
Supporting Runtime Reconfiguration on Network Processors

Kevin Lee
Computing, Lancaster University

Lancaster, LA1 4WA
leek@comp.lancs.ac.uk

Geoffrey Coulson
Computing, Lancaster University

Lancaster, LA1 4WA
geoff@comp.lancs.ac.uk

Abstract

Network Processors (NPs) are set to play a key role in the
next generation of networking technology. They have the
performance of ASIC-based routers whilst offering a high
degree of programmability. However, the programmability
potential of NPs can only be realised with appropriate soft-
ware. In this paper we argue that specialised software to
support runtime reconfiguration is needed to fully exploit
the potential of NPs. We first justify supporting runtime re-
configuration on NPs by offering real-world scenarios and
discussing the issues associated with these. We then demon-
strate how runtime reconfiguration can be achieved in prac-
tice through a case study of our component-based program-
ming approach on the Intel IXP2400 NP.

1. Introduction

Network Processors (NPs) are multiprocessor-based
hardware units that have the ability to perform relatively
complex packet processing tasks in software at line speeds
when compared to contemporary devices. They typically
consist of a set of heterogeneous processors including packet
processors, dedicated devices such as encryption engines,
general purpose processors, and a high-speed interconnect
[1].

NPs can be seen as an attempt by hardware vendors to
fulfill the growing need for network hardware elements that
support high throughput while also offering increased pro-
grammability. Programmability is seen as crucial in sup-
porting system evolution so that new protocols and services
can be accommodated without designing new hardware.
Their programmability makes NPs very widely applicable—
e.g. they are being applied in networked devices, as edge-
network routers and even in the network core [2].

In addition, it is now becoming recognised [3] that run-
time reconfiguration is a desirable characteristic of software
for NPs. Runtime reconfiguration is useful for a number of
applications, including dynamically extensible services [4],

network resource management [5], configurable network-
based encryption [6], and offloading of processing [7]. In
addition the active networking (AN) community have been
heavily involved in investigating the use of NPs in their field
[8]. This is because ANs require significant data-plane pro-
cessing and also require routers to expose their state to allow
reconfiguration of forwarding functions.

The aim of the research discussed in this paper is to
investigate the potential and benefits of runtime reconfig-
uration in NPs. Our research focuses on the provision of
generic mechanisms that can potentially be applied in a wide
range of scenarios including all of the above. We adopt a
runtime component-based approach in which fine-grained
components on the NP can be dynamically (un)loaded and
(dis)connected in a principled manner. In this paper we illus-
trate the generality of our approach by focusing on applying
it in a set of representative scenarios. We use the Intel IXP
2400 [9] as representative of the state of the art of the cur-
rent generation of NPs. We also argue that a flexible runtime
reconfiguration capability need not be bought at the expense
of performance.

The remainder of this paper is structured as follows. In
section 2 we motivate runtime reconfiguration by outlining
common reconfiguration scenarios and then provide back-
ground on the Intel IXP2400. Section 3 then presents de-
tails of OpenCOM, our runtime reconfiguration capable pro-
gramming platform, and its deployment on the IXP2400. In
section 4 we show how the reconfiguration scenarios can be
realised by OpenCOM. Finally, we discuss related work in
section 5 and in section 6 offer our conclusions.

2. Background

2.1. Runtime Reconfiguration

2.1.1. Dynamic Proxying. In general terms, proxying is a
technique for allowing clients and devices to make indirect
connections to network services via a shared intermediary.
It is used both to limit the network load incurred in pro-

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)

1550-445X/06 $20.00 © 2006 IEEE

viding access to external network resources and to provide
value-added services. The proxy notion can be applied in a
wide range of settings including web caching, VoIP proxy-
ing, and media transcoding. Furthermore, it can involve a
range of generic techniques including combining client re-
quests, diverting connections, denying connections, or cre-
ating encrypted tunnels.

Currently, proxying is typically performed at the net-
work edge on dedicated devices. However, with NPs it be-
comes possible to deploy proxies on routers inside the net-
work. Furthermore, such proxies could be deployed on the
fly and on demand. To support such dynamic proxys, a NP
would need a software framework that incorporated a exten-
sible classifier to identify specific flows, plus the ability to
instantiate proxy components depending on the service re-
quired. The benefits would be a minimisation of latency as
well as a maximisation of flexibility. Deployment overhead
could also be minimised by caching proxies on the NP.

2.1.2. Adaptive Load Balancing. On standard network
routers, flows are either not differentiated or are differenti-
ated in a relatively static manner (e.g. using diffserv). There
is no capability to adapt the resources dedicated to different
flows in a fine grained manner depending on current appli-
cation needs or traffic patterns.

With NPs, however, it is possible to dynamically deploy
resources to different flows. For example, a given number
of hardware threads, or packet processors, could be ded-
icated to high-priority VoIP flows, depending on patterns
of demand (e.g. as a function of the time of day). As
well as packet forwarding, this also applies to per-flow pro-
cessing such as in-band transcoding. Furthermore, because
NPs have the ability to process and forward traffic while si-
multaneously analysing the traffic to determine a suitable
load balancing policy, they offer the ability to perform “in-
telligent” load balancing. In contrast to off-line load bal-
ancing, fine-grained load-balancing mechanisms can range
from diverting flows to different routes to replicating pro-
cessing/classification code across multiple packet proces-
sors.

2.2. The Intel IXP2400

The Intel IXP2400 NP [9] consists of a single embedded
RISC processor (an Intel XScale), and eight packet proces-
sors called “microengines”. It provides a fast bus for com-
munication between its microengines, MAC ports and mem-
ory. It also provides shared registers and a range of mem-
ory types (i.e. SRAM, SDRAM). In addition, it provides
‘next-neighbour’ registers that provide a dedicated intercon-
nect between two ‘adjacent’ microengines.

The microengines themselves are 233-600MHz CPUs
whose instruction set provides for I/O to/from MAC-ports,
packet queuing support, and checksumming. They support

hardware threads with zero context switch overhead and can
be programmed either in assembler or C.

In normal operation, the IXP2400 uses the micro-
engines to support the data plane and the more general XS-
cale to support the control plane. The shared registers and
memory are typically used together at the software level to
realise inter-processor communication.

3. OpenCOM

3.1. Programming Model

OpenCOM [10] is a language independent component-
based programming platform for building low-level systems
software. The core principles of OpenCOM are components,
capsules, caplets, interfaces, receptacles, and bindings.

• Components, capsules and caplets Components are
encapsulated units of functionality and deployment that in-
teract with their environment (i.e. other components) exclu-
sively through interfaces and receptacles. Components carry
negligible inherent overhead and can effectively be used in
extremely fine grained compositions. Crucially, OpenCOM
is a runtime component model meaning that (unlike, say,
NP-Click [11]) components can be dynamically deployed
at any time during run-time. The locus of component de-
ployment is either a capsule or a caplet; the latter are sub-
scopes of the former. Different caplets can also host com-
ponents written in different component styles. Component
styles are different system-level implementations of compo-
nents which may have different representations and different
semantics (e.g. because they run on different CPU types).
Accommodating heterogeneous component styles enables
OpenCOM to transparently support multiple deployment en-
vironments in the same capsule environment.

Each capsule offers a simple run-time API for compo-
nent life-cycle management (i.e. loading components into
the capsule and instantiating and destroying them), and in-
terface/ receptacle binding (see below). To accomplish load-
ing, the model supports the notion of plug-in loaders. New
loaders with different behaviours can be added at runtime,
and they can be selected according to their particular prop-
erties. The loading of components into a capsule can be re-
quested by any component hosted by the capsule no matter
which caplet it resides in (this is referred to as third-party
deployment).

• Interfaces and receptacles Interfaces are units of ser-
vice provision offered by components; they are expressed in
terms of sets of operation signatures and associated data-
types. For language independence, OMG IDL is used as a
specification language (note that this does not imply an over-
head of CORBA-like stubs and skeletons!). Components
can support multiple interfaces: this is useful in recognis-
ing separations of concerns (e.g. between base functional-
ity and management). Receptacles are ‘anti-interfaces’ used

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)

1550-445X/06 $20.00 © 2006 IEEE

to make explicit the dependencies of components on other
components. Receptacles are key to supporting a third-party
style of composition (to complement the third-party deploy-
ment referred to above): when third-party-deploying a com-
ponent into a capsule, one knows by looking at the com-
ponent’s receptacles precisely which other component types
must be present to satisfy its dependencies.

• Bindings Finally, bindings are associations between a
single interface and a single receptacle that reside in a com-
mon capsule (but not necessarily a common caplet). Sim-
ilarly to plug-in loaders, OpenCOM also supports a notion
of plug-in binders. The idea is to give access to a range of
binding mechanisms with varying characteristics. As men-
tioned, the creation of bindings is inherently third-party in
nature; it can be performed by any party within the capsule
(i.e. not only by the ‘first-party’ components whose inter-
face or receptacle participates in the binding).

3.2. Higher-level abstractions

Above the granularity of individual components, a key
pattern employed in OpenCOM programming is to construct
applications or systems in terms of component frameworks
(CFs). CFs are tightly-coupled sets of components that work
together to address some specific area of functionality. They
accept ’plug-in’ components, deployed at runtime, which
somehow modify the CF’s behaviour. CFs also impose con-
straints on their plug-ins to guard against nonsensical com-
positions. As an example, consider a “protocol stack” CF
which accepts protocol components as plug-ins, and con-
strains these plug-ins to be composed linearly. A CF that we
employ specifically in NP environments, the Router CF, is
discussed in section 3.4.

We also support a number of generic services that facil-
itate the construction of complex systems. These are them-
selves implemented in terms of components and are thus
optional in any given capsule configuration. Key among
these is a set of reflective meta-models [10] that facilitate
dynamic reconfiguration of systems by permitting different
system aspects to be inspected, adapted and extended at run-
time. As examples: the architecture meta-model exposes the
compositional topology of the components in a capsule in
terms of a causally-connected graph structure; the interface
meta-model allows one to discover information about inter-
face types at runtime and to invoke interface instances that
are dynamically discovered at runtime; and the interception
meta-model allows one to interpose interceptors at bindings
between component interfaces.

3.3. OpenCOM on the Intel IXP2400

We now consider how the above-described OpenCOM
concepts are applied in NPs such as the IXP2400. First, the
scoping-related notions of capsules and caplets are useful

in distinguishing different processors and types of proces-
sors on the NP in a generic manner. Thus we map a single
capsule onto the entire NP, and sub-scope individual micro-
engines, and the XScale control processor, as caplets. The
OpenCOM runtime runs in the XScale caplet; all the other
caplets are ‘slaves’ of this ‘central’ runtime and incur only
minimal memory overheads. The memory footprint of the
central runtime itself is of the order of 300KB.

Microengine caplets are implemented on the bare mi-
croengine hardware. The notion of caplets is also useful in
isolating untrusted code, which is important in active net-
working environments. For example, a Java sandbox could
be isolated as a caplet on the XScale.

The pluggable loader concept is closely associated with
capsules/caplets. Typically, at least one loader is provided
for each type of caplet, and each will know how to load com-
ponents into the hardware environment underlying its partic-
ular caplet type. For example, we employ one loader for the
XScale caplet and another for the microengine caplets. Im-
portantly, the OpenCOM API allows selective transparency
in the use of loaders. If full loader-selection transparency is
desired, one can issue a call of the form load(component c1,
caplet 1) which will deduce an appropriate loader type from
meta-data attached to component c1, and use this to load the
component into the designated caplet. This masks the fact
that different components may be implemented in different
machine languages. Alternatively, one can opt for complete
control and zero transparency by issuing a call of the form
load(component c1, caplet 1, loader 3).

The pluggable binder concept is equally central to the
component model’s abstraction power. If we don’t know
or care in which caplets our two target components are lo-
cated, we can say bind(interface 1, receptacle 15) and an
appropriate loader will be selected according to location-
related meta-data attached to the components that own the
specified interface and receptacle. On the other hand, if it
is important to select a particular mechanism, we can say
bind(interface 1, receptacle 15, loader 4). And so on.

A final crucial property of the component model is its
radically third-party nature in terms of loading and binding.
Thanks to this, a component on a microengine can load and
bind two components on the XScale, and a component on
the XScale can load and bind microengine components us-
ing exactly the same syntax as if it were dealing with local
XScale components.

As an example of this, and of OpenCOM’s ability to ab-
stract over heterogeneity of the IXP2400, consider the fol-
lowing pseudo-code segment:

template mtemp, xtemp;
comp_inst mcaplet, mloader, xcaplet, xloader,

mcomp, xcomp, binding, cbinder;
ipnt_inst iface, recpt;

// load and instantiate the components
xtemp = load(XSCALECOMP1, xloader, xcaplet);

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)

1550-445X/06 $20.00 © 2006 IEEE

mtemp = load(MICROCOMP1, mloader, mcaplet);
xcomp = instantiate(xtemplate);
mcomp = instantiate(mtemplate);

// bind the components using a cross-caplet binder
binding = bind(xcomp.iface, mcomp.recpt, cbinder);

This example assumes that two caplets have been es-
tablished: xcaplet is a caplet on the XScale and mcaplet is
a caplet on one of the microengines. The code loads and
instantiates two components, one in each caplet, and then
binds the two using a cross-caplet binder. Of course, pro-
gramming would normally be done at the level of compo-
nent frameworks which raises the level of abstraction still
further; but this simple example shows the abstraction power
of OpenCOM even at its lowest level.

As examples, we now briefly describe example loader
and binder plug-ins that are associated with the microengine
caplets:

• The microengine loader plug-in provides the illusion
of dynamic loading despite the fact that the microengine
hardware only allows modification of its instruction store
when the CPU is stopped [12]. The basic capability provided
by the microengine hardware is to i) stop the microengine,
ii) read/ write arbitrary instruction store locations, and then
iii) restart it at a hard-wired address. To achieve transparent
dynamic loading it is therefore necessary for the loader to
not only load the new component but also to patch the (hard-
wired) restart address so that subsequent execution resumes
at the point it left off. The loader also has the ability to au-
tonomously move code around within the instruction store
to avoid memory fragmentation as components are loaded
and unloaded.

• Our intra-microengine binder plug-in is strongly cou-
pled to the loader just described. It builds on the NetBind-
pioneered technique of creating bindings by ‘morphing’
jump instructions [13]. Together with the loader discussed
above, the binder supports multiple instantiations of compo-
nents (NetBind only supports singleton components). The
single argument and return value are passed via a designated
register. The necessary entry and exit point information is
obtained from IDL meta-data attached to the packaged com-
ponent, which is transformed from relative offsets to abso-
lute offsets by the loader. The overhead of a binding created
by this binder in calling a null operation with no arguments
or return values is only five (1-cycle) instructions. These
subsume passing on the stack a pointer to the per-instance
state vector of the called component, and the return address.

3.4. Router CF

We have designed a “Router CF” which accepts, as
plug-ins, OpenCOM components that perform arbitrary,
user-defined packet-forwarding functions (we also provide
“standard” components that interface to network cards and

wrap efficient kernel-user space communications mecha-
nisms). All components are required to conform to the fol-
lowing rules, which are checked by the CF at run-time when
the component is loaded:

• compliant components must support appropriate num-
bers and combinations of specific packet passing interfaces/
receptacles (called IPacketPush and IPacketPull): these re-
spectively enable push- and pull- oriented inter-component
communication); it is possible to dynamically add/ remove
instances of these interfaces as long as the CF’s rules remain
satisfied

• compliant components may (optionally) support an
IClassifier interface which exports an operation regis-
ter filter() that is used to install packet-filters; if IClassifier is
supported, the component must honour the semantics of in-
stalled filter specifications in terms of the particular named
outgoing IPacketPush and IPacketPull interface(s) on which
each incoming packet should be emitted;

• compliant components may be composite, in which
case all their internal constituents must (recursively) con-
form to the CF’s rules; additionally composite components
should contain a so-called controller component that man-
ages the other internal constituents.

4. Runtime Reconfiguration on the Intel
IXP2400

In this section we illustrate how the runtime reconfig-
uration scenarios illustrated in 4.1 can be achieved using
OpenCOM on the IXP2400. We then discuss the perfor-
mance implications of our implementation in section 4.2.

4.1. Realising the Scenarios

4.1.1. Dynamic Proxying. We have implemented a dy-
namic in-band transcoding scenario that is straightforwardly
built on top of the programmable classifier discussed above.
In-band transcoding (e.g. MPEG) has not been possible in
the past without intercepting the multimedia traffic and of-
floading it to a separate server. As noted earlier, this re-
quires introducing new hardware into the system and also
potentially increases the end-to-end latency of media trans-
mission.

In our implementation, a dynamically-deployed man-
ager component, residing in the XScale caplet, programs the
classifier to detect flows of interest (i.e. as designated by out-
of-band control messages from an application). On learning
of these, the manager component loads and instantiates a
suitable transcoder on the XScale (or a microengine as ap-
propriate). On doing so, the router CF selects an appropriate
loader and checks the loaded component (using the inter-
face meta-model) for conformance to its rules. The manager
then instructs the classifier to bind to this component and to
forward the flow to it. Finally, it uses the architecture meta-

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)

1550-445X/06 $20.00 © 2006 IEEE

model to locate the forwarder and bind the transcoder to it
using an appropriate binder.

This implementation is illustrated in Figure 1 which
shows the state of a router with the transcoder manager de-
ployed. It shows the reconfigured area (within the dashed
line) containing the manager on the XScale and transcoders
on both the XScale and the microengines. Note that the mi-
croengines can only support primitive transcoders such as
frame-droppers; note further, though, that the programming
model makes it as straightforward to deploy a transcoder on
a microengine as on the XScale.

classifier forwarder
fast−path

sched.

sched.
...

...
Transcoder

Manager Transcoder

output
receptacles

interface

input

microengine

environment

XScale

environment

Figure 1. Transcoding on the Intel IXP2400

4.1.2. Adaptive Load Balancing. The options for load bal-
ancing on the Intel IXP2400 are numerous. In typical oper-
ation, the bulk of packets traversing the IXP2400 are pro-
cessed and forwarded by the microengines. At different
times in the lifecycle of a typical deployment the load on par-
ticular microengines will be increased or decreased. There-
fore, to balance increased packet load in the IXP2400 one
of the options we have is to replicate packet processing code
on additional microengines.

Figure 2 shows the placement of components after a
simple method of load balancing has been performed. Be-
fore the load-balancing is performed, the top four compo-
nents constitute the deployment in the microengine. Load-
balancing is performed by replicating the “IPv4 header pro-
cessing” and “forwarding” components on additional micro-
engines. As can be seen from the diagram, the classifier is
load balancing across the two chains of components. The
dashed line indicates the reconfigured area. This style of
load-balancing would be appropriate when there is a signifi-
cant increase of a type of packet flow which needs additional
processing by the NP.

MEv2 MEv2

MEv2MEv2MEv2

MEv2

MEv2

MEv2

MEv2

Header
IPv4

Header
IPv4

Packet Flow Packet Flow

Forwarder

Forwarder

SchedulerClassifier Processing

Processing

Figure 2. Load Balancing using Packet Processors

This scenario shows that, based on the network situa-
tion, the NP control processor can add and remove compo-
nents to alter the processing capacity of the NP. NPs generi-
cally contain a number of packet processors, which perform
the majority of in-band packet processing [14]. Therefore
this style of load balancing should be applicable in other NP
architectures.

4.2. Performance

One of the main determining factors in the acceptance
of support for runtime reconfiguration on NPs is the over-
head incurred. This breaks down into two aspects: i) the
overhead of actually performing reconfiguration operations;
and ii) the inherent overhead of potentially-reconfigurable
software. We discuss these in turn.

The major determinant of the overhead of reconfigura-
tion operations on the IXP2400 is that the microengines need
to be stopped before new code can be loaded. Our measure-
ments show that to halt, update and restart a microengine
takes a total time of 60ms. Our IXP2400 development board
contains 3 OC-48 ports which can each deliver 2.488Gbps,
a total of 7.464Gbps. A delay in the system would there-
fore require a maximum theoretical of 56MB to buffer all
incoming packets and avoid dropping packets, well within
the means of a NP. Furthermore, wholesale reconfigurations
of all the microengines would be relatively uncommon.

The second factor to be considered is the inherent over-
head of potentially-reconfigurable component-based soft-
ware; mainly attributed to the bindings between compo-
nents. To evaluate the throughput overhead of instantiat-
ing OpenCOM components on the IXP2400, we utilised
two 3COM 3C996-SX network interface cards which were
used to send and receive packets through a Radysis ENP-
2611 which consists of a IXP2400 NP and 3X 2.5Gbps fibre
ports. The XScale CPU of the IXP2400 was bootstrapped
with Linux 2.6.11 and all microengine code was loaded and
bound from an OpenCOM instantiation on the XScale CPU.
The following throughput results where collected using the
Thrulay tool which uses a client/server approach to measure
TCP throughput.

A single OpenCOM component which performed a
simple layer 2 bridging operation between two fiber chan-
nel connections was deployed on a single thread of a micro-
engine. The component was capable of processing packets
at a sustained rate of 632.42Mbps end-to-end compared to
a monolythic Intel implementation at 632.81Mbps. Addi-
tional ‘null’ components were then instantiated directly in
the data-path between the send and receive portions of the
bridging component.

Table 1 presents end-to-end throughput and latency fig-
ures for different numbers of ‘null’ OpenCOM components
instantiated on the IXP2400 as described. It shows that the
overhead of inserting five or less OpenCOM microengine

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)

1550-445X/06 $20.00 © 2006 IEEE

Table 1. Throughput and Latency of Components
Number of Components Throughput Latency
Intel Implementation 632.81Mbps 0.52ms
1 Component 632.42Mbps 0.54ms
5 Components 614.86Mbps 0.59ms
10 Components 603.25Mbps 0.64ms
15 Components 589.82Mbps 0.88ms
20 Components 567.39Mbps 1.17ms
50 Components 496.03Mbps 2.81ms
100 Components 435.72Mbps 3.65ms

components is minimal, inserting between 10 and 20 com-
ponents introduces a sizable lag into the system, this might
be considered acceptable for the advantages offered. The in-
sertion of ten or more components introduces a sizable lag
into the system which would be considered unacceptable for
a high-speed router. In addition the figures for latency corre-
late with the throughput figures with increasing latency with
more components. The implication of these results is that
the most effective way to deploy OpenCOM components is
using multiple short pipelines of five or less components.

5. Related work

Intel’s MicroACE [12] is an NP-based programming
platform targeted at the IXP2400 and other Intel IXA prod-
ucts. The MicroACE model is that proxy-like software
elements (called active computing elements or ACEs) on
the IXP2400’s XScale control processor are ‘mirrored’ by
blocks of code (called microblocks) that run on micro-
engines. Although it provides a useful degree of abstraction,
the MicroACE model is static in nature. It does not support
any type of runtime reconfiguration.

NetBind [13] provides the abstraction of a set of packet-
processing components that can be bound into a data path.
This is done by adopting the convention of a standard entry
and exit instruction sequence for microblocks, and offering
the capability to dynamically ‘morph’ jump instructions in
these sequences so that execution is transferred to the en-
try point of the microblock to be executed next. However,
it offers no abstraction over the NP’s memory organisation,
interconnects or processors and therefore offers no more de-
sign portability across different NPs than MicroACE.

NP-Click [11] is another component-based program-
ming model targetted at the IXP1200. Its components have
typed ports; and connections between ports can be desig-
nated as either ‘push’ or ‘pull’ which provides declarative
control over flow of control and threading. NP-Click falls
short of providing a generic approach to NP programming.
While it abstracts particular features of the IXP1200, it has
no notion of abstracting arbitrary architectures in a princi-
pled way, and thereby encouraging design portability and
transferable skills across NP types. In addition, NP-Click
provides no support for dynamic reconfiguration.

6. Conclusions

We have argued that developing NP software with sup-
port for runtime reconfiguration enables the full potential of
NPs to be realised, and that this yields significant benefits for
high-speed routing platforms. More specifically, we have in-
troduced a number of runtime reconfiguration scenarios for
NP platforms and showed how they can be implemented on
the Intel IXP2400 using our OpenCOM programming plat-
form.

We also argue the approach we outline is in principle
applicable not only to the IXP2400, but to a range of NP
architectures. This claim is made on the basis of the gener-
ality of the OpenCOM platform as discussed in 3.3 and on
the basis of a study of the mapping of OpenCOM to other
NP architectures [14].

References

[1] D. Comer. Network Systems Design using Network Proces-
sors, IXP edition. 2003.

[2] Heavy Reading. Network processors: A heavy reading com-
petitive analysis. In Vol. 3, No. 2, January 2005.

[3] I.A. Troxel, A.D. George, and S. Oral. Design and analysis
of a dynamically reconfigurable network processor. In IEEE
Conference on Local Computer Networks, Nov 2002.

[4] L. Ruf, R. Keller, and B. Plattner. A Scalable High-
performance Router Platform Supporting Dynamic Service
Extensibility On Network and Host Processors. In IEEE Con-
ference on Pervasive Services, Jul 2004.

[5] A. Gavrilovska, K. Schwan, and O. Nordstrom. Network pro-
cessors as building blocks in overlay networks. In 11th Sym-
posium on High Performance Interconnects, Aug 2003.

[6] S. Harper. Phd thesis: A Secure Adaptive Network Processor,
Bradley Department of Electrical and Computer Engineering
Blacksburg, Virginia, April 2003.

[7] C. Lee et al. Software/hardware reconfigurable network pro-
cessor for space networks. In MAPLS 2001, Jan 2001.

[8] A. Kind, R.Pletka, and M.Waldvogel. The role of network
processors in active networks. In IWAN 2003, Japan, 2003.

[9] Intel Corporation. Intel IXP2400 Network Processor. In
Datasheet 301164-011. Intel Corporation, Feb 2004.

[10] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and
J. Ueyama. A component model for building systems soft-
ware. In IASTED 2004, Cambridge, MA, USA, 2004.

[11] N. Shah, W. Plishker, and K. Keutzer. NP-Click: A Program-
ming Model for the Intel IXP1200. In 2nd Workshop on Net-
work Processors at HPCA-9, Anaheim, February 2003.

[12] Intel Corporation. MicroACE, Design Document, revision
1.0. Intel Press, Intel Corporation, 2001.

[13] A. Campbell, M. Kounavis, and D. Villela. NetBind: A Bind-
ing Tool for Constructing Data Paths in Network Processor-
based Routers. In IEEE International Conference on Open
Architectures, June 2002.

[14] K. Lee, G.Coulson, and G. Blair et al. Towards a generic
programming model for network processors. In IEEE Inter-
national Conference on Networks, Singapore, Nov 2004.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)

1550-445X/06 $20.00 © 2006 IEEE

