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Abstract 
 The medial geniculate body (MGB) of the thalamus is a key component of the 

auditory system.  It is involved in relaying and transforming auditory information to 

the cortex and in top-down modulation of processing in the midbrain, brainstem, and 

ear.  Functional imaging investigations of this region in humans, however, are limited 

due to difficulty identifying the MGB separate from other thalamic nuclei.  Here we 

introduce two anatomical methods for reliably delineating the MGB in individuals 

based solely on structural data.  The first uses high resolution proton-density weighted 

scanning optimised for subcortical grey-white contrast to visually identify the region, 

while the second uses diffusion-weighted imaging and probabilistic tractography to 

automatically segment the medial and lateral geniculate nuclei from surrounding 

structures based on their patterns of connectivity to the rest of the brain.  The two 

methods produce highly replicable results that are consistent with published atlases.  

Importantly, both methods rely on commonly available imaging sequences and 

standard hardware, a significant advantage over previously described approaches.  In 

addition to providing a useful means for identifying the MGB and LGN in vivo, this 

study also provides further validation of the use of diffusion tractography to segment 

grey matter regions on the basis of their connectivity patterns.  
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 Relative to other sensory systems, a substantial amount of auditory processing 

occurs subcortically in the brainstem, midbrain, and thalamus (Ehret & Romand, 

1997; Jones, 2003; Winer & Schreiner, 2005).  Although the medial geniculate body 

(MGB) of the thalamus plays a central role in this processing, it has received less 

attention than other subcortical structures.  Nevertheless, a number of animal studies, 

principally in the cat (reviewed by De Ribaupierre, 1997; Rouiller, 1997), have shown 

that the mammalian MGB has three major divisions. A ventral division (vMGB) 

contains large (principal), bi-tufted, thalamocortical ‘relay’ neurons that typically 

receive input from the central nucleus of the ipsilateral inferior colliculus and respond 

transiently, sensitively and discretely to pure tone stimulation of the contralateral ear. 

Neurons in the medial and dorsal divisions of the MGB typically respond less well to 

tones than to more complex stimuli and have been implicated in polysensory 

interactions, processing of communication signals and auditory learning. All three 

divisions receive descending projections from the cortex that are at least as numerous 

as the ascending system and that, like other corticothalamic projections, have been 

implicated in gain control, signal filtering and other dynamic functions. As 

understanding of the importance of top-down processing in the brain expands, the 

MGB is receiving increasing attention because of its position at the cross-roads of 

auditory processing. 

  These animal studies typically rely on invasive techniques precluding their use 

in humans except in intra-operative studies (cf. Celesia, 1976; Yvert et al., 2002).  

Although functional magnetic resonance imaging (fMRI) offers the potential to study 

these processes non-invasively, a number of technical challenges limit its efficacy.  

These include the acoustic noise of the scanner (often >90dB SPL), pulsatile motion 

effects in subcortical structures, and significant spatial resolution difficulties 
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identifying specific thalamic nuclei.  Sparse, or clustered, acquisition techniques offer 

a solution to the problem of scanner noise (Eden, Joseph, Brown, Brown, & Zeffiro, 

1999; Edmister, Talavage, Ledden, & Weisskoff, 1999; Hall et al., 1999) while 

cardiac gated acquisition helps to reduce the variability associated with pulsatile 

motion (Guimaraes et al., 1998).  There are, however, no established methods for 

reliably identifying some anatomical regions of the ascending auditory system, 

including the MGB.  Consequently, many studies rely on heuristics based either on 

functional imaging results and/or on published atlases (Giraud et al., 2000; Griffiths, 

Uppenkamp, Johnsrude, Josephs, & Patterson, 2001; Harms & Melcher, 2002; 

Niemann, Mennicken, Jeanmonod, & Morel, 2000; Rademacher, Burgel, & Zilles, 

2002).  Both methods, however, can obscure considerable inter-subject anatomic 

variability (Morel, Magnin, & Jeanmonod, 1997), reduce sensitivity, and lead to 

inaccurate localisations.  Consequently, a reliable anatomical method for identifying 

MGB in individuals is an important step towards better functional characterisation of 

this region in humans. 

 Despite excellent anatomic resolution of typical T1 or T2 weighted structural 

scans, the individual nuclei of the thalamus are not distinct in these images, making it 

difficult to identify MGB from adjacent structures. Magnotta et al (2000) reported that 

use of an inversion recovery sequence that selectively nulls signal from grey matter 

allows for visualisation of distinct nuclei within the thalamus. Although the geniculate 

bodies were visible using this sequence, the boundary between them was not apparent.  

More recently, Deoni and colleagues (2005) have shown that is possible to identify 

individual thalamic nuclei based on a combination of their T1 and T2 signatures using 

very high resolution structural images (700μm3 isotropic voxels), but this required 

approximately 13 hours of scanning for a single subject at 1.5T.  Much higher field 
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strengths (4-8 tesla) improve the contrast between nuclei and reduce scanning time, 

but these scanners are not commonly available (Bourekas et al., 1999; Deoni et al., 

2005).   

 Here, we test two alternative approaches to identifying MGB anatomically 

based on commonly available pulse sequences on standard hardware.  The first uses 

proton-density (PD) weighted images to enhance grey-white contrast in the thalamus.  

Because proton density in grey matter is approximately 20% greater than in white 

matter (Wood, Bronskill, Mulkern, & Santyr, 1994) one can better distinguish 

between the medial and lateral geniculate nuclei (Fujita et al., 2001).  The second 

approach uses diffusion-weighted imaging (DWI) and tractography to differentiate the 

MGB and LGN.  These two nuclei relay auditory and visual information to primary 

auditory and visual cortices, respectively, and consequently have distinct patterns of 

connectivity.  Thus it should be possible to distinguish the two based solely on their 

anatomical connectivity profiles (Behrens et al., 2003).  Here we evaluate these two 

anatomical methods for identifying MGB in individuals for both consistency and 

reliability. 

 

Materials and methods 

 Five neurologically normal volunteers (3F, 2M) participated in two separate 

scanning sessions each lasting approximately one hour.  Although no task was 

performed in either session, we verified that all participants had normal hearing (pure 

tone average ≤ 20 dB HL) to rule out any structural changes associated with hearing 

loss.  Each gave informed consent after the experimental methodology was explained 

and the experiments were approved by the Central Oxford Research Ethics 

Committee. 
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 Proton density scans were acquired on a Siemens Sonata 1.5T scanner at the 

Oxford Centre for Clinical Magnetic Resonance Research (OCMR).  Slices were 

acquired coronally with a 800μm × 800μm in-plane resolution and a slice thickness of 

2mm using a fast spin echo protocol (TR = 6s, effective TE = 9.5msec).  The use of a 

long repetition time and a short echo time minimized the T1 and T2 weighting, 

leaving proton density as the primary source of tissue contrast (Jackson, Ginsberg, 

Schomer, & Leeds, 1997).  For each participant, between 5 and 10 scans were 

acquired, realigned and averaged to compensate for the reduction in SNR associated 

with smaller voxel sizes.  Each PD scan took approximately 9 minutes for a total 

scanning time of 50 (n=2), 60 (n=2), or 100 (n=1) mins.  In addition, a standard T1-

weighted structural scan (3D Turbo FLASH, TR=12ms, TE=5.6ms, 1mm3 isotropic 

voxels) was also acquired. 

 Diffusion weighted scans were acquired on a Varian-Siemens 3T scanner with 

a maximum gradient strength of 22mT⋅m-1 at the Functional Magnetic Resonance 

Imaging of the Brain (FMRIB) Centre in Oxford.  The protocol used a doubly-

refocused spin-echo sequence to minimise eddy currents (Reese, Heid, Weisskoff, & 

Wedeen, 2003) and cardiac gating to minimize pulsatile motion artefacts (Nunes, 

Jezzard, & Clare, in press). Each data set consisted of 3 non-diffusion-weighted and 

60 diffusion-weighted images acquired with a b value of 1000 s⋅mm-2.  The diffusion 

gradients were uniformly distributed through space using a scheme optimised for 

white matter (Jones, Horsfield, & Simmons, 1999) and the echo time was set to 106 

ms with an effective repetition time of 20 R-R intervals.  Each set of images contained 

60 contiguous slices with a 2.5 mm thickness. A half k-space acquisition was 

performed with a matrix size set to 62 × 96 and a field of view of 240 × 240 mm2. The 

images were interpolated to achieve a matrix size of 128 × 128 and a final resolution 
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of 1.875 × 1.875 × 2.5 mm3.  The acquisition time depended on heart rate but was 

approximately 20mins per scan.  Three complete data sets were acquired per 

participant and were corrected for eddy currents and head motion using an affine 

registration to the reference image (Jenkinson & Smith, 2001).  Data from the three 

acquisitions were averaged to improve the SNR and then probability distributions 

based on the fibre orientations were calculated at each voxel using FDT 

(www.fmrib.ox.ac.uk/fsl) (Behrens et al., 2003).    

Identification of MGB based on proton-density MR contrast 

 In the PD, but not the T1 scan, both the lateral and medial geniculate nuclei 

were visible in coronal sections and importantly, the MGB was distinct from the LGN 

allowing visual identification of both nuclei.  Figure 1 presents the two coronal 

sections used in visual identification with the relevant anatomical landmarks labelled.  

The left-most panels are photographs of unstained, post-mortem tissue cut 

perpendicular to the AC-PC plane (modified from Duvernoy, 1995 pp. 292, 301).  

The middle panels are PD-weighted images through identical planes (but from a 

different brain) showing many of the same structures present in the tissue section.  

The right-most panels are the corresponding T1 images from the same subject.  

Despite excellent cortical grey-white contrast in the T1 images, this contrast is 

reduced subcortically making it difficult to identify individual structures with 

confidence.  Some of the improvement in the PD image came from increased in-plane 

resolution, but the majority was due to enhanced grey-white contrast in these areas.   

Figure 1 here 

 Using these sections, MGB was identified independently by three of the 

authors (JTD, DAH, HJB) in the native space of each participant’s PD scan using the 

following procedure.  We began by first finding the coronal slice showing the 
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substantia nigra (SN) meeting at the interpeduncular fossa (approximately Y= –22 

when transformed into standard space, Figure 1, top row).  The SN appears as a 

region of high intensity running infero-medially from the thalamus (Th), inferior to 

the third ventricle (V3).  In each subject, Heschl’s gyrus was visible bilaterally in this 

slice (not shown).  We then moved 6-10mm caudally until the LGN appeared as a 

tear-dropped shape region of high intensity superior and medial to the body of the 

hippocampus (Hi) and inferolateral to the majority of the thalamus.  The MGB was 

immediately medial to the LGN and appeared as an oval region of high intensity.  The 

border with LGN was easily visible and appeared in the PD images as a thin dark strip 

separating the two high intensity regions (Figures 1 & 3) and corresponds to a thin 

band of myelinated fibres (Hassler, 1982).  The dorso-medial border was less clear, 

and consequently we relied on the fact that MGB is roughly ovoid to completed the 

border.  It is worth noting that even in post-mortem tissue stained for either cell 

bodies (Nissl) or for acetylcholinesterase (AChE) these borders are instinct (Hirai & 

Jones, 1989).   There is a gradual transition from MGB to the suprageniculate nucleus 

medially and from MGB to the posterior nucleus dorso-medially (Hirai & Jones, 

1989), following the nomenclature of Jones (1985).   

Masks were drawn in each hemisphere to separately cover MGB and LGN, 

which were typically visible on between one and three slices.  

Identification of MGB based on connectivity patterns from diffusion tractography 

 Given the difficulty in identifying a precise dorso-medial border for MGB in 

either the PD images or in stained tissue, an alternate possibility is to delineate MGB 

and LGN based on their distinct patterns of connectivity.  As mentioned previously, 

MGB receives inputs from the central nucleus of the ipsilateral inferior colliculus and 

has reciprocal connections with primary auditory cortex via the acoustic radiation.  In 
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contrast, LGN receives afferent projections from retinal ganglion cells via the optic 

tract and has bi-directional connections with primary visual cortex via the optic 

radiation.  Consequently, it should be possible to separate the two geniculate nuclei 

based solely on their distinct patterns of connectivity.  Recently, Johansen-Berg and 

colleagues (2004) demonstrated that it is possible to identify a functionally 

meaningful border between the supplemental motor area (SMA) and pre-SMA, based 

solely on their respective connectivity profiles using probabilistic tractography.  We 

tested whether the same approach could be applied to separating the medial and 

lateral geniculate.   

 We began by defining a region-of-interest (ROI) in the standard space defined 

by the Montreal Neurological Institute 152-mean brain.  The coordinates were ±10 to 

26 medial-laterally, –22 to –30 rostro-caudally, and –2 to –10 superior-inferiorly.  

This region was chosen to conservatively encompass both MGB and LGN based on 

previously published coordinates (Griffiths et al., 2001; Niemann et al., 2000; 

Rademacher et al., 2002).  It is worth noting that several previous studies used a 

version of the Talaraich and Tournoux (1988) stereotaxic reference system rather than 

the now standard MNI system; where necessary, these coordinates have been 

transformed into MNI-space. 

 Probabilistic tractography (Behrens et al., 2003) was run from each voxel in 

the mask and tracts were limited to the ipsilateral hemisphere.  Voxels within the 

hemisphere were classified as connected to the seed voxel if the probability of 

connection was greater than 0.1%.  Additional analyses with different thresholds (1%, 

10%) did not alter the basic findings.  These connections were stored in a M × N 

connectivity matrix, where M was the number of seed voxels and N was the number 

of voxels in the hemisphere.  Each cell of the connectivity matrix ([i, j]) was set to 1 if 
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tractography revealed an anatomical path linking seed voxel i to hemisphere voxel j, 

and set to 0 otherwise.  To reduce the storage requirements, this space was down-

sampled from isotropic 2mm to isotropic 3mm resolution, but only for storing the 

results.  A symmetric M × M cross-correlation matrix was then computed as a 

measure of voxel-wise similarity of connectivity patterns of seed voxels.  That is, the 

value in cell [i, j] in the cross-correlation matrix represented the correlation in 

connectivity between voxels i and j of the original seed mask.  At this stage, the 

matrix has no meaningful structure because cells were arbitrarily ordered.  Structure 

was introduced into the matrix by permuting the nodes using a spectral reordering 

algorithm (Barnard, Pothen, & Simon, 1995; Johansen-Berg et al., 2004) which forces 

large values (i.e. high correlations) to the diagonal.  As a consequence, voxels with 

similar connectivity cluster together and can be identified directly in the sorted cross-

correlation matrix.  These clusters were identified by eye as groups of elements that 

are strongly correlated with each other and weakly correlated with the rest of the 

matrix. Elements that did not clearly belong to a single cluster were left unclassified. 

The cells in each cluster were then mapped back onto their original anatomical 

locations in each individual’s T1 weighted structural image, after registration into 

standard space (Jenkinson & Smith, 2001).  The procedure is schematized in Figure 2.  

If the clusters from the re-ordered cross correlation matrix correspond to anatomical 

clusters in the T1 image, then this provides evidence that the particular anatomical 

region has a relatively homogenous pattern of connectivity that differs from that of 

other clusters.  Thus, despite non-geniculate voxels in seed mask, the two strongest 

clusters are expected to correspond to the medial and lateral geniculate, as these two 

regions are the only complete thalamic nuclei in the mask.  It is worth noting that this 

method does not necessarily require complete tracing of pathways to their final 
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destinations – only that the connectivity patterns from MGB and LGN are distinct 

(Johansen-Berg et al, 2004). 

 

Figure 2 here 

 

Results 

Identification based on proton-density MR contrast 

 In all ten hemispheres, MGB was identified visually (Figure 3).  To determine 

the consistency and reliability of these manually drawn masks, the centre of gravity 

was computed for each mask.  The average distance between corresponding centre of 

gravity across the three raters was 1.3mm and varied from 0.3 to 2.4mm.  In other 

words, the grey-white contrast in the high resolution PD scans coupled with a clear 

procedure for identifying MGB led to a consistent mask, independent of the person 

doing the identification.  In standard space coordinates, the mean (±SD) centre of 

gravity for MGB were [X= –15 (1.2), Y= –28 (1.7), Z= –8 (1.4)] in the left 

hemisphere and [X= +16 (1.2), Y= –27 (1.5), Z= –7 (1.2)] in the right hemisphere.  

These values correspond closely to published coordinates for MGB (Morel et al., 

1997; Niemann et al., 2000; Rademacher et al., 2002).   

The same procedures were used to evaluate consistency in the LGN masks.  

The average distance between corresponding centres of gravity across the raters was 

1.4mm and varied from 0.2 to 2.9mm.  In standard space coordinates, the mean (±SD) 

centre of gravity for LGN were [X= –21 (1.6), Y= –27 (1.8), Z= –8 (1.1)] in the left 

hemisphere and [X= +23 (1.5), Y= –27 (2.0), Z= –7 (1.0)] in the right hemisphere,   

congruent with the thalamic atlas of Morel (1997). 

Figure 3 here 
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Identification based on changes in connectivity patterns from diffusion tractography 

 In all subjects, re-ordered cross correlation matrices contained clearly 

identifiable clusters for each hemisphere (Figure 4).  When these were projected back 

onto the brain, the two strongest clusters (i.e. those at either end of the diagonal) 

corresponded to medial and lateral divisions of the original ROI.  The mean centre of 

gravity for the medial clusters was [X= –14 (0.4), Y= –25 (0.4), Z= –6 (0.2)] in the 

left hemisphere and [X= +13 (0.2), Y= –25 (0.6), Z= –7 (0.2)] in the right 

hemisphere, and correspond closely to published coordinates for MGB (Morel et al., 

1997; Niemann et al., 2000; Rademacher et al., 2002).  Similarly, the mean centre of 

gravity coordinates for the lateral cluster were  [X= –22 (1.1), Y= –27 (0.4), Z= –6 

(0.3)] in the left hemisphere and [X= +21 (0.8), Y= –27 (0.6), Z= –6 (0.6)] in the right 

hemisphere, consistent with the location of LGN (Fujita et al., 2001).   

Figure 4 here 

 In order to further test whether these clusters correspond to MGB and LGN, 

respectively, connectivity from each region was evaluated using probabilistic 

tractography.  The connectivity profile of each cluster was mapped by seeding the 

centre of gravity and recording the resulting anatomical paths (Figure 5).  There was 

consistently a clear subcortical path linking the medial region to the inferior colliculus 

and continuing ipsilaterally to the cochlear nucleus, as expected for the MGB.  We did 

not, however, identify the acoustic radiation linking MGB to Heschl’s gyrus, the site 

of primary auditory cortex. The single fibre diffusion model used here (Behrens et al., 

2003) is sensitive primarily to major pathways and therefore smaller pathways, or 

paths that cross other tracts, are not always detected. The acoustic radiation penetrates 

the much larger internal capsule (Rademacher et al., 2002) and so the fact that we do 

not find it here is not unexpected. Use of more complex fibre models (Parker & 
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Alexander, 2003; Tuch, Reese, Wiegell, & Wedeen, 2003) may increase sensitivity to 

such pathways.  In contrast, the optic radiation was clearly present linking the lateral 

cluster to posterior occipital regions, consistent with the LGN’s role as a visual relay 

station (cf. Ciccarelli et al., 2003).  In other words, the pattern of connectivity 

observed for the medial and lateral clusters strongly suggests that these regions 

correspond to MGB and LGN, respectively.  

Figure 5 here 

 Finally, the DWI-based MGB and LGN clusters were compared to the 

manually derived clusters to determine the consistency between methods.    In Figure 

6, the standard space coordinates of the centre of gravity (COG) for each nucleus per 

subject were plotted in the X and Z planes for both segmentation methods.  85% 

confidence intervals surround each cluster.  In the left hemisphere, COGs based on 

PD-segmentations were on average 1.5mm more inferior than DTI-based values but 

did not differ on the medial-to-lateral axis.  In the right hemisphere, PD-based values 

were, on average, 2.1mm more lateral than DTI-based values.  They did not, however,  

differ in the inferior-to-superior axis.  In both cases, the displacement was 

approximately the size of one DTI voxel (2mm).  Overall, the centres of gravity 

produced by the two approaches were 3.5mm apart and ranged from 0.9 to 6.6mm.  

These results are similar to those reported by Johansen-Berg and colleagues (2004) 

who found that connectivity-based segmentations of SMA and pre-SMA were 

approximately 2mm different from segmentations based on activation of the regions 

using fMRI. 

Figure 6 here 

 

Discussion 
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 We have demonstrated two methods for reliably identifying MGB based solely 

on structural MR data.  The first relies on differences in proton density between grey 

and white matter while the second is based on the distinct connectivity profiles of the 

medial and lateral geniculate.  In both cases, data acquisition required approximately 

one hour using commonly available pulse sequences on standard hardware, a clear 

advantage over approaches that rely on either extremely long acquisitions (Deoni et 

al., 2005) or very high fields (Bourekas et al., 1999; Deoni et al., 2005). 

 The current study builds on previous anatomical analyses of thalamus which 

have used diffusion weighted imaging.  Wiegell and colleagues (2003), for instance, 

used local fibre orientation to identify major thalamic nuclei while Behrens and 

colleagues (2003) used thalamo-cortical projection zones.  In both cases, although the 

larger nuclei were easily identified, it was difficult to reliably distinguish between 

MGB and LGN.  In contrast, by focusing our analyses specifically on these two 

nuclei, including subcortical pathways, and using a method that does not require 

complete tracing of pathways to their final destinations, we were able to show clear 

distinctions between the two.  The fact that our DWI-derived masks of MGB closely 

matched the manually identified regions provides further validation of this 

connectivity-based segmentation approach (Johansen-Berg et al., 2004). 

It is also worth considering the limitations of the current study and how these 

might be addressed in the future.  First, the medial and dorso-medial borders of MGB 

were not clearly delineated in the PD images and consequently this portion of the 

MGB masks was somewhat arbitrary.  Recent advances in steady state imaging 

techniques (Deoni, Peters, & Rutt, 2005), however, offer the potential for 

supplementing high resolution PD images with simultaneously acquired T1 and T2 

maps, thus combining the strengths of Deoni and colleagues’ (2005) multi-spectral 
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approach with the current anatomical identifications of MGB and LGN, all within a 

single 1-hour scanning session.  Second, the accuracy of the borders identified using 

our connectivity-based segmentation scheme was limited by the resolution of the DTI 

images (roughly 10mm3) which is fairly coarse given the size and shapes of the 

medial and lateral geniculate nuclei (approximately 90 and 115mm3, respectively, 

Morel et al., 1997 and current findings) introducing significant partial volume effects.  

Smaller voxel sizes, however, significantly reduce the signal-to-noise ratio in DWI 

data, thus increasing uncertainty and reducing the likelihood of tracing a path to its 

final destination.  A major strength of the connectivity-based parcellation technique 

used here, however, is that it does not require complete paths – only that the pattern of 

connectivity differs across regions.  Consequently, the method should be equally 

robust at delineating the two regions despite reduced SNR and the increased spatial 

resolution should improve accuracy at the borders of the regions.   

 The ability to reliably identify MGB in individuals provides improved 

anatomical localisation for functional investigations of the auditory thalamus.  Many 

studies have already shown that fMRI can be successfully used to detect MGB 

activation to both simple and complex auditory stimuli (Budd et al., 2003; Guimaraes 

et al., 1998; Krumbholz et al., 2005; Lockwood et al., 1999; Maeder et al., 2001), but 

comparative investigations of MGB’s specific contributions to auditory processing in 

humans are less common (but see Giraud et al., 2000; Griffiths et al., 2001; Harms & 

Melcher, 2002).  For instance, we have demonstrated a surprising left cortical 

dominance for monaural processing of simple tones, and preliminary analyses suggest 

this may arise at the level of the MGB (Devlin et al., 2003; Moore et al., 2004).  The 

inability to reliably identify MGB anatomically, however, limited the sensitivity of 

our analyses and may bias the results.  The anatomical methods present here 
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combined with higher resolution functional imaging more suited to imaging such a 

small structure (Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004; Bridge et al., 

2005), will hopefully complement, extend, and objectify further functional 

characterisations of this increasingly interesting nuclear group. 
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Figure legends 

Figure 1.  Sections through two coronal plans used to identify MGB and LGN in the 

proton-density weighted images.  The left panels are photographs of unstained post-

mortem tissue with the temporal lobes removed.  The middle and right panels are PD- 

and T1-weighted scans of the same sections, but from a different individual than the 

tissue sections.  Structures used in the visual identification of MGB and LGN are 

labelled where they can be seen in the images.  Because of reduced grey-white 

contrast in the T1 image, very few structures can be clearly seen.  Abrevs: Hi= body 

of the hippocampus, IC= internal capsule, LGN= lateral geniculate nucleus, MGB= 

medial geniculate nucleus,  Pu= putamen, RN= red nucleus, SN= substantia nigra, 

Th= thalamus, V3= third ventricle. 

Figure 2. A schematic illustration of the connectivity-based segmentation procedure.  

First the region-of-interest is defined in standard space then tractography is run from 

each voxel in this region.  The connectivity is stored in a down-sampled, binary 

connectivity matrix, where cell [i, j] is 1 if there is a connection between the ith seed 

voxel and the jth voxel in the ipsilateral hemisphere.  Note that ordering is arbitrary.  

Next, the cross-correlation matrix is computed as a measure of voxel-wise similarity 

in connectivity patterns of seed voxels.  This matrix is then re-ordered to bring higher 

values towards the diagonal, which has the effect of clustering voxels with similar 

connectivity.  These clusters are identified and mapped back onto the T1 image.  

Voxels from within a given cluster identify an anatomical region where the voxels 

have similar connectivity patterns. 

Figure 3.  For each participant, a coronal slice through the medial (blue) and lateral 

(red) geniculate bodies is shown.  On the left, the PD-weighted image is presented to 

highlight nuclei in the raw image and on the right, the same image is shown with the 
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nuclei in color.  In both cases, the background images are displayed at a high image 

contrast to enhance the visibility of the nuclei. 

Figure 4.  Connectivity-based identification of the MGB (red) and LGN (blue) are 

shown for all five participants in both hemispheres.  The top row illustrates each 

participants’ re-ordered cross-correlation matrix with the two strongest clusters 

highlighted.  The corresponding anatomical regions are shown below on the 

participant’s T1 image transformed into standard space. 

Figure 5.  Anatomical paths delineated by probabilistic tractography from the medial 

(blue) and lateral (red) cluster identified by the connectivity based segmentation 

algorithm.  In the top row, a pathway links the medial cluster to the inferior colliculus 

and continues to the level of the cochlear nucleus, consistent with the connectivity of 

the auditory pathway.  In the bottom row, the path from the lateral cluster proceeds 

laterally and then posteriorally, connecting with occipital pole regions. 

Figure 6.  Co-localisation of PD and DTI based segmentation of MGB and LGN.  

MGB centres-of-gravity are marked with circles while the LGN is marked with 

triangles.  Open and closed markers indicate PD- and DTI- based values, respectively.  

85% confidence intervals are shown. 
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