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The theoretical sensitivity of Love wave and layer-guided shear horizontal acoustic plate mode
(SH-APM) sensors for viscoelastic guiding layers and general loading by viscoelastic materials is
developed. A dispersion equation previously derived for a system of three rigidly coupled elastic
mass layers is modified so that the second and third layers can be viscoelastic. The inclusion of
viscoelasticity into the second, wave guiding layer, introduces a damping term, in addition to a
phase velocity shift, into the response of the acoustic wave system. Both the waveguiding layer and
the third, perturbing layer, are modeled using a Maxwell model of viscoelasticity. The model
therefore includes the limits of loading of both nonguided shear horizontal surface acoustic wave
and acoustic plate mod@PM) sensors, in addition to Love wave and layer-guided SH-APM
sensors, by rigidly coupled elastic mass and by Newtonian liquids. The three-layer model is
extended to include a viscoelastic fourth layer of arbitrary thickness and so enable mass deposition
onto an immersed Love wave or layer-guided SH-APM sensor to be described. A relationship
between the change in the complex velocity and the slope of the complex dispersion curve is derived
and the similarity to the mass and liquid sensor response of quartz crystal microbalances is
discussed. Numerical calculations are presented for the case of a Love wave device in vacuum with
a viscoelastic waveguiding layer. It is shown that, while a particular polymer relaxation time may be
chosen such that the effect of viscoelasticity on the real part of the phase speed is relatively small,
it may nonetheless induce a large insertion loss. The potential or the use of insertion loss as a sensor
parameter is discussed. 2003 American Institute of Physic§DOI: 10.1063/1.1524309

I. INTRODUCTION square of the operating frequency, but does not cause any
attenuation of the oscillation. This result, summarized by the
A wide range of acoustic wave sensors have been reSauerbrey equatichcan be shown to be valid, at least ap-
ported in the literature for use as mass sensot¥hen the  proximately, even when the mass is deposited from the liquid
mass being sensed is deposited from the liquid phase or thghase’ Introducing a QCM from vacuum into a Newtonian
focus of the application is to sense the properties of a liquidiquid results in both a frequency shift and an attenuation of
phase, the most obvious choice of acoustic wave mode is onie resonance. The effect of the shear mode oscillation is to
with a shear horizontal polarization to the displacement. Thigntrain fluid within a penetration depi= (27;/wp;)of
is because, for most acoustic wave devices, an out-of-plan@e surface, wherey; is the fluid's viscosityp; is the fluid’s
motion would induce a compression@ound wave in the  density, andv is the angular frequency. The oscillation in the
liquid and so cause high dampifig.The exception to this liquid decays within a penetration and so the QCM can be
occurs for flexural plate wave devices where the wave speegiewed as sensing the interfacial mass defined by the pen-
is less than the speed of sound in the liquid so that comprestration depth. Since the penetration depth depends on the
sional wave generation does not occur even though an ouinverse of the square root of frequency, the frequency shift
of-plane displacement exists. One of the most common shean immersion in a Newtonian liquid becomes proportional to
mode type of sensors is the quartz crystal microbalancene frequency to the power of 3/2 rather than squared. In
(QCM) and this has been extensively used for chemical andddition, the frequency shift is proportional to the square
biochemical studies. The QCM has the advantage of simplicroot of the viscosity-density product. These conclusions for
ity because it is a simple thickness shear mode oscillatiofiquid phase sensing were described by Kanazawa and
where the crystal thickness determines the resonant fresordon® The difficulty with the QCM as a sensor for bio-
quency and the transducers are simple metallizations of thiggical applications is that high sensitivity is needed and this
upper and lower crystal faces. Deposition of a thin massequires higher fundamental frequency and consequently
layer onto a QCM operated in its fundamental mode causestinner and more fragile crystals.
frequency shift proportional to the mass per unit area and the  An alternative to the QCM is to use a shear mode sur-
face acoustic wav€SAW) type sensor. In such sensors, the

dAuthor to whom correspondence should be addressed: electronic maiPperf"‘ting fr.equency is dete_rmined_ by the. spacing between
glen.mchale@ntu.ac.uk the fingers in a surface fabricated interdigital transducer to-
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gether with the mode speed determined by the substrate ty@8) response of Love wave and layer-guided SH-APMs to
and propagation axi5:** Shear horizonta(SH) SAWs and perturbing viscoelastic layers of finite or infinite thick-
acoustic plate modéAPMs) have been considered by some ness; and .
workers, but it has been claimed that higher mass sensitivit{#) response of Love wave and layer-guided SH-APMs to
can be obtained by using a waveguiding layer on the surface Mass deposition from the liquid phase.
of a SH-SAW to create a Love wave device? Experimen- . . .
. ; In each of the above cases of viscoelasticity, we also give

tally, Love wave devices have been created using substrates - : . e

. N résults for the limits of thin elastic mass layers and for infi-
supporting surface skimming bulk wavéSSBWs or SH-

- ; nite thickness of Newtonian liquids. In addition, the relation-
SAWSs and the waveguiding layer have been mate”ilfssucghip between the slope of the dispersion curve and the re-
as silicon dioxide (SiQ) or poly(methylmethacrylate*™

sponse of a Love wave or layer-guided sensor is generalized
In our previous work we have used both types of substrate, jncjude both viscoelastic waveguide layers and viscoelas-
and a range of polymer photoresistswhile much experi-  tic perturbations. Thus, the present article is sufficiently de-
mental work has been reported by both ourselves and othetsjled mathematically to provide comprehensive analytical
using these types of systems, most theoretical consideratiomgsults for the velocity shift and attenuation response of SH-
of Love waves assume a rigidly coupled elastic mass guidin@AW, SH-APM, Love wave, and layer-guided SH-APM de-
layer and an infinitely thick substrate. It is evident from thevices as sensors in the gas and liquid phases.

insertion loss that occurs in experiments, but which is not  The organization of the article begins with a brief review
predicted by Love wave theory based on a rigidly coupledof the three-layer model describing a substrate, guiding layer,
elastic mass guiding layer, that theoretical work on the efand perturbing layer, all composed of rigidly coupled elastic
fects of viscoelasticity of waveguiding layers is needed. It ismass. Then, the idea of viscoelasticity for a layer is intro-
also highly relevant to note that outside of the biosensingluced and a complex shear modulus defined. It is shown how
field, the use of molecularly imprinted polymefslIPs) as the Navier—Stokes equations describing a viscoelastic layer

both waveguide and analyte selective layers in Love wav&an Pe transformed into a wave equation and how the previ-

devices for vapor phase sensing has been reported. In ogHs results for the threeayer model can be extended. In

own work we have used MIPs as coatings on QCMs to detechdmon, the equations describing the viscoelasticity using a

. . L LS relaxation time and the Maxwell model are introduced and
a range of analytes, including steroids in the liquid pHasé. : . . ;
. S the relationship to the penetration depth and mode speed in
Thus, the experimental motivation to develop models for th

o fyi lastici X . She three-layer model is defined. Subsequently, the analytical
effect of viscoelasticity on acoustic wave Sensors Is Urgenty e aiment of a viscoelastic guiding layer is developed with

In our previous theoretical work we have shown thatyne jmportant limiting cases of SH-SAW and SH-APM sen-
SH-APMs can be viewed within the same theoretical framexqr response to mass, Newtonian liquid, and viscoelastic lig-

work as Love wave§2™* This involved extending the theo- ig loading detailed. For the general viscoelastic guiding
retical treatment of both Love wave sensors with guidingjayer a relationship between the complex veloditg., ve-
layers composed of elastic mass to Love waves on finitgocity shift and insertion logsand the slope of the dispersion
thickness substrates and of SH-APMs to SH-APMs coatedurve is developed. For completeness, a four-layer model is
by waveguiding layers. In this previous treatment, higheralso developed so that the response of an immersed device to
order Love wave modes were shown to be continuations ofnass deposition can be considered. The relationship of our
the layer-guided SH-APMs and it was shown that signifi-Love wave and layer-guided SH-APM results to the Sauer-
cantly enhanced mass sensitivity could be obtained for SHerey and Kanazawa results are detailed. Finally, we conclude
APMs by the use of a waveguiding layer. In addition, a rig-by focusing on numerical calculations for the effects of vis-
orous relationship was derived relating the slope of thecoelastic guiding layers on Love wave devices and, in par-
dispersion curve to the mass sensitivity of a Love wave oficular, on the consequences for sensors of the insertion loss.
layer guided SH-APM mode. This relationship between the

slope of the dispersion curve and the mass sensitivity is ofi BASIC THEORETICAL FORMULATION

importance because it allows an experimentally determined . _

dispersion curve to be used to predict the mass sensitivity o’?' Three layers of rigidly coupled elastic mass

a sensor and to predict the change in sensitivity with fre- In a previous article we considered the propagation of
quency. In the present article, we significantly extend ourshear horizontally polarized acoustic waves in a system com-
previous formalism to include the effects of viscoelasticity. Posed of a substrate of thicknesoverlayed by a waveguid-

In order to provide as wide a range of applicability as posing layer of thicknessd and an additional mass layer of
sible we consider the effect of viscoelasticity of both thethicknessh (Fig. 1). In this section, the theoretical develop-

waveguiding layer and the material being sensed. This treaf€nt is briefly reviewed so that modifications due to vis-
ment therefore describes the following situations: coelasticity can be clearly identified. The substrate and layers

were considered to be rigidly coupled elastic mass layers and
(1) SH-SAW and SH-APM perturbation responses to vis-the equation of motion in each material reduced to
coelastic layers of finite or infinite thickness;
(2) dispersion curves for Love wave and layer-guided SH-
APMs when the guiding layer is viscoelastic; at?

9u
— :,LLKZUJ' (1)
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Propagation drecton th _HpTp
s da &= : (11)
T/'x Mass layer PowT,
2 . w
%, Wave-guide layer I In this formulation Eq.(9) is a key result because it repre-
Substrate sents the effect of a finite thickness third layer of elastic mass

upon a layer guided system of a finite thickness substrate
FIG. 1. Definition of axes, symbols, and layer parameters for propagation ofVith a finite thickness wave-guiding layer. When the third
shear horizontally polarized acoustic waves in a three-layer system. Fdayer vanishes{—0), Eq. (9) is the equation that defines
sensor applications the first layer is the substrate, the second layer is thg Operating point on the dispersion curve for the “bare”
waveguiding layer, and the third layer is the perturbing layer. device of a substrate with a waveguide layer. Subsequently,
considering the third layer to have a finite, but small, thick-
ness gives the perturbation of the operating point due to
where p is the density of the material and is the shear sensed mass and so enables the shift in velocity to be calcu-
modulus. The equation of motion E(l) was then solved in lated. In the case of liquid or polymer loading, it is necessary
each material using trial solutions of the form to identify changes in the previous formulation so as to allow
_ ot the perturbation to have an arbitrary thickness of liquid or
— Tex TsX3|al (0t—kyXq) X . L .
Us (0.10[Ce s+ Dee’>5le o 2) polymer. The generalization to a liquid or polymer will nec-
U =(0,1,0|Aje"TXs+ BeiTixe|gi (@t —knxo), 3) essarily introdgce an attenuation of the wave in addition to
- _ _ _ the velocity shift.
u,=(0,1,0[Epe 1T+ F el Trs]el (@t k), (4)

where the subscripts, | and p indicate substrate, guiding
layer, and perturbing layer anid,=(w/v) gives the phase
speedv of the solution. The forms of Eqg2)—(4) were In this section we show that even when a viscoelastic
chosen for their similarity to the displacements of a Lovelayer is introduced it is possible to retain the majority of the
wave solution, but the wave vectdt can become imaginary equations used in the previous section in developing the
and can therefore also represent a shear horizontal acoustitodel of a three-layer system with overlayers composed of
plate mode with a guiding and/or a mass layer. Substitutinglastic mass. To incorporate viscoelasticity, first consider the
the trial solutions into the equations of motion for the mate-Navier—Stokes equation for a liquid under the assumptions
rials gives the following conditions on the wave vectors:  that the liquid is viscous and incompressible and that the

B. Viscoelasticity and the Maxwell model

1 1 pressure gradient can be ignored
Tg:wz(ﬁ_v_)' © Wi _ Mg 12
S ot - pi- ljf! ( )
T2= 2 i_ i 6) where vy is the fluid velocity andy; is the viscosity of the
' v 2 fluid. Taking a time dependence ef*! the velocity can be
rewritten in terms of displacements as
1 1
T§=w2<—z——z)- Y Fup
vy v pf?I wniVaus. (13

For elastic mass the density and shear modulus define the

shear speed of the layers bw=(us/p)™2 Comparing Eq(13) with Eg. (1), we have the same equation
=(w /p) "2 andvp=(,up/pp)1’2. The final requirement was e_xc_ept for the replacem_en_t of the shear modyluby th_e_
that the solutions in each material should satisfy boundaryiauid factorjw»;. In a similar manner the stress condition

conditions of continuity of displacement and stress at thdn transforming from a solid to the liquid is altered only by
boundaries; the stress is given by this same replacement. Thus, replacement of the shear modu-

lus u by a complex shear modulus;, with limits of u
_ ) when the material is solid-like arjd» ; when the material is
liquid-like provides one possible model for acoustic wave
ponse with a viscoelastic layer.
In the Maxwell model of viscoelasticity the shear stress
and rate of strain can be viewed as a spring and dashpot
tan(T\d) = tani( T w) — &, tan(T,h) model. The total rate of strain contains an elastic part and a
viscous part and a relaxation time= »;/u can be intro-
X1+ g tanTd)tanh(Tow)] © duced. TF;]e shear modulus becomes77f g
where§ and §, are defined as

au,

Ti3:5i2/1«(07_x3

Applying the boundary conditions gave a dispersion equatioﬁes
for a three-layer system

jon;
£= :U“sTs, (10 1tjoT
Mt so that the limitw —o0 gives the solid limit G;— «) and
and the limit w7—0 gives the liquid limit G;—jwn;). Thus,
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introducing viscoelasticity into the equations of the previousin Eq.(19), the sign convention adopted for the insertion loss
section amounts to the replacement G in Egs.(1)—(11). is that a larger positive value indicates a weaker transmission
of the wave. When considering small changes from an oper-
ating point, the inverse wave speed can be expanded about
C. The shear wave penetration depth the unperturbed wave speeq as 1b~1(/v)(1—Av/vy)
In the Newtonian liquid limitw7—0, we would expect and the change in insertion loss can then be evaluated from

the shear wave viscous penetration depth definedsby the change in the complex velocity.

=271/ wpr)Y? to be an important length scale determining o perturbation from a bare substrate
whether the layer thickness should be regarded as large or ) _ )
small. It is therefore useful to consider the relationship be- N this section we consider a bare substrate composed of

tween the wave vector for a layer and the fluid velocity de-/@stic mass supporting either a SH-SAW or a SH-APM.
fined using the Maxwell model of viscoelasticity. The wave 1N€S€ two situations correspond to solutions of @gjwith

— P 0_ — H
vector for a fluid layefEq. (6) or (7)] can be written h=0 and eitherg"=0 or tan_h(l"s’v_v)—o with Ts#0, respec-
tively; the superscript zero implies the unperturbed solution
, o1 1 for a bare substrate with no viscoelastic lajee., Eq.(9)
Ti=o 22 (19 with both d=0 and h=0]. If a thin layer of elastic mass
f with v,<wvg is deposited, the SH-SAW becomes a Love wave
where while the SH-APM mode becomes a layer-guided SH-APM
, G jon mode. In the case qf the SH-APMS is purely.imaginar%/ SO
Vi=—=———— (16) that the tanh) function becomes a tén function andT w

pr pi(ltjor) =jma, withm=1,2,3,.... To develop perturbation solutions
Using Eq.(16) in Eq. (15) and recalling the definition of the for the effect of a viscoelastic layer of thicknesen the bare

penetration depth, we can write substrate, we first rewrite E) using the perturbed velocity
=vot+A
—2j(1+jor) w?| -2 v roTar
Tes| ———————|=—+ (17)
f 2 2 2
g v @ arTo) = (894 AE) tanH T2w) + tanH ATqw) 20
- a =(&+ .
where a has been defined by f 1+tanr(T2w)tanr(ATsw)
S S
a= = _ . (18 Continuation of the perturbation solution now depends upon
j w2 \/ _ jo%K? whether =0 or tanh{T2w)=0. In the former case, care
Itjor-—— 1+jor— > must be taken not to divide using because®=0 implies
2v T2= 0 (i.e., T, itself is of orderAT,). Since we are interested

In the limit sk<1 (i.e., the penetration depth is much in the limit of_ the.vis.coelastic layer becoming an infinitely
smaller than\) the fluid wave vector become®;=(— 1 Qeep Newtonian liquid, we do not assume tthias necessar-
+])(1+]jwr)¥% 8 and is independent of the wave speed Iy small.
Then in the limit of a Newtonian liquid 7— 0, the solution
for the fluid displacement is a damped oscillation in e
direction, whereas for a solid with 7— > the wave vector
T; becomes real and the solution for the fluid displacementis The perturbation of the SH-SAW uses an expansion
an oscillation in thex; direction without damping. about£®=0 which impliesT?=0 (i.e.,vo=vy). In this case,
Eq. (20) simplifies to

1. SH-SAW perturbation

IIl. VISCOELASTIC GUIDING LAYER tar(T?d)~A§° tanfATow). 21)

The first generalization of the previously published
model of mass sensitivity is to allow the waveguiding layer The perturbation in the substrate wave vector must be
itself to become viscoelastic. This viscoelasticity means thahandled carefully because ®f=0, but doing so and group-

the “bare” device of the substrate and the waveguiding layeiing together the terms involving the perturbation of the ve-
has a complex dispersion curve with a wave velocity that hagcity gives

both real and imaginary parts indicating that both a velocity
shift and attenuation occur due to the waveguiding layer. Th
decay in the displacement amplitude of the substrate for%
propagation of the wave over a lendths given by Eq.(2)

as exp(Ink,L), where Im indicates that the imaginary part of 1 GfT?VS 2
k,= w/v should be taken. The insertion lo8k) in decibels ~— —( )
per meter propagation length is then given by

tantt

Vs

W [—2A V)

tar?(T%d) (22)

and using Eqs(14), (17), and(18) for the Maxwell model of

IL=—20(log;oe)Im viscoelasticity gives

. (19

w
14
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A v —2Av . ] 52k§
tanh’- . 212 1tjor—
Vs Vs Vs (1 jo ks) 2 27
2 (1+jw7')2 .
1 27]fd
i T s —t 2. SH-APM (m>0) perturbation
psvs(1+jw)ag ) ) ] )
In the previous section we considered the perturbation of
5 a SH-SAW using the unperturbed conditish=0 which im-
\/—2 d plies T2=0 (i.e., vo#vy). In the plate mode case we take
TS#O (i.e., vo# vg) and purely imaginary so that the tanh
\/?d ' (23 function becomes a tan function. The(nontrivial) zeros of
( - ) this tar() function are then our unperturbed solutions and
0

correspond tngw=jm7-r, with m=1,2,3,.... Them=0 so-
lution belongs to the SH-SAW case and is not a plate mode
solution in the sense that any added elastic mass wjith
<wg, NO matter how small, converigs from imaginary to
real. For the perturbation of a bare substrate supporting a
SH-APM, Eq.(20) reduces to

whereag is Eq.(18) with v=v,. In the limit of an infinitely
thick substrate and assuming the real parAofis negative,
the tanti) term on the left-hand side of E23) tends to
unity. Equationg22) and (23) provide the equations neces-
sary for calculating the velocity shifts and damping of a pure
SH -SAW Qiue to a layer Qf elastlp mass, Newtonian liquid, or tan TVd) = £° tan AT w) (28)
viscoelastic layer of arbitrary thickness.

Solid and Newtonian liquid limits for SH-SAWhe and performing the perturbation abdtf# 0 and using Eq.

limit of a thin layer usesl—0, so that Eq(23) gives (17) gives
Av 2 W [—2Av ta’_( ‘_2jd>
A tan e \/ Ve (AV 2jdv2 Gy am 29
1 27:d 2 Vm wWw’a’, V—2jd ’
S R (24)
2 psvs(l+jor)ag ®m

wherea,, is Eq.(18) with v=wv,. In Eq.(29) we have used

vy, to indicate that the unperturbed speed is the plate mode
speed and uset,,> v to convert the tanh) function into a
tan() function. Equation(29) provides the equation neces-

and taking the solid limit using bothr—o and §2w?/2v2
—0, this reduces to

(ﬂ tank? Wao /_ZAV) _ Tipefvs “’_d sary for calculating the velocity shifts and damping of a pure
Vg Vg Vg 2| ps\ 2 vs |’ SH-APM due to a layer of elastic mass, Newtonian liquid, or

(25)  viscoelastic layer of arbitrary thickness.

Solid and Newtonian liquid Limits for SH-APM.he
which is the same as E¢33) in Ref. 20. The limitwr—o  thin layer limitd—O0, is simply the prefactor in E¢29)
and 82w?/2v2= 6°ks?/2—0 is equivalent to taking the limit
vs>v; in EqQ. (25), and would be correct for a solid layer Av —277dezm
_us_eq as a \{vaveguide ina Love_ wave o_Ievice. The Iim_it of an = ,uSWw(1+ij)aﬁ1
infinitely thick layer of Newtonian liquid used—o with
w7—0. In this limit, the taf) function on the right-hand and in the solid limit ofw7— % and 52w2/2v§—>oo this fur-

(30

Vm

side of Eq.(23) tends to—j and therefore ther reduces to
A Wo [—2A0) ] j 52K2 Av) —wpifvh |d

(—” tant?| 22/ ”)J“”’f’”(l—’ ) 26) (— ~— e (31)
Vs Vs Vs 2usps 2 Vm Ms \ vt

wherek,=wluvs. In the further I|m|t52“’2/22H0 the veloc-  Which is the same as E¢42) in Ref. 20. It should be noted

ity perturbation[Eq. (26)] is purely imaginary and the effect that sinceTow=jm the substrate thickness is propor-
is to create a damping, but no phase velocity shift. From Eqfional to 1o, i.e.,

(19) and in the limit ofw— o, the insertion loss is propor-

tional to the square of the frequency times the viscosity— _ M7V 32)
density product; this can be contrasted with the square root 2

of the viscosity—density product expected for QCM sensors. ﬁ -~

The limit of an infinitely thick viscoelastic layer can also be 2

obtained from Eq(23) and would result in Eq(26) with the S

replacement and Eg.(31) therefore predicts a fractional shift in phase
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velocity proportional to the mode frequency. Also the factormode and the next lower SH-APM mode. In both the Love
uid= v?pfd and so involves the combination of density andwave and layer-guided SH-APM cases, the use of a coating
thickness, thus giving the mass per unit area. EquaBdh  of elastic mass results in a change in the wave speed, but
is therefore similar to the Sauerbrey equation familiar fromdoes not cause any propagation loss. For use as sensors, the
QCM sensors in that it predicts a fractional shift in phasebenefit of the coating, also described as a waveguiding layer,
speed proportional to the frequency multiplied by the masss that an enhanced sensitivity to mass deposition can be
per unit area. The limitv7— o and 62w2/2v§—>0 is equiva-  obtained. If the waveguiding layer were a viscoelastic mate-

lent to taking the limitv,,>v; in Eq. (29). rial we would expect an insertion loss to be introduced in
The limit of an infinitely thick viscoelastic layer uséls  addition to a shift in the phase speed. The formalism of Sec.
—oo in the tarf) function on the right-hand side of E9). Il can be used to determine the general effect of depositing a
In this limit, the tari) function tends tq and so polymer layer(or a mass layer or immersing the device in a
liquid) on a layer-guided wave device. In this section we
-, consider both the waveguiding layer and the third, perturb-
(ﬂ) - —2] 7V (33) ing, layer to be viscoelastic; the thickness of the third layer is
Vm)  vipWao(l+jor)an kept arbitrary and is not assumed small. The device response
to mass or liquid loading can then be obtained by taking
and in the limit6—0 we find appropriate limits.

The unperturbed system of a substrate with a viscoelastic
waveguide layer is defined by E(R) with h=0

Av 1 Vrzn VPt .
(V—m> ~ \/EWw( o, [-F(on)+jFi(w7)] tan(TPd) = ¢° tanK T2w), (36)
(34  where&? has been defined using E40), but with viscoelas-
) ] tic parametersi.e., u;—G,). Similarly, theT,0 includes the
where theF . (w7) functions are defined by viscoelasticity in Eq(6) via the use of equations of the form
given in Eqgs.(15—(18). For simplicity the substrate is as-
mi wT) 12 sumed to be composed of elastic mass. We also assume that
Filwr)= (350  the unperturbed velocity, does not equal, so that we are
1+(w7)? considering an operating point located away from the start of

There is a strong relationship between E8f) and the re- & mode on the dispersion curve for the system of the sub-
sults quoted by Martiet al?? and Ricco and Martff¥ (1990 strate and guiding layer. The perturbation due to the third
with similar dependencies on various physical factors includlayer, which is assumed finite and viscoelastic, is then given
ing theF .. (w7) functions. However, there is a difference in by Eqg.(9) and is symbolically similar to the derivation of Eq.

the prefactor with our2/2v,, replacing a mode group veloc- (24 in Ref. 21, except we keep the third layer thickness
ity vgm factor in the Martiret al. formula?? this difference is ~ finite and the shear moduli and, hence, velocities of the

detailed in Appendix A. waveguide and perturbing layers are allowed to be complex.
Thus, using a subscrifitto represent quantities for the third,
B. General perturbation of a viscoelastic layer-guided perturbing, layer of thickneds, the complex perturbation is
wave
When a SH-SAW device is coated with an elastic mass A, ( V%)
layer with a shear acoustic speed less than that of the sub- —=~0g(w,vo,vs,G,v,w,d)| 1— 2
0

strate, the wave becomes a Love wave with a speed interme-

diate between that of the layer and the substrate. Similarly, 0

. : . tan(T¢h)
we have previously shown that coating a SH-APM device ——— | psh, (37
with an elastic mass layer with a shear acoustic speed less T¢h

than that of the substrate creates a layer-guided SH-APM
with a wave speed intermediate between that of the originalvhere the functiorg has been defined as

— w?

s[1+tarf(TPd)]
1

O-I—O
5—SVZ[1—tanr?(T2w)]+tar(T|°o|) 21 ! 5
1Yo Yo 4 _ o
| ) [
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The equivalent equation definirggin Ref. 21[i.e., Eq.(25]  ing Eq.(37) for the thin mass limit and Eq41) for the liquid
contains several typographical errors. Noting that in the caskmit, the ratio of the response of a Love wave or layer-
of elastic mass,Gp/v,ZJ—>pp and G|—>p|v|2, formally Eq. guided SH-APM mode due to coating by a thin mass layer or
(37) appears to be the same as in the case of elastic madsie to immersion in a perturbing liquid is

derived in Ref. 21 except for the additional tdr type mul-

tiplicative factor arising from maintaining a finite thickness, (AN V) nass 2\ Am
rather than an infinitesimally thin, third layer. If the wave- WQ\/Zw 1- —g , (42)
guide layer is simply elastic mass then both the function liquid Yo/ NP1

and the unperturbed speeg are real and any complex com- ) ) )

ponent toAv arises purely from the viscoelasticity of the WhereAm=pph is the mass per unit areay, is the shear
perturbing layer. However, if the waveguide layer is vis- acoustic speed of that mass, and the fractional perturbation in
coelastic then botly and v, may be complex. In this situa- he wave speed has been written as a perturbation in the
tion, a third layer having a real shear modulus will, from Eq.0garithm of the wave speed. In many senses this is a similar
(37), give rise to a complex velocity shifv [i.e., an inser- relationship to that between the_Sauerbrey response of a
tion loss occurs via Eqi19)]. Thus, mass deposition onto a QCM and the Kanazawa expression for the liquid response
device possessing a viscoelastic guiding layer can induce &f @ QCM. In the QCM case the ratio of the responses would
insertion loss response in addition to a frequetmyphasg  Involve a/ and the ratio of the mass per unit area to the
response. In the SH-APM limit af=0 and tanh{ow)=0  Square root of the liquid density—viscosity product. For the

with To#0 (i.e., vo# vs), g— v/ (v2wpg)and Eq.(37) re- layer-guided wave it should be noted that the operating point
duces to Eq(29). ° on the dispersion curve for the devi@ibstrate plus guiding

layen determinesy, and this effectively introduces a fre-
quency dependence, although in many situatioﬁlg yg.
While the frequency dependence of the ratio of the mass and
The effects of viscoelasticity in Eq37) can be made |iquid responses is similar to the QCM result, E88) does
more evident by rewriting it using Eq616) and(17) not imply that the absolute frequency dependence of the

1. Maxwell model for perturbing layer

Av G layer-guided system is the same as the QCM frequency re-
—~g(w,vg,vs,G|, ¥ ,w,d)( 1— f sponse. However, what is particularly important experimen-
Yo PiVo tally is that if we can determine the sensitivity functigrior

layer?! While we have previously noted the importance of
this last observation, our present work shows that its rel-
<\/—_21h) p¢h, (39 evance is much wider than previously indicated. The func-

=2ih any perturbing layer then it is the same function for any other

tion g can be determined using a thin elastic mass layer, but
will then be valid whether the device is used for sensing

whereG; is given by Eq.(14) and a? by Eq. (18). In the mass deposited from the vapor phase or for sensing li@uid

Maxwell model the second factor in E(B9) can be written PClymeD properties. Moreover, the sensitivity functigrfor
using the fluid penetration depth and relaxation time as a sensor created using a viscoelastic waveguide layer can be
related to the slope of the dispersion curve in an identical
Gy ) _( j 57k3

manner to that previously suggested for a waveguide layer
1__1/ T 20T e ) (400 composed of elastic mags.Thus, by considering a third
Pt¥o perturbing layer composed of a thin layer of the same vis-
In the limit of a thin viscoelastic layer, tafix—1 and the coelastic material as used to create the waveguide layer, we
perturbation becomed v/ve=p:h, which in the solid limit  can use Eq(37) to derive
(wTi—) becomes mass per unit area. In the limit of an

af

infinitely thick viscoelastic liquid, taif—2j)Y2]/[(—2j)*x] 1 dlog.r
—jl[(—2j)¥*] and assuming thaé?w?/2v3—0 we obtain 9(w,vg,vs,Gy,v,w,d)= T ( dxe ) :
the analogous equation to E@®4) pi(1—vilvg) X?4d3)
Av 1
V—0~g(w,v0,vS,G|,v| w,d) o VPi7i@ Defining a new dimensionless variable=df/v;" (i.e., z
=d/\["), where the superscriptimplies the solid limit(i.e.,
X[—F _(o1)+|F (071)], (42) wT7— in the Maxwell model the perturbation of the com-
which reduces to Eq:34) when thed— 0 limit for g is used. plex velocity, Eq.(37), becomes
2.2 0
2. Relationship to the slope of the dispersion curve Av ~ 1—-vilvg (d loge V) ( tanTh) | wpih (44)
Equation(39) shows that the same functigndetermines Yo 1-vilvg dz z=2, Tih )27y p)

the sensitivity toward both mass and liquid perturbing layers
since the function depends only on the operating frequencgnd in the Maxwell model of viscoelasticityT h
and substrate and waveguide layer properties. Therefore, us-(— 2j)1/2h/a?.
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3. Relationship to the Sauerbrey and Kanazawa with that of QCMs. It deserves to be regarded as a generali-
equations zation of the Sauerbrey equation for QCM response to mass
loading and the Kanazawa result for liquid loading to layer-
Equation (44) is a key result of this work because it guided sensors. The limits of the taix type function in Eq.
strongly emphasizes the formal similarity between the re{44) provide results for the thin solid film and infinitely deep
sponse of Love wave and layer-guided SH-APM deviced\Newtonian liquid

o 1 h—0
tanT%h) .
—J-2 [2 .
( h S e BN i h—o and wr—0 “9
2h(1—v?v3) ¥ @ps

According to this equation, subject to two conditions, the A (1_1/2/1/(2)) (dlog V) wprAh
m e m
: (46)

fractional change in wave speed of a sensor due to an infini- —=~ T d —
tesimally thin layer of rigidly bound elastic mass is propor- Yo 1-vilvg z z:zozm)l P

tional to the frequency multiplied by the mass per unit are : ; ;

(ie.. wpth=wAm) and the response to immersion in an%herevo is a solution of the three-layer equatifiag. (9)]
infinitely deep Newtonian liquid is proportional to the square  tan(T2d) = &2, tanh( T2w) — &2, tan( T?b)
root of frequency multiplied by the square root of the

density—viscosity product i.e(wps ;)% The two condi- Xl1+§2' tar‘(TPd)tank(TSw)J. (47)
tions that must be fulfilled are that the operating point on theThe symbolsé, and &, have been defined as
dispersion curve does not change and tHa¢ v3. However,

the first of these conditions is a strong condition because a ¢ :'“S_TS’ (48)
general change of frequency without changing the waveguid- G

ing layer thickness will necessarily alter the factor in EQ.zng

(44) that involves the derivative of the phase velocity. It is

therefore not generally true that the frequency dependence of _ Gy Ty (49)
the A v/ v, response to mass and liquid loadingdgnd w'/?, T
respectively, althoug?/zthe mass and liquid responses Shou@quation(47) can be rearranged into the form

differ by a factor ofw™'~.

7o) £ tanh(Tew) — & tan(T{b)
al = .
IV. MASS DEPOSITION FROM A LIQUID " 14 206 tan To) tan TOd) tanh( Tow)

The perturbation summarized by Ed4) is the result of (50
addmg a viscoelastic |ayer to a Love wave or |ayer-guided:0r a device immersed in an infinitely deep viscoelastic me-
SH-APM device in vacuum. When the added layer is a Newdium the limit b—c would need to be taken. If Eq46)
tonian liquid of infinite depth the perturbation is a compari-were correct, then the perturbation due to mass deposition
son between the wave Ve|ocity for the device when im.from the ||C]U|d phase could be related to the mass deposited
mersed to the wave velocity for the device in vacuum. WherPy experimentally determining the dispersion curvedon
the added layer is an infinitesimally thin mass layer, the com-
parison is again to the wave velocity for the device in
vacuum. In sensor work with QCMs it is approximately the
case that mass deposition from the liquid phase creates the
same perturbation as the same mass deposition, but from the Fluid b
vapor phase. For Love wave and layer-guided SH-APMs
mass deposition from a liquid phase introduces a fourth layer

¢=d+h+b

and the unperturbed situation corresponds to three layers - d+h P
(Fig. 2). The layer that can be regarded as the perturbation is S Mass.

positioned between the waveguide and the fitfalrth) I X, =0 Wave-guide

layer. Following the pattern of Sec. 111 2 B, it is tempting, but Substrate

strictly incorrect, to conclude that mass deposition from a -w

viscoelastic liquid phase will be described by Ed4) with

h=Ah representing a mass |ayer and the unperturbed sol -IG. 2. Layers in the four-layer system. The substrate, guiding-layer, mass
ayer, and fluid layer are indicated by, |, m, andf, respectively. For mass

.tion being the immersed Love wave or layer-guided devicegeposition from the liquid phase the third layer is regarded as the perturba-
l.e., tion.
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the liquid as a function of guiding layer thickness in a similar 1 Ay vacuum
manner to the work reported in Ref. 16. This type of experi- SX?CuumE lim —hRe( U—)
ment would enable the derivative of the liquid phase disper- h—o Pf 0
sion curve to be determined numerically and the sensitivity 1— 2/ 2\ vacuum
to be evaluated. These considerations only apply if an equa- =R (J)
tion similar to Eqg.(46) can be shown to be valid for mass 1= vilvg
deposition from a liquid; in the following we provide a rig-
orous derivation of a slightly modified form of E¢16) [see y ( d |09ev>va°””m ® 54
Eq. (52)]. dz |,_, 2#@v)p

To rigorously investigate the effect of mass deposition 0
from the liquid phase, a full solution in a similar form to Eq. and
(44) can be obtained from first principles by extending the ' 1 A p\ fluid
three-layer model to a four-layer model; the algebra involved — SMUd= |im —Re( —)
is extensive and is briefly outlined in Appendix B. The result ™ hoo Pmh Yo
Ezrntf;se perturbation in the velocity from the solution to Eq. ) 1+§?m2 tar?(T?b)) fluid

=R 02 0
Ap 1+ &) % tark(Teb)
s ~g,.(w,vq, substrate, guiding layer, fluid 1_1/%/1}(2) fuid dlog, v/ fie
2 X 2 2 d ) - (55
1-vilvg z z:z027TV| P

Vm
1-=
Yo

[1+ & tarf(TPh) IpmAh, (51)

|
where the functiong, depends on the substrate, guiding-
layer and viscoelastic fluid properties, and the operatin
point and frequency. In a manner similar to the derivation o
Eq. (43), we can imagine the perturbation resulting from the
deposition of a thin mass layer that has identical properties t
the waveguiding layer, and this allows us to relate the func
tion g, to the slope of the liquid phase device dispersion

curve
Av |1+ 2tarf(TPh) | [ 1—v2/v3
vo | 1+&2tark(Th) |\ 1— v/ 3

dlog. v
dz

wpmAh

x( (52
which is similar to Eq.(46) apart from the first factoré;,,
has been defined in the same manner as (E§). For an
infinitely deep viscoelastic liquid assuming a Maxwell model
and that thes?k3/2 term inT{ can be neglected, the factors
in Egs.(47), (51), and(52) involving GT{ become

0 L)
2:2027TV| P

—w w
G TotanToh)— — M0 b (on)+iF (0],
V2
(53
In the limit of a Newtonian liquidw7—0, so thatF_—0
andF_ —1.

The superscripted words vacuum and fluid have been used as
reminders that the unperturbed reference situations corre-
pond to a device either in vacuum or immersed in a fluid. In
rder for the additive assumption used in QCM sensor work
to also be valid for the layer-guided sensors, a number of
onditions need to be satisfied. First, the first factor in Eq.
55) has to be approximately unity. Second, the terms in the

second factor in Eq(55) need to be approximately equal
either because the two unperturbed operating point velocities
vy are close or becaus€/v3<1 andvi/v3<1; the unper-
turbedv,s are different in Eqs.54) and(55) because one is
relative to the dispersion curve for the device in vacuum and
the other for the device in the fluid. Third and finally, the
slopes of the phase speed curves at the operating point
should be approximately equal. For Love wave and layer-
guided SH-APM sensors operated at maximum phase speed
sensitivity the second two assumptions may not be true be-
cause the maximum phase speed sensitivity will necessarily
correspond to the point of steepest slope on the phase speed
urve.

V. NUMERICAL RESULTS AND DISCUSSION FOR
LOVE WAVES

The equations developed in the previous sections are
comprehensive and cover many types of sensor situations.
The effects of elastic solids, Newtonian liquids, and vis-
coelastic liquids on SH-SAW and SH-APM sensors are de-

When considering acoustically thin layers of mass described by Eq(36). This equation also gives the dispersion
posited onto a QCM sensor operating in the liquid phase it icurves for both Love waves and layer-guided SH-APMs
often assumed that the total shift in velocity is additive. Thewhen the guiding layer is viscoelastic and the dispersion
total velocity shift is viewed as the sum of the shifts thatcurves can be used to evaluate sensor response vi@4qg.
would be obtained for the QCM immersed in the liquid Equation(47) describes the dispersion curve for a Love wave
added to the shift that would be obtained if the mass werer layer-guided SH-APM sensor immersed in liquid and this
deposited from the gas phase. The accuracy of this assumgispersion curve is relevant for the evaluation of sensor re-
tion for Love wave and layer-guided SH-APM sensors carsponse to mass deposited from the liquid phidae (52)].

be assessed by comparing E46) with Eq. (52) and defin-
ing two mass sensitivity functions

While the analytical equations cover a wide range of sensor
situations, it is a substantial task to provide comprehensive
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numerical calculations for all these situations. Therefore, in v
[

this section we focus solely on the effect of viscoelasticity in ;= _ (58)
the guiding layer on the dispersion curve and the sensor re- ( X, )2
sponse of a Love wave device. 1—

2mzy)

A. Numerical approach
To understand the effect of the viscoelasticity of the 10 understand the numerical problem, we can first consider

guiding layer on Love waves it is necessary to numericallyth€ limit @7—oo, which reducesc and v to being real num-
compute the dispersion curve E@6) for the complex ve- pefs. For a given parameter set, the solutionxfean either
locity. The insertion loss can then be calculated from thdi€ in the rangfzogqflzpr it can be larger thag, but smaller
imaginary part of the inverse wave velocity. The generalth@n 2m(1—v/“/v5)™Z. In the former case, Eq56) indi-
problem of the substrate plus a viscoelastic layer has thregAtes that the solutions farwill correspond to the intersec-
intrinsic scales related to the frequency. Imagining the subtion of the tanxwith the tanh curve. I3<ar there will be a
strate to be infinitely thick— =) and the guiding layer to s!ngle solution corregpondlng to the first Love wave mode,
be perfectly elastic massor— =), the guiding layer thick- SINC& X</ necessarily means from E¢58) that v<vs.
ness becomes a natural intrinsic length scale. By defining thg@ch time increases byr an additional solution, corre-
combination\,;= », /f a dimensionless combinatiaix, can  SPonding to a higher mode Love wave, becomes possible;
be formed and the velocity is a real value determined by 41€ number of Love wave modes is given by the integer
function of d/x, with no other dependence on frequency. Part of /. The start of e%ch Love wave mode, labeled by an
However, if the thickness of the substrate is retained as finitd"t€gern, corresponds tdyd=n and£°=0 in Eq.(36) so
then another combination,=v./f becomes possible and that¥=wvs. Inthe latter case, when> g, Eq.(57) is a more
the velocity then depends on the frequency in a more Cc)mg,wtable form for understanding fche_ equatlop defmm_g‘he
plicated manner, although it remains real; a natural dimenProblem then corresponds to finding the intersections be-
sionless combination isv/\s. When the perfectly elastic twe_en the two tan funcuor_ws, which can have widely differing
mass limit is relaxed so thabr becomes a natural dimen- Periods inx. These solutions each have>v, and corre-
sionless combination, the frequency dependence of the wayond to layer-guided SH-APMs. Moreotrad_ltlonal, nonlayer
speed becomes more complicated and, in addition, the spe&4ided SH-APMs occur whed=0 andTsd=jm and this
becomes complex indicating that an insertion loss also ocS0rresponds to mode speexdg given by

curs.
Considering a finite substrate composed of elastic mass Vm:;_ (59)
overlayed by a finite thickness Maxwellian viscoelastic layer mmvg) 2
there are five material parameteys ( vs, p;, v, , w7) and 1- "
w

three operating parametefw,d,f) where v"= (07— )
and the produciw7 is treated as a single parameter. UsingEquation(59) can also describe the layer-guided plate mode
this parameter set the layer penetration depth is givea by speeds at the start of each Love wave branch, defined by
=2y lop)Y% the layer speed isv=v[jor/(1 Tf’dnm:nw. The specific guiding layer thicknessds,, at
+jw7)]*? the layer shear modulus b =jp v ?w7/(1  which v=w, is satisfied are given by

+jw7), and the viscosity of the layer is given by,

=G|(wTt—0)7. In analogy to the dispersion curve for a ny, /f

Love wave device on an infinite thickness substrate and with Anm= \/ n\2 m.\ 2 ' (60)
S

an elastic mass guiding layer, we define a parameter
=df/v. To rewrite Eq.(36) into a form suitable for nu- 2fw

. . . 0
merical work, we deflnoce anew \éaﬂgbkec Tidand acom-  Tpysd, . can be described as the guiding layer thickness at
plex function g=2mv " (1—vj/v5)"z/v,. Equation (36)  which the Love wavesi=0) and their associated plate
can then be written in either of the two equivalent forms  pdes m+0) begin and the wave speeds at the start of

> = these modes are given by,.
tanx=(&)(é) 1—(i tan}‘{'g—w 1- i)
G/\x B B
(56)

Vs

d 1
B. Numerical results for phase speed and insertion

loss
or
The first effect of allowing the guiding layer to become

us\ [ B \/Téf ,BW\/Tﬁ viscoelastic is that Eq.57) and its solutionx both become
tanx= —(§>(;) ,E) _1ta{T (E) —1}- complex. Analytically, we can still imagine a set of Love
: (57) Wwave and associated layer-guided SH-APM modes with the
starts of the modes at valued,(,,v,,) given by Eqgs.(59)
The numerical problem is to compute the complex valug of and (60). The wave speed at the start of the mode is real
that is a solution to Eq(57) [and hence Eq(56)] given a  while the guiding layer thicknegs;,,, becomes complex; i.e.,

particular set of material and operating parameters. The conthe mathematically required,,,, for v= v, becomes an un-
plex velocity is then found from physical value. In the remainder of this section we simplify
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FIG. 3. The real part of the velocity as a function of the normalized guidingF!G- 4. The difference in the real part of the velocity as a function of the
layer thicknesz=df/v(wr— =) for the first two Love wave modes in a normalized guiding layer thicknegs=df/v|(w7—c) for the data in Fig. 3;
system of a finite thickness substrate with a Maxwellian viscoelastic guidinghe slid curve is the difference for the first Love wave mode and the dotted
layer. The solid curves correspond éor=10° and the dotted curves to CUrve is the difference for the second Love wave mode.

w7=10; the dashed curves are the limits for> v4 and v— v, . The other

parameters aré=100 MHz, w=500 um, ps=2655 kg m 3, v;=5100 m

s, p;=1000 kg T2 and v (w7—*)=1100 ms*.

the first Love wave mode and the dotted curve shows the

the computational problem by concentrating on the effects ofecond Love wave mode. For the higher Love wave modes
viscoelasticity of the wave-guide layer on the Love wavethe value ofd at which the mode begins is also reducedas
solutions and do not consider the layer-guided SH-APMdecreases.
branch of the solutions. Our approach is to choose the mate- Figure 5, which plots the insertion loss as a function of
rial parameters ds,vs,p;,v, , 1) and the two operating the normalized guiding layer thicknegsshows that the ef-
parametersv and f, and to then step through a range of fect of viscoelasticity on the insertion loss is considerably
guiding layer thicknessl. At each step Eq(57) is numeri-  larger than on the real part of the velocity. In Figa higher
cally solved for the complex rootand the velocity calcu-  positive value indicates a signal that has greater loss and is,
lated from Eq.(58). The insertion loss is then calculated hence, weaker. The solid curve is the insertion loss per meter
from the imaginary part of the inverse velocity using Eq.calculated usings7=1CP. The dotted curve is the insertion
(19). loss per meter scaled down by ®1@alculated usingwr

Figure 3 shows calculations of the real partvafising an = 10; the scaling has been used to enable both curves to be
operating frequency of 100 MHz on a substrate of thicknesslisplayed on the same diagram and has been chosen to be the
500 wm with material parameters ¢f;=2655 kgm > and  ratio of thew’s. The accuracy of the numerical calculations
rs=5100 ms?, coated by a viscoelastic layer with material for the insertion loss can be verified by considering the ana-
parameters op,;=1000 kgm ® and y(w7—0)=1100 m lytical limit for the insertion loss as'— v, [i.e., Eq.(61)].
s~ 1. The solid curves show the first two Love modes and usdhe insertion loss per meter is then given by
a relaxation time for the waveguiding layer satisfying
=10P, while the dotted curves user=10; the dotted curves
are almost identical to the solid curves. The horizontal axis
has been plotted using=df/v,,,. The horizontal dashed
curve is the numerical evaluation of the real part of the ana-

- 5
lytical limit of v— », 13
Q4
. for , i
v—=r=v \| 51Fi(0r)—jF_(w7)] (61) =
2 @ 3
and the dashed curve with an initial value of vg is the 3 N R -
. . A . c
numerical evaluation of the real part of the analytical limit of o
d—0 for the first Love wave mode. Considering the solid § 1
and dotted curves in Fig. 3, the effect on the real pant of £

including some viscoelasticity through the relaxation time
while keeping both the frequency am{i constant appears to
be relatively small. The transition in the dispersion curve in
Fig. 3 betweenvg and »;” occurring atz~1/4 for the first  FIG. 5. The insertion loss per meter propagation path as a function of the
mode and aiz~ 3/4 for the second mode, is sharpened puthormalized guiding layer thicknegs=df/v,(w7— ) for the first two Love

. ' - wave modes; the parameters are the same as in Fig. 3. The solid curve is for
th_e absolute changes in the, real parvaire small. To clarify w7=10F° and the dotted curve is the insertion loss data dar= 10, but
f{hIS, the abSO|L_Jte (_:hang_es n th_e real part Of_the phase velogyided by a factor of 18 The horizontal line is the~— v, limit given by
ity are shown in Fig. 4; in this figure the solid curve showsEq. (62).

0 0.2 0.4 0.6 0.8 1
z
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IL=—20(log;p€)Im plane wave in the substrate with a half-wavelength type pat-

w} the next Love wave modenE 1), the wave begins as a
14
tern in the guiding layer and then evolves with increasing

1) 1+ (w7)? guiding layer thickness into an almost zero displacement in
—20(logee)| — |\~ F-(o7) (62)  the substrate with a three-quarter wavelength displacement

Y pattern in the guiding layer. Since the substrate is much
thicker than the guiding layer the initial plane wave in the
substrate represents the majority of the displacement and the
half-wavelength pattern in the guiding layer is only a small
part of the overall displacement. However, for the thicker
guiding layers the substrate displacement almost vanishes
Both the “low loss” 7= 10 and “high loss” wr=10 and so the displacement in the layer is the dominating part of

curves in Fig. 5 show a characteristic change with increasin%fqe overall wave displacement. In a manner similar to the
guiding layer thickness. Considering the first Love wave irst Love wave mode, the transition in the displacement pat-

mode, for very thin guiding layers the insertion loss in both!€M corresponds to a change of the wave velocity fiqrto
cases is small, but as the guiding layer thickness increaséé: N th|s.|r.1terpretat|on 'th.e insertion loss arising due to the
the loss increases significantly with a particularly rapidViscoelasticity of the guiding layer would only become ef-
change occurring at arourzd- 1/4 for the first mode. Subse- fective when the displacement is dominated by the displace-

quently, the loss overshoots and then saturates at a constdRENt in the guiding layer and this only occurs once the tran-
value given by Eq(62). A similar behavior occurs for the Sition in velocity toward the layer valug occurs. Thus, we
second Love wave mode, although the overshoot is hardiyould expect the first Love mode to have significant damp-

apparent and the particularly rapid change occurs at arourl§d &t for exampled~0.65, while the second Love mode to
z~3/4. Thus, the insertion loss depends on the Love wav&imultaneously have little damping. Moreover, once the Love

mode so that, for example, at a guiding layer thickness of Wave mode is localized into the guiding layer, the insertion
~0.65 the losses for the first Love wave mode are high'oss would be expected to saturate, as is clearly the case from

while the losses for the second Love wave mode are low. For'9- -

the first Love wave mode, an overshoot can also be seen as_ |N€ Prediction that one Love wave mode can have sig-
d~\{°/4, whereA”=v?/f and this can be shown to be due nificant damping while the next higher Love wave can simul-

to the tarx term in Eq.(57). Indeed, it is similar in origin to tanei)susly have little damping is consistent with reported
the idea of a shear wave resonance known in work witffiata.” Frequency spectrums for Love wave devices show
QCMs24?5 A close comparison of Eq36) in the thin layer that as a guiding layer is built up systematically, the resonant
mass loading limit with acoustic impedance models forfrequency shifts to a lower value, and the wave eventually

QCMs shows that the tarterm in Eq.(57) is the term in the ~ 2PP€ars to be completely damped. However, data also show

acoustic impedance that is the source of the shear wave resh@t if the guiding layer thickness is further increased, then

nance idea. after a given thickness a strong mode appears back at the

Physically, it is possible to understand the insertion los£rginal frequency and then again shifts with increasing
behavior as a consequence of the transfer of the Love way@Hiding layer thickness to lower frequency until it is com-
from a wave similar to a shear acoustic wave in the substratBl€tely damped. This pattern has been observed through a
to one similar to a shear acoustic wave in the guiding layeP€duénce of more than seven Love wave modes. One practi-
as the guiding layer thickness increases. In our previ0u§a| caution agal_nst a too I|teral numerical application of our
treatment of Love waves with elastic mass guiding layers wdesults to experimental data is that the theory concerns Love
plotted displacement profiles for a range of guiding layerVaves generated from SH-SAW supporting substrates. Data
thicknesse€’ In any mode the upper, free, surface of the©n LOve waves taken using a SSBW mode would not have

guiding layer is an antinode and the displacement decays inf@? insertion loss predicted using this theory because in the
the substrate. For the first Love wave mode=0) and very SSBW case, the guiding layer thickness also appears to de-
thin guiding layers, the displacement in the substrate decay@€@se the angle at which the SSBW is launched into the
gently so that the substrate displacement approximates $/PStrate. For a Love wave generated from a SSBW mode,
plane wave and this plane wave pattern extends into thi1® initial effect of a guiding layer is to improve the trans-

guiding layer. As the guiding layer thickness increases th&nission of the wave rather than to damp the wave. Eventu-
displacement of the first Love wave mode=0) becomes ally, as the wave localizes to the guiding layer the loss should

similar to a quarter wavelength type pattern in the guiding?®come equal to that predicted by E62). Thus, the theory

layer with the displacement decaying so rapidly into the subl this work may apply quantitatively to Love waves on a
strate that the substrate-guiding layer interface almost b

36° YZ-LiTaO; SH-SAW substrate with the propagation path
comes the location of a node in the displacement. EffecMetallized, but only qualitatively to Love waves on a 90°
tively, for thin guiding layers the Love wave is a shear

rotated ST-cut quartz SSBW substrate.
acoustic wave in the substrate, with a wave velocity simiIarC Mass/liquid vt
to a shear acoustic wave in the substrae and for thick - Viass/liquid sensitivity
guiding layers it is a wave in the guiding layer with a wave In QCM sensors targeted at mass deposition applica-
velocity similar to a shear acoustic speed in the layerFor  tions, it is usual to quantify the mass sensitivity by the phase

and this formula explains the choice of scaling used in pre
senting the numerical calculation for the curve withr
=10. Providedwr=10, the F_(w7) function can be ap-
proximated to 1/(&7)%? thus givingIL < 1/w7 in the limit
v—v).
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3500 sertion loss per unit propagation length due to a small change
}3000 I in the (complex phase velocity is
“E 2500 : w [Av
- AIL=20(log;ge)Im| —| — (63
= Vo \ Vo
a
2 150 and the fractional shift in the phase velocity is given via Eq.
:.§ 1000 (37) using theg function or from Eq.(44) which uses the
2 500 slope of logv. In Eq. (63 a positive AIL represents a
3 weaker signal.
o 0.2 04 06 0.8 1 In the approximation that the material being sensed is
z elastic mass with a shear acoustic velocity similar to that of

the guiding-layef(i.e., vi~v;), then Eqs(44) and (63) pre-
[i.e., Eq.(54) with v¢=y|]; the parameters are the same as in Fig. 2; ThegICtS tr:a;the maXIrTluthhiﬂgﬁ n mlseml?g |Or?3 :lor E given
solid curve is forw7=10° and the dotted curve is the insertion loss data for 9€POSIt€ _maSSA_(m__ pin-wi smal) wi e 'g_ when
wr=10. the operating point is chosen such that the imaginary part of

vgld loge v/dzis large. For large relaxation times, this com-

bination is dominated by the imaginary part of the slope

. o , ] . dlog. v/dz Thus, a key conclusion is that when using a Love

velocity mass sensitivityi.e., Sy, defined by Eq(54) with  \aye device to sense rigidly coupled elastic mass, insertion
prAh=Am andv¢=»]; to a first approximation the attenu- |oss can be a highly sensitive parameter because the elastic
ation vanishes for thin mass layers. Figure 6 shows the magnass can convert the wave from having a low loss to a high
nitude of the phase velocity mass sensitivity for the data iNgss via the transfer of the displacement from the substrate to
Fig. 3 derived from the slope of the curves in Fig. 3; the solidipe guiding layer; there is no absolute requirement for the
curve corresponds ta7=10° and the dotted curve corre- genosited mass itself to be viscoelastic. While, in a sense, the
sponds taw7=10. The effect of increasingly viscoelasticity e|astic mass does not itself have a loss, the mass effectively
(i.e., reducingwr) is to increase the peak sensitivity, al- moves the operating point of the device down the complex
though for thinner guiding layers the viscoelasticity can re-gispersion curve into a region where the guiding layer losses
duce the sensitivity. The reduction in the sensitivity prior t0giart to dominate the Love wave.
the peak may be important experimentally because the inser-  £or sensing rigidly coupled elastic mass of shear acous-
tion loss increases with increasing viscoelasticity and it mayic velocity v,,, deposited from vacuum, we can define an
not therefore be possible to operate a device at the guidingsertion loss mass sensitivity functi@; in a manner simi-
layer thickness required for peak phase velocity mass sensiyy to the phase velocity mass sensitivity function using the

tivity. ) ) ~ change in insertion loss per meter divided by the mass per
In QCM sensors attenuation occurs if the mass depositegpit area

is viscoelastic, but not if the mass is purely elastic. There-

fore, an important aspect of the insertion loss arising from L AlL
viscoelasticity of the waveguiding in a Love wave device is Sm=lim (m
that in theory it provides a highly sensitive sensor parameter am=0

both for liquid sensing and mass sensing even when the mass

is purely elastic. To understand why, it is necessary to recon- =20(logpe)Im
sider the origin of the high phase velocity mass sensitivity in oY
a Love wave device with a guiding layer composed of elastic

mass. Equatiod4) shows that the phase velocity mass sen- > i dloge V) (64)
sitivity is directly proportional to the slope of the logarithm vo\ dz 2=2, '
of the mode velocity and that the highest phase velocity mass

(and liquid sensitivity occurs when a device is operated atwhere Eqs(44) and (63) have been used to obtain the rela-
the point of steepest slope on the dispersion curve. The poiriionship to the slope of the dispersion curve. One immediate
of steepest slope corresponds to the mode being on the poicbnsequence of Eq64) is that the peak sensitivity in the

of transition between a wave dominantly in the substrate, anéhsertion loss does not necessarily occur at the same operat-
so havingv~v,, to one dominantly in the layer, and so ing point on the dispersion curve as the peak sensitivity in
havingv~wv,. In a similar manner, in the case with vis- phase velocity. For example, when sensing a mass layer
coelasticity the insertion loss also changes from a value chacomposed of approximately the same material as the guiding
acteristic of the substratge., zerg to a value characteristic layer, the peak phase velocity sensitivity will correspond to
of the layer[i.e., given by Eq.(62)]. We would therefore the maximum ofd log, v/dz, while the peak insertion loss
expect high insertion loss mass and liquid sensitivity to corsensitivity will correspond to the maximum of
respond to the point of steepest slope of the insertion loss™1d log, /dz. Figure 7 shows the insertion loss mass sen-
curve and for that slope to be particularly steep if the poly-sitivity for a Love wave with a viscoelastic guiding layer
mer induces high insertion losses. To be more quantitativewith the same parameters as used for the data in Fig. 3; the
Eq. (19) for the insertion loss shows that the change in in-approximation (+ v2/v3)/(1— v¥/v3)<1 has been used in

FIG. 6. Magnitude of the phase velocity mass sensitivity funct|&j],

w® ( 1- Vﬁ]/vg)

% 2, 2
1-vilvg
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FIG. 8. Comparison of the real and imaginary partsddbg, v/dz for the

FIG. 7. The insertion loss mass sensitivi; , for sensing material of the ~ data in Fig. 3. The dotted curves with positive peaks are the imaginary part
same type as the guiding laygre., Eq.(64) with v,,=|]; the parameters  of dlog, v/dz for w7=10; the corresponding data farr= 1P is vanish-
are the same as in Fig. 2. The solid curve is éor=10° and the dotted  ingly small on the scale of the figure. The solid and dotted curves with

curve is the insertion loss data farr= 10, but divided by a factor of f0 ~ negative peaks are the real part afog, »/dz for w7=10° and wr=10,
respectively. Data for the first two Love modes are shown.

Eq. (64). The solid curve corresponds tor=10° and the

dotted curve corresponds tor=10, but it should also be

noted that the data fowr=10 has been scaled down by a slope is vanishingly small fowr=10°. However, the real

factor of 16 in order to plot the figures on the same diagrampart of the slope(curves with negative peak valyets of

for comparison of their shapes. The need to use a large sciomparable order of magnitude for bowr=10° and wr

ing factor in presenting the data for the effect of viscoelas-=10. Thus, for liquid phase sensing we would expect two

ticity on the insertion loss mass sensitivity emphasizes thatontributions to arise from the slogee., d log, #/d2) to the

experimentally insertion loss may be a very useful Lovephase velocity sensitivity as the guiding layer becomes vis-

wave sensor parameter; we would also expect this to be truspelastic. For liquid phase sensing similar conclusions also

for other layer-guided acoustic wave sensors. apply for the insertion loss sensitivity although the relevant
If the Love wave device is being used to sense changefactor is » 'dlog,»/dz rather than simply the slope

due to the device being immersed in a liquid, then E44) dlog, v/dz

and (45) show that insertion losses will arise whether or not  |n this section we have not considered numerically the

the guiding layer is viscoelastic. In the infinitely deep New- effect of depositing mass from the liquid phase because this

tonian liquid case given by Eq45), tan(Tth)/Tth has real  requires a substantially more difficult root finding procedure

and Imaginary  components of equal magnitugince  pased on Eq(47) [or Eq. (50)] rather than the simpler Eq.

(—2j)7*=1-]] and a Love wave device with an elastic (35 However, some qualitative comments are possible. The

guiding layer will couple the imaginary part into an insertion gimpest view of the liquid phase is that it has two effects:

loss. If the guiding layer becomgs a viscoelastic materialfiqs the liquid shifts downwards each point of the dispersion
then the real part of taiifh)/T¢h will also become coupled ¢y for the device in vacuum to create a new dispersion

into the insertion loss via the imaginary part of the slope Ofcurve and second. the maganitude of the slope of the curve at
log, v, (multiplied by 1b,). This additional mechanism for ! ’ g P

insertion loss changes, introduced by the viscoelasticity o}he operating point is subsequently higher. The idea that the

the guiding layer, may provide even higher sensitivity in lig- vacuum based device response to liquid can simply be added

uid phase sensing applications. The mass sensitivity definetg the vacuum based device response to the mass uses the

by Eg. (64) does not include this additional mechanism forassumption that the_change in slope of th_e dispersi_on curve
the liquid phase sensitivity. However, because for the infi-caN b_e neglected. .S.ln.ce a que wave deV|c.:e. has high phase
nitely deep Newtonian liquid the real and imaginary contri-VeI_oc'ty mass sensitivity preus_ely bgcause it |s_operated ata
butions of tanTh)/T°h have equal magnitude, the relative POINt Of steep slope on the dispersion curve, it is far from
importance of the viscoelasticity of the guiding layer to the®Pvious that the assumption that the change in slope can be
insertion loss can be assessed by considering the relatif?¢9lected will be true. Moreover, for a viscoelastic guiding
magnitudes of the real and imaginary parts of the slopes gaver it is difficult to predict qualitatively how the introduc-
logev and this is shown in Fig. 8. The parameters used iffion of the imaginary part to the slope will change the re-
Fig. 8 are the same as for the data in Fig. 2; the solid curvegPonse. Nonetheless, the equations developed in this work
corresponds ta 7= 10° and the dotted curves correspond to Provide a rigorous basis for a numerical investigation of
w7=10. The curves with negative peak values are the redhese issues. We would anticipate that the insertion loss re-
part of the slope and the curves with positive peak values argponse will be particularly important in biological sensing
the imaginary part of the slope. It is evident from the exis-applications were the mass being sensed often has an ele-
tence of only dotted curves with positive peak values for thement of viscoelasticity and is usually deposited from the lig-
two Love wave modes in Fig. 8 that the imaginary part of theuid phase.
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VI. CONCLUSION and comparing to Eq§B11) and Eq.(B12) gives the same
. - formula for the perturbation in velocity as in Martt al.
A theoretical treatment of Love waves on finite sub-

strates and with viscoelastic wave-guiding layers, and Ofrowded our constart is replaced by their constao, de-

shear horizontal acoustic plate modes with coatings, has be 'r?ed as
developed. Equations for the sensor response of these types V| Im
of systems for both mass and viscoelastic or Newtonian lig- v_( ) pw’
uid phase applications have been derived and the limiting _ ) .
cases of mass and liquid response for shear horizontal polafh€reJm=1 sincem=>0; in our work we have previously
ized surface acoustic wave and shear horizontal acoustifdicated that then=0 result quoted by Martiret al. as-
plate mode sensors detailed. The response of Love wave asdMes that the SH-APM is not converted to a Love wave by
layer-guided SH-APMs to a general materielastic mass, the perturbing material. Thus, me>0 the only difference
Newtonian liquid, or viscoelastic fluichas been shown to P€tween our SH-APM perturbation formula and that of Mar-

depend on the slope of the complex dispersion curve and tHi" €t @l is the replacement of a mode group velootty, by

2 . . .
relationship to the QCM mass and liquid phase sensor re2Ur ¥s/2vm. The insertion loss for the damping of a SH-

sponse has been discussed. Equations describing mass de ’M sensor by a viscoelagtic liquid of .infinite depth arising
sition from the liquid phase have been developed. The andfOm our velocity perturbation formula is

lytical results have been investigated qsing nu_m_erical 20logoe) [ ol \ (27w,

calculations, based on a Maxwell model of viscoelasticity for  IL~— > ( W ) VonipiF i (oT1),

the waveguiding layer of Love wave devices. The role of the 2m\2 PsVs @

waveguiding layer’s viscoelasticity in creating an insertion (A6)
loss and modifying the mass sensitivity has been quantifiedvhereas the formula from the Martiet al. article would

It has been suggested that, by using a viscoelastic material &gve an additional factor af,/c. A similar formula for the

a waveguiding layer, insertion loss can be a useful sensatamping was also given by Ricco and Martin in an earlier
parameter for studying not only liquid phase response, busirticle? but in that case the third factor in brackets in Eq.

(A5)

Vgm

also mass deposition response. (AB) was absent. Our first factor in brackets in EA6)
evaluates to 0.9775, the second term is tAdiactor, and the
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APPENDIX A: COMPARISON TO LITERATURE factor should have been taken as unity. One argument might

SH-APM FORMULAE be to argue that (2v,/Ww)=(v,/Wf) and assume,,

. =f\,, so that the factor becomes,,/W and then approxi-
To compare our result for the perturbation of a SH-APM mate it to unity. For example, by takin/~mA /2 and av-

sensor response by  viscoelastic Iquid 0 the Tesut MO gingm—1, 2, and 3u,/W gives 1119, However, such ar

argument would be wrong because it implies- my/2f
(Av —2jpev? rather than the relationship among the substrate thickness,
Vm

(1t [ ay (A1) mode speed, and frequency given by E2p).

From Martin et al’s definition of y,, we can find thatyzm APPENDIX B: FOUR-LAYER MODEL

— i) 2
=2j/ay and so Eq(A1) becomes The layers in the model are defined in Fig. 2 and are the

Av 2yr2n [ 7 ] i Y substrate, guiding layer, mass layer and fluid layer, or thick-
(V— ~ 2w (1+jwn) (A2) nessesw, |, m, andf, respectively; subscripts |, m, andf
mi PspsWLEH are used to indicate quantities related to these layers. The
and it has a real part of displacements of the layers are given by
(Av 21/% [ 9 ] { i ¥m ES=(O,1,0)[Cse*TSX3+ De's%sjel (@t —kix), (B1)
V_m a VgpsW E (1+tjwT) U= (0,1,0)[Ake7kaX3+ Bkekaxsjej(wt*klxl), (B2)
—202 [ 7] Y and the wave vectors by
== —|Im| —————|. (A3)
VspSW_Zw_ (1+jor) , o1 1
- Ts=o% 5~ =/, (B3)
Defining a constant by [
2v2 1 1
c=—— (Ad) Ti=0?| 5 - 5|, (B4)
UgpsW Ve v
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wherek=1, m, or f in Egs.(B2) and (B4) so that each rep- Asexp—jT¢(d+h+b))

resents three equations. To obtain the dispersion equation it ]

is necessary to impose boundary conditions of continuity of —Arexp(jTe(d+h+Db))

stress and displacement at each interface between layers and  _ (B9)

of the vanishing of stress at the two free surfaces. The con- o ) .
tinuity of the displacements at the boundaries between thand the continuity of stress provides a further three equations

substrate and guiding layer, guiding layer and mass layeCs— D= &m(A —B)), (B10)
and mass layer and fluid layer give A exp(— T d)— B exg(jT,d)
CsrDmATBL B AR iTad) - BrexpiTad)],  (B1D
AR BrexaiTd) Am €XH = T(d-+ 1) ~ B XA T(d-+ )

= Am X Trd) + B @XP T, (B6) = Eqnl Ar eXP— T ((d ) — By exp( T(d+h))),
Apexp(—jTh(d+h))+B,,expjTh(d+h)) (B12)

=A;exp(—|T{(d+h))+B;exp(jT(d+h)). (B7)  where §;=G;T;/G;T; and theG;s are the complex shear
In addition, the stress boundary conditions at the two freemOOIUIII WhI.Ch are ‘?'?f'”ed by Eqc14) for the Mz_ixwell
surfaces aive model of viscoelasticity. Solving the eight equations Egs.

9 (B5)—(B12) gives the full dispersion equation for the four-

CsexpTgw)—Dgexp —Tqw) =0, (B8) layer system

L€ tan(Td) — EaptankTaw) 1+ tan Th)[ 1+ £ tank Tow)tan(Tyd)
i T D) = o T o) [ tar(T,d) — £omtani(Tew) ] — [ 1+ £ tanh( Tow)tarT,d)] "

(B13)
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