Network Approach”, Wireless Communications,
IEEE,vol.14, no.6, pp.57–66, 2007.

[24] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola, G. P.
Picco, T. Sivaharan, N. Weerasinghe, and S. Zachariadis. “The runes
middlewarefornetworked embedded systems and its application in a
disaster management scenario,” The 5th IEEEInternational Conference
on Computing and Communications.pp.69–78, 2007.

[25] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, J. Ueyama and T.
Sivaharan, “A Generic component model for building systems
software”, ACM Trans. Comput.Syst., vol.26, no.1 pp.1–42, 2008.

[26] Daniel Nurmi et al, The Eucalyptus Open-Source Cloud-
ComputingSystem, 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2009.

[27] R. Faludi, "Building Wireless Sensor Networks: with ZigBee, XBee,
Arduino, and Processing", Sebastopol, CA: O'Reilly Media, 2010.

[28] G. Drew, “ZigBee wireless networks,” Burlington, USA: Newnes, 2008,
 pp. 3-28.

