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Abstract 

The acquisition of vocabulary represents a key phenomenon in language acquisi­
tion, but is still poorly understood. Recently, the working memory model (Baddeley & 
Hitch, 1974) has been adapted to account for vocabulary acquisition (e.g., Gathercole 
& Baddeley, 1989). It is claimed that the phonological store, one of the components of 
working memory, offers a critical mechanism for learning new words. However, one 
of the theoretical weaknesses of this approach is that no account is given for the mech­
anisms and representations used in long-term memory learning. This paper presents 
a computer model combining the EPAM/chunking approach (Feigenbaum & Simon, 
1984) with the working memory approach. Phonemic learning is simulated as the 
elaboration of a discrimination net. Naturalistic input, consisting of utterances from 
nine mothers interacting with their child, is used during the learning phase. Simula­
tions show that the model can account reasonably well for the nonword repetition task 
described by Gathercole and Baddeley (1989), a task often presented as a powerful 
diagnostic of vocabulary learning. 
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1 Introduction 

Children are remarkably adept at learning new verbal information. After an initial slow 
period from about 12 to 16 months when most children learn around 40 words, the learn­
ing rate increases such that in the next four months children will have learnt 130 more 
new words (Bates et al., 1994). By the beginning of their school years children learn up 
to 3,000 words per year (Nagy & Herman, 1987). 

A major part of learning new words is learning the novel sequences of sounds that 
represent the word. However, it is difficult to directly examine the processes involved 
in learning the sound patterns of new words because it is impossible to be certain that 
the new sound pattern has never been encountered before. The use of nonwords which 
conform to the phonotactic rules of English provides a good test of vocabulary learning 
because it ensures that the (non)word to be learned is novel. 

1.1 The Non word Repetition Test 

The non word repetition (NWR) test (Gathercole, Willis, Baddeley & Emslie, 1994) was 
designed to investigate the role of phonological memory in word learning. The test in­
volves the experimenter speaking a nonword and the child attempting to repeat it. Gath­
ercole and Baddeley (1989) found that, compared to the other measures they used, the 
N W R test was the best predictor of vocabulary size, even after vocabulary scores (as cal­
culated by the British Picture Vocabulary Scale, Dunn & Dunn, 1982) were partialled out 
of correlations. 

Gathercole and Baddeley (1990) used the N W R test to categorise children into two 
groups, those with low N W R scores, and those with high N W R scores. Children in the 
high N W R group were better at learning nonword labels than children in the low N W R 
group. Gathercole, Willis, Emslie, and Baddeley (1991) found better N W R performance 
on nonwords that were rated high in wordlikeness than nonwords rated low in wordlike-
ness. These N W R studies show the influence that vocabulary knowledge has upon the 
learning of new words. 

The nonword repetition test involves two sets of nonwords, one set having single 
consonants (e.g. rubid) and one set having clustered consonants (e.g. glistow). There 
are twenty nonwords in each set, divided into four groups of five based on the number of 
syllables in the nonword (one to four). Several studies using these types of nonwords have 
consistently found that repetition accuracy decreases as the number of syllables in the 
nonword increases, excepting one-syllable nonwords (e.g., Gathercole & Adams, 1993; 
Gathercole, Willis, Emslie & Baddeley, 1991), and that accuracy is worse for clustered 
consonant nonwords. 

Based on these findings, N W R ability would seem to provide a good test of phono­
logical memory and is a good indicator of vocabulary size. The N W R findings can be 
explained within the theoretical framework of the working memory model. 

1.2 The Phonological Loop Explanation of NWR Findings 

The working memory model (Baddeley & Hitch, 1974) has recently been adapted to ac­
count for vocabulary acquisition (e.g., Gathercole & Baddeley, 1993). It is claimed that 
the phonological loop part of the model is a critical mechanism for learning new words. 
The phonological loop has two linked components: the phonological short-term store, and 
the sub-vocal rehearsal mechanism. Items in the store decay over time (around 2,000 ms, 
Baddeley, Thomson & Buchanan, 1975). The sub-vocal rehearsal mechanism (involving 
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sub-vocal articulation in real-time) can refresh items in the store in a serial, time-based 
manner (Gathercole & Martin, 1996). The store is linked to the central executive part 
of the model, which provides a link to long-term memory (LTM) (Gathercole & Badde-
ley, 1993). The influence of L T M is acknowledged (e.g., Gathercole, Willis, Baddeley & 
Emslie, 1994), but the nature and definition of the link is yet to be defined. 

The phonological loop hypothesis is able to explain the basic N W R findings involving 
non word length because of the decay that takes place in the phonological store (items re­
main in the store for 2,000 ms unless refreshed). Longer nonwords take longer to rehearse 
and so their representations in the phonological store are not refreshed as often as shorter 
nonwords. Repetition ability will therefore decrease for longer nonwords. The poorer 
repetition performance for clustered consonant nonwords can be explained in a similar 
way (because although the clustered consonant nonwords contain the same number of 
syllables as the single consonant nonwords, they contain more phonemes). 

Differences in N W R ability between children of the same age were originally at­
tributed to differences in rates of subvocal rehearsal (Gathercole & Baddeley, 1993). 
However, recent findings show that children do not use subvocal rehearsal until around 
seven years of age (see Cowan & Kail, 1996, for a review). This has led to the phono­
logical store being assumed to be the primary language learning device, with differences 
in language learning across children of the same age being explained by the quality of 
the phonological representation of just-spoken items (Baddeley, Gathercole & Papagno, 
1998). The lack of a rehearsal process for children below seven years of age does not 
appear to hinder the model. Brown and Hulme (1996) show that N W R phenomena can 
be explained solely by a decay based model (which the phonological store now becomes 
for children under seven years of age). This model will be discussed later. 

The phonological loop is able to explain a lot of the vocabulary acquisition phenom­
ena using a very simple mechanism. However, it fails in two critical areas: there is no 
explanation of how words are learned, and there is no explanation of how the loop inter­
acts with L T M . Speculative explanations have been given as to how the loop may interact 
with L T M (e.g., Baddeley, Gathercole & Papagno, 1998; Gathercole & Baddeley, 1989). 
Gupta and MacWhinney (1997) have proposed a formal specification but their model has 
not yet been implemented computationally. 

The phonological loop hypothesis also lacks precision because it is part of a verbal 
theory. For example, there is no definition of how rehearsal rate changes based on the 
length of the sound pattern being rehearsed (except to say that long strings are rehearsed 
slower than short strings). Implementing the loop within a computational architecture 
forces precision because the theory is implemented as a running computer program. Sev­
eral computational implementations of the phonological loop exist. 

1.3 Existing Computational Implementations of the Phonological Loop 

Burgess and Hitch (1992) detail a connectionist network which was primarily intended 
to model serial order effects (the recall of a set of items in the correct presentation or­
der). The decay in the phonological store is represented by decay on the weights between 
layer nodes (decay is proportional to the number of phonemes to be output). Rehearsal is 
synonymous with articulation: the most active word in the network is selected for output 
once the phonemic input has been processed. The model can explain word length and 
articulatory suppression effects, but does not explain any of the N W R findings. In addi­
tion, no phoneme or word learning takes place; the model provides no theory as to how 
phonemes and words are created in L T M . 

Brown and Hulme (1996) give an account of a trace-based decay model which bears 
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resemblance to the phonological store (the model intentionally has no rehearsal process). 
Time is represented in 0.1-sec slices; input items are split into segments such that each 
segment corresponds to a time slice. Longer words therefore take up more segments and 
so occupy more time slices. As each segment of an input item enters the store, it is given 
a fixed initial strength, which decays over time. This means that the early segments of 
an input item suffer more decay than the later segments, as well as earlier input items 
suffering more decay than later input items. 

The probability of recalling an item is the product of the current strength of each of 
the segments of the item. The probability is increased to reflect the influence of L T M 
during recall; wordlike nonwords would therefore have their probability increased more 
than non-wordlike nonwords. Using these mechanisms, the model can account for re­
call effects for different lengths of both words and nonwords (Brown & Hulme, 1996). 
However, the model does not account for any learning processes. 

There are problems with each of the existing phonological loop models. For the 
phonological loop to successfully provide an account of vocabulary learning, a precise 
specification of its interaction with L T M is required. E P A M is a computational modelling 
architecture which is able to provide such a specification. 

2 Implementing the Phonological Loop within the EPAM 
Architecture 

E P A M is a computational modelling approach whereby a discrimination network is built 
based on the input that the model receives. In terms of Artificial Intelligence (Al), the 
approach can be seen as being very similar to tries (Fredkin, 1960), and particularly the 
"suffix" trie whereby input is presented to the trie as a whole and then as every part of the 
suffix (e.g., W H A T, then H A T , then A T, then T). In much the same way as tries, a hier­
archy of the input is built, as will be shown later. Tries have commonly been used in A l to 
represent dictionaries (e.g., Arslan & Egecioglu, 2004), but have also been used in other 
domains such as matching for similarity in video databases (e.g., Park & Hyun, 2004). 
Discrimination networks have also been used in A l (e.g., in expert systems, Gerevini et 
al., 1992), although the main area for the E P A M form of discrimination networks has 
been in simulating various areas of human cognition, such as learning, memory, and per­
ception in chess (De Groot & Gobet, 1996; Gobet, 1993; Gobet & Simon, 2000; Simon & 
Gilmartin, 1973), verbal learning behaviour (Feigenbaum & Simon, 1984), the digit-span 
task (Richman, Staszewski & Simon, 1995), the context effect in letter perception (Rich-
man & Simon, 1989), and the acquisition of syntactic categories (Freudenthal, Pine & 
Gobet, 2005; Gobet, Freudenthal & Pine, 2004; Jones, Gobet & Pine, 2000) (see Gobet et 
al., 2001, for an overview). E P A M provides a modelling environment which is well suited 
for describing how sound patterns can be learnt. When a sentence is heard, it is heard as a 
sound pattern in the form of a sequence of phonemes. This sequence of phonemes needs 
to be processed and stored in a hierarchical fashion (to illustrate the order of the sound 
patterns). 

E P A M provides a simple mechanism by which this goal can be accomplished. Fur­
thermore, there would seem to be an easy method by which the sound patterns in L T M 
(i.e., the resulting discrimination network) can be linked to the phonological store - when 
sound patterns come in, they can be matched to those that exist in L T M and thus any 
sequence of sound patterns that match do not have to be stored individually in the phono­
logical store - a link can be placed there to the relevant item in the discrimination network. 

http://www.aisb.org.uk 

http://www.aisb.org.uk


Jones, Gobet, and Pine 513 

Precisely how E P A M will be linked to the phonological store will be explained later. 

2.1 The EPAM Architecture 

E P A M learns by building a discrimination network. The discrimination network is a 
hierarchical representation of the input and consists of nodes connected to one another by 
links. Nodes contain information and links between nodes contain tests which must be 
fulfilled before they can be traversed. For the purposes of modelling the learning of sound 
patterns, E P A M has been simplified and is henceforth referred to as E P A M - V O C . 

When an input (e.g., a sequence of phonemes) is given to the network, E P A M - V O C 
traverses down the hierarchy as far as possible. This is done by starting at the top node 
(the root node) and selecting the first link whose test is fulfilled by the first part of the 
input. The node at the end of the link now becomes the top node and the rest of the 
input is applied to all the links below this node. When a node is reached where no further 
traversing can be done (e.g., the input fulfils none of the tests of the nodes links, or the 
node is a leaf node), E P A M - V O C compares the information at the node with the input 
information. Learning now occurs in two ways. 

1. Discrimination. When the input information mismatches the information given at 
the node, a new link (i.e., test) and node are added to the tree below the node that 
has just been reached. The new test will relate to the mismatched part of the input. 

2. Familiarisation. When the input information is under-represented by the informa­
tion at the node (e.g., features from the input are not present in the information at 
the node), new features (from the input) are added to the information in the node. 
In E P A M - V O C , the image of a node will always consist of all the information in 
the links that lead to the node. 

Discrimination therefore creates nodes and links, and familiarisation creates or mod­
ifies the information contained in nodes. Examples of the discrimination and familiarisa­
tion learning mechanisms will be given later. 

2.2 Learning Sound Patterns in EPAM-VOC 

E P A M - V O C provides an efficient method for representing items in L T M . The basic idea 
is to give as input to the model the utterances from mothers speech so that E P A M - V O C 
can learn phonemes and combinations of phonemes. Mothers' utterances will be con­
verted into a sequence of phonemes before being used as input. This will be done using 
the C M U Lexicon database (available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict) 
which cross-references words with their phonemic representations. The use of phonemic 
input assumes that some form of phonemic feature primitives already exist to distinguish 
one phoneme from another. 

E P A M - V O C will begin with a null root node. When it receives an input (a sequence of 
phonemes), new nodes and links will be created. At first, most of the new nodes and links 
will just be for single phonemes, as E P A M - V O C learns to master individual phonemes. 
As learning progresses, the information at nodes will become sequences of phonemes 
and therefore segments of speech (e.g., specific words) rather than just individual sounds 
(i.e., phonemes). To accomplish this, the E P A M learning mechanism is altered in two 
ways. First, before a sequence of phonemes can be learnt, the individual phonemes in the 
sequence must have been learnt. Second, when individual phonemes are learnt, they are 
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linked to the root node (in this way all sequences of phonemes are below the node which 
represents the initial phoneme in the sequence). 

Let us consider an example of the network learning the utterance "What?". Using 
the C M U Lexicon database, this utterance is converted to the phonemic representation 
" W A H l T" (all of the phonemes used in the database map onto the standard phoneme 
set for American English). Note that the phonemic input to the model does not specify 
gaps between words, but does specify the stress of particular phonemes (0=unstressed; 
l=primary stress; 2=secondary stress). 

The first part of the input ("W") is applied to all of the root nodes' links in the net­
work. If the network is empty, there will be no links. At this point E P A M - V O C must 
discriminate because the information " W " mismatches the information at the root node 
(the root node information is null). The discrimination process creates a new node, and 
a link from the root node to the new node with the test " W " . E P A M - V O C must then 
familiarise itself with the input, in order to create the " W " information in the image of the 
node. E P A M - V O C then moves on to the remainder of the input (i.e., " A H l T") much like 
a suffix trie. In a similar way as for " W " , the phoneme " A H 1 " will be learnt. E P A M - V O C 
then moves on to the remainder of the input (i.e., "T"), and in a similar fashion, learns 
the phoneme "T" . Thus when the input is received the first time, the individual phonemes 
" W " , " A H l " and " T " are learnt. 

When encountering the input for the second time, the link " W " can be taken, and the 
input can move to the next phoneme, " A H 1 " . As node " W " does not have any links, 
discrimination occurs below the " W " node, creating a new node below the " W " with a 
link of " A H 1 " . Familiarisation then fills this node with the contents " W A H 1 " . The 
remainder of the input (i.e., "T") is then examined, but as this has already been learnt, the 
processing of the input terminates. 

The third time the input is received, the " W " link can be taken, with the input moving 
on to " A H 1 " . As there is an " A H 1 " link below the " W " node, this link can be taken, 
and the input can move on to the "T" . As there is no " T " link below the " W A H 1 " node, 
discrimination occurs. A new node is created below the " W A H 1 " node with the link 
"T" . Familiarisation will fill in the contents of the new node with " W A H l T". Thus 
after three presentations of the input, the network is as shown in Figure 1. The simple 
example serves to illustrate how E P A M - V O C works; in the actual learning phase each 
utterance line is only used once, encouraging a diverse network of nodes to be built. Note 
that E P A M - V O C needs to know individual phonemes before they can be learnt as part of 
a sequence of phonemes. For example, should the network in Figure 1 see the utterance 
"Which?" ("WIH1 CH"), it will traverse down the " W " link, and move on to the next part 
of the input (i.e., "IH1 CH"). However, the network does not know the phoneme "IH1", 
and so it needs to discriminate at the root node, learning the individual phoneme "IH1" 
before moving on to the remainder of the input " C H " (and learning this as an individual 
phoneme also). 

2.3 Implementing the Phonological Loop and Linking it to Long-
Term Memory 

The model now requires a specification of the phonological loop and a method by which 
the loop interacts with L T M . The findings relating to the N W R test (the standard test of 
the phonological loop) were all carried out on children below the age of six. As children 
below the age of seven are believed not to rehearse, the rehearsal part of the loop should 
not be used to simulate the N W R findings reported above. 
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Figure 1: Structure of an E P A M - V O C net after receiving the input " W A H l T" three 
times. 

The storage part of the phonological loop is a decay based store which allows items 
to remain in the store for 2,000 ms. The model will have a time-limited store which will 
allow 2,000 ms of input (i.e., consistent with the phonological loop estimates). The input 
will be cut-off as soon as the time limit is reached, because there is no rehearsal to refresh 
the input representations. 

The cumulative time required by the input provides a theory of how the amount of 
information in the phonological store is mediated by L T M . When an input is heard, L T M 
(the E P A M - V O C network) is accessed and the input is recoded using the minimum num­
ber of nodes possible. Rather than the actual input being placed in the phonological store, 
the nodes which capture the input are used. The length of time taken to represent the in­
put is therefore calculated on the number of nodes that are required to represent the input. 
The time allocations are based on values from Zhang and Simon (1985), who estimate 
400 ms to match each node, and 84 ms to match each syllable in a node except the first 
(which takes 0 ms). As the input will be in terms of phonemes, with approximately 2.8 
phonemes per syllable (based on estimates from the nonwords in the N W R test), the time 
to match each phoneme in a node is 30 ms. 

Using the example input "What about that?" ("W A H l T AH0 B AW1 T D H AE1 
T") and the network as given in Figure 1, the actual input to the model will be " W A H l T 
A H 0 B A W 1 " because this is all that can be represented in the phonological store within 
the 2,000 ms timescale. The " W A H l T" part of the input is represented by a single node, 
and is allocated a time of 460 ms. Most of the other phonemes are not known to the 
model and are therefore assumed to take the same time as a full node (400 ms) (the time 
allocated to each phoneme is assumed to be constant). This means that only three more 
phonemes can be represented within the phonological store (the actual input to the model 
having a time allocation of 1,660 ms). When the E P A M - V O C network is small, only a 
small amount of the input information can be represented in the store, and so new nodes 
will not contain much information. When the E P A M - V O C network is large, a lot of the 
input information can be represented in the store and so the model can create new nodes 
which contain large amounts of information. 
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3 Simulating the Nonword Repetition Results 

There are two main sets of results for the N W R test. One set was tested on children of 
four and five years of age (Gathercole & Baddeley, 1989; these results were reported in 
the introduction). The problem with this study is that the children are of an age where they 
already have a reasonably large vocabulary size. A second set of N W R results is reported 
by Gathercole and Adams (1993), who used a simpler version of the test on children 
of two and three years of age. They found the modified test still allowed phonological 
memory skills to be reliably tested. 

The E P A M - V O C model is able to learn sequences of sounds from inputs that are 
strings of phonemes (converted from speech utterances). It should therefore be capable 
of simulating both sets of N W R data (2-3 year olds and 4-5 year olds) by modifying the 
input that is given to the model to reflect the type of input that will be received by these 
age groups. 

In the simulations that will be presented, the model normally learns something for 
every input it receives. The E P A M parameter of 8 s to learn a single node was dispensed 
with because of the long time scale involved in the simulations. Given the same input to 
the model, there should be no significant difference to the results whatever the time taken 
to learn a node. 

The N W R test for the model will be performed by presenting each nonword to the 
model (as a string of phonemes), and seeing if the components of the nonword can be 
accessed within the same time limitations that were used for the input (see above). By de­
finition, the information at one node will not be able to represent all of a nonword (because 
the nonword will never have been received as input, and the presentation time is assumed 
to be too short to build a new L T M chunk). The information from several different nodes 
will be required to represent the nonword. If the number of nodes and the phonemes in 
each node can fit into the time limit, the nonword is repeated accurately, otherwise the 
nonword is repeated incorrectly. The models' N W R test does not involve articulation 
because the current E P A M - V O C model does not include a theory of articulation. 

3.1 Simulation of Two to Three Year Old Children 

For the simulation of the N W R test for children of 2-3 years of age, naturalistic input 
was used for the model. The input consisted of the mother utterances from nine moth­
ers interacting with their 2-3 year old children, taken from Theakston, Lieven, Pine and 
Rowland (2000). The average number of utterances for each mother was 25,711 (range 
17,474-33,452). The duration of the phonological store was changed from 2,000 ms to 
1,750 ms, because there is a high probability that the phonological store of very young 
children has less duration than adults (existing timing estimates for the phonological store 
have been based on studies involving adults). 

The model was run once for each of the mother's input, resulting in nine different 
simulations. The N W R test for the model consisted of presenting each nonword as input to 
the model and seeing if it could represent the nonword within the 1,750 ms time capacity. 
Note that Gathercole and Adams used a simplified version of the N W R test (using 1-3 
syllable nonwords and not distinguishing between single and clustered consonants). They 
also performed a word repetition test. The results of the children and the model (after 
seeing 30 percent of the mother's utterances as input) for both the nonword and word 
repetition tests are shown in Figures 2 and 3. 

The model performs at ceiling for the one and two-syllable words and nonwords. A 
minimum of four phonemes can fit into the 1,750 ms time limit in the phonological store 
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(one phoneme uses up 400 ms at most). In the words and non words used, the average 
number of phonemes for one-syllable items is 3.2 and for two-syllable items is 5.0. The 
model has therefore chunked at least one pair of phonemes contained in each of the words 
and nonwords used in the tests. The children do not perform at ceiling for any of the 
conditions. Nevertheless, the model still provides a significant correlation with the child 
data(r(4)=0.859,/?<.05). 

- •—Model 30% of input 

—•— 2-3 year old children 

1 2 3 

Number of syllables in nomvord 

Figure 2: N W R accuracy for 2-3 year old children and the model. 

—•—Model 30% of input 

—n— 2-3 year old children 

1 2 3 

Number of syllables inward 

Figure 3: Word repetition accuracy for 2-3 year old children and the model. 

The children may not perform at ceiling for one and two-syllable items because of 
noise during either recognition or articulation of the item. For example, simple nonwords 
such as nate may be perceived by the child to be a real word (e.g., mate) and therefore mis-
articulated (similarly real words such as hate could also be mis-articulated). The studies 
by Gathercole and colleagues do not perform any analysis of error types so it is difficult 
to ascertain why children perform poorly for short words and nonwords. However, the 
model supports the hypothesis of mis-articulation on two counts. First, in performing at 
ceiling for one and two-syllable items, the model suggests that all 2-3 year old children 
should be capable of repeating back one and two-syllable words and nonwords. Second, 
the model provides a very good match for the three-syllable words and nonwords, and 
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items of this length are very unlikely to be mis-attributed to being other words (because 
they will share relatively few characteristics with other words of the same length, unlike 
shorter items). 

The results show that the E P A M - V O C model can produce repetition results which are 
comparable to young children using a simple learning mechanism and naturalistic input. 
In particular, repetition performance for three syllable items is closely matched by the 
model. The simulation also raises questions about children's performance on repetition 
tests for one and two-syllable items. 

3.2 Simulation of Four to Five Year Old Children 

Carrying out a simulation for each set of mother's utterances is not expected to provide a 
representative sample of the input that 4 and 5 year olds receive, because by this age the 
children are beginning school, and beginning to read. Each of the nine mother's utterances 
were therefore matched to a random selection of words from the C M U Lexicon database 
on a 50/50 basis for use as input. However, in order to simulate the difference between 
4 and 5 year old children in terms of the amount of language they will have heard, 60 
percent of the input and 80 percent of the input was seen by the model respectively. For 
example, for Anne, there were 31,393 mother's utterances. A random sample of half of 
these (15,696 utterances) were taken together with 15,696 random lexicon words. The 
simulation of 4 year olds used 60 percent of this resulting file and the simulation of 5 year 
olds used 80 percent of it. Nine such files were created (one for each mother), resulting in 
nine simulations. Each simulation presented the model with an equal amount of mother's 
utterances and lexicon words. The phonological store capacity was reverted back to 2,000 
ms based on the assumption that the phonological store reaches full capacity by 4 years 
of age. Figures 4 and 5 show the comparisons of the results of the simulations and the 
children, for single and clustered nonwords. 
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Figure 4: Single consonant N W R accuracy for 4 and 5 year old children, and the model. 

The children's performance for one-syllable nonwords is actually worse than for two-
syllable nonwords (which should be more difficult). The poor performance for children's 
repetition of one-syllable nonwords may be due to the acoustic characteristics of their 
monosyllabic stimuli (Gathercole & Baddeley, 1989), which is consistent with the mis-
articulation hypothesis suggested earlier. 
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Figure 5: Clustered consonant N W R accuracy for 4 and 5 year old children, and the 
model. 

Although at first glance the fit between the model and the children may not look sub­
stantial, there are in fact significant correlations between the 60 percent model and 4 year 
olds (r(6)=0.932, p<.0l) and between the 80 percent model and 5 year olds (r(6)=0.847, 
P<'01)' 

The model again performs at ceiling for one and two-syllable nonwords. However, the 
three and four-syllable performance by the model is interesting. The model over-performs 
for three-syllable nonwords and has a tendency to under-perform for four-syllable non-
words. The three-syllable nonwords average 7.4 phonemes whereas the four-syllable 
nonwords average 10.1 phonemes. In order to repeat four-syllable nonwords correctly, 
the model has to chunk up large groups of phonemes that make up the nonword, whereas 
relatively few have to be chunked to correctly repeat three-syllable nonwords. Building 
up large chunks in the model is very dependent on the variety of the input that the model 
sees - the more varied the input, the more rich the chunks in the model. Under-performing 
on four-syllable nonwords therefore suggests a lack of variation in the input. This high­
lights the role of the input as a mediating factor in repetition performance. The problem 
for the model, given that the variation of the input is critical, is in determining the type 
of input that a 4 or 5 year old child will have heard. Clearly, this is an impossible task 
and any attempt to replicate the input will be a crude approximation. For example, even 
though the model receives half of the mother's utterances as input, this only constitutes 
3,046 different words on average. The lexicon words are used as an attempt to bolster 
this amount, but clearly they fail to replicate the diversity of input that 4 and 5 year old 
children receive. The model thus provides a reasonable approximation of repetition per­
formance based on what would seem to be a reasonable, but not perfect, approximation 
of the input. The results suggest that a more realistic input would produce a good match 
to the data. 

4 Discussion 

The simulations have shown that the E P A M - V O C model is able to approximate the N W R 
performance of both 2-3 and 4-5 year old children. The model accomplishes this by 
using a combination of a simple learning mechanism, naturalistic input, and a simple 
implementation of the phonological loop. This represents a parsimonious approach to 
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learning novel sound patterns. In particular, the model is able to give a specific account 
of how existing vocabulary knowledge influences the learning of new sound sequences. 

The E P A M learning mechanisms are very sensitive to the input that the model re­
ceives. This allows the model to make very precise predictions. For example, the sound 
patterns of the most frequent words in the input will be learnt first. New words which 
consist of frequent sound patterns will be learned quicker than new words which consist 
of infrequent sound patterns. The model also allows comparisons of how different ap­
proaches to memory can affect learning. A time based store can be compared to a chunk 
based store (e.g., Miller, 1956) and the effects on learning can be examined. 

One aspect of the model that does not correspond to children's vocabulary learning is 
that the model merely learns sequences of sound patterns - it does not learn words per se. 
Although the resulting discrimination network (after training) will include a lot of vocabu­
lary, there will also be sound patterns that do not correspond to actual words (for example 
" W AH1 T AHO" from the beginning of "What about that"). The child must therefore 
process the input in a more discerning way than the model does, in order to determine 
word boundaries. This process of "segmentation" is very important and has attracted a 
great deal of interest in its own right (Brent & Cartwright, 1996; Kazakov & Manand-
har, 2001; Perruchet & Vintner, 1998) (see Jusczyk, 1999, for a review). Clearly the 
model presented here represents first steps in the computational modelling of vocabulary 
learning, with the next steps involving how to incorporate the processes of segmentation. 

This work represents a new modelling research program which aims to examine the 
extent to which the linguistic input a child receives can account for the child's vocabu­
lary development. While the detail of the simulations could be improved, an important 
contribution of this paper is to provide mechanisms showing how the phonological store 
links to L T M . The phonological store was shown to mediate L T M learning by limiting 
the amount of phonemes that could be learnt in L T M . In turn, L T M mediated how much 
information could be represented in the phonological store by chunking phonemes such 
that more information could be stored over time. In addition, the model, which learns 
from naturalistic input, has been used to explain a variety of other phenomena using very 
similar mechanisms to those employed here. The use of the same computational approach 
in various domains such as vocabulary learning, the acquisition of expertise, verbal learn­
ing, and the acquisition of syntactic categories, ensure a model that has few degrees of 
freedom. 
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