

AN INTELLIGENT FRAMEWORK FOR

DYNAMIC WEB SERVICES

COMPOSITION IN THE

SEMANTIC WEB

DHAVALKUMAR THAKKER

A thesis submitted in partial fulfilment of the requirements of

Nottingham Trent University for the degree of

Doctor of Philosophy

October 2008

This work is the intellectual property of the author, and may also be owned by the

research sponsor(s) and/or Nottingham Trent University. You may copy up to 5% of

this work for private study, or personal, non-commercial research. Any re-use of the

information contained within this document should be fully referenced, quoting the

author, title, university, degree level and pagination. Queries or requests for any other

use, or if a more substantial copy is required, should be directed in the first instance to

the author.

 Acknowledgements

I

Acknowledgements

I would like to express my deep and sincere gratitude to my director of studies, Dr Taha

Osman. His expertise, understanding, encouragement and personal guidance have

provided an excellent basis for the present thesis. I would also like to extend thanks to

my supervisors, Dr Evtim Peytchev and Professor David Al-Dabass for their guidance,

advice, and input regarding this research.

I am also grateful to the Maryland Information and Network Dynamics Lab Semantic

Web Agents Project (MINDSWAP) members Bijan Parsia and Evren Sirin for

providing open source access to the OWL reasoners Pellet and the OWL-S API.

I believe that intensive courses like PhD are impossible to succeed without the patience

and support of a caring family. I owe my loving thanks to my wife Neha, without her

encouragement and understanding it would have been impossible for me to finish this

work. My special gratitude is due to my father and brother for their loving support. My

adopted home in London with Thacker family has always been a great place to relieve

the stress of studies. I owe them a big gratitude for providing such an environment.

Acknowledgement is also due to my wonderful friends Raxit, Sonali, Kunal, Amee,

Vivek and Gangotri for being part of this long journey.

My friend Vassias Vassiliades deserves special mention for his help during my stay in

Nottingham. Finally, to friends and colleagues who have not been mentioned, thank you

for your ideas and informal discussions.

 Abstract

II

Abstract

As Web services are being increasingly adopted as the distributed computing

technology of choice to securely publish application services beyond the firewall, the

importance of composing them to create new, value-added service, is increasing. Thus

far, the most successful practical approach to Web services composition, largely

endorsed by the industry falls under the static composition category where the service

selection and flow management are done a priori and manually. The second approach

to web-services composition aspires to achieve more dynamic composition by

semantically describing the process model of Web services and thus making it

comprehensible to reasoning engines or software agents. The practical implementation

of the dynamic composition approach is still in its infancy and many complex problems

need to be resolved before it can be adopted outside the research communities.

The investigation of automatic discovery and composition of Web services in this thesis

resulted in the development of the eXtended Semantic Case Based Reasoner (XSCBR),

which utilizes semantic web and AI methodology of Case Based Reasoning (CBR). Our

framework uses OWL semantic descriptions extensively for implementing both the

matchmaking profiles of the Web services and the components of the CBR engine.

In this research, we have introduced the concept of runtime behaviour of services and

consideration of that in Web services selection. The runtime behaviour of a service is a

result of service execution and how the service will behave under different

circumstances, which is difficult to presume prior to service execution. Moreover, we

demonstrate that the accuracy of automatic matchmaking of Web services can be further

improved by taking into account the adequacy of past matchmaking experiences for the

requested task. Our XSCBR framework allows annotating such runtime experiences in

terms of storing execution values of non-functional Web services parameters such as

availability and response time into a case library. The XSCBR algorithm for

matchmaking and discovery considers such stored Web services execution experiences

to determine the adequacy of services for a particular task.

We further extended our fundamental discovery and matchmaking algorithm to cater for

web services composition. An intensive knowledge-based substitution approach was

proposed to adapt the candidate service experiences to the requested solution before

suggesting more complex and computationally taxing AI-based planning-based

 Abstract

III

transformations. The inconsistency problem that occurs while adapting existing service

composition solutions is addressed with a novel methodology based on Constraint

Satisfaction Problem (CSP).

From the outset, we adopted a pragmatic approach that focused on delivering an

automated Web services discovery and composition solution with the minimum possible

involvement of all composition participants: the service provider, the requestor and the

service composer. The qualitative evaluation of the framework and the composition

tools, together with the performance study of the XSCBR framework has verified that

we were successful in achieving our goal.

 Table of Contents

 IV

Table of Contents

ACKNOWLEDGEMENTS ..I

ABSTRACT.. II

TABLE OF CONTENTS ...IV

LIST OF FIGURES .. VII

LIST OF TABLES ..IX

LIST OF ACRONYMS ... X

CHAPTER ONE: INTRODUCTION ... 1

1.1. WEB SERVICES ... 1
1.2. WEB SERVICES COMPOSITION... 5

1.2.1. Web services discovery and matchmaking.. 6
1.2.2. Flow management ... 6

1.3. SEMANTIC WEB ... 8
1.3.1. Semantic Web Architectures ... 8
1.3.2. Semantic Web meets Web services.. 10

1.4. RESEARCH DIRECTION ... 12
1.4.1. Motivation ... 12
1.4.2. Application Example ... 13
1.4.3. Research Questions... 15
1.4.4. Problem Statement .. 16
1.4.5. Proposed Solution... 16

1.5. RESEARCH METHODOLOGY ... 17
1.6. THESIS STRUCTURE.. 19

CHAPTER TWO: LITERATURE SURVEY .. 21

2.1. WORKFLOW MANAGEMENT THEORY BASED APPROACHES 21
2.1.1. Composing services using BPEL .. 24
2.1.2. Composition using WS-CDL ... 25
2.1.3. Adoption of Workflow-based approaches ... 27

2.2. SEMANTIC WEB-BASED COMPOSITION... 27
2.2.1. Semantic Web services .. 27
2.2.2. Semantic Mark-up for Web services: OWL-S ... 28
2.2.3. Reasoning about the Service Semantics.. 31
2.2.4. Potential Facilitation to the composition participants 37

2.3. EVALUATION OF COMPOSITION TECHNIQUES .. 37
2.4. CONCLUSIONS .. 44

CHAPTER THREE: BRIDGING GAP BETWEEN WORKFLOW AND

SEMANTICS BASED WEB SERVICES COMPOSITION..................................... 45

3.1. INTRODUCTION TO BUSINESS PROCESS EXECUTION LANGUAGE (BPEL)......... 46
3.2. HYBRID FRAMEWORK FOR WEB SERVICES COMPOSITION 49

3.2.1. The Implementation Scenario ... 49
3.2.2. Specification of the domain of services... 50
3.2.3. Dynamic Pool for Domain-Specific Web services (DPDWS)..................... 53
3.2.4. Dynamic BPEL-based service composition facilitated by DPDWS............ 55

3.3. RELATED WORK ... 59

 Table of Contents

 V

3.4. SUMMARY.. 61
3.5. LIMITATIONS OF THE WORKFLOW-SEMANTICS HYBRID APPROACH................... 62

CHAPTER FOUR: SEMANTIC-DRIVEN MATCHMAKING AND DISCOVERY

OF WEB SERVICES USING CASE BASED REASONING................................... 64

4.1. CBR FOR AUTOMATED WEB SERVICES DISCOVERY AND COMPOSITION 64
4.2. OVERVIEW OF CASE BASED REASONING ... 66

4.2.1. Case Representation ... 68
4.2.2. Case Storage and Indexing ... 68
4.2.3. Case Search and Evaluation... 68

4.3. MODELLING WEB SERVICES DISCOVERY AND COMPOSITION PROBLEM INTO

CBR PROBLEM .. 69
4.4. USE OF CASE BASED REASONING FOR WEB SERVICES MATCHMAKING........... 70

4.4.1. The Framework Architecture .. 70
4.4.2. Benefit of utilizing semantics for service discovery 71
4.4.3. Semantics for Case Representation and Storage .. 72

4.5. SCBR FRAMEWORK DEVELOPMENT ... 76
4.5.1. Case Indexing and Storage ... 76
4.5.2. Case Retrieval ... 77
4.5.3. Case Matchmaking and Ranking .. 77

4.6. PRELIMINARY IMPLEMENTATION ... 80
4.7. PRELIMINARY RESULTS .. 82
4.8. RELATED WORK .. 83
4.9. LIMITATIONS OF SCBR FRAMEWORK .. 86

4.9.1. Limited intelligence... 86
4.9.2. Extension to Web services composition .. 87
4.9.3. Expressiveness in case representation.. 87
4.9.4. System performance while using universal ontologies 87

4.10. CONCLUSIONS .. 87

CHAPTER FIVE: EXTENDING SCBR FOR WEB SERVICES COMPOSITION

... 90

5.1. DESIGN DECISIONS TO OVERCOME LIMITATIONS OF THE SCBR FRAMEWORK 91
5.1.1. Modifying Case Representation.. 92
5.1.2. Revisiting OWL-S Process model ... 99
5.1.3. Summary ... 102

5.2. XSCBR FOR COMPOSITION USING CASE ADAPTATION 102
5.2.1. Introduction to case adaptation .. 102
5.2.2. Challenges in case adaptation .. 104
5.2.3. Case Adaptation in XSCBR framework .. 105
5.2.4. Knowledge based substitutions in the XSCBR framework.......................... 106
5.2.5. Applying KBS to the Existing Framework .. 111
5.2.6. Planning based transformation in XSCBR framework 130

5.3. CONCLUSIONS .. 130

CHAPTER SIX: IMPLEMENTATION AND EVALUATION OF XSCBR

FRAMEWORK FOR WEB SERVICES DISCOVERY AND COMPOSITION. 133

6.1. CHOICE OF TOOLS AND SPECIFICATION FOR IMPLEMENTATION 133
6.1.1. Web Ontology Language (OWL) and Pellet Reasoner 134
6.1.2. OWL-S: Specification and API ... 135

6.2. XSCBR FRAMEWORK IMPLEMENTATION .. 135
6.2.1. CBR Controller ... 136

 Table of Contents

 VI

6.2.2. Indexer .. 138
6.2.3. Adaptation Engine .. 138
6.2.4. Execution Engine .. 139
6.2.5. Knowledge sources: Knowledgebase and Case Library 139
6.2.6. Error reporting unit .. 139

6.3. GRAPHICAL USER INTERFACE .. 139
6.4. EVALUATION.. 141

6.4.1. Objectives.. 141
6.4.2. Qualitative evaluation of the XSCBR framework 142
6.4.3. Quantitative evaluation of XSCBR framework ... 152

6.5. CONCLUSIONS .. 160

CHAPTER SEVEN: CONCLUSIONS... 161

7.1. OVERVIEW .. 161
7.2. THESIS CONTRIBUTIONS .. 165
7.3. LIMITATIONS ... 167
7.4. OBSERVATIONS AND LESSONS LEARNED .. 170
7.5. FUTURE WORK.. 171

REFERENCES.. 174

APPENDIX A .. 183

LIST OF PUBLICATIONS ... 185

 List of Figures

 VII

List of Figures

Figure 1 Web services base protocols... 4

Figure 2 Defining Tags with XML ... 9

Figure 3 Layered Technologies for Semantic Web .. 9

Figure 4 Ontology describing relationship between concepts .. 10

Figure 5 OWL-S subontologies .. 29

Figure 6 OWL-S Process .. 30

Figure 7 Mappings between OWL-S and WSDL... 31

Figure 8 BPEL based Web services composition ... 46

Figure 9 Describing Partners in BPEL... 47

Figure 10 Sequence Diagram for the travel agent composition...................................... 48

Figure 11 Concurrency using <flow>... 48

Figure 12 Selecting the cheapest AirLine using <switch> ... 49

Figure 13 Specification of Domain... 50

Figure 14 Domain specific composition ... 51

Figure 15 Domain specific interface- WSDL file... 51

Figure 16 Domain specific interface - OWL file ... 52

Figure 17 Ontology file for EasyJet Airline service ... 52

Figure 18 Membership verification module for the Dynamic Pool for Domain-Specific

Web services (DPDWS) .. 54

Figure 19 Membership Verification.. 55

Figure 20 Travel agent composition facilitated by DPDWS .. 56

Figure 21 Travel Agent Composition ... 58

Figure 22 Matching service descriptions v/s service run-time behaviour 65

Figure 23 The CBR Cycle... 67

Figure 24 CBR methodology .. 67

Figure 25 Mapping Web services composition problem to CBR 69

Figure 26 Architecture of the SCBR framework .. 70

Figure 27 Mapping frame structure to semantic case representation (Travel Domain).. 75

Figure 28 Semantically matching object properties.. 79

Figure 29 Seeding the case library.. 81

Figure 30 Case Instances and Satisfactory measurements.. 83

Figure 31 Generic Case Representation... 93

Figure 32 Solution description.. 95

 List of Figures

 VIII

Figure 33 Comparing Cases in SCBR and XSCBR-I... 97

Figure 34 Comparing Cases in SCBR and XSCBR-II.. 98

Figure 35 Case Adaptation process... 104

Figure 36 CBR methodology for Web services composition 105

Figure 37 Travel Domain Taxonomy.. 107

Figure 38 KBS at Description Level... 112

Figure 39 KBS at Solution Level.. 113

Figure 40 CSP graph for Map coloring problem .. 119

Figure 41 DDM for Travel Domain.. 121

Figure 42 Constraint behaviour definition in DDM ... 122

Figure 43 DDM Reliance behaviour... 123

Figure 44 CSP graph for travel domain case study... 128

Figure 45 XSCBR framework modules .. 136

Figure 46 Graphical Interface for the Administrator and Provider............................... 140

Figure 47 GUI for Web services requestor ... 140

Figure 48 Case analyzed by requestor .. 141

Figure 49 Precision and Recall study (Classification Queries)..................................... 155

Figure 50 Comparison using R-Precision ... 157

Figure 51 Performance study .. 158

Figure 52 Generating adaptation knowledge .. 168

 List of Tables

 IX

List of Tables

Table 1 Workflow Patterns ... 22

Table 2 Comparing Intelligent Layer approaches to Web services composition 42

Table 3 Information stored by Membership Verification module 54

Table 4 Process file creation with Java... 56

Table 5 Travel Domain Frame Structure .. 74

Table 6 Example of a case .. 74

Table 7 Semantic Description of case... 76

Table 8 Quantifying the Travel Domain case dimensions.. 78

Table 9 User Profiles .. 82

Table 10 Case Instances and Satisfactory measurements ... 83

Table 11 Example of a Travel Domain case ... 95

Table 12 Case Representation specific to travel domain (In previous framework)........ 97

Table 13 QoS parameters in XSCBR.. 98

Table 14 Knowledge Representation - Explicit .. 109

Table 15 Knowledge Representation - Implicit .. 110

Table 16 Evaluating ApplyKBS Algorithm.. 115

Table 17 Scenario-1 .. 115

Table 18 Scenario-2 .. 116

Table 19 DDM Representation ... 123

Table 20 Evaluating ApplyKBS with DDM Algorithm ... 127

Table 21 Scenario-2 (Revisited) ... 129

Table 22 Scenario-3 .. 129

Table 23 Comparing frameworks ... 151

Table 24 An example of a skeleton BPEL file.. 183

Table 25 A composition scheme with EasyJet Service... 183

 List of Acronyms

 X

List of Acronyms

ADoM Aggregate Degree of Match

AI Artificial Intelligence

B2B Business-to-Business

BPEL Business Process Execution Language

BPM Business Process Management

BPML Business Process Modelling Language

BPR Business Process Reengineering

CBR Case Based Reasoning

CSP Constraint Satisfaction Problem

DDM Domain Dependency Module

DL Description Logics

DoM Degree of Match

DPDWS Dynamic Pool for Domain-Specific Web services

DSS Domain Specification Stage

EAI Enterprise Application Integration

GUI Graphical User Interface

IR Information Retrieval

KBS Knowledge Based Substitution

OWL Web Ontology Language

OWL-S Semantic Mark-up for Web services

QoS Quality of Service

RDF Resource Description Framework

RR Rule-based Relationships

SCBR Semantic Case Based Reasoner

SOA Service Oriented Architecture

 List of Acronyms

 XI

SOAP Simple Object Access Protocol

SWRL Semantic Web Rule Language

TR Taxonomy Relationships

UDDI Universal Description and Discovery Interface

UI User Interface

URI Uniform Resource Identifier

WS-CDL Web Services Choreography Description Language

WSDL Web Services Description Language

WSMO Web Services Modelling Language

WWW World Wide Web

XML eXtensible Mark-up Language

XSLT XML Stylesheet Language

 Chapter 1: Introduction

 1

Chapter One: Introduction

System development using Web services is encouraging scenarios where individual or

integrated application services can be seamlessly and securely published on the web

without the need to expose their implementation details. However as Web services

proliferate, the importance of accurate, yet flexible, matchmaking of similar services

gains importance both for the human user and for dynamic composition engines. The

goal of this research is to investigate the utilization of the semantic web in building

developer-transparent frameworks facilitating the automatic matchmaking and

composition of Web services.

This chapter provides information about Service Oriented Architectures (SOA),

focusing on Web services, the orchestration of which is the subject of this research. The

Web services technology provides new opportunities to harness and complement the

capability of World Wide Web (WWW). These opportunities are discussed, together

with the problems preventing a wider adoption of this new technology. The focus is

particularly on analyzing the complexity of development and facilitation provided to the

users of the technology. The following subsections introduce the concepts of Web

services, Web services composition and the semantic web.

1.1. Web services

The Internet has become a market-place for a colossal variety of application services

ranging from e-commerce and Internet information services, to services that facilitate

trading between business partners, better known as Business-to-Business (B2B)

relationships. Traditionally these services are facilitated by distributed technologies

such as Remote Procedure Call (RPC), Common Object Request Broker Architecture

(CORBA), Remote Method Invocation (RMI), and more recently Web services.

1

 Chapter 1: Introduction

 2

Web services are an instance of Service Oriented Architecture (SOA) [1]. The SOA is

an application architecture focused on business services. These business services can be

any business application contributing to the information system of enterprises, services

that organizations provide to clients, partners and employees. For example, a bank

offers ATM transactions to clients, payroll for employees and secure card transactions

to business partners.

SOA can be thought of as an approach to building IT systems in which business

services are the key principle to align IT systems with the needs of businesses [2]. In

contrast, earlier approaches to building IT systems intended to directly use specific

implementation methodologies such as object-orientation, procedure-orientation or

message-orientation to solve these business problems, resulting in systems that were

often tied to the features and functions of a particular execution environment making

interoperability unfeasible. SOA solves the problem of interoperability by abstracting

implementation details of applications and facilitates the developers with the possibility

of transparent and seamless integration of various applications also resulting in reduced

cost of operations and development.

Owing to these features, the Service Oriented Architecture has made a huge impact on

how IT applications are implemented, reused and integrated in organizations [3].

Following are some examples from industry highlighting the benefits of SOA when

employed to develop and integrate real-world applications.

� Amazon.com is a pioneer E-Commerce company that specializes in selling goods

over the Internet [4]. Amazon has spent over a decade and $2 billion building a

superior web-scale computing platform. However, the initial growth of the

Amazon.com computing platform was in the direction of interoperating feature

components inside the firewall; e.g., the catalogue, shopping cart, and

personalization engine. Through their web services platform, Amazon is beginning

to open these features up to public use by providing open access to their Web

services to perform various tasks on their web site that involves business partners

and consumers. For example, they provide openly available Web services [5] which

allows client programs to browse Amazon's databases, locate books and other

products and put them in a Web ‘shopping cart’ that can be accessed from the main

Amazon Web site using a browser to finalize purchases. The business partners can

utilize value-added services such as Amazon Flexible Payment Service (Amazon

 Chapter 1: Introduction

 3

FPS) which provides a set of web services APIs allowing the movement of money

between any two entities, humans or computers.

� The auction e-commerce web site, eBayTM has built a service architecture and

successfully uses it to enable integration across disparate technology stacks [4]. For

example, they use SOA for enabling open interoperation between their C++ and

Java technologies.

� Another success story is Avis Budget group which is a recognized brand in the

global vehicle rental has implemented SOA in form of OMEGA (One Merged

Enterprise and Global Architecture) to help ensure a positive and consistent

customer experience and keep loyal renters coming back time and again [6]. For

example one of the applications in OMEGA is E-Receipts, which provides

convenience for customers by allowing them to receive electronic receipts via email.

Using OMEGA, Avis Budget connects customer contact channels i.e., call centres,

airport rental counters, standalone facilities, and the Internet in over 70 countries

and are able to reuse services created for one application on subsequent

projects. For example, drivers who need rental cars while their personal cars are

being repaired can often have their insurance companies pay for the rentals. Avis

Budget is using the notification service originally built for E-Receipts to

communicate with insurance carriers and drivers about payment authorization.

� The HP Corporation that specializes in diverse product range from personal

computers to digital cameras achieved a $70 million cost savings from its global IT

operations as a direct result of SOA deployments [7]. The main contributors to these

savings were in terms of reduction of redundancy and reuse across services and a

long-term payoff from increased business agility, and ability to react quicker to the

marketplace.

The majority of these SOA implementations use Web services as an implementation

technology. Web services are implementation of SOA with three participants: service

provider, service requestor and service registry. The service provider implements a Web

service and provides a description file for such a service via service registry. The

service requestor is essentially a client program which retrieves the service description

from a service registry and invokes it locally. The service registry is the meeting point

 Chapter 1: Introduction

 4

for service requestors and service providers. Figure 1 shows the SOA with Web services

and the base protocols consumed in the architecture [2].

Se
ar
ch
 u
sin
g
U
D
D
I Publish using UD

DI

Figure 1 Web services base protocols

The key to SOA is that services needs to be interoperable and location independent. For

Web services these requirements refer to standardizing the protocols for searching and

publishing with registry, describing service and communication with bi-directional

messages between requestor and providers. Web services protocols for these

components are standardized using eXtensible Mark-up Language (XML) as defined by

the World Wide Web Consortium’s working group on Web services architecture [8]:

“Web services as a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web service in

a manner prescribed by its description using SOAP messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related standards.”

As the definition suggests, XML messaging is centred to the Web services technology

and being used in data formatting, serialization, and transformation. The main

advantage XML offers Web services is data independence so that data types and

structures are not tied to the underlying implementations of the services. The use of

standardized XML makes Web services platform neutral and language independent

technology. Here, the XML serialization refers to Simple Object Access Protocol

(SOAP) [9] a protocol which uses ubiquitous HTTP for the transport mechanism. HTTP

is considered as a secure protocol, thus it allows Web services to be securely exposed

beyond the firewall.

 Chapter 1: Introduction

 5

Web services expose a business service to the outside world, using the WSDL (Web

Services Description Language) [10] standard, which provides the grammar for

describing services as a set of endpoints that exchange messages.

The SOA architecture of Web services is centred on WSDL, SOAP and UDDI

specifications. In this architecture, the service provider has the service implemented and

described using WSDL, while service requestor is looking for the service to carry out

their task. The Web Service architecture needs a registry to provide Web services

information so that publishers and consumers can find each other. This specification for

registry is Universal Description Discovery and Integration [11]. Web Services can be

published and discovered using UDDI protocol.

To summarize, Web services based on SOA architecture can be published using UDDI,

with WSDL based description, and can be searched, called and bound at run time

making it loosely-coupled and highly-accessible.

To take advantage of these features of Web services, network applications services have

to be developed as Web services or converted into Web services using some wrapping

mechanism to allow non-Web services to function as Web services. For example, in [12]

an application-independent service wrapper is proposed in order to ease the migration of

existing application code in the service-based framework. Moreover, multiple Web

services can be integrated either to provide a new, value-added service to the end-user

or to facilitate co-operation between various business partners. This integration of Web

services is called “Web services composition” [13] and is feasible to achieve because of

the Web services advantages of being platform, language neutral and loosely coupled.

1.2. Web services composition

Web services composition provides a value-added dimension to the Web services

advantages. Using composition techniques, developers and users can solve complex

problems by combining available services and arranging their workflow to best suit the

problem requirements. The logic for Web services composition mainly involves two

sub-problems: “discovery” and “matchmaking” of candidate Web services that fulfil the

problem requirements and flow management for such Web services [13].

 Chapter 1: Introduction

 6

1.2.1. Web services discovery and matchmaking

Composition is applicable when the individual services are not sufficient to address the

problem requirements or the individual services need to be integrated to provide new

value-added services. The problem of discovery and matchmaking refers to the

searching and matching of services from the available services that in accumulation

provides the required functionality or creates the value-added service. The problem of

discovering and matchmaking Web services is sometimes also referred to as “Web

services selection problem”.

1.2.2. Flow management

Flow management is supplementary to the discovery and matchmaking problem where

the control and dataflow for the discovered and matched services will create the

implementation layout of the integrated service. The control flow refers to the order in

which Web services operations are invoked and the data flow is the order in which the

messages are passed between the Web services operations.

The document containing the description of selected services and flow management

details is referred to as “composition scheme” in this thesis.

The level of automation provided in performing selection of services and flow

management classifies composition into static, semi-automatic and dynamic. Static

composition involves prior hard coding of the service selection and flow management.

Performing selection and flow management on the fly, in machine-readable format leads

to dynamic composition. In semi-automatic composition, the service composer is

involved at some stage.

A motivating example of Web services composition is the classic travel agent problem.

In the global village live in, travellers often refer to online solutions to get the best value

for money for their itinerary, which might include multi-modal transport and additional

services such as accommodation. Most often these services are provided by a number of

suppliers that must integrate their efforts to fulfil the customer requirements. One of the

most successful examples of such composition is the Galileo International online travel

agency [14]. The company uses XML Web services to manage over 45000 travel

agencies and small and medium sized enterprises. The Galileo Web services enable

 Chapter 1: Introduction

 7

technology development partners and suppliers of air, hotel, cars and cruise services to

integrate Galileo’s data and functions into their applications via the Internet.

In static composition, developers select these individual services and define the flow

management by hand. In automatic composition, intelligent programs or agents decide

the suitability of the services with respect to the problem requirements and create the

flow management based on the service descriptions. The automatic composition process

should have the capability of understanding the Web services descriptions in order to

determine the service suitability and to compile flow management. In semi-automatic

composition, developers assist the programs or agents during composition process.

Considering the growth of Web services and scale of application services available on

the World Wide Web, static Web services composition has the following shortcomings:

▪ The manual effort involved in static composition makes it cost-prohibitive. For

example, in case of the Galileo International example discussed above, manual

composition would require hard coding up to 45000 Web services for the

composition, which is time-consuming and error-prone exercise.

▪ Static composition assumes the availability and longevity of Web services. Contrary

to this, in the WWW environment, new services are offered and withdrawn quite

often.

▪ Static composition does not address the problem of Business Process Reengineering

(BPR) - an important aspect for any organization. BPR involves re-configuration of

business processes to adapt the new challenges faced by an organization, i.e.

competition or evolution of business rules over time period. This motivates the need

for more flexible Web service composition

Automated composition can offer following benefits:

▪ Automated composition can accommodate an increased number of Web services

and possible combinations of such Web services.

▪ Automatic Web services composition can support highly adaptive systems, where

services are automatically added or removed from the composition scheme.

 Chapter 1: Introduction

 8

▪ Automatic composition can take the human developer out of the composition

process creation, thus reducing the product-to-market cycle and subsequently the

production cost.

The automation of Web services composition necessitates the description of Web

services capabilities in a machine understandable format. This ties in with the semantic

web premise of annotating the traditional World Wide Web to make it computer-

interpretable, user-apparent and agent-ready.

1.3. Semantic Web

1.3.1. Semantic Web Architectures

The Web was invented by Tim Berners-Lee amongst others, a physicist working at

CERN. The Semantic web is perceived as the extension of current World Wide Web

(WWW), defined as follows [15]:

“The next generation WWW is a Web in which machines can converse in a meaningful

way, rather than a web limited to humans requesting HTML pages.”

The fundamental premise of the semantic web is to extend the web’s current human-

oriented interface to a format that is comprehensible to software programs. For instance,

in a future scenario of the Semantic Web, intelligent agents should be able to set up an

appointment between a patient and the doctor, looking at both timetables, and then

finding the best way to the clinic without the patient having to interfere in the process.

Hence, the user would only have to specify the appointment requirements and the

semantic agent will complete the task on its own.

This example depicts the basic idea of semantic web which is a web in which remote

machines can converse with each other in a meaningful way, rather than a web limited

to humans requesting HTML pages. The approach adopted by the Semantic Web to

achieve this is formalized in terms of layers built on top of XML. XML is a mark-up

language which allows user-defined tags and provides almost forty simple data-types.

This facilitates the structuring of Web pages by defining complex information as shown

in the figure below.

<Travel Regions>
 <International>
 <FromCountry> India </FromCountry>
 <ToCountry> USA </ToCountry>
 </International>

 Chapter 1: Introduction

 9

<Domestic>
 <FromCountry> India </FromCountry>
 <ToCountry> India </ToCountry>
 </Domestic>
</Travel Regions>

Figure 2 Defining Tags with XML

The information defined with XML can be parsed and displayed using style sheet

languages i.e., XSLT. Use of XML eliminates the limitation of HTML, as the developer

has more freedom in defining web pages and is not limited with the simple HTML tags.

However, structuring of information by XML is still restrictive, as the syntax does not

permit defining relationship between different terms. For example, in above code

snippet, using XML one cannot define the relationship between Domestic Travel and

International Travel. This shows that XML alone provides only syntactical support and

has no notion for the meanings required for achieving the goal of the Semantic Web.

However, Semantic Web uses the structuring capability of XML to achieve relationship

between different terms or concepts.

Figure 3 describes the cake layer approach adopted for semantic web. The XML-based

Resource Description Framework (RDF) [16] and Web Ontology Language (OWL) [17]

are the specifications from the W3C (World Wide Consortium) to add semantics. These

specifications provide language expressiveness and simulate human reasoning.

Figure 3 Layered Technologies for Semantic Web

The standard of interest to the Web services composition problem is OWL. OWL uses

and extends RDF to specify ontologies. Ontologies are based on OWL which enlarges

the possibilities of XML and RDF to introduce meanings. For example, the relationship

between concepts “International” and “Domestic” is possible to define as shown in

Figure 4. OWL defines Domestic as a subcategory of Travel Domain while disjoint with

 XML

XML Schema

RDF

RDFS

OWL

 Chapter 1: Introduction

 10

the International. Some examples of ontology terms are: class, subClassOf, domain,

range, and individual as well as different types of properties like object or data

properties.

<owl:Class rdf:ID="Domestic">

 <rdfs:subClassOf>
 <owl:Class rdf:ID="TravelRegions"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <TravelRegions rdf:ID="International">
 <owl:disjointWith rdf:resource="#Domestic"/>
 </owl:disjointWith>
 </owl:Class>

Figure 4 Ontology describing relationship between concepts

To summarize, ontologies are like dictionaries where the meaning of concept can be

described in form of unambiguous semantic descriptions. In this way, ontologies define

common specifications of domain-related concepts. Other aspect of ontologies is that

the reasoner can be designed to interpret these conceptual meanings or derive deduction

from the semantic description making the solutions program based and computer-

interpretable.

1.3.2. Semantic Web meets Web services

The semantic web technology is an integral part of approach to Web services

composition. The logic behind this argument can be traced back to the impact semantic

web has on the field of Information Retrieval (IR) [18] or search technology. The IR

technology is of paramount importance to organizations due to the growth of computing

that has resulted into digitization of personal, commercial and recreational information.

This growth requires a technology like IR that mines data to find out relevant

information [19]. The goal of IR technology is to understand a request and find relevant

information.

The current generations of IR technology and their implementations, search engines,

rely on analysing the text in these information sources to matchmake it with the text or

keywords in the user query. Some search engines perform a full-text search while

others search into some portion of the information sources depending on the algorithms

they operate on.

 Chapter 1: Introduction

 11

The complete success of these search techniques remains hampered by the fact that they

rely on free-text search [20], hence while cost-effective to perform, these search

techniques can return irrelevant results as it primarily relies on the recurrence of exact

words in the text in the information sources. The inaccuracy of the results increases with

the complexity of the query. For example, if you are looking for information on search

engines and naturally type “Search Engines” in the GoogleTM search engine, then the

engine returns some good results that provide details on “kind of search engines and

how they work”, however when we add keywords “to find the impact of search engines

on commerce and recreational activities”, this disorients the Google search engine and it

returns results on “the search optimization techniques (techniques to deal with

optimizing websites for search engines)” and something as off tangent as “recreational

activities of Wetumpka Area Chamber of Commerce and site on geospatial framework

for the Coastal Zone in United States”.

Any significant contribution to the accuracy of matchmaking results can be achieved

only if the search engine can “comprehend” the meaning of the data in the information

sources. For instance, if the search engine can understand that commerce is an act of

buying and selling and recreational are activities done for fun or time pass. In the

scientific journal article [15] of May 2001, Tim Berners Lee, James Hendler and Ora

Lassila introduced concept of “Semantic Web” that precisely targets the problem of

making data from the information sources comprehensible to the search engines and

ultimately computers.

The same logic applies to Web services discovery engines where the semantic web is

applicable to the problem of automated Web services discovery and composition to

solve the problems of accuracy. In addition to providing a tool for addressing the

problem of Web services discovery, the semantic encoding of web services offers the

opportunity of automating Web services composition, as a rich, semantic web

representation language can provide machine understandable descriptions for

interpreting service capability. For example, richer semantics can support greater

automation of service selection and invocation, automated translation of message

content between heterogeneous interoperating services, automated or semi-automated

approaches to service composition, and more comprehensive approaches to service

monitoring and recovery from failure [21]. To meet this need, researchers have been

developing languages, architectures and related approaches; the resulting body of work

 Chapter 1: Introduction

 12

goes under the heading of semantic Web services [22]. Semantic Mark-up for Web

services (OWL-S) [21], Web Service Modelling Ontology (WSMO) [23] and Web

Services Semantics (WSDL-S) [24] are such main Semantic Web services efforts. The

details of some of these efforts are outlined in the literature survey chapter of this thesis.

1.4. Research Direction

1.4.1. Motivation

Despite the evident popularity of Web services as a secure distributed computing

paradigm and the value-added dimension that composition adds to it, the practical

adoption of the technology is still to gather the expected pace. The main thesis of this

research work is based on the theory that assistance with the facilitation of the

composition process to the service providers and the composers plays a major role in

encouraging the adoption of the Web services technology.

The facilitation to be provided to the service developers and providers can be

considered in terms of the minimum effort they have to make to subscribe their services

to composition schemes. Two possible scenarios are:

▪ The application service is not yet published as a Web service, in which case a blue-

print is required to build a Web service wrapper that plugs the application to the

composition interface.

▪ The service provider has exposed the application as Web service that has a

specification and format conceptually similar but syntactically different from what

the composition interface expects. Ideally here the service provider should not be

asked to re-write the Web service, but some work-around is suggested to overcome

the mismatch.

The composition techniques can be judged based on how seamlessly they allow the

service providers to take part in the composition for the above scenarios.

For the service composer, which can be a human developer or intelligent

program/software agent, the facilitation constitutes automating as many steps as

possible in order to build and program the composition logic. These steps include:

▪ Matchmaking services to required solutions.

 Chapter 1: Introduction

 13

▪ Implementing execution flow management in the matchmaking process results in

composition of services.

▪ Automatic integration of alternative services.

▪ Overcoming mismatches in the service descriptions as transparently as possible.

The literature in the area of Web services composition reflects the fact that in search of

automation the focus of work has been transferred from giving priority to the

composition participants to the application of various existing formal methodologies to

solve composition problem, often at the expense of the practicality of the solutions.

Hence, the aim of this work is to pursue a pragmatic vision of contributing towards the

efforts of making the composition process as transparent as possible to all the

composition participants. This should allow developers and users to perform everyday

chores using Web services without being worried about behind the scene technical

details.

1.4.2. Application Example

To highlight the type of problems we are aiming to address and the facilitation required

in solving such problems, we here present an application example based on travel agent

[25] for Web services composition. We believe that travel agent is an ideal application

of web services composition where travel agent has to deal with number of sub-domains

under the travel domain, i.e., bus, rail, airline and hotel etc and there are already existing

travel domain applications in abundance that could be converted in Web services and

can take benefit of dynamic discovery and composition mechanism. Here we present a

scenario that present the role of service participants and depicting how dynamic Web

services composition benefits each of them.

The service requestor initiates service request. We assume that the requestor would like

to provide inputs in terms of constraints and preferences on the outputs and results they

receive. For example,

Inputs (Name, Expected Departure Date, Expected ArrivalDate, No of Passengers,

Departure City, Arrival City)

Constraints & Preferences:

 Chapter 1: Introduction

 14

Provision of a travel package with Airline and Hotel

Output currency must not be USD.

Output currency must be in GBP.

The execution speed of the service must be 3 seconds.

I do not particularly like British Airways.

I get sick in bus, so please do not include bus in the results.

Outputs (Price, Currency)

The service provider may want to be part of a composition by providing their service to

the composer or to a generic travel service registry. Below are a number of service

descriptions from the providers of various domains. Note the variation on the service

descriptions.

The composer will be a travel agency that takes requestor’s request and finds suitable

service(s). In dynamic web services composition, rather than having a fixed list of Web

services that travel agency always accesses, the agency would like to instead

City1

 Hotel B

Date1

Persons

Price

Currency

Arrival-Date

 Airline B No of persons

Arrival-City

Departure-Date

OutputPrice

OutputCurrency

Arrival-Date

 Coach A No of persons

Arrival-City

Departure-Date

OutputPrice

OutputCurrency

Arrival-Date

Airline B + Hotel A No of persons

Arrival-City

Departure-Date

Price

Currency

Arrival-Date

 Coach A No of persons

Arrival-City

Departure-Date

OutputPrice

OutputCurrency

Arrival-City

 Hotel A

Arrival-Date

No of persons

OutputPrice

OutputCurrency

 Chapter 1: Introduction

 15

dynamically discover Web services at each transaction. This allows the travel agency to

avoid having a pre-negotiated agreement with each Web service. The ultimate goal of

the intelligent framework is to satisfy user request and facilitate each of the participants

in the process of achieving required results.

We would like to mention that our working example is intentionally made simpler than

it is required for practical cases. This has been done in order to keep simplicity of

presentation. In practice there can be more alternative services available with more

parameters for the service for example, parameters such as travel itinerary, routes to

avoid, number of rooms, departing and returning timings and so on.

1.4.3. Research Questions

The chief research question this thesis tries to answer is:

“How can we develop an intelligent framework that utilizes semantic

web for automated Web services discovery and composition and provides

automation to the composition participants in a transparent manner?”

In order to be able to answer this question, we define a set of research questions (RQ)

that addresses the problem in detail.

RQ1: Web services composition is mainly a task performed by human developer, how

can this task be automated using software programs?

RQ2: Workflow-based techniques are a popular and widely adopted option for

application integration/Web services composition. Can semantic technologies inject the

required intelligence to aid the workflow techniques in achieving more dynamic,

perhaps automated service composition?

RQ3: Investigation of problem solving methodologies that represents a viable approach

for solving the problem of automatic Web services composition problem.

RQ4: Selecting the appropriate implementation technology from the abundance of

standards available.

RQ5: The main thesis of this research work is based on the theory that assistance with

the facilitation of the composition process to the service participants (service requestor,

 Chapter 1: Introduction

 16

provider and the composers) plays a major role in encouraging the adoption of the Web

services technology. This research shall address question of the facilitation by providing

assistance to the service participants in their respective tasks in the composition process.

RQ6: What are the criteria for evaluating the provided functionality compared to that

offered by other frameworks?

1.4.4. Problem Statement

The main objective of this thesis is to investigate and provide an intelligent framework

for automated Web services discovery and composition. The framework shall provide

tools and methodologies that alleviate the burden of dynamic Web services composition

from the participants of the framework, namely service provider, service composer and

service requestor.

1.4.5. Proposed Solution

We have approached the problem through designing and implementing a prototype

system for dynamic Web services composition. The following assumptions and

considerations were made:

� In this research, we have argued for the importance of considering the execution

values for semantically-described non-functional Web services parameters in

decision making regarding Web service adequacy for the task. This is because the

service behaviour is impossible to predict prior to execution and can only be

generalized if such execution values are stored and reasoned for deciding service

capability. AI planning and Intelligent Agent based reasoning methods offer rule-

based reasoning methodology rather than experience-based. Hence, we used Case

Based Reasoning method that allows capturing experiences and reasoning based on

them.

� We have implemented a Semantic Case Based Reasoner (SCBR), which captures

Web service execution experiences as cases and uses these cases for finding a

solution for new problems. The search considers domain-specific criteria and user

preferences to find Web services execution experience that solved a similar problem

in the past.

 Chapter 1: Introduction

 17

� The initial version of the framework assumed that the case library that holds Web

services execution experiences, contains suitable cases for every possible problem.

This assumption is not always satisfied considering the vast number of problems and

problem parameters. Moreover, the framework also needs to deal with situations

where the match-making indicator (aggregate degree of match) of final results is

below the domain-specific expected match-making indicator set by the domain

administrator. The framework also required to deal with negative user feedback,

where the matched services are not acceptable to the user. To address these

limitations we extended the implementation with a CBR process - case adaptation,

sometimes also refereed as REVISE phase in the CBR theory. The process of

adaptation is applied in our framework when the available cases cannot fulfil the

problem requirements, so matchmaking is attempted by adapting available cases.

This process looks for prominent differences between the retrieved case and the

current case and then applies formulae or rules that take those differences into

account when suggesting a solution.

� The final solution advocates an exhaustive knowledge-based substitution approach

to adapt the functional and non-functional attributes of the candidate case to the

requested solution before suggesting more complex and computationally taxing AI-

based planning-based transformations that integrate the service profile of a number

of cases to deliver candidate solutions.

1.5. Research Methodology

The research methodology for this project was based on the following research activities:

literature survey, requirement analysis and refinement, incremental development and

evaluation.

1. Literature survey

� The research involved extensive literature survey in the fields of Web services,

semantic web, web services composition and Artificial Intelligence based problem-

solving methods. The literature survey was carried out to ensure the originality of

work and to avoid the repetition of existing work done in the field.

� We studied two categories of Web services composition approaches: the first

category largely endorsed by the industry, borrows from business processes’

 Chapter 1: Introduction

 18

workflow management theory to achieve the formalization necessary for describing

the data flow and control in the composition scheme. The second category mainly

promoted by the research community, aspires to achieve dynamic composition by

semantically describing the process model of Web service and thus making it

comprehensible to reasoning engines or software agents.

� We studied workflow techniques based on BPEL, WS-CDL and BPML together

with the semantic web services description languages like OWL-S and WSMO.

� We also studied number of AI methodologies that can be utilized in the procedure of

composition to inject level of intelligence. In particular, we focused on AI Planning,

Constraint Satisfaction Problem (CSP), Case Based Reasoning (CBR), genetic

algorithm, agents and software synthesis.

� The literature survey was an iterative activity through out the PhD where survey was

an important input parameter to requirement analysis and refinement for this project.

Thus similar way, requirements also triggered the need for carrying out literature

survey at the various phases of project cycle.

2. Requirement analysis and refinement

� Like many research problems in computer science, the methodology, tools and

specifications that required to fulfil our motivation and answer research questions in

this project were analyzed and refined.

� The analysis and refinement was in light of the required facilitation to be provided

to the service participants and also to automate the process of discovery and

composition.

3. Incremental Development

� Development of a practical solution based on a hybrid approach that merges the

benefit of practicality of use and adoption popularity of workflow-based (BPEL-

based) composition, with the advantage of using semantic description to aid the

composition participants in automatic discovery and interoperability of the

composed services.

 Chapter 1: Introduction

 19

� Development of a Semantic Case Based Reasoner (SCBR), which captures Web

service execution experiences as cases and uses these cases for finding a solution for

new problems. The search considers domain-specific criteria and user preferences

to find Web services execution experience that solved a similar problem in the past.

The reasoner addresses the problem of Web services discovery and matchmaking

� Extending the discovery and matchmaking mechanism to cater for web services

composition. Developing an intensive knowledge-based substitution to adapt the

functional and non-functional attributes of the candidate case to the requested

solution and planning based transformation to integrate the service profile of a

number of cases to deliver candidate solutions.

4. Evaluation

The evaluation of the framework is in two categories: qualitative and quantitative.

� The qualitative evaluation answers the research questions we had outlined in our

motivation and contrasts them to what we have achieved in this research.

� For the quantitative evaluations, we evaluate our Web services discovery and

matchmaking framework on precision and recall along with execution time

performance.

1.6. Thesis Structure

This chapter introduced the background topics related to Web services composition. In

summary, we argue that XML-based Web services and XML-built Semantic Web are

the driving technologies behind automatic application services composition. The

composition achieved in this way has the potential to assist the service participants and

to automate service discovery and composition process tasks.

Chapter 2 consists of a literature survey focusing on existing Web services composition

approaches. The industrial standards based on workflow management theory and

research efforts based on semantic web are addressed.

Chapter 3 reviews the prominent workflow based standards for composition and those

that use semantics. The limitations and advantages of such efforts are discussed and a

 Chapter 1: Introduction

 20

framework is presented that utilizes semantics within the static web services

composition standard – BPEL.

Chapter 4 discusses the Case Based Reasoning (CBR) methodology for modelling

dynamic Web services discovery and matchmaking. The problems encountered during

development and their solutions have been identified. Experimental results are

discussed.

Chapter 5 explores solution case adaptation to address limitations of the framework

described in Chapter 4. The process of case adaptation is applicable when the available

cases cannot fulfil the problem requirements, so matchmaking is attempted by adapting

available cases. The chapter outlines process of adaptation to address the limitation of

SCBR regarding limited intelligence and extend the framework for Web services

composition. The resultant framework of XSCBR is presented in this chapter.

Chapter 6 is devoted to the implementation and evaluation of the XSCBR framework

for Web services discovery and composition. This chapter also represents results of the

experiments.

Chapter 7 summarises the contribution of the thesis and critically analyses the achieved

results and suggests the directions for further research.

 Chapter 2: Literature Survey

 21

Chapter Two: Literature Survey

This chapter presents a literature survey of current Web services composition

approaches. The study shows that these approaches fall under two categories. The first

category, largely endorsed by the industry, borrows from business processes’ workflow

management theory to achieve the formalization necessary for describing the data flow

and control flow in the composition scheme. The second category, mainly promoted by

the research community, aspires to achieve dynamic composition by semantically

describing the process model of Web service and thus making it comprehensible to

reasoning engines or software agents.

The chapter reviews the above approaches to analyze their impact on the application of

Web services composition.

2.1. Workflow management theory based approaches

Workflow is the movement of documents and/or tasks through a work process. More

specifically, workflow is the operational aspect of a work procedure: how tasks are

structured, who performs them, what their relative order is, how they are synchronized,

how information flows to support the tasks and how tasks are being tracked [26].

Workflow management systems are a class of information systems that make it possible

to correlate people’s work and computer applications. Such systems deal with the

control flow (invocation sequence of applications) and data flow (information flow

between applications) while control flow is important for achieving overall system

objective, data flow is essential for the successful operation of individual applications.

2

 Chapter 2: Literature Survey

 22

In the information systems domain, workflow has been used since the 1970’s for the

office automation systems [27]. This work has lead to identifications of workflow

patterns for control and data flow. Table 1 outlines basic workflow patterns [26]:

Table 1 Workflow Patterns

Category Type of patterns Details

Sequence Execute activities in sequence

Parallel Split Execute activities in parallel

Synchronization Synchronize two parallel threads of execution

Exclusive Choice Choose one execution path from many
alternatives

Control flow

patterns

Simple Merge Merge two alternative execution paths

Task Data

Data elements can be identified by tasks which
are accessible only within the context of
individual execution instances of that task.

Block Data Block tasks (i.e. tasks which can be described
in terms of a corresponding sub-workflow) are
able to define data elements which are
accessible by each of the components of the
corresponding sub-workflow.

Scope Data Data elements can be defined which are
accessible by a subset of the tasks.

Multiple Instance Data Tasks which are able to execute multiple times
within a single workflow case can define data
elements which are specific to an individual
execution instance.

Data flow

patterns

Case Data Data elements are supported which are specific
to a process instance or case of a workflow.
They can be accessed by all components of the
workflow during the execution of the case.

One of the applications of workflow management in information systems domain is to

address the Business Process Management (BPM) problem. Business process can be

considered as workflow of business activities to carry out business goals [28]. The

examples of business activities for customer order fulfilment business process are:

customer placing an order, checking account status, verifying order and despatch. Using

Workflow management, BPM deals with achieving the integration of these individual

applications.

 Chapter 2: Literature Survey

 23

Business processes can have scope within inter and intra organization relations.

Enterprise Application Integration (EAI) is the BPM solution to achieve intra-

organization business applications integration, while Business-to-Business (B2B)

integration software addresses the problem for inter organization business application

integration. Traditional EAI and B2B integration solutions are very complex,

proprietary and presume many details about the participating applications making them

tightly coupled. For instance, these solutions assume the use of homogeneous service

interfaces and implementation technology, which is a substantial limitation considering

that different organizations will make independent decisions about what technology to

use for the construction and deployment of their parts; these decisions made over time

accrete different hardware and software technologies [29]. Tightly coupled systems are

difficult to manage and re-engineering business rules and requirements in such systems

is also challenging. To overcome these limitations, business applications are now being

developed using Web services while the BPM problems (EAI, B2B) are being

addressed with the workflow based integration of Web services, mainly to utilize SOA

based Web services features [30].

The main industrial standards to achieve workflow based integration of Web services

are WS-BPEL1 (Web Services Business Process Execution Language, shortened to

BPEL) [31], WS-CDL (Web Services Choreography Description Language, shortened

to CDL) [32] and BPML (Business Process Modelling Language) [33]. The service

description specification WSDL plays a major role in achieving web services

integration in these composition specifications as they take advantage of the fact that

WSDL describes how to communicate with a given Web service and includes details

such as the definition of available operations, variable formats, service URI and

messaging formats. The workflow-based process model for these approaches also

addresses requirements for describing flow-management in composition, handling

business transaction with roll-back facility, state management for business interaction

support, and also handling exception and errors. The category of process model and the

extent to which these features are provided differentiates these standards.

The following sections outline two prominent workflow-based industrial standards for

Web services composition.

1 WS-BPEL version 1.1 , WS-CDL version 1.0

 Chapter 2: Literature Survey

 24

2.1.1. Composing services using BPEL

The BPEL specification - enhances and replaces the existing standards Web Services for

Business Process Design (XLANG) [34] from Microsoft and Web Services Flow

Language (WSFL) [35] from IBM. The specification uses workflow management as a

process model to achieve the control and data flow formalization for WSDL-defined

data and operations. All the participant services in a BPEL process are modelled as

partners. The WSDL files of such partners are required to create BPEL process. The

partners contribute to the total processing capability of the BPEL process. BPEL

process also has its own processing capability for dataflow, control flow, data

manipulation, fault and event handling and state management. The significance of the

BPEL architecture is that the process itself is published as a Web Service. This

composed BPEL service can be treated as a single Web service and can be used for

further composition hence facilitating recursive composition.

Facilitation provided to the service participants

In order to evaluate the facilitation provided to the service participants we consider a

scenario based on travel agent service, which manages the reservation of airline and

hotel for a customer trip. The travel agent can be implemented as BPEL process, which

can be a composition of four Web services: AirFrance service, AirUSA service,

HotelRating service and HotelService service. The process logic for the travel

agent is: “to check the availability of flight service from two competing airlines

AirFrance and AirUSA, make flight reservation, and then retrieve hotel ratings from

the HotelRating service at the destination city and make the reservation using

HotelService Web service at the selected hotel”.

For a new service provider to make their service available for the above composition

service they need to provide minimum functionality consistent with the business logic

outlined by the travel agent which is essentially the composer. Let’s assume a new

AirUK flight service for travel agent composition, the AirUK service provider has the

following options:

a) If the AirUK application is not exposed using a Web service, a wrapper Web

service with a compatible WSDL file can be created without modifying existing

application. BPEL execution engine uses Web Services Invocation Framework [36]

 Chapter 2: Literature Survey

 25

for the Invocation of such non web-services. This provision is a useful assistance to

the service provider which can re-use their legacy systems and can take part in

composition efforts.

b) If the AirUK provider has a service already available with conceptually similar but

syntactically different parameter structure then the BPEL specification provides no

form of assistance to the provider. The scenario similar to AirUK has relevance in

the real-world applications and the omission to address them is a major drawback

for BPEL specification.

Considering the case of the service composer who for the most part encounter problems

in parameter mismatch during the flow management, i.e., a service operation has

different output format from the input of next service operation in the flow logic, BPEL

in its current form delegates the responsibly to the service composer to address such

parameter mismatch.

From a service requestor point of view, the travel agent BPEL process could be

published using JSP technology. This way the service can be retrieved using simple web

page or WSDL file for the composed Web service can be retrieved from the public

UDDI registry. In such B2C interactions it is totally transparent from the end-user that

the service is a Web service with the possibility of composition of multiple Web

services or could be implemented on heterogeneous platforms using heterogeneous

programming languages. However, there is a limited level of language expressiveness

available to the service requestor to outline the constraints and preferences on the

outputs and quality of service parameters.

To conclude this section, BPEL is widely-used specification for composing intra-

organization Web services. The business analysts and developers can collaborate and

can compose enterprise Web services manually using BPEL. The composition is hard

coded and the developers should have the explicit knowledge of all the details of

participating business services which is a major limitation considering the growth of

Web services within and outside organizations.

2.1.2. Composition using WS-CDL

The BPEL process model deals with B2B integration from a single party viewpoint i.e.,

the requirement specified for the travel agent scenario discussed here is from the

 Chapter 2: Literature Survey

 26

viewpoint of travel agent business logic. Contrary to the BPEL process model, real

world B2B integrations are peer-to-peer as opposed to being centralized, where the

collaborating business applications agree to provide certain functionality in receipt of

complimentary functionality from other business applications highlighting the

requirement for a description language documenting peer-to-peer viewpoint since

natural B2B integrations are peer-to-peer collaborative relationships and not governed

by a single party. The W3C recommendation WS-CDL2 from W3C Web services

choreography working group confirms aforementioned conclusions that more work on

BPEL is required to make it adoptable for B2B integration [32] .

WS-CDL is a description language where the first activity of the B2B integration

partners is to describe the collaborative functionality. This description document is

considered as a contract and each party can implement their own part. The WS-CDL

document describes common and complementary behaviour of all the parties involved,

making the viewpoint global and peer-to-peer [33]. For example, under WS-CDL

process model, the travel agent is no longer the overall controller of the integration of

the travel service as the agent and the service providers have to be involved and agree

on the composed functionality and ordering of the activities in the WS-CDL document.

The other aspect of WS-CDL process model is that the internal business logic of each

party remains hidden from the business partners. i.e., for the travel agent application

after receiving price quote from all airlines can have internal business logic for air line

selection based on some criteria totally hidden from other partners as the external detail

described in WS-CDL document is just an operation to make reservation at particular

airline.

Facilitation provided to service participants

Service composer designs the global interface WS-CDL file to be adhered by

participating parties. Therefore the composer does not have to deal with individual

service providers and can easily accommodate individual services once providers adhere

to the global interface.

WS-CDL is still a descriptive language but can play the role similar to WSDL to create

stub files so that each party service provider can have blue print of what they are

supposed to implement [37]. This approach has considerate benefit when the integration

2 WS-CDL was a draft version when this research was carried out.

 Chapter 2: Literature Survey

 27

takes place between large numbers of Web services. Overall, CDL is designed to

address the requirements for B2B integration and compliments BPEL. Consequently,

CDL and BPEL together address the problem of BPM by facilitating static composition

as the selection of services and decision on flow management is done a priori.

2.1.3. Adoption of Workflow-based approaches

Despite offering static composition, commerce and industry remain loyal to the

workflow-based composition for integrating services within the enterprise and for

forging B2B collaboration. The success of BPEL and CDL in the business community

can be attributed to number of factors. Firstly, the standards are built on the top of tried

and tested workflow management theory, making it ideal to model business processes’

interaction. The second factor is that BPEL and its derivatives are now mature standards

that provide a gamut of features for business processes, such as transaction processing,

support for state management with the use of call backs and correlation sets, provision

for exception handling, compensation fault processing features that are vital for the long

running and fault vulnerable business transactions.

The adoption of BPEL as the Web service composition technology of choice has been

reflected in the enthusiasm at large software houses in providing or including BPEL

composition tools in their Enterprise Application Servers, for instance Oracle

Application server [38], Microsoft BizTalk server [39], and stand-alone tool from IBM,

BPWS4J [40].

2.2. Semantic Web-based Composition

The commercial institutions are focusing their efforts on standardizing the static

composition techniques in preparation for their wider adoption amongst the business

community. In contrast, the research community efforts concentrate on exploiting

semantic web for the semi-automatic and automatic composition of Web services.

2.2.1. Semantic Web services

With respect to automation, the limitation of workflow-based approaches is that they

rely on WSDL based description for the Web services selection. WSDL is a static

interface described using simple XML grammar that has no notion of machine

interpretable semantics. The problem of automatic Web services discovery and

 Chapter 2: Literature Survey

 28

integration can benefit from the semantic web machine readable descriptions. The

fundamental premise of the semantic web is to extend Web’s currently human-oriented

interface to a format that is comprehensible to software programmes. Applied to Web

services composition, this can lead to the automation of services selection and

execution.

The WSDL file of Web services describes the operations provided, request message

format required for invoking operations, and the format of response messages produced

by the Web services. The interpretation of these details results in the understanding of

the service capability. The automation required for the service composition can be

achieved by describing the WSDL elements semantically, thus allowing software agents

to reason about the service capability, and make all the decisions related to the

composition on behalf of the user or developer. The decisions include the selection of

appropriate services, their actual composition and close examination of how they meet

the criteria specified by the user. In contrast, in the static composition approach, the user

or developer manually interprets the requirements for the required composition and the

available service capability or functionality and makes decisions regarding how services

can be interweaved to make a value-added service.

The WSDL specification is part of the base Web services protocol stack and has been

already widely accepted and implemented to describe Web services. Taking this into

consideration, the general scenario will be to annotate individual WSDL elements with

corresponding OWL elements. OWL-S [21] is such ontology specification for

describing Web services semantically. OWL-S ontology provides a mechanism to

describe the capability of Web services in machine-readable form, which makes it

possible to discover and integrate Web services automatically.

2.2.2. Semantic Mark-up for Web services: OWL-S

OWL-S defines three interrelated subontologies, known as the profile, process model

and grounding. In brief, the profile is used to express “what a service does”, for the

purpose of advertising, constructing service requests and matchmaking; the process

model describes “how it works”, to enable invocation and composition; and the

grounding maps the constructs of the process model onto detailed specifications of

message formats, protocols and so forth [21]. Figure 5 outlines these subontologies.

 Chapter 2: Literature Survey

 29

Figure 5 OWL-S subontologies

Service

The service class acts as an organizational point of reference for OWL-S descriptions.

Each Web service description will provide a single instance of Service with

corresponding values for presents, describedBy and supports. The respective

ranges of these properties are ServiceProfile, ServiceModel and

ServiceGrounding. Each of these represents different level of information regarding

the Web services. These classes are introduced as follows.

Service Profile

The service profile is the advertisement of web services by describing what it actually

does. Apart from incorporating UDDI-like elements (taxonomy, category, human

readable description of service) a service profile has the notion of IOPE (Input, Output,

Precondition, Effects), where the input and output are OWL elements describing

expected Web service input and generated outputs. Furthermore, since a service may

require external conditions to be satisfied, and it has the effect of changing such

conditions, the profile describes the preconditions required by the service and the

expected effects that result from the execution of the service. For example, a selling

service may require as a precondition a valid credit card and as input the credit card

number and expiration date. As output it generates a receipt, and as effect the card is

charged. Such semantic descriptions assist the discovering party to make sure of their

choice, by interpreting what inputs need to be provided to invoke the service, what

conditions need to be fulfilled to invoke the service and what will be the output and

 Chapter 2: Literature Survey

 30

effect of the invocation. Using such descriptions software agents can visualize the effect

of service execution before actually executing it.

Service Model

The service model assists the service requestor in service executions, as the process

subclass of ServiceModel describes the possible interactions requestor can make with

the service. As shown in Figure 6, processes can be atomic, simple or composite. An

atomic process is a description of a service that expects one (possibly complex) message

and returns one (possibly complex) message in response. A simple process is similar to

atomic except it is abstract and can provide multiple views of the same process. A

composite process can be decomposable into atomic or other composite process and can

be described using the rich semantics of a service model which supports control-flow

and data-flow patterns similar to workflow patterns.

<owl:Class rdf:ID="Process">

 <rdfs:comment> The most general class of processes </rdfs:comment>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#AtomicProcess"/>

 <owl:Class rdf:about="#SimpleProcess"/>

 <owl:Class rdf:about="#CompositeProcess"/>

 </owl:unionOf>

</owl:Class>

 Figure 6 OWL-S Process

The service model re-assures the requestor about his choice as the software agents can

read the process model descriptions and can interpret working of Web service; hence

can decide the applicability of the solution.

Service Grounding

A WSDL document contains the description of the invocation details for the Web

services. OWL-S enhances the WSDL based service description to accommodate

semantics hence the invocation details in WSDL need to be mapped to the semantic

description in OWL-S. OWL-S achieves such mapping with Grounding component. In

Figure 7 the dotted line indicates the possible mappings between OWL-S and WSDL.

 Chapter 2: Literature Survey

 31

 Figure 7 Mappings between OWL-S and WSDL

According to these mappings, an OWL-S process corresponds to WSDL operation. The

set of inputs and the set of outputs of an OWL-S atomic process each correspond to

WSDL's concept of message. More precisely, OWL-S inputs correspond to the parts of

an input message of a WSDL operation, and OWL-S outputs correspond to the parts of

an output message of a WSDL operation.

The OWL-S based approach facilitates the meaningful searches with the advantage of

(IOPE) in profile and process based service model hence user can perform in-depth

analysis of multiple services to perform a specific task.

2.2.3. Reasoning about the Service Semantics

Ontology-based descriptions provide a mechanism to describe Web services

functionality and the information useful for composition to be encoded in unambiguous

machine understandable form. In order to perform the automated composition, an

intelligent layer is essential that can interpret semantic descriptions and can order,

combine and execute Web services to achieve the desired functionality or user goals. In

other words, the intelligent layer should comprehend the descriptions in order to decide

the possible services and build flow management for those services.

The semantics based approaches can be categorized based on the intelligent layer

employed to achieve Web services discovery and composition. AI planning, software

synthesis, agents, constraint satisfaction problem and case based reasoning are some of

the methodologies employed as intelligent layer.

 Chapter 2: Literature Survey

 32

Artificial Intelligence Planning

This section discusses the relevancy of AI planning for the Web services composition

problem and presents the literature survey on the subject.

Planning is a task of discovering a sequence of actions that can achieve a goal [41]. A

planning problem can be described as a five-Tuple problem (S,s0,G,A,T) where S is the

set of all possible states of the world, s0 denotes the initial state of the planner, G

denotes the set of goal states the planning system should attempt to reach, A is the set

of actions the planner can perform in attempting to reach a goal state, and the transition

relation T defines the semantics of each action by describing the state (or set of possible

states if the operation is non-deterministic) that results when a particular action is

executed in a given world state.

Web services composition is similar to planning problem evident from the following

mapping.

S is the set of possible Web services, i.e. Web services available from the service
registry

s0 is the initial state where some or none services are pre-selected for composition

G is the composition of Web services which satisfies the user requirements.

A is the Web services operations (I) or preconditions (P) available to planner to reach
from the initial to goal state

T is the outputs (O) and effects (E) of invoking Web services operations.

AI planning-dependent approaches use IOPE based OWL- S profile and process models

to achieve required automation for the Web services composition. For example, if one

starts with composition as goal (some desired outputs and effects), and matches it to the

outputs and effects of a Web service (modelled as process), the result is an instantiation

of the process, plus descriptions of new goals to be satisfied based on the inputs and

preconditions of that process. The new goals (inputs and preconditions) then naturally

match other processes (outputs and effects), so that composition arises [21].

Consistent with the above theory, Wu et al. [42] utilize DAML-S based descriptions, the

previous version of OWL-S with SHOP2 planner [43]. The SHOP2 is a Hierarchical

Task Network (HTN) planner that creates plan by task decomposition - a process in

which the planning system decomposes tasks into smaller and smaller subtasks, until

primitive tasks are found that can be performed directly. The authors stress similarity

 Chapter 2: Literature Survey

 33

between the concepts of task decomposition in HTN with the process decomposition in

DAML-S.

Sirin et al. in [44] describe another approach which couples OWL reasoner with AI

planner to reason about the world state (effects and pre-condition) during planning. The

reasoning is achieved by describing pre-condition and effects of the Web services using

OWL. Peer et al. in [45] follows similar approach but argues that the diversity of Web

service domains can best addressed by a flexible combination of complementary

reasoning techniques and planning systems. Authors present a tool that transforms Web

service composition problems into AI planning problems and delegates them to the

planners most suitable for the particular planning task. The tool uses the planning

domain definition language (PDDL) [46], a language supported by a wide range of

planning engines as required transfer format.

In similar spirit, McIlraith et al. [47] use GOLOG (logical programming language) for

the planning based Web services composition. GOLOG [48] is a high-level logic

programming language, developed at the University of Toronto, for the specification

and execution of complex actions in dynamical domains. The GOLOG based system

models services as actions with IOPEs and uses GOLOG procedures (modelled as

OWL-S composite processes) to generate sequences of Web services customized to

user’s preferences and constraints.

The semantic web community draws on AI planning, which for over three decades has

investigated the problem of how to synthesize complex behaviours given an initial state,

an explicit goal representation, and a set of possible state transitions [49]. However, the

main drawback of the AI planning techniques is the difficulty in dealing with

incomplete information, in Web services composition problems the extensional

definition of the initial world does not specify all knowledge relevant to the planning

task [45]. For instance, in an e-commerce application, the travel agent may not know

which web services offers which products, but it needs this information to achieve its

goal of buying a product.

Software synthesis

Software synthesis refers to the problem of creating complex software system from

individual software components. The approaches modelling Web services composition

 Chapter 2: Literature Survey

 34

as software synthesis problem view atomic services as software components and

composed services as synthesised complex software system.

The work of Matskin et al. [50] models problem description and the available service’s

descriptions into Structured Synthesis Program (SSP) [51] – a software synthesis

technique which supports input-output specifications with the possibility of extraction

of action sequences. The approach supplies the problem statements to the SSP

synthesiser with the available service lists and allows SSP to prepare a plan to reach

from problem descriptions to a sequence of actions to be performed in order to achieve

a viable solution.

Consistent with the work presented above Rao et al. in [52] discusses the use of the

software synthesise formalism: Linear Logic (LL) for Web services composition. The

implementation translates Web services description into LL axioms which are fed to LL

prover to generate proof or plan for Web services composition.

These efforts suggest a seamless mapping between software synthesise and service

composition, however they treat each service as an atomic entity without inspecting the

internal process model and therefore lacks the ability to measure full capacity of

services.

Agents

Web services are compositional, independent software components similar to agents. In

addition agents are also social, reactive and capable of reasoning [53]. This autonomous

and reasoning capability of agents makes them suitable to apply for the problem of

automatic Web services composition.

To benefit from agent features, a variety of approaches convert web services to work as

agents where one of the options for conversion can be as wrapper mechanism. Buhler et

al. in [54] apply similar approach which creates agents from Web services using

composition language. The agents created in this manner have the reasoning capability

derived from the DAML-S descriptions making interaction possible between agents to

decide if they can collaborate to fulfil the ultimate goal of composition. Knoblock et al.

in [55] outlines similar approach, where they have developed tool for web services-to-

agent conversion and uses hierarchical constraint system to perform integration.

 Chapter 2: Literature Survey

 35

The work by Richards et al. documented in [56] applies and extends Agent Factory - an

automated facility for composing software agents, to use Web services as agent

components. Their implementation use the DAML-S profile models to provide

descriptions of the components at the conceptual level for the discovery and the

grounding model to provide the descriptions at the implementation level for the

integration.

Although software agents have being researched since 1977 [57], an inherit limitation is

that the autonomous nature of agents requires extra safeguards so that agents do not

overstep their jurisdiction. Another limitation is the necessary conversion from Web

services specification to the agent platforms such as AgentCities which can be

computationally expensive.

Case Based Reasoning

Experience based learning using CBR is a relatively old branch of artificial intelligence

and cognitive science and is being used as an alternative to rule-based expert system for

the problem domains, which have knowledge captured in terms of experiences rather

than rules [58]. Case based reasoning for Web services were initially documented in

[59], where the developed framework uses CBR for Web services composition. In their

approach, the algorithm for Web services discovery and matchmaking is keyword based

and has no notion for semantics. This affects the automation aspects for Web services

search and later for composition. A similar approach described in [60] proposes an

extension of UDDI model for web services discovery using category-exemplar type of

CBR, where web services are categorized in domains and stored as exemplar [61] of

particular domain. Their implementation of CBR reasoner facilitates UDDI registry by

indexing the cases based on the functional characteristics of Web services. However, the

approach does not take into consideration the importance of non-functional parameters

in service selection and the use of semantics at CBR level is peripheral as they primarily

use the UDDI based component for service discovery. UDDI is text-based leaving little

scope for automation.

There is also a number of existing approaches which apply CBR for workflow

modelling. [62] proposes an approach to support workflow modelling and design by

adapting workflow cases from a repository of process models where workflow schemas

are represented as cases and are stored in case repositories. The cases are retrieved for a

 Chapter 2: Literature Survey

 36

problem which requires similar business process to solve the problem. The description

and implementation language of the framework is based on XML and its main focus is

on assisting workflow designer in creating business process flows. Similarly, [63]

presents an adaptive workflow management system based on CBR and targets highly

adaptive systems that can react themselves to different business and organization

settings. The adaptation is achieved through the CBR based exception handling, where

the CBR system is used to derive an acceptable exception handler. The system has the

ability to adapt itself over time, based on knowledge acquired about past execution

experiences that will help solve new problems.

These approaches fail to take advantage of the main feature of CBR that is storing past

experiences of current problem for solving future problems. Web services execution

experiences can be represented as cases and once stored can be utilized to serve service

requests.

Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP) [64] is a powerful and extensively used AI

paradigm. CSP involve finding values for variables subject to restrictions on which

combinations of values are acceptable. The approaches that utilize CSP take advantage

of the fact that constraints on selection parameters play a major part in discovery and

composition of Web services. In accordance with this analysis, authors in [65] argue

that Web service composition in real life requires not only planning information, but

also additional information requests with constraints, which can be met by scheduling

tasks jointly. The authors suggest a combined architecture of planning and CSP for a

basic problem-solving engine to automate Web service composition giving an entire

framework of intelligent Web services for users.

Another approach as documented in [66] relies on CSP for solving Web services

composition problem where authors represents a constraint driven Web service

composition tool in METEOR-S framework, which allows the process designers to bind

Web services to an abstract process, based on business and process constraints and

generate an executable process. The METEOR-S project utilizes semantics with

existing Web services standards of WSDL, UDDI and BPEL to support publication,

discovery and composition of semantic Web services.

 Chapter 2: Literature Survey

 37

The main advantage CSP offers is its inherent ability to consider constraints; which is

essential to serve granular service requests. However, CSP alone is not sufficient to

address the composition problem as the methodology does not support planning-like

work-flow management. Nonetheless, when used with other workflow or planning

based architectures, CSP can be considered as an attractive approach to Web services

composition.

2.2.4. Potential Facilitation to the composition participants

Despite the enthusiasm of the research community about the semantic web, there is still

some way to go for creating a unifying framework facilitating the interoperation of

intelligent agents or reasoning engines attempting to make sense of semantic Web

services. However the workflow based approaches address here-and-now practical

problem of Web services composition while dynamic Web services composition

approaches holds better future potential that can serve a great range of business domains.

Automatic Web services composition has the potential to reduce development time and

effort for the development of new applications. This is due to automatic re-

configuration of changing or unavailable services in the integration.

Semantics assisted dynamic composition can serve all business domains for the possible

B2B, EAI and B2C integrations. A user can specify parameters for the successful

composition and the composition can be performed at the run-time. The automatic Web

services composition solution can address the problems of identifying candidate

services, composing them, and verifying closely that they satisfy the request.

The service providers will be able to participate in the composition to their benefit with

minimal effort as the development effort will be significantly reduced, as the human

developer will be taken out of the composition loop.

2.3. Evaluation of Composition Techniques

For our research objectives, we have chosen the following criteria to study existing Web

services composition approaches.

 Chapter 2: Literature Survey

 38

1. Service matchmaking

Using this evaluation criterion we compare various approaches based on how the

service matchmaking is performed. The possible options are discovery using WSDL,

UDDI, free-text or OWL-S (previously DAML-S) profile and process.

Workflow-based approaches use WSDL files to interpret the capability of a service

coupled with the communications with the service provider or manual analysis of

service parameters. AI planning, CSP, and agent-based approaches use different

algorithms that utilize semantic web services profiles to matchmake with semantically-

encoded problem requests. The CBR based approaches are so far using UDDI to

matchmake web services.

2. Composition

We use this criterion to compare existing approaches to evaluate them based on how

they employ intelligent layers to achieve composition of Web services.

Workflow-based approaches use web services workflow languages such as BPEL and

WS-CDL to outline the workflow of Web services. AI planning-based approaches

utilize AI planner to form composition plans using existing planners such as SHOP2 [48]

or GOLOG [43]. The CSP based approaches utilize existing standards WSDL, UDDI

and BPEL to achieve the required composition. The CBR based approaches use bespoke

XML based workflow languages to write composition schema. The Agents-based

approaches model web services as agents so that the problem of web services

composition translates to agent collaboration problem so that it is possible to utilize

existing agent-infrastructure for composition.

3. Automation

The automation criterion is used to measure the level of automation achieved by various

Web services composition approaches in the process of service discovery, composition

and execution.

Most of these approaches support execution of composition schemes by providing

execution engines, i.e., BPEL approaches use Oracle BPEL PM execution engine or

IBM BPWS4J, AI planners use OWL-S execution engines similar to the OWL-S API

provided by the University of Maryland.

 Chapter 2: Literature Survey

 39

Workflow-based approaches are static web services composition approaches involving

manual intervention for discovery and composition of services. Semantic web based

approaches achieve varying degree of automation in the process of composition

(automatic discovery, semi-automatic composition).

4. Transparency

This criterion measures how transparent the process of composition (discovery,

integration and execution) is from the composition participants. For workflow-based

approaches, end-user is transparent from the fact that the service presented to them in

response to their request is a composed service, however the provider and composer has

to work closely to integrate services in the workflow hence making the process opaque

to them.

For AI planning-based approaches, the service requestor is transparent to the intelligent

process of composition; however the process is semi-transparent to other participants.

For example, the composer needs to be involved in the process of domain knowledge

development and maintenance while tools assist them in converting semantic web

services processes into planner domains. This knowledge is supplied to the planner in

terms of operators and methods of services in order for planner to build composition

plans. The service provider has to provide semantically enabled service but is

transparent from the process of composition. Similarly, other semantic web based

approaches offer complete transparency to end-users while requires some level of

attention from service providers and composers.

5. Extensibility

The extensibility criteria measure how extensible particular approach is to adapt new

mechanism or to add new functionalities. For example, workflow based standards can

be evaluated based on whether they can include semantics to solve semantic issues in

service selection [66][67] and [68] are the approaches that seek the answer and

determine that extension is possible for service matchmaking; however a BPEL-based

integration mechanism is tightly coupled by nature and offers limited level of

extensibility. Various other approaches are extensible as they are already adapted from

the existing AI methodologies.

 Chapter 2: Literature Survey

 40

6. Expressiveness

The problem of dynamic Web services composition requires a greater level of

expressiveness for describing services and for describing search criteria of services.

Hence, the functional parameters of IOPE are sometimes not sufficient to achieve the

goal of automation and require non-functional descriptions of services; for example, a

Web service can be selected based on the Quality of Service (QoS) it provides. We also

analyze the expressiveness in terms of the support service requestor gets in order to

describe service criteria closer to natural language; for example, preferences and

constraints on various output and other non-functional parameters.

The BPEL specification has no scope to accommodate non-functional parameters

beyond IOPE (Input, Output, Precondition, and Effect) due to the absence of provision

for syntactical non-functional parameters in the specification.

The OWL-S specification supports set of non-functional properties: service name, text

description, quality rating. The specification also has provision for the other non-

functional properties using the ServiceParameter from ServiceProfile. These

non-functional properties are described in the service profile part and are explicitly

formalized using OWL. The approaches that utilize OWL-S (AI Planning, software

synthesis, CSP, software agents) as semantic web services specification exploit these

provisions at varying degree for formalizing non-functional parameters. However, we

notice that there is no provision or modelling support for allowing service requestor to

describe their request in greater detail and are just limited to semantics of required

service (parameters and parameter types).

The Universal Description, Discovery and Integration (UDDI) define a set of non-

functional properties for a service provider identified by a businessEntity. The set

of non-functional properties contains: the address, the phone numbers, and the email

addresses of the service provider. Additionally to non-functional properties some other

information (metadata) about the service is available like for example the service

category (using taxonomies such as UNSPSC). Approaches that utilize UDDI (CBR

based approaches) are utilizing some of these non-functional parameters to provide a

limited level of expressiveness.

 Chapter 2: Literature Survey

 41

7. Scalability of composition

Composing a large number of services can incur significant overhead on the response

time to the end user. In a real-world scenario, end users will typically want to interact

with many services; for example, if we consider the classic holiday booking scenario

where enterprise applications invoke chain of possibly several hundred services

[69].Therefore, one of the critical issues is how the proposed approaches scale with the

number of services involved. In BPEL, multiple service composition is somewhat

tedious because XML files start to grow offering the approaches relying on BPEL as

final composition scheme limited scalability (CSP based approach). OWL-S has similar

issues and is propagated to the approaches that rely on using OWL-S process as final

composition scheme (i.e., AI planning, software agent). Approaches that utilize bespoke

XML schemas for final composition scheme (i.e., software synthesis approaches output

synthesized XML schemas) also face similar challenges.

8. Knowledge utilization

Semantic Web is utilized to capture and reason knowledge within organizations and the

WWW. However because of the distributed and open nature of the Web, these

ontologies can be expected to contain conflicts and semantic overlap; different

ontologies would describe (parts of) the same domain in a different way, because of

differences in the point of view of the different people who have developed the

ontologies. This clearly relates to any approaches that apply semantic web to Web

services composition. For example, service requestor and service provider might use

different ontologies to describe conceptually similar concepts; similarly composer might

need to deal with providers using different sets of ontologies.

The knowledge utilization criteria evaluates various approaches based on whether they

provide means to mediate various ontologies and knowledge sources while achieving

Semantic Web based discovery and composition.

Table 2 summarizes the comparison of existing Web services composition approaches

based on the aforementioned criteria.

The comparison also focuses on the methodology each approach uses to achieve

matchmaking and composition and how selected methodology affects the prospects of

automation and transparency.

 Chapter 2: Literature Survey

 42

Table 2 Comparing Intelligent Layer approaches to Web services composition

 Workflow based

Approaches

Semantic Web based Approaches

Criteria BPEL based Web
services composition

AI planning based
approaches

Software
synthesis based
approaches

CBR based approaches CSP
based approaches

Software Agent based
approaches

Service matchmaking

How does it affect
automation and
transparency prospects?

Using WSDL and
choreography interfaces

No consideration of
semantics in service
descriptions hence
prospects for
automation and
transparency is affected.

OWL-S/ DAML-S profile
matchmaking

Consideration of semantics in service
descriptions makes automation
possible; however accuracy of
matchmaking process has scope for
improvement

UDDI based

No consideration of
semantics in service
descriptions hence
prospects for automation
and transparency is
affected.

OWL-S profile DAML-S profile
templates, matchmaking
BPEL abstract
processes

Consideration of semantics in service descriptions
makes automation possible; however accuracy of
matchmaking process has scope for improvement

Composition

How does it affect
automation and
transparency prospects?

Using workflow
patterns in BPEL or
WS-CDL

Lack of semantics in
workflow process
model limits prospects
for automation.

Using AI planner

Exploitation of
semantics in process
model with planning
techniques leads to
semi-automation

Using
software
synthesise
methods (i.e.,
SSP, Linear
Logic)

Exploitation
of semantics
only in OWL-
S profile but
not in process
model leads to
limited
automation

XML based workflow
language

Lack of semantics in
workflow process model
limits prospects for
automation.

Converting abstract
BPEL process to
executable BPEL
process

Lack of semantics in
workflow process model
limits prospects for
automation.

Composition as agent
collaboration or interaction

Exploitation of semantics
only in OWL-S profile but
not in process model leads
to limited automation

 Chapter 2: Literature Survey

 43

 Workflow based

Approaches

Semantic Web based Approaches

Criteria BPEL based Web
services composition

AI planning based
approaches

Software synthesise
based approaches

CBR based
approaches

CSP
based approaches

Software Agent based
approaches

Level of automation Predefined, static
workflows, Automatic
Execution

Automatic
matchmaking, semi-
automatic
composition,
execution using
grounding

Automatic
matchmaking, semi-
automatic
composition,
execution using
grounding

Static matchmaking,
semi-automatic
composition,
automatic execution
using workflow
engine

Automatic
matchmaking,
Semi-automatic
composition

DAML-S Web services as
agent components and
composition as agent
collaboration or interaction

Transparency End-user transparent,
provider and composer
aware of the process

Transparent to service
requestor, semi-
transparent to
composer and
provider

Transparent to
service requestor,
semi-transparent to
composer and
provider

Transparent to service
requestor, semi-
transparent to
composer and
provider

Transparent to
service requestor,
semi-transparent to
composer and
provider

Transparent to service
requestor, semi-transparent to
composer and provider

Extensibility Extension is possible
for service
matchmaking, However
integration mechanism
tightly coupled hence
limited extensibility

Extensible (for
example, to include
knowledge, non-
functional properties)

Extensible to
include workflow
models

Extensible Extensible to adapt
any workflow
standards (BPEL,
OWL-S).

Applicable to agent platform
only.

Expressiveness
(Non-functional
parameters)

No support for
functional parameters

Exploits provisional
unspecified support
for non-functional
parameters from
OWL-S, no support
for requestor search
criteria

Exploits provisional
unspecified support
for non-functional
parameters from
OWL-S, no support
for requestor search
criteria

Limited support using
UDDI specification.

Exploits
provisional
unspecified
support for non-
functional
parameters from
OWL-S, no
support for
requestor search
criteria

No support

Scalability of solution

Difficult to manage
scalability

Difficult to manage
scalability

Difficult to manage
scalability

Difficult to manage
scalability

Difficult to
manage scalability

Difficult to manage
scalability

Knowledge utilization Not supported Not supported Not supported Not supported Not supported Not supported

 Chapter 2: Literature Survey

 44

2.4. Conclusions

This chapter surveyed two prominent categories of Web services composition

approaches. The first approach, largely endorsed by the industry, borrows form business

processes’ workflow management theory to achieve the formalization necessary for

describing the data flow and control in the composition scheme. The second approach,

mainly promoted by the research community, aspires to achieve more dynamic

composition by semantically describing the process model of Web service and thus

making it comprehensible to reasoning engines or software agents.

The comparison made in this chapter has shown that workflow based approaches are

preferred by organizations as here-and-now and practical, albeit static, composition

technique that robustly supports their business needs; while dynamic Web services

composition approaches holds better future potential that can serve a great range of

business domains. In such kinds of composition participating services can be external

and public. The user can specify parameters for the successful composition and the

composition is performed at the run-time. The solution addresses the problems of

identifying candidate services, composing them, and verifying closely that they satisfy

the request.

As the result of this literature survey we concluded that despite the enthusiasm of the

research community about the semantic web, there is still some way to go for creating a

unifying framework facilitating the interoperation of intelligent agents or reasoning

engines attempting to make sense of semantic Web services independent of human

developer.

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 45

Chapter Three: Bridging Gap between
Workflow and Semantics based Web
Services Composition

The previous chapter discussed prominent Web service composition approaches. This

chapter discusses the advantages and limitations of workflow and semantics-based

approaches and outlines a hybrid approach that takes advantage of both by introducing

semantics to workflow-based composition.

Despite the enthusiasm of the research community about the semantic web, there is still

some way to go before creating a unifying framework facilitating the interoperation of

intelligent agents or reasoning engines attempting to make sense of semantic Web

services.

In large, efforts to facilitate automatic composition web description through semantic

description have been progressing in parallel, but also in isolation, to developments in

workflow-based standards (specifically BPEL) preferred by the commercial

organizations. These organizations prefer a here-and-now and practical, albeit static,

composition technique that robustly supports their business needs, to immature,

research-biased, dynamic composition techniques that are more focused on the

automation factor, rather than business-specific requirements.

The hybrid approach discussed in this chapter concentrates on exploiting industrial

standards with the possibility of using semantics, before attempting a full-fledged

semantics-based solution. This approach has the merged benefit of practicality of use

and adoption popularity of workflow-based composition, with the advantage of using

semantic description to aid both service providers and composers in building the

composition scheme and adapting new Web services to it.

3

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 46

3.1. Introduction to Business Process Execution Language

(BPEL)

The BPEL specification enhances and replaces existing standard XML-based extension

of Web Services Description Language (XLANG) [34] from Microsoft and Web

services Flow Language (WSFL) [35] from IBM. BPEL uses workflow management as

a process model to achieve the control and data flow formalization for WSDL-defined

data and operations. All the participant services in BPEL are modelled as partners (see

Figure 8). The WSDL files of such partners are required to create a BPEL process. The

partners contribute to the total processing capability of the BPEL process. A BPEL

process also has its own processing capability for dataflow, control flow, data

manipulation, fault and event handling and state management. The significance of the

BPEL architecture is that the process itself is published as a Web service. This

composed BPEL service can be treated as a single Web service and can be used for

further composition hence facilitating recursive composition.

Figure 8 BPEL based Web services composition

The following is a Web service composition scenario implemented using Oracle BPEL

process Manager [38]. This particular implementation of BPEL provides a graphical

user interface to design business processes. The scenario is based on a travel agent

process, which manages the reservation of airlines and hotels for the customer trip. The

travel agent is implemented as a BPEL process, which is the composition of four Web

BPEL

Execution

Engine

Hotel
Service
WSDL

Hotel
Rating
WSDL

Air
USA
WSDL

Air
France
WSDL

BPEL
Process
WSDL file

BPEL
Process
file

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 47

services depicting fictional businesses: AirFrance service, AirUSA service,

HotelRating service and HotelService service.

The process logic for the travel agent is:

a) Check the availability of flight service from two competing airlines AirFrance and

AirUSA;

b) Depending on the user request make flight reservation ;

c) Retrieve hotel ratings from the HotelRating service for the hotels at the

destination city;

d) Make the reservation using HotelService Web service for the selected hotel.

Travel Agent Example

BPEL is built on top of WSDL; hence WSDL files of partner business services are

required for the composition process. This fact is described in BPEL using

partnerLinkType. The portType of such Web service defines the role of partner in

the composition. Figure 9 shows AirFrance and AirUSA Web services as partners and

the role they play in the composition using portTypes (i.e. fr: is the unique identifier for

the AirFrance WSDL file).

<plnk:partnerLinkType name="airFrancePLT">

 <plnk:role name="AFcheckServices">

 <plnk:portType name="fr:AirFrance"/>

 </plnk:role>

</plnk:partnerLinkType>

<plnk:partnerLinkType name="airUSAPLT">

 <plnk:role name="AUcheckServices">

 <plnk:portType name="usa:AirUSA"/>

 </plnk:role>

</plnk:partnerLinkType>

Figure 9 Describing Partners in BPEL

Figure 10 illustrates the sequence diagram for the travel agent process where 1.1.a and

1.1.b are two activities for checking the availability of flight between source and

destination city, performed in parallel. The BPEL syntax for this using <flow> to

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 48

achieve parallel execution is shown in the Figure 11 where both invocations are

executed in parallel.

Figure 10 Sequence Diagram for the travel agent composition

<flow>

<invoke name= “invokeAirFrancecheckServices”

partnerLink = “AFcheckServicesPL”

portType="fr:AirFrance"……….>

<invoke name= “invokeAirUSAcheckServices”

partnerLink = “AUcheckServicesPL”

portType="fr:AirUSA"…………>

</flow>

Figure 11 Concurrency using <flow>

Similarly other operations for checking the possibility of reservation are performed on

AirFrance and AirUSA, and reservation is made after comparing the price (activities

1.2a, 1.2b, 1.3a, 1.3b in Figure 10. The payment details are omitted to keep the example

simple. Figure 12 shows the code where the user has specified the cheapest flight

reservation in their preference.

<switch name="comparePrices">

<case condition="bpws:getVariableData

1.1.1.a
checkAvailability_reply

 Customer Travel Agent AirFrance AirUSA

 1. Request
(SourceCity,DeptCity)

1.1.a checkAvailability

1.1.b checkAvailability

1.2.a getPrice

1.2.1.a getPrice_reply

1.2.b. getPrice

1.2.1.b. getPrice

 1.3.a getReservation

 1.3.1. a
getReservation_reply

1.3.b getReservation

 1.3.1b
getReservation_reply

 1.4 Response

1.1.1.b
checkAvailability_reply

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 49

('compInfo','PriceAirUSA') < bpws:getVariableData('compInfo','PriceAirFrance')

">

<invoke name= “AUinvokegetReservation” </case>

<otherwise>

<invoke name= “AFinvokegetReservation”

<partnerLink= “AFgetReservationPL” …………..>

</otherwise>

</switch>

Figure 12 Selecting the cheapest AirLine using <switch>

The implementation of travel agent example illustrates the expressiveness of BPEL as

Web services composition language. This chapter uses the above described travel agent

case study for the discussion.

3.2. Hybrid Framework for Web services composition

3.2.1. The Implementation Scenario

This research work uses classic travel agent problem as the implementation scenario for

the composition tool. The implementation of the tool is based on the composition of

real-world services from the airline businesses while dummy services were used for

hotel and car rental business domains. None of the air line domain applications interface

to users through a Web service, hence Web service wrappers were developed on the top

of their HTTP portals, and they were then subscribed to a local UDDI and made

available for the composition. For instance, wrappers were developed for three airline

services: EasyJet (http://www.easyjet.com/), WizzAir (http://wizzair.com/) and FlyBmi

(http://www.flybmi.com/) portals. The parameters and fieldnames in particular Web

services are maintained the same as on the web portal.

In hybrid approach, the service composer builds a BPEL-based scheme for the

composition of services belonging to specific application domains; it is then the

responsibility of the service providers to adapt their Web services, if necessary, to the

domain interface of the composition scheme. The advantage to the service composer is

the ability to recompile and fire the composition with different domain-specific Web

services with minimal effort. For instance, travel agent application composes services

belonging to three domains: airline, hotel, and car rental. The travel agent pre-specifies

the functionality (domain interface) that it expects from each participant, for example

price quotation for the user specified flight details. A large section of information

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 50

engines and e-commerce services which integrate different Internet-based services

through a unifying access interface fall under the same category; for instance loan

providers (loan assessor, banks, insurance companies) and shopping robots.

The following sections explain how the domain-interface is specified and how it is

exploited to facilitate the seamless dynamic composition of Web services based on the

BPEL approach.

3.2.2. Specification of the domain of services

Central to the idea of the grouping services in a domain is the presentation of a domain-

interface of the functionality expected from the service by the service composer in a

standard, unambiguous format that is comprehensible by the software programs rather

than the human developers. See Figure 13.

Figure 13 Specification of Domain

The BPEL execution relies on the WSDL syntactical standard that can be used for

defining the expected functionalities from a participant Web service for particular

domain. The problem with WSDL is that it is a syntactical standard that is developed for

human developers rather than program based automation. Hence the tool uses

ontologies defined with OWL, to describe the domain-interface depicting expected

Participant

Domain 1
Participant

Domain 2

Participant

Domain N

Composition

Logic

Domain specific
interface

Domain specific
interface

Domain specific
interface

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 51

functionality for a particular domain. In the tool, WSDL files are accompanied with a

semantic description of the service parameters expressed in OWL ontology. This allows

the description of expected functionality to be inferred in unambiguous form. Figure 14

illustrate the application of the above solution to the travel agent example

Figure 14 Domain specific composition

A segment of such owl-wsdl domain interface for the airline domain is shown in Figure

15 and Figure 16. The WSDL file complex-type FlightQuery of Figure 15 has been

mapped into OWL class FlightQuery of Figure 16; hence an OWL reasoner can

apply the class relationship based inference to verify that the mapped message type

contains all the required elements.

<wsdl:definitions targetNamespace="http://travelagent.ntu.ac.uk/AirLineDomainService">

<wsdl:types>

 <complexType name="FlightQuery">

 <sequence>

 <element name="noOfAdults" type="xsd:int"/>

 <element name="departure-date" nillable="true" type="xsd:dateTime"/>

 …

 </sequence>

</complexType>

Figure 15 Domain specific interface- WSDL file

Travel Agent

BPEL Process

Namespaces
PartnerLinks
Variables
Assignments
Process Logic

WSDL

OWL
WSDL

OWL

WSDL

OWL

Hotel
Domain

Air Line
Domain

Car
Domain

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 52

<owl:Ontology rdf:about="http://localhost/ntu/ac/uk/2005/

TravelAgent/AirLineDomain.owl">

</owl:Ontology>

<owl:Class rdf:about="http://localhost/ntu/ac/uk/2005/

onto/travelquery.owl#FlightQuery">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty

rdf:resource="http://localhost/ntu/ac/uk/2005/onto/travelquery.owl#noOfAdults"/>

 <owl:someValuesFrom>

 <rdfs:Datatype rdf:about="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty

 rdf:resource="http://localhost/ntu/ac/uk/2005/onto/travelquery.owl#departure-date" />

 <owl:someValuesFrom>

 <rdfs:Datatype rdf:about="http://www.w3.org/2001/XMLSchema#dateTime"/>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

Figure 16 Domain specific interface - OWL file

If a new domain-related Web services is to be created, the domain-interface files can be

used to create a new Web service that adheres to the functionality expected by the

service composer. Otherwise, the service provider needs to edit the ontology file to

overcome any mismatches in the service descriptions (parameters and method names).

In this case, the ontology can bridge the semantic mismatch provided that conceptual

meaning remains the same. Figure 17 describes an ontology file provided by one of the

candidate airline service to overcome semantic mismatches with the travel agent domain

interface. The ontology file documents the fact that departureFlightDate element

of this airline description is conceptually similar to the element departure-date in

the Figure 16.

Figure 17 Ontology file for EasyJet Airline service

<owl:Ontology rdf:about="http://localhost/

ntu/ac/uk/2005/EasyJet/easyjet.owl">

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 53

</owl:Ontology>

<owl:DatatypeProperty

rdf:about="http://localhost/ntu/ac/uk/2005/EasyJet/easyjet.owl#departureFlightDate">

 <owl:equivalentProperty>

 <owl:DatatypeProperty

rdf:about="http://localhost/ntu/ac/uk/2005/onto/travelquery.owl#departure-date">

 </owl:DatatypeProperty>

 </owl:equivalentProperty>

</owl:DatatypeProperty>

3.2.3. Dynamic Pool for Domain-Specific Web services (DPDWS)

In the second phase, the tool attempts to integrate the domain-specific Web services into

a dynamic pool, where the services can dynamically plugged-in and out of the

composition scheme, without the need to re-code the composition logic. As explained in

the previous section, the prerequisite for domain membership is the availability of a

WSDL file describing the service functionality and an accompanying ontology file,

ensuring the compatibility of the service parameters to the domain interface.

Domain membership verification

Domain membership verification module verifies the membership of Web services to a

particular domain and ultimately the composition scheme. The module verifies the

above-mentioned prerequisite according to the following steps (the airline domain is

exemplified):

1. Parse the WSDL and corresponding OWL files of the candidate Web services

against the domain interface to check all the possible mappings between what is

expected and what is provided by the candidate service. If the candidate service

description file - WSDL has different format to the domain description file, the

supplied ontology is searched for a mapping for this mismatch. If the ontology file

has the required mappings, the mappings are stored for future use when the actual

composition with this service takes place. For instance, the membership module

stores valid mapping departure-date-> departureFlightDate for EasyJet

service.

2. If the service parameters match semantically, make the service available within the

AirLine DPDWS (Figure 18), i.e. declare the service as composition-ready; this

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 54

involves storing a reference for the service with the composition-necessary details:

target namespace, mappings between required-provided elements, operation name

with corresponding portTypes, message names and message types. The verification

module also create partnerLink name, partnerLink type and partnerLink role based

on the service name for this service. Table 3 describes such possible information.

These details are used when the actual composition is carried out.

Figure 18 Membership verification module for the Dynamic Pool for Domain-Specific Web
services (DPDWS)

Table 3 Information stored by Membership Verification module

mismatch1
(FlightQuery => departureFlightDate, FlightQuery=>departure-date)

messageName

getEasyJetFlightsRequest

operation Name/portType

CheckReservation/ EasyJetPortType

 Store

 Namespace

http://travelagent.ntu.ac.uk/EasyJetFlightService

Namespace prefix

ejet

Variables

inputEasyJetAir => getEasyJetFlightsRequest

partnerLink name

EasyJetPL

partnerLinkType

EasyJetWSLink

 Create and Store

partnerRole
EasyJetWSProvider

Figure 19 is the snapshot of airline domain membership verification module, which

implements domain membership algorithm and is designed using Jena [70], Pellet [71]

ontology reasoner, DOM XML parser and the Java technology. The only input required

from the service provider is description and ontology files and the tool takes care of

FlyBmi WizzAir

Dynamic Pool for Domain-Specific

Web Services (DPDWS)

Membership

Verification

EasyJet service provider

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 55

making the service composition-ready by following the membership verification

algorithm.

Figure 19 Membership Verification

The next section details the mechanism for automating dynamic selection of Web

services from the dynamic pool and their integration into the composition scheme.

3.2.4. Dynamic BPEL-based service composition facilitated by

DPDWS

In the tool implementation, dynamically adding a Web service from the domain pool

constitutes placing an instance of the service in the composition scheme file. For

example, to add the functionality of retrieving a price quote for a specific journey by the

easyjet airline service, the travel agent service composer will have to add the following

instance to the relevant execution segment of the BPEL composition file:

[<invoke name partnerLink="EasyJetPL"

portType="ejet:EasyJetPortType" operation="checkReservation"

inputVariable="inputEasyJet" outputVariable="outputEasyJet"/>]

Such integration is automatically performed by dynamic composition tool. Hence, the

BPEL process file does not have to be manually edited and recompiled to integrate

alternative Web services into the composition scheme.

Table 4 shows how a BPEL process can be created with the programming-based tool.

This implies that the BPEL process file can be created dynamically with the inclusion of

the new services from particular domain. This tool can create the service references by

reading the WSDL file and can add them throughout the composition scheme, making

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 56

the creation of process file automatic and the resultant composed service execution

ready. This makes the scenario shown in Figure 20 possible where services from the

domain can be plugged in and plugged out automatically.

Table 4 Process file creation with Java
Required composition function Corresponding tool method

Add partnerLinks for the airline
service with particular values for the
new service

public String setParetnerLinks(
Document bpeldoc, String prefix, String partnerlink_name,
String partnerlink_type,
String partnerlink_role)

Set the process logic for the AirLine
service by placing partnerLink, which
has price Check operation.

public void setPriceCheckInstance
(Document bpeldoc,,String invar, String outvar, String
portType, String operation,
String partnerlink_name)

Figure 20 Travel agent composition facilitated by DPDWS

The target BPEL execution engine for the tool is Oracle’s BPEL Process Manager [38].

It is worth to mention that this particular implementation of BPEL also requires two

additional files to be input with the BPEL process file: a service wrapper WSDL file

that contains information to make the service a partner in the business process and a

BPEL configuration file that identifies the location of the wrapper file and binds it with

a particular Web service partnerLink. For each new service participating in the

Hotel DPDWS

FlyBmi WizzAir

AirLine DPDWS

EasyJet

Travel Agent

Composition

Module

Car DPDWS

RentACar

Hilton Holiday Inn

EuroCar

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 57

composition, the bpel.xml file is modified to include new service. The tool creates

the process file, wrapper file and adds the entry in the bpel.xml file making the

process files composition ready and with the inclusion of newly added service.

Following is the algorithm for DPDWS-facilitated composition, which creates BPEL

process file automatically allowing the services dynamically selected from the domain.

Algorithm for DPDWS facilitated domain specific Composition.

In the implementation, the composition module is always initiated with a default

skeleton file that contains the composition scheme of default Web services. For

example, composition can be initiated with the easyjet Web service from airline domain,

hilton Web service from the hotel domain and Rent-A-Car Web service from the car

domain. The tool performs the following steps for facilitating the dynamic composition

of alternative domain-specific Web services.

1. On the selection of an alternative domain service, a new BPEL composition scheme

and other configuration files required by the BPEL execution engine are generated.

This is achieved as follows:

i) The reference for the alternative service is selected from the membership

verification module. This will include all the details pertaining to the service and

required by composition module such as partnerLink details, namespace, and

prefix. Next the semantic mappings are retrieved from membership verification

module and used them wherever applicable during the process logic.

ii) The new service namespace is added to the root element of the newly created

BPEL composition scheme.

iii) PartnerLinks are added for the new service.

iv) The messages of the Web services are mapped to the BPEL process variables; the

variable names are generated automatically. Steps ii-iv use the reference details

created during membership verification module.

v) The process logic for the new service is composed from the created service

instances. This includes the addition of the service instance at all the places where

the composition logic for a particular domain is defined in the default skeleton

BPEL process file. Examples of such instances can be invoking the service,

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 58

assigning responses to intermediate variables and passing them for particular

operations etc.

2. The newly generated BPEL composition scheme is validated.

3. A service wrapper file is created with the partner link information defined for the

service reference and including a pointer to the location of WSDL file within the

wrapper file.

4. Finally the partnerLink details are bound with the service wrapper file location

and the existing bpel.xml file is modified to reflect the integration of the new

service.

The composition module algorithm is implemented using Java technology and DOM

XML parser. Figure 21 illustrates the admin interface of the composition tool. The

locations of process (BPEL skeleton file) and configuration files are necessary for the

initialisation of the tool. The list of available services to each DPDWS is dynamically

populated with the membership verification module detailed earlier. The service

composer can select any possible combination of service from domains for composition

and new process file with configuration files are automatically created and the

composed service is fired if required.

Figure 21 Travel Agent Composition

In the tool implementation, the composition module is initialized with the default

skeleton file (See Appendix A, Table 24). When a different domain service has been

selected for the composition, the composition module retrieves the information for the

new service from the membership verification module. For instance, to replace the

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 59

default WizzAir service with EasyJet service in the composition scheme, here are

few examples on how the verification and composition modules collaborate to bind the

new service:

• The name space now represents EasyJet: Namespace =

http://travelagent.ntu.ac.uk/EasyJetFlightService

• In place of expected FlightQuery � depature-date element, the service

will expect FlightQuery � departureFlightDate.

• The unique prefix for this service becomes ejet and partnerLink name =

EasyJetPL

• Variable for the messageType getEasyJetFlightsRequest becomes

inputEasyJet

This information is feasible to generate and retrieve considering the domain specific

implementation of the composition module and restriction imposed on the service

participants. The composition module then takes the default BPEL file and replaces the

instances of new service by following the unique prefix identifier of the existing service

in the composition scheme. Refer in Appendix A.

The approach explained in this section demonstrates the use of domain-specific services

combined with lightweight semantics to alleviate the cumbersome and time-consuming

task of manually compiling a BPEL-composition scheme each time a new service is

added to the composition scheme. This is very important particularly when the

underlying composition logic rarely changes.

3.3. Related work

In recent years, the research community have realized that the union of semantics with

business standards can be helpful in automating composition tasks.

Akkiraju et al. in [24] presents such semantic-based approach which uses semantic

annotations within WSDL file, to facilitate service discovery and selection. The hybrid

approach discussed in this chapter differs in that it uses ontologies in combination with

WSDL to describe the service fields and to incrementally describe any mismatches in

the service provider’s service. The logic implementing the association between domain

specific WSDL fields and domain-specific ontology elements is handled using the

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 60

ontology reasoner and is pre-defined and hard coded in the membership verification

module. The membership module scans the service participant’s ontology files for

equivalent properties.

Mandell and McIlraith adopt [67] similar approach but propose a bottom-up approach

for Web services interoperation in BPEL4WS; they use OWL-S based descriptions for

runtime binding of service partners. The Implementation collects the OWL-S profiles

into a repository and exploits the profile semantics to query partners for desired

properties. This approach allows selecting partners at run-time otherwise selected at

design-time according to BPEL process model. Their implementation includes SDS

(Semantic Discovery Service) module, which works as a broker for the semantic

discovery. SDS sits between the BPEL process engine [40] and Web services partners.

In the framework BPWS4J, in place of passing requests to hard-coded, pre-selected

partners directs them to SDS, which in turn locates service partners providing required

properties. This approach uses semantic web Technology for automatic, meaningful

service selection. However, the problem of actually automating the composition process

is not addressed, as the composition logic is built manually for inclusion of partner

services.

The hybrid tool considers the composition from the service composer’s perspective. The

service composer categorizes the possible service partners into domains and makes the

domain specific interface (WSDL+OWL) available to the service providers. This

interface serves as the prerequisite for joining particular domain. Hence, the tool is

based on top-down approach that declares the expected requirements first and then

populates domains with compatible services; unlike [67], which uses OWL-S profiles

for selecting service partners based on service descriptions. The tool also allows

creating a general re-usable programming framework for selecting services from

particular domain and composing them automatically.

Traverso and Pistore in [68] present an AI planning based technique to convert semantic

(OWL-S) web service process models into executable BPEL4WS processes. The

implementation translates the OWL-S profile models into partially observable state

transition systems, which are utilized for generating plans to reach the goals for

composition. Their approach uses semantics at the composition level and takes

advantage of the expressiveness and executable nature of low-level BPEL processes.

The approach targets the composition of services to be automatic, while service

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 61

discovery and selection is manual. The hybrid tool also uses semantics at the

composition level; however it exploits the BPEL process creation mechanism combined

with domain concept to implement an automatic composition programming tool rather

than using planning techniques. The implementation allows selection and removal of

service partners in the composition to be automatic.

3.4. Summary

The aim of the research effort in this chapter was to create a tool that alleviates the

burden of dynamic Web services composition. The argument is that despite the evident

popularity of Web services as a secure distributed computing paradigm and the value-

added dimension that composition adds to it, the practical adoption of the technology is

still hindered by the knowledge and effort required for the compilation of the

composition process and the manual adaptation of new and existing web services to it.

After critical analysis of current approaches to Web services composition, the

conclusion was that there is scope for developing a practical and current solution that

merges the benefit of practicality of use and adoption popularity of workflow-based

(BPEL-based) composition, with the advantage of using semantic description to aid the

composition participants in automatic discovery and interoperability of the composed

services.

The main premise of the approach is to aid the service composer in building a generic

BPEL-based scheme for the composition of services belonging to specific application

domains, and assist the service providers in adapting their application services to the

composition scheme. Web services join the BPEL composition scheme by subscribing

to a specific domain interface.

In the tool, the domain functionality described in WSDL-XML grammar is

accompanied by a semantic description of service parameters expressed in OWL

ontology, allowing the description of the expected domain functionality in an

unambiguous form and catering for any mismatches in the Web services description. A

domain membership verification module was developed that allows the service

providers to adapt their application services to the domain interface and making them

with minimal effort.

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 62

Once a domain Web service is declared composition-ready, the dynamic composition

tool transparently integrates the Web service into the BPEL process file, i.e. it is

automatically added to a pool of dynamic Web services for this domain. The chapter

describes the algorithm for dynamic population of the domain pool with Web services,

thus allowing the service composer to effortlessly select any possible combination of

services from the composition domains and fire the composed service.

3.5. Limitations of the workflow-semantics hybrid approach

The BPEL specification solves the immediate problems industry is facing regarding the

use of Web services for enterprise application integration. However, in its present form

the specification overlooks the possibility of binding the service participants and

performing flow management on the fly, hence only specifies how the service composer

can perform both activities manually. As demonstrated in this chapter with the DPDWS

tool, enriching BPEL specification with semantics achieved automatic selection of the

Web services with prior-agreed interfaces. The hybrid approach presents a practical

solution to a current problem. However, the approach could only achieve limited

automation to the composition as elaborated below:

� The main contribution of this approach is to utilize semantics in the BPEL

specification to provide dynamic selection of the Web services participants at

runtime with the use of semantics processing as a middleware. However this does

not take full advantage of the semantic description capability, as the use of

semantics is limited to the Web services functional parameters. The non-functional

parameters play a significant role in deciding service suitability for particular task;

for example, a Web service can be selected based on the Quality of Service it

provides. The main problem is that the BPEL specification has no scope to

accommodate non-functional parameters beyond IOPE (Input, Output, Precondition,

and Effect) due to the absence of syntactical notation in BPEL.

� In order to automate Web services composition, two problems have to be resolved:

automatic discovery and selection of Web services and automatic compilation of

flow management for the selected services. The hybrid approach addresses the Web

service discovery problem, but relies on the flow management provided by the

BPEL process model hence on the understanding of service composer to design the

flow management.

 Chapter 3: Bridging Gap between Workflow and Semantic based Web Services Composition

 63

To summarize, the use of semantics with workflow-based composition is going to

involve the human developer at some stage whether it is at the level of domain

subscription or compilation of the composition scheme. Hence, the provided facilitation

is restricted.

The root of the problem is related to building the process model on top of WSDL, which

is an XML grammar. Using XML one cannot define concepts or relations between

concepts, which is the most important factor for the intelligent reasoning required for

the automation. The issue related to the current discussion is the use of non-semantic

grammar for the composition specification. For the composition engine to provide

automatic discovery and flow management, the process model needs to have the

consideration of the semantics in the specification. The addition of semantics within an

XML centric standard like BPEL will not achieve the sought-after automation as that

would require an intelligent reasoner which can interpret the semantic description. The

following chapter will introduce research efforts to develop an intelligent semantic-web

based reasoner based on the AI theory of Case Based Reasoning (CBR).

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 64

Chapter Four: Semantic-Driven
Matchmaking and Discovery of Web
Services using Case Based Reasoning

The automated discovery of adequate Web services is the pre-requisite and core feature

for achieving dynamic Web services composition. This chapter presents an approach

that utilizes Case Based Reasoning (CBR) methodology for modelling Web services

discovery and matchmaking problem. The framework uses OWL semantic descriptions

extensively for implementing both the components of the CBR engine and the

matchmaking profile of the Web services.

4.1. CBR for automated Web services discovery and

composition

The accuracy of service selection is critical to the success of the composition process

and largely relies on assessing the capability of a service in accordance to the service

composition request. In this research, the concept of considering “runtime behaviour of

services” to improve the accuracy of Web services discovery is proposed. The

argument is that the existing semantic and non-semantic Web services composition

approaches do not consider run-time behaviour of Web services in order to assess

service suitability for the service request. For example, semantic approaches that rely on

OWL-S profile for discovery compare service descriptions for the service request and

existing services in registry in terms of whether the offered service has similar inputs

and outputs with similar data or object types to the service request, and if it has then the

service is considered a potential solution. These approaches can satisfy coarse-grained

service requests that consists of a simple singleton query such as book purchase

services, airline booking services or sensor reading services; however these approaches

cannot satisfy fine-grained service requests such as finding a book purchase service that

charges in USD or finding an airline that travels from Milan and charges in EUR or

finding a sensor service that has reliability of 0.9.

4

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 65

Figure 22 exemplifies the argument about consideration of run-time behaviour of Web

services in service selection. As shown in Figure 22, in existing approaches, for a new

service request the descriptions are matched with the available service descriptions. For

instance, to find a service that provides flight to the German city Bonn and charges in

USD, the existing approaches match service descriptions of (OutputCurrency,

To_City) with the existing services in the service registry. Although for the candidate

Web services it is highly likely that service descriptions are semantically similar, the

run-time execution values can vary significantly. This variation is expressed in the

values for such functional and non-functional parameters constituting domain-specific

knowledge. This domain-specific knowledge can provide valuable guidance for

decision-making process regarding service adequacy for the task. This is because

service run-time behaviour is difficult to presume prior to service execution and can

only be formed based on the experience with the service execution.

Figure 22 Matching service descriptions v/s service run-time behaviour

As shown in the Figure 22, in the proposed approach considering the execution values

of Web services in service selection is advocated. For instance, service request in

EasyJet
OutputCurrency, To_City

Service Request
OutputCurrency=USD,
To_City=Bonn, QoS= 2.1 sec

WizzAir
 OutputCurrency, To_City

EasyJet
OutputCurrency = USD, To_City =
Bonn QoS = 1.5 sec

WizzAir
OutputCurrency = EUR, To_City =
Bonn QoS = 1.5 sec

Do you provide these description and execution values?

Do you have these service descriptions?

Matching service descriptions in existing approaches

Matching run-time behaviour of services in our approach

Do you have these service descriptions?

Service Request
OutputCurrency=USD,
To_City=Bonn, QoS= 2.1 sec

Do you provide these description and execution values?

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 66

addition to functional parameters (OutputCurrency, To_City) can include non-

functional parameters such QoS, and compare services in registry with their execution

values such as there exists a past run-time experience with EasyJet where the service

charged in USD, the destination city for travel was Bonn and QoS of the service was 1.5.

The accuracy of automatic matchmaking of Web services can be further improved by

taking into account the adequacy of such past matchmaking experiences for the

requested task.

Therefore, there is a need for a methodology that uses domain-specific knowledge

representation system for capturing the Web services execution experiences and reason

based on those experiences. Case Based Reasoning [72] provides such methodology as

its fundamental principle is that experience formed in solving a problem situation can be

applied for other similar problem situation. An added benefit of reasoning about past

execution experiences can be the analysis of aggregate service behaviour over time. For

instance, more precise conclusions can be drawn about the service reliability by

analyzing its QoS execution experiences over a period of time.

This chapter presents a Semantic Case Based Reasoning (SCBR) framework, in which

reasoning for service discovery and matchmaking is based on a set of previous

experiences or cases described using semantics.

4.2. Overview of Case Based Reasoning

The CBR technology was developed in 1977 based on the research effort of Schank and

Abelson. In [73], they proposed that our general knowledge about situations is recorded

in the brain as scripts that allow us to set up expectations and perform inference. CBR’s

fundamental premise is that situations recur with regularity [74] i.e. experience involved

in solving a problem situation can be applied or can be used as guide to solve other

contextually similar problem situation. The reasoner based on CBR hence matches the

previous experiences to inspire a solution for the new problems. The processes involved

in CBR can be represented by a schematic cycle as described in Figure 23 and

comprising of four phases [74].

� RETRIEVE the most similar case(s); this phase requires case retrieval methodology

to find cases with similar experience.

� REUSE the case(s) to attempt to solve the problem; this phase requires a case

matchmaking methodology to identify similar cases in order to reuse those cases.

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 67

� REVISE the proposed solution if necessary, this phase requires case revision

methodology to adapt existing cases to fit new problem request.

� RETAIN the new solution as a part of a new case; this phase requires case

representation to be defined and cases to be indexed and stored.

Figure 23 The CBR Cycle

Following figure describes the main stages in CBR reasoning to achieve the

aforementioned four stages in the CBR cycle.

Figure 24 CBR methodology

Case Representation

- Defining Case Vocabulary
- Selecting Case Representation format

Case Search and Evaluation
- Case Retrieval.
- Case Matchmaking.
- Case Revision/Updating/Adaptation

Case Storage & Indexing

- Indexing Cases
- Storing Cases in the Case Library/Case base.

Retrieved
case

New
Case

Problem

Retrieved
case

RETRIEVE

Solved
case

Adapted
Case

REUSE

Learned
Case

REVISE

Case

Library

RETAIN

Suggested
Solution

Confirmed
Solution

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 68

4.2.1. Case Representation

Case is a core component of CBR system and can be defined as a contextualized piece

of knowledge representing an experience [74]. It contains the problem, a description of

the state of the world when the case occurred, and the solution to this problem. When a

reasoner is created, the elements of the case are defined according to the context. For

example, the city of departure or the output currency could be some elements to

represent a travel experience as a case. Case vocabularies are thus developed for each

reasoner, to define what knowledge needs to be captured. Hence, case vocabularies are

the labels or the representation schemas defining knowledge. These vocabularies need

to be organized in modular or structured fashion to make them recognizable by the CBR

reasoner; hence various representation styles for case representation exist.

4.2.2. Case Storage and Indexing

A case worthy of storage contributes to the reasoning process by representing a

potential base solution for new problem situations. Such cases need to be indexed and

stored in the case library or case base, so that reasoner can retrieve them for reasoning.

The process of searching entire case library is computationally expensive and indexing

cases and searching cases based on indices allows frameworks to efficiently find a

solution as indexing process effectively reduces number of cases to be investigated.

Apart from efficiency the purpose of indexing cases is relevance, i.e. to retrieve

contextually relevant cases to the new problem.

4.2.3. Case Search and Evaluation

Whenever a new problem needs to be solved, case library is searched for the cases that

can provide potential solution. The first phase of the search is case retrieval, and uses

indexing to retrieve cases that are contextually similar to the new problem. The next

phase is matchmaking where the retrieved contextually similar cases are further

matched or investigated to verify if a solution to prior problem situations can be applied

to the problem in-hand. If the system does not find an adequate match, then the

combined contextual knowledge of relevant cases is applied to solve the problem, this

phase is called adaptation. On success, adapted cases are entered in the case library. On

failure, the situation leading to failure is entered in the case library, which serves as a

guide to the CBR reasoner to avoid future failures in similar problem situations. The

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 69

inconsistencies encountered during the evaluation are recorded as cases and are termed

case revision.

4.3. Modelling Web Services Discovery and Composition

Problem into CBR Problem

CBR maps naturally into the Web services composition problem as it is possible to

model the search and adaptation methodology in CBR as Web services discovery and

composition mechanism. Figure 25 illustrates how CBR modelling can be applied to the

problem of Web services discovery and composition problem. In the SCBR framework,

Web services execution experiences are modelled as cases where the cases are the

functional and non-functional domain specific Web services properties described using

semantics. In this modelling, the case library will be the storage place for such

execution experiences and is identical to Web service registry in that it stores Web

services references, but unlike registries case libraries also describe runtime behaviour.

Figure 25 Mapping Web services composition problem to CBR

The process of case search is divided into the matchmaking and retrieval sub processes.

The retrieval process is similar to Web services discovery problem in that both

mechanisms seek to find potential Web services for the current problem. The case

matchmaking process is similar to Web services matchmaking as both processes

attempts to select acceptable Web services from the retrieved Web services by the

retrieval phase. The process of case adaptation which is applicable when the available

cases cannot fulfil the problem requirements and the process is carried out by adapting

Case Representation

Web services Discovery &
Composition

Web services Description

Case Storage & Indexing Web services Publication &
Registry Storage

case

Case Search & Evaluation

Case
Library

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 70

available cases, is similar to Web service composition, as the composition is applied

when available services are not sufficient in meeting the requirement for the problem.

The apparent compatibility confirms thesis of this research that the CBR methodology is

well suited to build automatic Web services composition frameworks. This chapter

explores utilization of CBR to model the Web services discovery and matchmaking

problem. Chapter 5 deals with the problem of service composition.

4.4. Use of Case Based Reasoning for Web Services

Matchmaking

4.4.1. The Framework Architecture

In the SCBR framework, there are two main roles: case administrator who is responsible

for case library maintenance by entering or deleting cases from the library and case

requestor who searches the case library to find solution for the problem and is similar in

role with Web service requestor. Figure 26 illustrates the schematic diagram for the

framework.

Figure 26 Architecture of the SCBR framework

retrieved cases

admin

CBR
Engine

domain
representations

candidate
web service

Case
Matchmaking

case with
similar index

annotated problem

case library

new problem index

matched cases

service reference
requestor

 Indexing

 Case Retrieval

problem description Semantic
Description

Generator

new problem

semantic case
representation

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 71

The framework allows the Web service requestor to provide problem description and

search for Web service that meets the requirements. The dynamics of the framework

operation is as follows:

1. Initially, the administrator populates the repository with semantic case

representation formats for specific application domain. This representation is used to

semantically annotate both the user requests for suitable services and the execution

experiences of Web services for the specific domain.

2. The SCBR Engine is the first entry point for the web service requestor, who can use

the user interface to input the problem requirements and as a final result receives

Web service references with other details. After receiving the problem description,

SCBR starts search for finding suitable services that matches the request.

3. At this stage, the engine passes new problem description and the custom semantic

case representation format to the semantic description generator module, which

annotates the new problem according to the representation format

4. The annotated problem is then passed to the indexing module, which computes the

suitable index for the new problem and passes the index to the case retrieval module.

5. The case retrieval module queries the case library for cases with the similar indexes.

Output at this stage will be the cases, which have similar index to the current

problem and these retrieved cases are passed to the next stage.

6. The case matchmaking module takes retrieved cases and the annotation of problem

description from the semantic description generator module, and outputs matched

cases.

7. The CBR engine receives these matched cases and extracts the Web services details

from the solution part of the case.

8. The CBR engine returns Web services details to the service requestor.

4.4.2. Benefit of utilizing semantics for service discovery

Web Ontology Language (OWL) is utilized for constructing ontologies in this

framework. From a computing science point of view, ontology represents an area of

knowledge that is used by people, databases, and applications that need to share domain

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 72

information. Ontologies include computer-usable definitions of basic concepts in the

domain and the relationships among them.

Applied to Web services retrieval, the semantic annotation of Web services creates a

conceptual understanding of the domains that the services represents, enabling software

agents, i.e. search engines, to make more intelligent decisions about the relevance of the

services to a particular service request. For example, when searching the jUDDI free-

text based Web services search engine for some travel web services relevant to London,

it seems relevant to use keywords ‘travel service to London’. However, the jUDDI

search engine returns 1 service out of possible 10 relevant services, with returned results

including London Underground Web service, primarily because the string

“London” is part of the service name.

The use of the semantic web in Web services retrieval is likely to improve the

computer’s understanding of the domain objects and their interactions. The goal is to

make the machine understand that London is a city, and that it is an English capital and

there are number of transport mediums available departing from and arriving to the city

of London.

The ontology relating London to City concept should be able to retrieve all the services

execution experiences where departure city is London. To attain such expanded results,

the data needs a better structure, so as to make sense for a machine that City are

attached to Travel and can be either departure city or arrival city. Here, the semantic

web is likely to bring a structure that integrates concepts and inter-entity relations from

different domains, such as City, Travel, and Transport in relation to the query above.

4.4.3. Semantics for Case Representation and Storage

The most common use of ontologies is the reconciliation between syntactically different

terms that are semantically equivalent. Applied to CBR case descriptions for Web

services, ontologies can be used to provide a generic, reasoner-independent description

of their functional and non-functional parameters. Moreover, ontologies can be used to

further index and structure cases with key domain features that increase the efficiency if

the matchmaking process. For instance, it is possible to add a feature to the travel

domain ontology to indicate whether a trip is domestic or international.

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 73

In the framework, ontologies are also used to describe the rules of the CBR reasoning

engine which streamlines the intercommunication between the Web service, user

request, and the case library.

This section provides details on how we use CBR modelling to address the Web

services discovery and matchmaking for specific application domains, exemplified by

the classic travel domain problem where a user (Web service requestor) searches

suitable Web service for a planned travel trip.

Case Vocabularies

In CBR theory, the first step is to define all the elements contained in a case and the

associated vocabulary that represents the knowledge associated with the context of a

specific domain. This vocabulary includes functional and non-functional parameters:

1. Functional parameters are the service inputs (e.g. the travel details) and the service

outputs or results are (e.g. travel itinerary). The Input corresponds to the request of

the user (e.g. date or city of departure) whereas output corresponds to the response

given to the user (e.g. price, flight number).

2. Non-functional parameters are constraints imposed by the user (e.g. exclusion of

particular travel medium) or preference over certain parameters (e.g. price range,

Quality of Service expected). In addition, runtime experiences stored in the case

library should also include the solution (e.g. Web service effectively used) and a

notion to specify if the solution is acceptable for the end-user. Features that

characterise the domain are extremely useful for top-level indexing and can also be

included as non-functional parameters.

Case Representation using Frame structures.

After deciding on the knowledge and corresponding vocabulary to be represented as a

case, we need to decide how this knowledge can be represented. The proposed approach

adopts frame structures for the case representation [75]. In frame structures, frame is the

highest representation element consisting of slots and fillers. Slots have dimensions that

represent lower level elements of the frame, while fillers are the value range the slot

dimensions can draw from. In the implementation, slot dimensions represent case

vocabulary in modular fashion while fillers describe the possible value ranges for the

slot dimensions.

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 74

The frame representations are highly structured and modular which allows handling

complexity involved in representation. Moreover, frame structures have a natural

mapping to the semantic OWL descriptions language as the semantic net representations

largely borrowed from the frame structures [76], which makes natural transition to the

semantic web descriptions possible. For example, slot in frame structure maps to

Class in OWL descriptions. Table 5 shows a frame structure for the travel domain

case vocabulary.

Table 5 Travel Domain Frame Structure

Slot Dimension Filler
City Departure valid city Travel Request

City Arrival valid city

Price Range positive double Travel Response

Currency any Valid Currency

On Instance valid Travel Domain Instance Constraints on Goal

On Domain valid Travel Domain

Preferences On Price range positive Double

On Currency valid currency

On QoS parameter possible QoS parameter(s)

Features Travel Regions Domestic/International

Solution Access Point pointer to the WSDL file.

Feedback Experience success/Failure

The frame structure is used for case representation of Web services execution

experiences. The case representation has a notion for describing functional and non-

functional parameters, which provides a mechanism for representing higher structured

real-life problems. For instance, a real world web services execution problem described

in plain English representation: “Find a Trip for single person, Mr Lee; Mr Lee wants

to travel from Boston to New York, with price range in total $220, He does not want to

travel by road. The dates of Travel will be 27-02-2005 for departure and 01-03-2005 as

return date. He prefers to pay in USD. He needs quick results (approximately in 1.5

seconds)” with solution will be transformed as frame as shown in Table 6.

Table 6 Example of a case

City Departure New York Travel Request

City Arrival Boston

On Price range 220

On Currency USD

Preferences

On QoS parameter 1.5executionDuration

Features Travel Regions Domestic

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 75

Solution Access Point http://EJ.com/ws.wsdl

Feedback Experience Success

Mapping Frame structure to Ontologies.

The developed framework map the frame structures to ontologies. The rules for such

mapping are described in Figure 27. According to this mapping, frame and slot are

represented as classes. The relationship between frame and slot is expressed in terms of

properties of a frame, where the range for these properties are the slot classes. The

dimensions are the properties of the slots. The possible range for these properties is the

values the respective filler can derive from.

Figure 27 Mapping frame structure to semantic case representation (Travel Domain)

The framework use OWL for representing these ontologies. After applying the mapping,

the ontology for the travel domain case representation is created (Figure 27), where

CaseRepresentation class has: hasTravelRequest, hasTravelResponse,

hasConstraintsOnGoal, hasPreferences, hasFeatures, hasSolution and

hasFeedback object properties. The range for these properties is TravelRequest,

TravelResponse, Constraints, Preferences, Features, Solution, and

Experience classes respectively.

In order to exercise the noble objective of globalization of semantic descriptions,

implementation used external ontologies where appropriate [77]. For instance, the

cityOfArrival is an object property referring to the publicly available ontology

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 76

where other useful information about the specific city can be found such as country, the

number of inhabitants, etc.

After modelling cases in OWL based semantic descriptions, it is possible to reason

using OWL reasoner [71]. Each new case stored in the case library, will be an instance

of the ontology class CaseRepresentation. This makes it possible to derive

inference for the purpose of decision-making, which involves further phases of CBR

system. The explicit values expressed in Table 6 have been semantically mapped as

illustrated in the following Table 7

Table 7 Semantic Description of case

Travel Request
City Departure New York ([City (USA [Country])]) is-city-of

City Arrival Boston ([City (USA [Country])]) is-city-of

Preferences
On Price range 220

On Currency USD ([Currency]) code

Features
Travel Regions Domestic ([Travel Regions])

Solution
Access Point http://Jetservices.net/UnitedAirLines.wsdl

Feedback
Experience Success

Class = [class], Instance = instance ([class]), Property = properties

4.5. SCBR FRAMEWORK DEVELOPMENT

4.5.1. Case Indexing and Storage

The cases can be indexed based on vocabularies, which should allow retrieval of

appropriate cases during the search procedure. For indexing the cases, the framework

uses “partitioning case library” method, which is a variation of “flat memory indexing”

technique [72]. In this indexing method, case library is partitioned based on certain

vocabularies and the new problem is recognized based on the identical vocabularies to

decide which partition the problem falls into. In our case study, cases are stored based

on vocabulary element Features as presented in Table 5, which corresponds to

hasFeatures property from the CaseRepresentation ontology class. For the travel

agent case study, the possible values for this vocabulary (hasFeatures property) are

either Domestic or International (pre-defined instances from the TravelRegion

class) hence indexing will partition case library into two parts. The indexing is

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 77

performed based on identifying combinations of features of a case that describe the

circumstances in which a reasoner might find the case useful during reasoning. To

achieve this it is sufficient to consider single feature in our proof-of-concept work,

however the real-world case based reasoning system require depending on the

application domain more than one vocabulary term or combinations of vocabulary terms

for indexing for this purpose. For example, CLAVIER [78] - a case based reasoner for

design and evaluation in the domain of autoclave loading and spatial arrangements,

indexes based on the autoclave parts, part layouts, part locations and part orientations.

4.5.2. Case Retrieval

Whenever a new Web service needs to be searched, the problem description involving

the functional parameters and non-functional parameters are encoded using the case

representation frame structure, i.e. as an instance of CaseRepresentation ontology

as illustrated in Table 5.

The framework identifies the new problem based on the partition it falls into and then

the rest of the matching is applied to cases from that partition only. This corresponds to

using hasFeatures property value to reason whether the new problem falls under

Domestic or International travel region. Based on the outcome of reasoning,

the cases associated with particular partition are further investigated.

4.5.3. Case Matchmaking and Ranking

The case retrieval procedure fetches Web services that are a potential solution to the

new problem. The matching process narrows down the retrieved cases to present

acceptable solution(s). From the available methods for matchmaking in CBR literature,

the framework uses Nearest-Neighbour Matching and Ranking using numeric

evaluation function [79]. This method operates as follows:

1. Compare the similarity for each property, between the new problem and the cases

retrieved. The method used for comparison depends on the type of property.

2. Quantify the weight of the similarity. A ranking is assigned to each property in

accordance with its importance as exemplified in Table 8. To improve the accuracy

of matchmaking process, a spectrum of functional and non-functional parameter

based matchmaking criteria is employed; hence requiring such novel quantifying

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 78

mechanism to measure these parameters individual contribution to the overall of

Aggregate Degree of Match (ADoM).

Table 8 Quantifying the Travel Domain case dimensions

Slot Dimension Importance (0-1)

City Departure 1.0 Travel Request

City Arrival 1.0

On Instance 0.2 Constraints on Goal

On Domain 0.8

For each case retrieved, the similarity degree is computed and the case with the highest

score corresponds to the best-match. Similarity takes values between 0 and 1, which is

attributed to each property for each retrieved case. The similarity comparison depends

on the type of the dimension: data or object.

Object property comparisons

For semantically matching object property value of the new problem and the retrieved

cases, the algorithm compares the instances. If the instances match, then the degree of

match is 1. Otherwise, the algorithm traverses back to the super (upper) class that the

instance is derived from and the comparison is performed at that level.

The comparison is similar to traversing a tree structure, where the tree represents the

class hierarchy for the ontology element. The procedure of traversing back to the upper

class and matching instances is repeated until there are no super classes in the class

hierarchy, i.e. the leaf node for the tree is reached, giving degree of match equal to 0.

The degree of match (DoM) degree is calculated according to the following equation:

Equation 1 Degree of Match (DoM)

Where MN is the Total number of matching nodes in the selected

traversal path, and GN is Total number of nodes in the selected

traversal path

For example, for the request in Figure 28, case#1 will return a degree of match of 0

because no matches are found while traversing the ontology tree until the leaf node is

reached. However, for case#2, the degree of match will be 2/3=0.67 as the instances

(New Jersey, New York) does not match but the instances of the Country super class

GN

MN
DoM=

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 79

match.

 Figure 28 Semantically matching object properties

Data type property comparisons

To compare data type properties, like the price range or the value of QoS (e.g. execution

time), the qualitative regions based measurement method is used, the closer the value in

a retrieved case is to the value in the request higher the similarity coefficient is.

For each data type property, this formula used is: |Vr − Vc| ≤ X.[Vr|, where V is the value

of the property in the request r or in the retrieved case c and X the factor of tolerance.

Thus, a factor of tolerance of 0.9 means the value of the retrieved case should be in

±10% region in relation to the value of the request. The optimum tolerance value is

determined by the administrator and can be calculated emperically.

Computing the overall similarity value

Overall similarity is evaluated by computing the aggregate degree of match (ADoM) for

each retrieved case according to the following equation:

∑

∑

=

=

×

=
n

i

i

n

i

R

i

N

ii

W

ffsimW

ADoM

1

1

),(

Equation 2 Aggregate Degree of Match (ADoM)

Where n is the number of ranked dimensions, Wi is the importance of dimension i, sim is

the similarity function for primitives, and fi
N

 and fi
R are the values for feature fi in the

new problem and the retrieved case respectively.

The evaluation function sums the degree of match for all the dimensions as computed in

the DoM step and takes aggregate of this sum by considering the importance of

dimensions.

 Request Case#1 Case#2

America Europe America Continent

USA UK USA Country

New Jersey London New York dimension

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 80

The accuracy of Web services discovery and matchmaking is dependent on the right

combination of indexing, ranking and the existence of adequate cases in the case library.

Although the chosen case study for this work is from the travel domain, the modular,

ontology-driven design of framework makes it application-independent and allows its

seamless reuse for other application domain.

4.6. Preliminary Implementation

To perform a case study, the SCBR framework for the travel domain is implemented.

The implementation of this framework uses semantics extensively to implement both

the utility ontologies describing the components of the Case Based Reasoner and the

domain ontologies that describe the profile of the Web services in the case library with a

semantic representation.

OWL was ontology language of choice and Pellet [71], a Java based OWL reasoner as

ontology engine in favour of the more popular Jena [70] as it supports user-defined

simple types. Pellet was used to load and verify (type and cardinality) ontology class

instances of user requests and candidate cases.

Figure 29 illustrates a snapshot of the GUI developed for the matchmaking framework.

The interface allows different options to two types of users: The case administrator, who

is responsible for case library maintenance and a case requestor who wants to retrieve

Web service for a trip. The implementation provides case administrator privileges in

order to perform case maintenance activities: case seeding, rankings and setting up the

threshold value, i.e., the acceptable value for matching coefficient. The case requestor

can also setup rankings, which will be applicable for a particular session.

While seeding the case library with a new case, the interface assists the case

administrator in creating the ontology instances. The main feature of the framework is

that the program creating the user Interface uses CaseRepresentation class from

the ontology (Figure 27) to form the GUI elements. The subsequent properties from the

CaseRepresentation class and the range for those properties constitute the rest of

the user interface. This allows maintaining transparency from the service requestor and

hides complexity of the reasoner. For example, one GUI component in Figure 29 shows

the mode in which case administrator is assisted in creating the instance of

TravelRequest class while entering hasTravelRequest property of

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 81

CaseRepresentation class. The value entered for particular property is validated

against the range and cardinality from the ontologies. The framework also makes the

possible instances available once they are created. For example, in Figure 29 while

entering values for the TravelRequest, city instances Boston and New York are

available for re-use. As a result of seeding a new case, framework creates an ontology

instance of CaseRepresentation class and stores into case library.

Figure 29 Seeding the case library

For case searching, the framework offers the requestor similar interface to that

available for case administrator, and creates semantic description for the new problem

parameters. The generated index for such semantically described problem governs the

decision regarding which partition the problem falls into and the cases from that

partition are retrieved for further matching. This matchmaking procedure is

implemented in accordance with the algorithm described in the section 4.5. The result of

the match-making procedure displays the case instances, which have similar problem

situation to the new problem. The framework also displays the aggregate matching

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 82

coefficient associated with such suggested case instances for the requestor to view and

make appropriate selection.

4.7. Preliminary RESULTS

At this initial stage of the development, the focus of the experiment was to validate the

logic for the matchmaking framework, rather than testing a fully working prototype. In

order to consolidate the test process, the experiment applied different rankings against

each test case and associated them with a specific profile. The profile represents a group

of users that have similar requirements for the travel request. For instance, the business

profile stands for corporate users, who have to travel frequently; therefore a high

standard of comfort is a significant element of choice. These users also need reliability

of services while cheap fare is not critical because firms very often have contracts with

travel companies. On the other hand, for regular users represented by personal profile,

cost is of paramount importance.

The three other types of users are mainly based on specific comparison properties: the

economy profile retrieves cases which price never exceeds a user-defined maximum

amount; travel medium profile is specific for constraints on travel domain as well as

instances; and the enterprise profile is useful for companies which are interested in

using reliable services. The later can be important if contracts between the company and

some Web services exist so that they can restrict other services.

Table 9 shows the rankings of profile systems. Example of constraint on domain is

traveller’s reluctance to use a certain transport such as Air transport; example of

constraint on instance is the exclusion of certain airline from the search such as

excluding easyjet airline. The Quality of Service parameter is represented as a single

parameter, but in this experiment it is expressed as the availability and response time of

the service.

Table 9 User Profiles

 Property

Profile Constraints

on Domain

Constraint

on Instance

Price Quality of Service

Business 0.6 0.4 0.1 0.5

Personal 0.4 0.7 0.5 0.2

Economy 0.4 0.2 1 0.1

Travel Medium 1 0.8 0.3 0.2

Enterprise 0.3 0.1 0.2 1

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 83

Table 10 Case Instances and Satisfactory measurements

 User

Case Business Personal Economy Medium Enterprise

CaseInstance#1 0.45 0.37 0.6 0.19 0.22

CaseInstance#2 0.36 0.26 0.21 0.22 0.24

CaseInstance#3 0.22 0.17 0.16 0.27 0.11

CaseInstance#4 0.1 0.11 0.04 0.03 0.05

CaseInstance#5 0.12 0.1 0.13 0.11 0.12

User Profiles satsifactory measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
us

in
es

s

P
er

so
na

l

E
co

nom
ic

M
ed

iu
m

E
nt

er
pr

is
e

User profiles

F
a
c
to

r
d

e
s
c
ri

b
in

g
 t

h
e

e
q

u
iv

a
la

n
c
e

CaseInstance#1

CaseInstance#2

CaseInstance#3

CaseInstance#4

CaseInstance#5

Figure 30 Case Instances and Satisfactory measurements

Table 10 and corresponding graph in Figure 30 highlight the fact that the services can

serve different circumstances differently. For example some cases (Web services

experiences) such as CaseInstance#1 present satisfactory results to all users, while

case CaseInstance#3 is more suitable for business category of users than the users

from the enterprise profile. According to conducted investigation, there is no similar

framework that allows comparing Web services on this granular level by analyzing

execution experience of candidate services.

4.8. Related Work

Semantic descriptions are increasingly being used for exploring the automation features

related to Web services discovery, matchmaking and composition. In [80] such

semantic-based approach is described. The authors use ontology to describe Web

services templates and select Web services for composition by comparing the Web

service output parameters with the input parameters of other available Web services. A

constraint driven composition framework in [66] also uses functional and data

semantics with QoS specifications for selecting Web services. In similar spirit,

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 84

DARPA’s OWL-S (Ontology Web Language for Web services) is the leading semantic

composition research effort. The OWL-S ontologies provide a mechanism to describe

the Web services functionality in machine-understandable form, making it possible to

discover, and integrate Web services automatically. An OWL-S based dynamic

composition approach is described in [44] , where semantic description of the services

are used to find matching services to the user requirements at each step of composition,

and the generated composition is then directly executable through the grounding of the

services. Other Approaches use Artificial Intelligence planning techniques to build a

task list to achieve composition objectives: selection of services and flow management

for performing composition of services to match user preferences. Authors in [47] uses

Golog – AI planning Reasoner for automatic composition, while in a similar spirit some

other approaches such as [42] have used the paradigm of Hierarchical Task Network

(HTN) planning to perform automated Web service composition. These approaches use

semantics for automatic Web services discovery, but they overlook the Web service

run-time behaviour in the decision-making process.

Experience based learning using CBR is a relatively old branch of Artificial Intelligence

and cognitive science and is being used [58] as an alternative to rule-based expert

system for the problem domains, which have knowledge captured in terms of

experiences rather than rules. However, case based reasoning for Web services was

initially documented in [59], where the developed framework uses CBR for Web

services composition. In their approach, the algorithm for Web services discovery and

matchmaking is keyword based and has no notion for semantics. This affects the

automation aspects for Web services search and later for composition. A similar

approach is described in [60], which proposes an extension of the UDDI model for web

services discovery using category-exemplar type of CBR, where web services are

categorized in domains and stored as exemplar of particular domain. Their

implementation of CBR reasoner facilitates UDDI registry by indexing the cases based

on the functional characteristics of Web services. However, the approach does not take

into consideration the importance of non-functional parameters in service selection and

the use of semantics at CBR level is peripheral as they primarily use the UDDI based

component for service discovery. The UDDI registry based publication and discovery is

text-based leaving little scope for automation. The SCBR framework consumes

semantics extensively and achieves the automation required for Web service discovery

and matchmaking. Use of ontologies also makes framework extensible and reusable.

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 85

The application of CBR, semantic web and Web services are common technologies in

this effort and the efforts in [82] albeit with different objectives. Their work is based on

consuming these technologies to assist the procedure of semantic web services creation

using CBR approach, while our main concern is services composition. The authors

present INFRAWEBS project to implement Semantic Web Unit (SWU) which is a

collaboration platform and interoperable middleware for ontology-based handling and

maintaining of semantic web services. The framework provides knowledge about a

specific domain and relies on ontologies to structure and exchange this knowledge to

semantic web services development process.

There are also a number of existing approaches which apply CBR for workflow

modelling. Madhusudan et al. in [62] propose an approach to support workflow

modelling and design by adapting workflow cases from a repository of process models

where workflow schemas are represented as cases and are stored in case repositories.

The cases are retrieved for a problem which requires similar business process to solve

the problem. The description and implementation language of framework is based on

XML and main focus is on assisting workflow designer in creating business process

flows.

In similar spirit, [63] represents adaptive workflow management system based on CBR

and targets highly adaptive systems that can react themselves to different business and

organization settings. The adaptation is achieved through the CBR based exception

handling, where the CBR system is used to derive an acceptable exception handler. The

system has the ability to adapt itself over time, based on knowledge acquired about past

execution experiences that will help solve new problems. The approach discussed in this

chapter concentrates on Web services as a unit of computation to take advantage of

highly accessible and loosely coupled nature of Web services technologies. The focus is

on utilising service execution experiences to best serve user requirements and encode

the framework with semantics.

Recent work on Web services discovery by Zaremba et al. in [83] have drawn similar

conclusion about considering run-time behaviour of services. They realize the limitation

of matching static behaviour of services in semantics and non-semantics approaches and

propose that service discovery which operates on abstract descriptions of services needs

to be further elaborated in order to return results of concrete services satisfying concrete

goals. For this purpose they utilize instance data using data-fetching algorithm from the

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 86

service provider at discovery-time. The authors use abstract state machine formalism

[84] to model the interface allowing scalable interactions with a service provider for

specific discovery sessions. However a drawback of interacting with a service during

the discovery phase can be a significant communication overhead and in circumstances

where the service provider does not provide interface for data-fetching services or does

not provide such service at all. In SCBR framework, reliance is on existing service and

service interface to capture the knowledge required to evaluate the run-time behaviour

of services.

4.9. Limitations of SCBR framework

This section outlines the limitation of the SCBR framework. The limitations mentioned

are generic to the concept of using CBR for Web services composition rather than

specific to the implementation of our algorithm. It is envisaged that addressing these

limitations by extending SCBR framework to cater for generality of purpose and apply

CBR adaptation mechanism for composition as explained in the following chapter.

4.9.1. Limited intelligence

The current framework addresses the problem of automatic Web services discovery and

matchmaking by annotating Web services execution experiences and storing them into a

case library. The search considers domain-specific criteria for the user preferences and

represents Web service which solved the similar problem in the past. However, the

framework assumes that the case library contains suitable cases for every possible

problem. This assumption is not always satisfied considering the vast number of

problems and problem parameters. For example, a new problem might contain new

circumstances in terms of problem constraints and preferences which were never

evaluated in existing cases, hence necessitates evaluating existing cases to match these

new circumstances, i.e. in travel domain case study, if user in his service request

specifies preference on Hotel and Airline domains, then the framework has no

alternative to address a situation where the case library contains cases that only

individually involves Hotel and Airline domain but not the combination of the two.

Moreover, the framework also needs to deal with situations where the aggregate degree

of match (ADoM) is below the domain-specific expected degree of match set by the

domain administrator and to also deal with negative user feedback, where the matched

services are not acceptable to the user.

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 87

4.9.2. Extension to Web services composition

Web services composition is essentially a service discovery process, where services are

discovered to meet the service request and are integrated when the existing services are

not sufficient to achieve the required objectives. Web services composition can also

offer new opportunities by providing new, value-added services through facilitating

cooperation between existing application services. The approach so far considers

utilizing case library to find suitable services (service experiences) and needs to be

extended to consider composition to address the situations where the available service

execution experiences does not satisfy service request. The extension shall also cater

for creating value-added Web services out of existing services.

4.9.3. Expressiveness in case representation

Although the chosen case study for this work is from the travel domain, the modular,

ontology-driven design of framework makes it application-independent and allows its

seamless reuse for other application domain. However, the work outlined in this chapter

lacks an explicit specification of case representation that is domain-independent and can

serve as a blue-print to implement any possible domains.

4.9.4. System performance while using universal ontologies

The other enhancement to the current SCBR framework should deal with the response

time of the framework. The use of universal re-usable ontology to build and extend our

framework can increase the overhead incurred by parsing the semantic descriptions as

the accessing ontologies are subjected to network delays and source availability.

4.10. Conclusions

Semantic description of Web services’ profiles paves the way for automating the

discovery and matchmaking of services since it allows intelligent agents to reason about

the service parameters and capabilities. However, the accuracy of such automatic search

mechanism largely relies on how soundly formal methods working on such semantic

descriptions consume them.

In the second phase of this research work, it was stressed that consideration of the

execution values is important for the semantically described non-functional Web

services parameters in decision making regarding Web service adequacy for a particular

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 88

task. This is because the service behaviour is impossible to presume prior to execution

and can be only generalized if such execution values are stored and reasoned upon to

assess the service capability. To implement a framework that supports storing and

utilizing Web services execution experiences, an experience-based reasoning

methodology is required. The AI planning and intelligent agent systems are rule-based

reasoning methods and do not support such level of experience-based reasoning

methodology. The exhaustive literature survey resulted in identifying Case Based

Reasoning (CBR) methodology as a potential solution. CBR allows reasoning based on

past experiences of the computational units and is widely used as an alternative to rule-

based expert system for the problem domains, which have knowledge captured in terms

of experiences rather than rules.

A Semantic Case Based Reasoner (SCBR) was implemented that captures Web service

execution experiences as cases and uses them for finding a solution for new problems.

One of the main features of this framework is the extensive utilization of semantic web

technologies in describing the problem parameters and in the implementation of the core

components of the framework: representation, indexing, storage, matching and retrieval.

These components are modelled based on ontologies, making the application logic

captured within semantic descriptions and addressing the problem of interoperation

between independently developed reasoning engines. Without this interoperation, the

reasoning engines remain imprisoned within their own framework, which is a drawback,

especially that most engines usually specialise in servicing a particular domain, hence

interoperation can facilitate inter-domain orchestration. We believe that in this work we

took a small step towards standardization at the reasoner level by describing the CBR

reasoning model semantically.

In this chapter the preliminary experimental results of SCBR framework was also

presented, which informally proved the correctness of the approach by demonstrating

the advantages of considering past experiences of Web services and testing them based

on a classification of user groups into profiles that have standard set of constraint

rankings. The research concluded that there is no similar framework that allows

comparing Web services on this granular level by analyzing execution experience of

candidate services and is only possible with an experience-based framework such as the

SCBR framework.

The semantic approach for modelling CBR reasoner is a promising solution as the

 Chapter 4: Semantic-Driven Matchmaking and Discovery of Web services using CBR

 89

framework achieves required automation and makes reasoner extensible and reusable.

In the next chapter the extension of the matchmaking framework for Web services

composition to solve framework limitations is presented.

Chapter 5: Extending SCBR for Web services Composition

 90

Chapter Five: Extending SCBR for Web
Services Composition

In the previous chapter, a Web service discovery and matchmaking approach based on

case based reasoning was introduced. A general idea of such approach is inspired by the

provision of considering past execution experiences of solutions satisfying problems

similar to that requested by the end user. The framework was termed as SCBR

(Semantic Case Based Reasoner) as it utilizes interpretable semantic conceptualization

of domain-specific criteria and user preferences to find Web services execution

experience that solved a similar problem in the past.

The previous chapter also highlighted limitations of SCBR framework with regards to

limited intelligence and the expressiveness of the case representation. In addition SCBR

framework is based on the assumption that the case library contains suitable cases for

every possible problem. This assumption is not always satisfied considering the vast

number of problems and problem parameters. For example, new problem contains new

circumstances in terms of problem constraints and preferences which were never

evaluated in existing cases, hence requires evaluating existing cases to match these new

circumstances. Moreover, the framework also needs to deal with situations where the

aggregate degree of match (ADoM) is below the domain-specific expected degree

of match set by the domain administrator and to also deal with negative user feedback,

where the matched services are not acceptable to the user.

In this chapter an aspect of CBR - case adaptation is explored in order to overcome the

limitations discussed above. The case adaptation process is applicable when the

available cases cannot fulfil the problem requirements, so matchmaking is attempted by

adapting available cases. In this process existing framework is extended with the

following:

1. A general case representation format that is applicable to any application domains.

5

Chapter 5: Extending SCBR for Web services Composition

 91

2. Case adaptation is modelled to extend the matchmaking mechanism. The extension

will address the scenarios where the available cases are not sufficient to solve new

service request. An account of how this will also address the problem of Web

services composition is given.

3. A case study based validation of the adaptation algorithms.

In this chapter an extension of SCBR is proposed which is termed as eXtended

Semantic Case Based Reasoner (XSCBR), to resolve the problem of Web services

composition. In section 5.1 the design decisions to overcome limitations of SCBR

framework is introduced. In section 5.2 the XSCBR framework for Web service

composition based on case adaptation is presented. Finally, conclusions are outlined.

5.1. Design Decisions to Overcome Limitations of the SCBR

Framework

In CBR, case is a contextualised piece of knowledge representing an experience. It

contains the problem, a description of the state of the world when the case occurred, and

the solution to this problem. The solution contains elements to answer the problem. In

SCBR, frame structures for describing the elements of a case are adopted and

transformed to the OWL ontologies. The case description in SCBR highlights the

methodology for using ontologies for case representation; although the exact semantics

of case description parameters are left to developer’s interpretation, hence making case

description domain-dependent and raising developer transparency issues. For example,

the case study on travel domain includes CaseRepresentation class with

hasTravelResponse, hasConstraintsOnGoal, and hasFeature object properties

where range for these properties are TravelResponse, Constraints, and Feature

classes respectively, however the guideline as to which properties to include in inputs,

outputs or other components of case representation (i.e., a generic case representation

mechanism) is not addressed in the framework.

Moreover, the solution component of the previous framework only focuses on the

physical location of the Web service as it serves the purpose of performing Web

services discovery where the user only needs access point of the selected service to

utilize service at their end. In this chapter, the emphasize is on the fact that if the

existing solutions are not sufficient to solve the current problem, then by using case

adaptation we can modify an existing solution so that it fits new problem. This process

Chapter 5: Extending SCBR for Web services Composition

 92

will require description of the composition scheme to be included as part of solution

component of case representation in order to make necessary changes in the

composition scheme.

In this section generic case representation format is outlined which is inline with

existing methodology for describing case elements using OWL ontologies and addresses

aforementioned requirements on generalization of use and inclusion of solution

component.

5.1.1. Modifying Case Representation

The motivation is to specify a generic case representation schema which is applicable to

heterogeneous application domains hence to the heterogeneous services in these

domains. To achieve this, case representation shall cater for services with different

descriptions from that required by the composition. This is due to the fact that in the

majority of SOA implementations, service providers have different service description

formats to those of the composers hence a domain independent, generic representation

will address real world scenarios where providers can have different service

descriptions than the expected by the composers, clearly benefiting the SOA

community.

The requirement to consider the facilitation provided to the service requestor in case

representation is also realized. Existing approaches for Web services discovery and

composition lack standard representation for refining user requests. For example, a

service requestor does not have the means to specify constraints and preferences on the

final results such as output currency must be Euro. The existing approaches do not

include elements to specify such granular service requests.

Figure 31 outlines an example of a case representation scheme which will be applicable

for web services discovery and matchmaking in heterogeneous domains. In this

representation, an organization could provide CaseService with a

CaseRepresentation format. The figure shows the developed ontology for

CaseRepresentation, where the CaseRepresentation class consists of object

properties including: hasInput, hasOutput, hasConstraint,

hasPreference and hasSolution. These properties have value range Input,

Output, Constraint, Preference and Solution. An organization specifying

their case representation using CaseService should adhere to this generic

Chapter 5: Extending SCBR for Web services Composition

 93

representation of CaseRepresentation class and implements the variable

components of the representation in customized manner to encode the domain

parameters. Hence case library will be consisting of a variety of service execution

experiences consisting of numerous case representations, which suits to real world

scenarios.

Figure 31 Generic Case Representation

A service provider can map their service inputs and outputs to Input, Output from

CaseRepresentation class of a specific organization and can submit service

descriptions to composers.

A service requestor can use the Constraint and Preference components of

CaseRepresentation to narrow-down their search, we thus fulfil our goal of

providing facilitation to service requestor as the service requestor can use these

components to query granular level request and is transparent from the complexity of

the framework.

Case Representation

The use Web Ontology Language (OWL) for constructing ontologies is continued while

the use of Semantic Web Rule Language (SWRL) [85] for defining rules is proposed.

The ontology in Figure 31 for case representation has CaseRepresentation class

CaseService

CaseRepresentation

Input Output Preference Constraint Solution

Organization

hasInput hasConstraint

hasCaseRepresentation

Parameter

Variable

AnyURI XMLLiteral

AnyURI

hasAccessPoint

SWRLCondition
hasSolutionScheme

expressionBody

expr:SWRL

expressionLanguage

Case

CaseDiscovery

owls:process File

paraType parameterValue

AnyURI

serviceIsPartOfSolution

SolutionScheme

hasFileURI

hasSolution

subclassOf

providedBy

Chapter 5: Extending SCBR for Web services Composition

 94

with object properties including: hasInput, hasOutput, hasConstraint,

hasPreference and hasSolution. These properties have value range Input,

Output, Preference, Constraint and Solution. Input and Output classes

are grounded in Variable class while Preference, Constraint are grounded in

Condition class, and Solution in SolutionScheme class respectively.

Some of the properties and descriptions are similar to OWL-S descriptions, as the

intention is to extend OWL-S descriptions for fulfilling the objectives of building

domain-independent case representation format. OWL-S has been a significant

semantic web based web services standard [86] and this work provides backward

capability with the OWL-S descriptions. OWL-S specification provides grounding in

WSDL hence the service providers with existing services can utilize the OWL-S

specification for semantically annotating their Web services. Similar way, they shall be

able to use this case representation schema which extends OWL-S description in the

area of non-functional parameters and in providing elements to support the service

requestor in searching for Web services

The CaseRepresentation class has two instances: Case and CaseDiscovery.

Case is used for describing various web service execution experiences, while

CaseDiscovery is used while searching for cases that fulfil user requirements from

the case repository. Both use different components of the CaseRepresentation:

Case uses Input, Output, Feature, Solution and Feedback to store

execution experiences. While CaseDiscovery uses Input, Output, Constraint,

Preferences and Feature to formalize a search request.

The variable classes Input and Output are subclasses of the swrl:Variable class

which achieves variable status by defining parameters using a resource URI as a

ParameterType and XML Literal as ParameterValue. Other variable classes

Constraint and Preference on search are achieved by defining them as

SWRLCondition using SWRL as description language and XMLLiteral to encode

such condition. SWRL extends language expressivity of OWL with horn-like first order

logic rules. We here re-used publicly available semantic descriptions with namespaces

swrl3 and expr4. The framework currently supports conditions defined only in Semantic

Web Rule Language (SWRL).

3 http://www.w3.org/2003/11/swrl#

4 http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#

Chapter 5: Extending SCBR for Web services Composition

 95

Solution and Feedback concepts have fixed semantics. Figure 32 highlights

semantics for Solution components. Solution contains an object property

hasAccessPoint which points to the access point of Web service, which could be a

WSDL file or a Web based access point for the service. To formalize the detail of the

solution, SCBR framework uses a pointer to an OWL-S process file as the result of

hasSolutionScheme. In section 5.1.2 the components of OWL-S process model are

revisited which are consumed in this framework. serviceIsPartOfSolution is an

important part of the Solution class as it contains the domain based URI for the

candidate solution services.

Figure 32 Solution description

Using Case Representation

An example of a semantically-encoded CaseDiscovery representation for travel

domain is illustrated in Table 11. Note the use of rules to define the constraint

conditions. For example, the rule Constraint on Currency outlines requestor’s

constraint by specifying the fact that “If OutputCurrency is y, ExpectedCurrency

is USD, and y is not equal to ExpectedCurrency then y will satisfy requestor’s

constraint and could be a legitimate ResultCurrency”.

Table 11 Example of a Travel Domain case

City of
Arrival

<Input:cityArrival "http://localhost/onto/City.owl#Boston"

Date of
Arrival

<Input:dateArrival>2007-09-01

Constraint
price x)tPrice,alue(ResulparameterVtrue)ice,ExpectedPrequal(x,lessthanor

x)tPrice,alue(OutpuparameterV00)tedPrice,2alue(ExpecparameterV

⇒

∧∧

owl:class

SolutionScheme

domain

owl:ObjectProperty

serviceIsPartOfSolution

owl:DataTypeProperty

hasAccessPoint

range

domain

range domain

AnyURI

 URI

range

owl:Thing

owl:class

Solution

owl:ObjectProperty

hasSolutionScheme

Chapter 5: Extending SCBR for Web services Composition

 96

Constraint
currency y)tCurrency,alue(ResulparameterVtrue)rrency,ExpectedCu,notEqual(y

USD)y,tedCurrencalue(ExpecparameterVy)tCurrency,alue(OutpuparameterV

⇒

∧∧

Constraint
QoS y)sultQoS,uration(ReExecutionDtrue)S,ExpectedQoequal(y,lessthanor

1.5)pectedQoS,uration(ExExecutionDy)tputQoS,uration(OuExecutionD

⇒

∧∧

It is important to note that constraint conditions are not only simple equality checks i.e.,

if one individual is equal to other individual or not, but are also complex in terms that

they include mathematical and logical operations, i.e., one value is greater or less than

the other etc. Therefore, in case representation, we support rules for describing such

complex constraint relationships as rules capture such relationships that are not possible

to represent using OWL alone. Apart from their obvious ability to deal with complex

relationship, rules also provide more expressive power with respect to properties - for

example, allowing one property to be inferred from a composition of others. A well-

known example is the assertion that the composition of “parent” and “brother” should

imply “uncle”—that is, uncle(x, z) ←parent(x,y) ^ brother(y, z), a relationship that can’t

be captured using OWL. This kind of relationship between properties is quite common

and is certainly useful in applications as varied as medical terminologies and Web

service descriptions [87]. Our framework utilizes SWRL for implementing such rules.

To highlight the need and benefit of using rules for conditions, it will be helpful to

contrast new case representation format in XSCBR with the previous format of case

representation in SCBR. If considering the previous version of case representation, in

the absence of rules such constraints were represented as shown in Table 12, where the

system uses OWL alone for the descriptions. Interpreting constraints defined in OWL

requires customized logic to reason on them, where the reasoner needs to know the

logic explicitly. In contrast, when defined with rules it is possible to shift the reasoning

burden from reasoner level to the knowledge representation layer or the semantic

definition layer. This is to reduce the number of reasoner cycles, and is achieved by

using normalized, well-planned ontologies that encode the repetitive logic in the

knowledge base. The reasoner cycle is the number of time the ontology reasoner is

involved in reasoning tasks.

Chapter 5: Extending SCBR for Web services Composition

 97

Table 12 Case Representation specific to travel domain (In previous framework)

Class Properties Range

City of Departure Any valid city

City of Arrival Any valid city

Date of Departure Any valid date

Date of Arrival Any valid date

Input

(Travel Request)

Number of Persons Travelling Any positive integer

Currency Any valid currency Output (Travel Response)

Price Any positive double

AccessPoint WSDL/Web access point Solution

hasSolutionScheme OWLS-process

Features Travel Regions Domestic/International

Figure 33 and rule illustrated in Figure 34 highlight the difference in describing a case

in SCBR and XSCBR framework. For example, the SCBR framework will store a Case

with (attribute, value) pair for the attribute - PreferenceOnCurrency = USD. In

contrast, the XSCBR framework will store preference for currency using rule-1 (as

shown in Figure 34), which encodes logic saying that the case follows rule-1 which fires

when the output currency is equal to the expected currency USD. Here, in contrast to

SCBR framework, the reasoner does not have to remember the value for the attribute

PreferenceOnCurrency and the rule-1 will take care of the logic maintaining the

constraint on currency. This results into economy of storage space and allows shifting

the reasoning burden from reasoner level to the knowledge representation layer.

Figure 33 Comparing Cases in SCBR and XSCBR-I

Case:

Name = ABC

Destination = Tokyo (City)

OutputCurrency = USD (Currency)

PreferenceOnCurrency=USD (Currency)

Case in SCBR framework

Case:

Name = ABC

Destination = Tokyo (City)

OutputCurrency = USD (Currency)

PreferenceOnCurrency = Rule-1

Case in XSCBR framework

Chapter 5: Extending SCBR for Web services Composition

 98

Figure 34 Comparing Cases in SCBR and XSCBR-II

Quality of Service Descriptions for Web services

It is worth to mention here that one of the main components of this framework is the

quality of service provided by the services. We consider QoS as an important selection

criterion for web services discovery and need to modify QoS descriptions from the

previous framework inline with the modifications and improvements in the case

representation, especially using rules. An extensive ontology was developed that

supports reasoning on QoS. Following is the definition of QoS in XSCBR framework:

Table 13 QoS parameters in XSCBR

Element Range Semantics

providedBy organization Portal:Organization

Availability IntervalZero

ToOne)(?int)1,(?

)0,(?)?,(?)(?

xoOneervalZeroTyEquallessThanOr

ynOrEqualgreaterThayxvaluexSimpleType

>−

∧∧∧

Reliability IntervalZero

ToOne)(?int)1,(?

)0,(?)?,(?)(?

xoOneervalZeroTyEquallessThanOr

ynOrEqualgreaterThayxvaluexSimpleType

>−

∧∧∧

Reputation NonNegativeInteger

UpTo)(?

)5,(?)?,(?)(?

xptoFiveeIntergerUnonNegativ

yEquallessThanOryxvaluexSimpleType >−∧∧

Execution

Price

positiveDouble

)(?

)0,(?)?,(?)(?

xublepositiveDo

ynOrEqualgreaterThayxvaluexSimpleType

>−

∧∧∧

Execution

Duration

positiveDouble

)(?

)0,(?)?,(?)(?

xublepositiveDo

ynOrEqualgreaterThayxvaluexSimpleType

>−

∧∧∧

The organization in the above ontology could be any organization which certifies or

provides detail of the QoS for particular service. It could also be used in a system where

the QoS is self-certified by service providers.

To summarize, following are the design decisions taken which contribute to overcoming

limitations of SCBR.

• Revising case representation to make it generic and applicable for efficient annotation

and discovery. The proposed generic case representation has provision for the

facilitations to service participants; especially service requestor. The rules to handle

Rule-1

y)tCurrency,alue(ResulparameterVtrue)rrency,ExpectedCuEqual(y,

USD)y,tedCurrencalue(ExpecparameterVy)tCurrency,alue(OutpuparameterV

⇒

∧∧

Chapter 5: Extending SCBR for Web services Composition

 99

complex constraint and preferences relationships in case descriptions are introduced.

The QoS is considered as an important selection criterion for web services discovery

and modify QoS descriptions from the previous framework inline with the

modifications and improvements in the case representation, especially using rules.

• The solution component is also semantically presented in order to adapt the solution

for new problems whenever required.

The XSCBR framework opt to utilize OWL-S process model as solution schema and

here the OWL-S process model is revisited in following section to explore components

of process model which are used in XSCBR framework.

5.1.2. Revisiting OWL-S Process model

Favouring OWL-S over BPEL

In a later section, emphasis is given to the fact that if the existing solutions are not

sufficient to solve the current problem, then using case adaptation it is possible to

modify existing solution so that it fits new problem. This process (case adaptation

algorithm) will require a composition scheme or a file description of the composition

scheme to be included as part of solution component of case representation. To achieve

a semantic workflow specification is required such as OWL-S which is described in

OWL. Amending OWL based solution will be consistent with our policy of using

semantics for automation as compared to using XML based BPEL composition

schemas. The issue related to the current discussion is the use of non-semantic grammar

for the composition specification. For the composition engine to provide automatic

discovery and flow management, the process model needs to have the consideration of

the semantics in the specification. The introduction of semantics within an XML centric

standard like BPEL will not achieve the automation. Automating service composition

with frameworks like BPEL requires a more substantial evolution, as BPEL simply

represents an execution engine for pre-defined process workflows. Therefore, to achieve

any reasonable degree of automation, it requires integration of intelligent reasoners that

can adapt the workflow in accordance to dynamically changing goals.

In the following section components of OWL-S process model are revisited which are

useful in the procedure of adapting solutions.

Chapter 5: Extending SCBR for Web services Composition

 100

Overview of the OWL-S process model

The OWL-S process model supports atomic and composite services. An atomic process

is a description of a service that expects one message and returns one message in

response. A composite process can be decomposed into atomic or other composite

process.

An OWL-S atomic process corresponds to a WSDL operation. Different types of

operations are related to OWL-S processes as follows:

� An atomic process with both inputs and outputs corresponds to a WSDL request-

response operation.

� An atomic process with inputs, but no outputs, corresponds to a WSDL one-way

operation.

� An atomic process with outputs, but no inputs, corresponds to a WSDL notification

operation.

� A composite process with both outputs and inputs, and with the sending of outputs

specified as coming before the reception of inputs, corresponds to WSDL's solicit-

response operation.

A composite process can be described using the rich semantic of service model which

supports control flow and dataflow patterns similar to workflow patterns.

Control flow

The control flow of these atomic processes within composite process is governed by

control constructs such as Sequence, Split, Split + Join, Choice, Any-

Order, Condition, If-Then-Else, Iterate, Repeat-While, and

Repeat-Until.

Dataflow

When defining processes using OWL-S, there are many places where the input to one

process component is obtained as one of the outputs of a preceding step, short-circuiting

the normal transmission of data from service to client and back. This is one type of data

flow from one step of a process to another. There are also other patterns; in particular,

the outputs of a composite process may be derived from outputs of some of its

CompositeProcess ≡ Process Π ∃ composedOf.AtomicProcess

Chapter 5: Extending SCBR for Web services Composition

 101

components, and specifying which component's output becomes output X of the

composite is also a data-flow specification.

Consider the following tableau:

I1 input of: { Composite Process CP }: with output O1

 composed of

Step 1: Perform S1

Step 2: Perform S2

where S1 has inputs I11 and I12, and output O11

and S2 has input I21 and output O21

Each of these equalities is represented in OWL-S as a Binding, an abstract object with

two properties: toParam, the name of the parameter (e.g., I21 (S2)), and

valueSpecifier, a description of its value. In an effort to provide value

specifications in as concisely as possible in a variety of situations, OWL-S specification

provides four different types: valueSource, valueType, valueData, and

valueFunction.

Modifying OWL-S process file (Algorithm ModifyOWL-S)

The OWL-S process is used as solution scheme in the XSCBR framework. In the

adaptation algorithm, the decision to select the components of an existing solution that

needs to be adapted is based on a variety of descriptions and situational parameters, i.e.

functional and non-functional parameters. Once the components are identified,

necessary adaptation changes are made to the solution of an existing case, which in

XSCBR framework is represented by OWL-S process file. The following algorithm

ModifyOWL-S outlines the methodology to modify OWL-S process files.

Assuming that there exists an OWL-S process which satisfies problem P and the

process is assumed to be composite process of services S
1
 and S

2
. If there is a

mechanism in place to verify that service S
3
 is similar in function and semantic

descriptions to S
1
 then following is the list of main components that need to be modified

in order to create a new process with composition of S
2

and S
3

which will also be able

to solve problem P.

1. Replace Import URLs of S
1

with S
3

2. Replace atomic process belonging to S
1

with the functionally similar atomic process

of new service S
3

Chapter 5: Extending SCBR for Web services Composition

 102

3. Bindings of old service S
1

have to be replaced with functionally and semantically

similar bindings from the new service S
3
.

The OWL-S API [88] is used to support reading, modification and execution of the

OWL-S process models. The Input and Output in CaseDiscovery section of

CaseRepresentation class has similar semantics to OWL-S process model

functional parameters (Input and Output), hence the compatibility through grounding

exists.

5.1.3. Summary

To summarize, existing OWL-S process model is utilized for modelling adaptation in

this framework. The richness of the workflow based patterns supported by OWL-S

process model and provision of semantics in the specification itself were the reasons

selecting OWL-S. This section outlined extension of OWL-S descriptions to support

service requestor in terms of specifying constraint and preference on search. We also

outlined how OWL-S process file could be modified with the help of API to insert or

remove service reference to satisfy new problem requirements. The following section

details the role of knowledge in making decision about service references replacement.

5.2. XSCBR for Composition using Case Adaptation

The following section presents case adaptation [58] as an extension to the SCBR

framework for solving the problem of Web services composition.

5.2.1. Introduction to case adaptation

Case adaptation is termed as the REVISE phase in CBR theory and is applicable when

the available cases cannot fulfil the problem requirements, so matchmaking is attempted

by adapting available cases. Adaptation looks for prominent differences between the

retrieved case and the current case and then applies formulae or rules that take those

differences into account when suggesting a solution [89].

Case adaptation can be defined by the following formula:

)(' CC α=

Equation 3 Case Adaptation

Chapter 5: Extending SCBR for Web services Composition

 103

Where, C' = new case, C = old case(s) and α indicates adaptation operator.

The adaptation operator indicates the process of identifying and substituting or

transforming an existing solution to fit new situations and is used in knowledge-based

substitution adaptation.

Knowledge based substitutions

In CBR’s matchmaking process previous cases cannot be always reused without making

some adaptation to the existing solutions. The reasoning about these changes requires

general and domain specific knowledge (K) to assist case adaptation. Under this

circumstance, the Equation 3 can be reformulated as:

),(' KCC α=

Equation 4 Knowledge based Substitution

Planning based transformations

The planning based transformations can be applicable when the available solutions can

not fulfil the problem requirements with normal matchmaking and discovery

mechanism or by applying minor modifications using substitution based transformation.

Under these circumstances, the Equation 3 can be reformulated as:

),(' ρα CC =

Equation 5 Planning based Transformation

ρ indicates the application of planner for transformation, where classical planner

handles the task of coming up with a sequence of actions that will achieve a goal.

Figure 35 shows how case adaptation fits in CBR methodology [90].

Chapter 5: Extending SCBR for Web services Composition

 104

Figure 35 Case Adaptation process

5.2.2. Challenges in case adaptation

One of the major challenges in CBR is the development of an efficient methodology for

case adaptation. The problem is so acute that the most effective current strategy for

building CBR applications is to bypass adaptation entirely, building advisory systems

that provide cases to human users who perform the adaptation themselves. The

following discussion elaborates over the complex issues related to the implementation

of case adaptation:

Using adaptation, a solution to a new problem results from merging the local solutions

from previously solved problems to create a globally consistent solution for the new

problem. However, the merging process is difficult since the local solutions typically

exhibit conflicts when merged together. Furthermore, local solutions can be

characterized by different representations, which further intensify the difficulty of

synthesizing the global solution in ad-hoc way [91] .

As documented in this chapter, while investigating application of case adaptation to

Web services composition, we came to similar conclusion as the authors of [91], where

for some problems merging of local solution spawn a globally inconsistent solution. We

have designed a methodology based on Constraint Satisfaction Problem (CSP) to

address this challenge and discussed our experience and insights in this chapter.

In current CBR systems, rules are used for encoding adaptation knowledge. However,

the ability to define those rules depends on knowledge of the task and the domain that

New Problem

Index

Retrieve

Recall

Select

Modify
(Substituete/Transform

Adapt

Case
Base

New Solution Knowledge

Base

Evaluate

Chapter 5: Extending SCBR for Web services Composition

 105

may not be available a priori [92]. In the XSCBR framework, a knowledge-intensive

approach is advocated to automate the process of adaptation in CBR inspired Web

services discovery and composition problem. We believe that the aforementioned

challenge regarding availability of knowledge applies to any knowledge-intensive

approach. The thesis here is that Web services composition is a developer-intrusive

problem solving method, the automation of which requires the reasoning about domain-

specific knowledge at their disposal. Although the XSCBR framework requires a priori

knowledge of domain, the amount of knowledge available incrementally increases

through the life cycle of the framework as more cases are added to the case library. In

addition, the framework allows rules to be added at any time in the framework.

5.2.3. Case Adaptation in XSCBR framework

In XSCBR framework, when the existing web services experiences in their original

form are not sufficient to satisfy current request, the framework attempts to relax the

case restrictions under which a solution is acceptable. Figure 36 shows the holistic

CBR methodology to achieve Web services composition using the REVISE cycle [62].

Figure 36 CBR methodology for Web services composition

 RETRIEVE

1. Search for cases (composite services /atomic

services), already existing in the library which will
solve the current problem.
If such case exists, REUSE.

2. If similar cases exist and require minor
modification, retrieve cases and go to phase 3a. of
REVISE (3a.knowledge based substitution).

OR

If similar cases do not exist, but partial matches
exist then go to phase 3b. of REVISE (3b. planning

based transformation).

 REVISE

3a. Use knowledge base to apply minor changes
to existing cases (Knowledge based
substitution)

3b. Use planning to adapt the solution (Planning
based transformation)

4. Verify and RETAIN.

 REUSE

5. Reuse and retain.

Knowledge

Base

Previous
cases

 RETAIN

6. Store in case library

Chapter 5: Extending SCBR for Web services Composition

 106

5.2.4. Knowledge based substitutions in the XSCBR framework

In Web services’ matchmaking process previous experiences cannot be always reused

without making some changes. Knowledge based substitutions (KBS) is the process

which signifies general and domain specific knowledge (K) to model these changes.

In the XSCBR framework, a knowledge-intensive approach is advocated to automate

the process of adaptation in CBR inspired Web services discovery and composition

problem. We believe that Web services composition is a developer-intrusive problem

solving method, the automation of which requires the reasoning about domain-specific

knowledge at their disposal. This approach is novel as existing approaches focus only

on semantic descriptions of web services, however are oblivious to the fact that in the

process of matchmaking candidates for the composition, selected web services might

have individual attributes that while matching the explicit goals of the composition

might invalidate the integrity of the composition workflow.

In Equation 4, K indicates the influence of general or domain specific knowledge.

When applied to XSCBR framework the knowledge should be used for:

1. Targeting situations where exact match is neither available nor possible.

2. To help the reasoner in operating more efficiently by ignoring the unnecessary

search and exploration.

3. To make absolutely sure that the only possible solution is transformation (which is

an expensive operation involving AI planner or some sort of ultra-intelligent,

resource expensive exercise). For example, if for the current problem P, the

available cases in the case library are

C

1
 (S

1
+S

2
, F

1
),

C
2
 (S

2
+S

3
, F

2
)

C
3
 (S

1
),

C
4
 (S

2
)

C
5
 (S

1
+S

2
, F

5
)

The interpretation of this formalism as follows: C
1
 (S

1
+S

2
, F

1
) indicates case which

has services S
1

and S
2

as a solution under circumstances defined by F
1
. These

circumstances could be service description, problem description, constraints and

preferences in the problem request P
1
.

Chapter 5: Extending SCBR for Web services Composition

 107

The successful knowledge based substitution should solve a new problem with P with a

possible solution (S
1
 + S

2
, F

5
) by exploring the matching cases C

1
and C

5
first

before transforming C
3

and C
4

to find a solution from a scratch.

After identifying the criteria and expectations from knowledge based substitutions

(KBS), following section formalizes how knowledge is represented in the semantic web.

Category of Knowledge

The knowledge to be represented can be classified into the following three broad

categories:

1. Common sense knowledge

Common sense knowledge describes domain knowledge perceived by every one

working on that domain. For example, domain knowledge includes representation of a

consistent view of the domain entities and possible relations between them. Using the

semantic web, such knowledge is specified using RDF/OWL ontologies.

Figure 37 Travel Domain Taxonomy

In addition to domain ontologies, we also recognize the role of hierarchical taxonomies

as common sense knowledge required as input to the XSCBR framework. A

hierarchical taxonomy is a tree structure of classifications for a given set of objects. For

example, in travel domain, taxonomy is vital to the process of matchmaking and

discovery of functionally similar services. Figure 37 describes such taxonomy for the

travel domain case study. Each joining service or business could be added to this

Thing:Travel

Accommodation Travel Medium Utility

Bed Breakfast Air Rail Water Road Currency Conversion

Airline Cruise Train Tram Ferry Bus Taxi

Easyjet BA Virgin SeaFrance National Express EuroCab xe.com

Chapter 5: Extending SCBR for Web services Composition

 108

taxonomy according to the business category the service represents. For example,

EasyJet and British Airways services represent Airline category, which is

subsequently type of travel medium Air.

2. Heuristics

Heuristics represent ad-hoc knowledge about domain. In the XSCBR framework,

heuristics are used to compile rules representing ad-hoc knowledge regarding the

domain and the tasks involved in service composition. In relation to the Web services

matchmaking and composition problem, heuristics are mainly useful to bridge

discrepancies between the domain ontologies representing the perspective of service

composer and that of service provider. For example, p
1
 depicts service composer’s

perspective of concept c
1,

 and p
2

depicts

service provider’s perspective for the same

concept with c
2
. In this situation, for the successful functioning of composer,

heuristic which bridges these interpretations with p
1
.c

1
 ≡ p

2
.c

2
 is required. In the

XSCBR framework we use OWL and SWRL rule language to encode such heuristics.

For example, following heuristic in OWL equates perception of city concept Paris in

ontologies O
1

and O
2
.

risO2.City.PaParisO1.Cities. ≡

3. Casual model

Casual model represents casual connections of some type of system or situation [93].

For example, parameter adjustment is a casual model which provides mathematical

transformation of various units, i.e. following casual model adjusts parameter in feet

with respect to value provided in inches.

inch,12)eet,multiply(finch)ches(i,lengthInInfeet)et(i,lengthInFe ∧→

Casual model when available helps composer to modify solution of existing problem for

the new requirements without needing transformation or even a new service to do so.

Representing knowledge using semantic web technologies

Semantic web provides a rich knowledge representation which allows a domain expert

to encode the knowledge required to model the above three categories in order to

achieve KBS. The knowledge can be represented in terms of concept relationship

Chapter 5: Extending SCBR for Web services Composition

 109

defined by ontologies. For the benefit of the discussion, it is necessary to revisit the

following components of semantic web formalism:

a. Taxonomy Relationships (TR)

Taxonomy is the concepts classification system facilitated by semantic web. Class and

Individual are the two main elements of this structure where a class is simply a name

and collection of properties that describe a set of individuals. Examples of relationships

between concepts at the taxonomy level are class, subclass, superclass,

equivalent class, individual, sameAs, oneOf, disjointWith,

differentFrom, AllDifferent.

For example, we anticipate description discrepancies due to the possibility of

heterogeneous service and case representations in our framework. In these

circumstances, TR could be used to encode heuristic with explicit knowledge that a

particular class or property in one ontology is equivalent to a class or property in a

second ontology. In this situation, a casual model can be developed which states these

facts. For example,

TravelO2.inTravelDomaO1 ≡⋅

Where ≡ represents equivalentClass and O1, O2 are two different

ontologies.Similarly, TR element sameAs can equate two individuals.

risO2.City.PaParisO1.Cities. ≡

Where ≡ represents sameAs, O1 and O2 are two different ontologies, Paris (City)

and Paris (City) are part of ontology O1 and O2 respectively.

The following table shows list of some of the elements which allow defining explicit

knowledge.

Table 14 Knowledge Representation - Explicit

Element Matching

Value

Example

EquivalentClass(≡) 1 TravelO2.inTravelDomaO1 ≡⋅

sameAs(=) 1 risO2.City.PaParisO1.Cities. =

differentFrom(¬⊆)
0 ndonO2.City.LoParisO1.Cities. ¬⊆

Chapter 5: Extending SCBR for Web services Composition

 110

AllDifferent

0 ndonO1.City.LoParisO1.Cities. ¬⊆

dridO1.City.MaParisO1.Cities. ¬⊆

dridO1.City.MaLondonO1.Cities. ¬⊆

Above relationship will make London, Madrid
and Paris mutually distinct.

Similarly TR could be used to describe knowledge which is not explicit however

requires some level of reasoning to derive inference and relationship between two

components of semantic descriptions, where matching value will be:

D)Dist(S,M =

Where, M = Matching value

Dist is the function which finds semantic distance between source(S) and destination

(D) concepts.

To evaluate implicit relationships and the matching distance M, subsumption and

classification are used to perform semantic tree traversal and compare concepts

with respect to the semantic network tree as detailed in retrieval algorithm in section 4.5

of chapter 4. The algorithm compares concepts and if the concepts match, then the

degree of match is 1. Otherwise, the algorithm traverses back to the super (upper) class

that the concept is derived from and the comparison is performed at the upper class

level. The comparison is similar to traversing a tree structure, where the tree represents

the class hierarchy for the ontology element. The procedure of traversing back to the

upper class and matching concepts is repeated until there are no super classes in the

class hierarchy, i.e. the root node for the tree is reached, giving degree of match (M)

equal to 0.

Table 15 Knowledge Representation - Implicit

Element Matching Value Example

Subclass
(⊂)

M=Dist(Airline.C
1
,

TravelMedium.C
2
)

=1/3 = 0.33

umTravelMediO1.O1.AirAirLineO1 ⊂⊂⋅

Superclass
(⊃)

M=Dist(Airline.C
1
,

TravelMedium.C
2
)

=1/3 = 0.33

AirLineO1.O1.AirumTravelMediO1 ⊃⊃⋅

disjointWith
(¬≡)

M=Dist(Air.C1,
Rail.C2) = 0

O1.RoadRailO1.O1.Air ¬≡¬≡

Chapter 5: Extending SCBR for Web services Composition

 111

b. Rules based relationships (RR):

Semantic Web Rule Language (SWRL) defines rule based semantics using subset of

OWL with the sublanguages of Rule Mark-up Language (RuleML). SWRL extends

OWL with horn-like First Order Logic rules to extend the language expressivity of

OWL. It allows users to write rules to reason about OWL individuals and to infer new

knowledge about those individuals. SWRL is built on OWL DL and provides more

expressivity than OWL DL alone. However, it shares its formal semantics hence

conclusions reached by SWRL rules have the same formal guarantees as the conclusions

reached using standard OWL constructs [85].

The use of rules to define complex concept relationship is highlighted with the

following example. Let’s assume that there is a service provider adhering to different

version of taxonomy than defined in the Figure 37, and subscribes to the category

LicencedTaxi. While matchmaking, the composer will fail unless there is a casual

model or heuristic bridging gap between categories of the service LicencedTaxi to

the categories the composer is aware of. If rule as described below exists, then

composer will be able to infer indirect subclass relationship between Taxi and

LicencedTaxi and assigns matching factor of M, where M = o1.LicencedTaxi

⊂ o2.Taxi = ½ =0.5.

Taxi (? t) ^ Licence (? l) ^ hasLicence (? t, ? l) -> LicencedTaxi (?t)

After identifying how knowledge is represented in the semantic web, the following

section formalizes the levels at which this knowledge is applied to achieve knowledge

based substitution.

5.2.5. Applying KBS to the Existing Framework

Applied to the current framework, when the existing web services experiences in their

original form are not sufficient to satisfy current request, the framework uses KBS for

relaxing the case restrictions under which a solution is acceptable. The following

section explains the process of utilizing KBS in the existing system. The application of

KBS can be envisaged at two levels:

I. Description level

In this category using available knowledge, modification is made to the new problem

and the old case descriptions to prepare the XSCBR framework for the new problem

Chapter 5: Extending SCBR for Web services Composition

 112

request. For example if the new problem request adheres to a case description D
1
 and

there is no case with similar descriptions in the case library but there is a case with

description D
2
 which potentially be similar to the description D

1
, then the framework

uses knowledge base (KB) to verify if D
1
 and D

2
are equivalent. On success, the

framework employs normal matchmaking algorithm to find a suitable case which

matches to new problem request. Figure 38 illustrates the aforementioned scenario.

Figure 38 KBS at Description Level

II. Solution level

In this category using available knowledge, modification is made to the solution part of

a candidate case (potential solution) to adapt it to a new problem request. Figure 39

illustrates Knowledge Based Substitution (KBS) application at the solution level. KBS

is applied when the aggregate degree of match (ADoM) for the matchmaked candidate

case Ccand is below the expected value for request R. This request’s satisfaction

problem P is represented by the following specification:

Description Level

Knowledge based

substitution

Explicit Knowledge
models

• Casual models,

• Common sense

representation

• Heuristics

new problem
request

Unified
descriptions

case

descriptions

Chapter 5: Extending SCBR for Web services Composition

 113

Figure 39 KBS at Solution Level

P (R, Ccand, Scand, C), where Ccand is the candidate case with Scand as solution

that has the highest ADoM for request R. Lets say, Scand is a solution composed of a

finite set of service instances Scand (i1
,i

2,
………,i

n
) and C represents finite set of

cases in case library (c
1
,c

2
,…c

e
,….,c

n
) then solving problem P involves discovering

a set of service instances (i1
sub
,i2

sub,
………,in

sub
)that individually match the

descriptions of the instances in the candidate solution Scand (i1
,i

2,
………,i

n
). It is

important to note that the substitution service instances (i1
sub
,i2

sub,
………,in

sub
)can

originate from different solution sets.

We apply following algorithm to solve problem P. We term this algorithm ApplyKBS.

ApplyKBS: KBS application in XSCBR

1. Apply TR or RR relationships on ontology O to find out service instances that

match (i
1
,i

2,
………,i

n
); let’s say I

sub
 is a set of such matching service instances.

2. The case library contains cases that store runtime behaviour of service instances

I
sub.

These cases are discovered and are marked as ball park cases.

3. Apply the SCBR matchmaking algorithm on these ball park cases to find

out Aggregate Degree of Match (ADoM) for each service instance.

4. The service instances (i1
sub
,i2

sub,
………,in

sub
) ∈ I

sub
 , with the highest ADoM

are selected as substitution service instances.

Solution Level

Knowledge

based

Substitution

Knowledge models

• Casual models,

• Common sense

representation

• Heuristics

new problem
request

case from case library
with highest ADoM

adapted solution for
new problem

Chapter 5: Extending SCBR for Web services Composition

 114

5. Apply algorithm modifyOWLS (S
cand

, (i1
sub
,i2

sub,
………,in

sub
),

(i
1
,i

2,
………,i

n
)) to modify Scand.

Evaluating the ApplyKBS algorithm

To continue with the travel domain case study, following considers two scenarios for

evaluating the preliminary algorithm described in this section. For example, the system

is required to find a solution for following travel request scenarios:

Scenario-1 = “Find a Trip for a traveller Mr Li; Mr Li wants to travel from London to

Milan and also wants to reserve a hotel at Milan, he prefers to travel by air but wants to

avoid travelling by EasyJet. He prefers to pay in GBP…. (Other requirements are

snipped...)”

Scenario-2 = “Find a Trip for a traveller Mr Osman; Mr Osman wants to travel from

Paris to Tokyo and also wants to reserve a hotel at Tokyo, he prefers to travel by air but

wants to avoid travelling by WizzAir. He prefers to pay in EUR…. (Other requirements

are snipped...)”

The matchmaking algorithm discovers that case CaseEasyJet satisfies scenario-1 and

CaseWizzAir scenario-2 however the Aggregate Degree of Match (ADoM) is below

expected value. Table 16 applies preliminary algorithm to evaluate the possibility of

adapting CaseEasyJet and CaseWizzAir for the respective travel requests.

Chapter 5: Extending SCBR for Web services Composition

 115

Table 16 Evaluating ApplyKBS Algorithm

Algorithm steps Applying to scenario - 1 (follow Table 17) Applying to scenario – 2 (follow Table 18)
1. Apply TR or RR relationships on ontology O

to find out service instances that match Scand
(i

1
,i

2,
………,i

n
); let’s say I

sub
 are such

matching service instances.

Applying TR and RR relationship on travel domain
ontology O to find service instances matching to

EasyJet results in WizzAir, BA and

EuroLine.

Applying TR and RR relationship on travel domain
ontology O to find service instances matching to

WizzAir results in Japan Airline.

2. The case library contains cases that store

runtime behaviour of service instances Isub. These
cases are discovered and are marked as ball park
cases.

Ballpark cases with the service instances are
CaseWizzAir, CaseBA and CaseEuroLine

Ballpark cases with the service instances are
CaseJapanAirLine

3. Apply the SCBR matchmaking algorithm on
these ball park cases to find out Aggregate Degree
of Match (ADoM) for each service instance.

 describes result of applying matchmaking
algorithm on the ball park cases.

 describes result of applying matchmaking algorithm on the
ball park cases.

4. The service instances

(i1
sub
,i2

sub,
………,in

sub
)∈ Isub , with the highest

ADoM are substitution service instances.

The service instance WizzAir with the case

CaseWizzAir is substitution service instance.

The service instance JapanAirline with the case
CaseJapanAirline is substitution service instance.

Table 17 Scenario-1

 Problem CaseEasyJet

with highest

ADoM
Ccand

CaseWizzAir

Values DoM

CaseBA CaseEuroLine

Destination City Milan Milan Milan 1/1 Naples 0.5/1 Milan (1/1)

Preference Domain Hotel NULL NULL 0/1 NULL 0/1 NULL 0/1

Preference Domain Airline EasyJet Airline(satisfied) 1/1 Airline(satisfied) 1/1 Coach(not satisfied) 0/1

Preference Currency £ £ £(satisfied) 1/1 € (not satisfied) 0/1 £ (satisfied) (1/1)

Constraint Instance EasyJet not satisfied BA(satisfied) 1/1 WA(satisfied) 1/1 EuroLine(satisfied) 0/1

 ADoM
 Result

 ADoM not
acceptable

4/5
highest ADoM

0.8 2.5/5

second rank

0.5 2/5

third rank

0.4

Chapter 5: Extending SCBR for Web services Composition

 116

Table 18 Scenario-2

 Problem CaseWizzAir with highest ADoM

Ccand

CaseJapanAirLine

Values DoM

Destination City

Tokyo Tokyo Tokyo 1/1

Preference Domain Airline Airline(satisfied) Airline(satisfied) 1/1

Preference Domain Hotel Hilton Tokyo NULL 1/1

Preference Currency € € ¥ 0/1

Constraint Instance WA WA (not satisfied) JapanAirline
(satisfied)

1/1

ADoM

Result

 ADoM not acceptable 4/5
highest ADoM

0.8

Chapter 5: Extending SCBR for Web services Composition

 117

The algorithm works for the first scenario where the case with WizzAir web service fulfils

preferences and constraints from the problem request; however the algorithm fails for the

scenario-2, where the algorithm will suggest replacing JapanAirline with the WizzAir

for the travel request. This replacement with JapanAirline service leads to

inconsistencies as the composed service in the candidate solution Scand expects currency to

be €, while the JapanAirline deals with currency ¥.

The fact that the variable currency depends on the variable airline instance (i.e. change

in airline will affect the output currency) needs to be documented. This observation raises a

new challenge of encoding variable dependency as the framework should use such

dependency relationships to make sure that while adapting existing solution for the new

problem request it does not violate any of the previously satisfied constraints. Therefore,

some mechanism is necessary to maintain the integrity and consistency of the framework in

order to prevent scenarios where contradicting constraint causes inconsistency as described

in while applying knowledge base substitution.

As discussed earlier Web services composition process is an intelligent decision making

process and the automation of which requires the reasoning about domain-specific

knowledge at their disposal. Defining dependency relationship between domain variables

represents such domain specific knowledge. The knowledge required is important from

cognitive modelling perspective, as a step towards understanding how humans adapt cases

when they reason from prior episodes. Such definition of variables and their dependency is

termed in the framework as Domain Dependency Module (DDM).

The evaluation of the algorithm raises the following challenges:

1. How to define relationship between variables?

2. How to measure the impact of such related constraints and reflect that when the

replacement occurs? (i.e. when changing the airline, how to reflect that on the fare

currency?

3. At what stage in the matchmaking process do we use domain-dependency verification

as it is fair to assume that existing solutions (prior to substitution) are consistent?

Chapter 5: Extending SCBR for Web services Composition

 118

Defining variable dependency in XSCBR framework

An exhaustive surveyed of relevant literature was conducted to find methodologies that

consider domain variables and dependency between variables. Such methodology shall also

support constraints on domain variables in addition to the dependency constraints so that

new system can fit with our existing framework.

One of the methodologies researched was functional dependency which has been

part of the database technology for very long time. The functional dependency is

dependency between database variables, for example, if relation R that has two variables A

and B; then B functionally dependent on the variable A if and only if for each

value of A there is no more than one value of B is associated.

Closure is an extensively used concept for the detection of such functional dependency in

database technologies [94]. The main limitation of Closure with respect to the Domain

Dependency Module is that it has no provision for considering other constraints apart from

dependency, i.e., one of the constraints apart from dependency the SCBR framework

requires is value constraints where variable can only have certain value from a restricted

domain of values.

In the XSCBR framework, defining constraint between variables and depicting dependency

on variables as part of these constraints is modelled as a Constraint Satisfaction Problem

(CSP) [64]. Following section introduces CSP problem and provides the justification for

it’s use in the Domain Dependency Module.

Introduction to Constraint Satisfaction Problem

Constraint satisfaction problem is a powerful and extensively used AI paradigm. CSP

involves finding values for variables subject to restrictions on which combinations of

values are acceptable.

Formally speaking, CSP is defined by a set of variables Z={X
1
,X

2
,…, Xn}, and a set of

constraints C = {C
1
,C

2
,….,C

m
}. Each variable X

i
 has a nonempty domain D

i
 of

possible values. Each constraint C
i

involves some subset of variables and specifies the

allowable combinations of values for that subset. A state of the problem is defined by an

Chapter 5: Extending SCBR for Web services Composition

 119

assignment of values to some or all of the variables, {X
i
= v

i
;X

j
= v

j
,…}. An

assignment that does not violate any constraints is called a consistent or legal assignment.

A complete assignment is one in which every variable is mentioned, and a solution to a

CSP is a complete assignment that satisfies all the constraints [64].

CSP problem could be modelled as a graph called CSP graph. CSP graph is a representation

of CSP where the vertices are variables of the problem and the edges are constraint between

variables. Vertices are refereed as nodes and edges are called arcs.

A Node represents the domain variables, while arc represents the relationship between the

variable nodes. A relationship could be of type dependent → , independentc , incremental

etc. The relationship could be formalized using different constraint operators.

A widely used example to show application of CSP is map colouring problem. A map

colouring problem can be stated as: “Given a map with N regions bordering each other and

M colours that can be used to colour each region. The problem is whether there is an

assignment of one of the colours to each region such that two neighbours (regions that

share at least one border) have the same colour.” If we assume N=4, M=3 then,

Here, variables are Z = {w, x, y, z}

Domain for the variables are D
w
 = D

x
= D

y
 = D

z
 = {r, g, b}

Constraint on the variables are C = {w<>x, w<>y, x<>y, x<>z, y<>z}

CSP graph for this problem is described in the following figure

Figure 40 CSP graph for Map coloring problem

 w x

 y z

{r,g,b}

{r,g,b}

{r,g,b}

{r,g,b}

Chapter 5: Extending SCBR for Web services Composition

 120

Commonly used techniques to solve CSP problems examine two types of consistency to

solve problems [95].

a. Node Consistency

b. Arc Consistency

Node consistency ensures that every component or variable satisfies its domain constraint.

Hence, for every variable X, values][XDomainx ∈ , satisfy constraint on X. For example,

region variable w in colouring problem should have values from red, green or blue.

To maintain Arc consistency: For every variable X,][XDomainx ∈ and for all variables

Y, there needs to be a value][YDomainy ∈ , such that relationship C(X, Y) is satisfied by

},{ yYxX ←← and such value Y is called support for x. If X does not receive support

from one of its neighbours then X is inconsistent. For example, in map colouring domain

value of y has to be {red or green or blue} however y<>w meaning that y could not

have same values as w, hence if w occupies green then y could have either red

or blue. Arc consistency makes sure that related nodes are consistent. To find

consistent solution for the problem the CSP graph has to be node and arc consistent making

assignments consistent or legal.

Semantic description for Domain Dependency Module

Figure 41 illustrates a partial view of the DDM description for the travel domain where the

dependency relationship between domain variables currency, solution, QoS and domain are

described. The descriptions is limited to a binary CSP graph, where binary (two) variables

are always directly related as this will be sufficient describing variables in XSCBR

framework. For example, in the Figure 41, the directional-arrows in the graph describe

dependency directions, for instance currency is dependent on solution variable and

solution variable is dependent on the domain variable.

Chapter 5: Extending SCBR for Web services Composition

 121

Figure 41 DDM for Travel Domain

When applied to web services composition problem where the framework requires a formal

methodology to describe the constraint on the variables and a way to formalize the

consistency criterion on variables, the definition of CSP fits as follows (travel domain

exemplified):

Variables are = {w = currency, x = solution, y = domain, z = QoS}

The domain for the variables is Dw = {Any currency apart from P}

 D
x
 = {Any solution apart from Q}

 D
y
 = {Any travel domain apart from R}

 D
z
 = {Any double but at least S}

Constraint on the variables are C = {w→x, x→y, z→ x}

Category of constraints

The type of constraints which are possible to be defined using CSP could be broadly

defined in these following categories (Figure 42), which we call constraint behaviour.

Solution

Currency

Domain

QoS

Chapter 5: Extending SCBR for Web services Composition

 122

Figure 42 Constraint behaviour definition in DDM

The survey of the existing literature revealed that there are no semantic descriptions that

provide ontology for describing CSP problem. Hence ontology was created for the CSP

descriptions which covers Functional, Resource, Reliance, and Precedence

behaviours applicable in various domains and also modelled this ontology in generic

fashion making it possible to extend or reuse.

This research work primarily focused on the Reliance behaviour of CSP in order to

address dependency relationship between domain variables and to explore this particular

constraint behaviour in detail.

Reliance constraint behaviour

Arc constraints are Reliance constraints or are in terms of dependency relationship,

when variables in the systems have relationship X→Y, implying that if values of X changes

then value of Y also changes.

This is particular to interest and is conceptualized in XSCBR framework. The DDM

ontology was created that concentres on Reliance constraint behaviour (Figure 43)

specific to Web services composition problem, while in DDM description we provide base

for the other types of constraint behaviours to make it reusable for other technology

domains.

ConstraintBehaviour
Functional

Resource

Precedence

Reliance

Chapter 5: Extending SCBR for Web services Composition

 123

Figure 43 DDM Reliance behaviour

We already have defined variables as part of case representation and domain constraint on

variable (node) as shown in the as node description is required description. DDM extends

case representation to reflect the dependency between variables using directed arcs.

The semantic framework can deal with the DDM representation as follows:

Table 19 DDM Representation

Variable
(Mandatory
description)

Node
(Required description)

Arc (DDM

optional description)

Output
Price

ConstraintOnPrice

x)tPrice,alue(ResulparameterVtrue)ice,ExpectedPrequal(x,lessthanor

x)tPrice,alue(OutpuparameterVy)tedPrice,alue(ExpecparameterV

⇒

∧∧

solutionprice →

dependsOn
(Price, Instance)

Expected
QoS

ConstraintonQoS

y)sultQoS,uration(ReExecutionDtrue)S,ExpectedQoequal(y,lessthanor

1.5)pectedQoS,uration(ExExecutionDy)tputQoS,uration(OuExecutionD

⇒

∧∧

SolutionSExpectedQo →

 dependsOn
(ExpectedQoS,
Solution)

owl:class
swrl: Variable

owl:ObjectProperty
expr: expressionBody

owl:ObjectProperty
expr: expressionLanguage

owl:class
XMLLiteral

owl:class
expr:SWRL

owl:ObjectProperty
hasConstraintBehaviour

owl:class
Reliance

domain

range

range

domain

range

Node

Arc
(DDM)

domain

owl:ObjectProperty
dependsOn

owl:ObjectProperty
dependsOn

domain

range

Chapter 5: Extending SCBR for Web services Composition

 124

DDM could be an optional module as DDM may not be required if the ADoM is

acceptable. However when the search has to use knowledge substitution, absence of such

DDM descriptions might compromise the consistency at the case representation, therefore

we need to safe-guard using “semantic policing” policy.

Due to the aforementioned reasons, the framework considers DDM as an optional layer

which may or may not be used or defined but useful to gear towards the adaptation stage. In

absence of DDM the system could create invalidate results as shown this section. DDM is

necessary to protect system against such inconsistency, however is defined on a different

layer and granularity providing the possibility to switch DDM descriptions off. This is

possible with our multi-stage semantic definition.

After formalizing domain dependency module to define and solve variable dependency

using CSP, in the following section base ApplyKBS algorithm is extended to integrate

DDM verification process that addresses the consistency problems associated with using

adaptation for Web services composition.

ApplyKBS with DDM: DDM inspired Knowledge based substitution in XSCBR

Problem definition:

P (R, C
cand

, S
cand,

C), where C
cand

 is the candidate case with S
cand

 as solution that has the

highest ADoM for request R but violates constraint cs that is based on variable v.

Assuming S
cand

 is a solution composed of a finite set of service instances S
cand

(i
1
,i

2
………..i

n
) and C represents finite set of cases in case library (c

1
,c

2
,…c

e
,….c

n
),

then solving problem P involves discovering set of service instances

(i1
sub
,i2

sub
………..in

sub
) that individually match the description of the instances in the

candidate solution S
cand
 (i

1
,i

2
………..i

n
). It is important to note that the substitution

service instances (i1
sub
,i2

sub
………..in

sub
) can originate from different solution sets.

To assist the reasoner, there exists an acyclic CSP graph G that depicts relationship between

the domain variables V.

1. Retrieve initial state for the problem. This is achieved by creating tree from the graph G

and finding root of the violated variable v. Store the variables in the path of variable v

Chapter 5: Extending SCBR for Web services Composition

 125

including the root variable; let’s assume that these variables are V
1
. Retrieve variables

which are dependent on the root variable using dependency relationships; let’s assume

these variables are V
2
.

2. Start the process by varying value for the root variable. For web services composition

this corresponds to finding service instances (i1
sub
,i2

sub
………..in

sub
) using TR and RR

relationships. For proceeding further retrieve cases which contain these service

instances. These cases will be considered ball park cases and will be scrutinized

further.

3. Exclude any case from the ball park cases which still violate constraint cs for the

variable v.

4. Apply node and arc consistency on ball park cases for the variables set V
1
, where node

consistency will be measured against request R, and arc consistency will be measured

against relationships in V
1
. The qualified cases are termed plausible cases.

5. Apply node and arc consistency on plausible cases for the variables set V
2
, where node

consistency will be measured against execution values in S
cand

, and arc consistency will

be measured against relationships in V
2
. The qualified cases are termed resultant

cases.

6. Retrieve service instance (i1
sub
,i2

sub
………..in

sub
) from the resultant cases and apply

algorithm modifyOWLS (S
cand

, (i1
sub
,i2

sub,
………,in

sub
), (i

1
,i

2,
………,i

n
)) to

modify Scand.

Evaluating ApplyKBS with DDM Algorithm

Here the revised algorithm is evaluated on the scenario described in section 5.2.5. where

the preliminary algorithm failed.

Scenario-2 = “Find a Trip for a traveller Mr Osman; Mr Osman wants to travel from Paris

to Tokyo and also wants to reserve a hotel at Tokyo, he prefers to travel by air but wants to

avoid travelling by WizzAir. He prefers to pay in EUR…. (Other requirements are

snipped...)”

Scenario-3 = “Find a Trip for a traveller Mr Al-Dabass; Mr Al-Dabass wants to travel

Chapter 5: Extending SCBR for Web services Composition

 126

from Paris to Tokyo and also wants to reserve a hotel at Tokyo, he prefers to travel by air

but wants to avoid travelling by Easyjet. He prefers to pay in GBP…. (Other requirements

are snipped...)”

The matchmaking algorithm discovers CaseWizzAir and CaseEuroAir respectively that

represent candidate solution for the travel request in scenario-2 and scenario-3, albeit the

exceptions of the travel medium instance – WizzAir (WizzAir is constrained in the

scenario-2) and currency (as in the scenario-3 the preferred currency is GBP). Table 20

applies revised algorithm to evaluate the possibility of adapting CaseWizzAir and

CaseEuroAir for respective travel requests.

Chapter 5: Extending SCBR for Web services Composition

 127

Table 20 Evaluating ApplyKBS with DDM Algorithm

Algorithm steps Applying to scenario – 2 (Table 21) Applying to scenario – 3 (Table 22)

1. Retrieve initial state for the problem. This is
achieved by creating tree from the graph G and
finding root of the violated variable v. Store the
variables in the path of variable v including the root
variable; let’s assume that these variables are V1.
Retrieve variables which are dependent on the root
variable using dependency relationships; let’s
assume these variables are V2.

Violating variable v = solution instance
The root of variable v in the travel domain CSP
graph (Figure 44) is variable Domain
V
1

(variables in the path of instance) =
{domain}

V
2

(variables dependent on root variables excluding
variables covered by V

1
)

= {QoS
duration

, QoS
reputation

, city,
currency }

Violating variable v = currency
In CSP graph for the travel domain in Figure 44,
tracing solution dependency will result in root
variable Domain
V
1

(variables in the path of currency to domain)
= {instance, domain}

V
2

(variables dependent on root variables –
variables covered by V

1
)

= {QoS
duration

, QoS
reputation

, city, }

2. Start the process by varying value for the root
variable. For web services composition this
corresponds to finding service instances
(i1sub,i2sub………..insub) using TR and RR
relationships. For proceeding further retrieve cases
which contains these service instances. These cases
will be considered ball park cases and will be
scrutinized further.

Varying values for the root variable (domain) and
retrieve cases with services instances related to this
domain.
Ballpark cases are
CaseJapanAirLine ,CaseWizzAir2,
CaseBA and CaseEuroLine
(for demonstration few instances are chosen)

Varying values for the root variable (domain) and
retrieve cases with services instances related to this
domain.
Ballpark cases are
CaseJapanAirLine ,CaseWizzAir,
CaseBA and CaseEuroLine
(for demonstration few instances are chosen)

3. Exclude any case from the ball park cases
which still violate constraint cs for the variable v.

Check if cases
CaseJapanAirLine ,CaseWizzAir2,
CaseBA and CaseEuroLine violates
constraint cs (instance must not be WizzAir).

CaseWizzAir2 has value for the instance
variable= WizzAir, which still violates constraint
on instance, hence will be excluded from the next
step.
Rest of the cases qualifies, hence the
Ballpark cases = {
CaseJapanAirLine,CaseBA,
CaseEuroLine }

Check if cases
CaseJapanAirLine ,CaseWizzAir,
CaseBA and CaseEuroLine still violates
constraint cs (currency must be GBP).

CaseJapanAirLine has value for the currency
variable= Yen, which still violates constraint on
currency, hence will be excluded from the next
step.
Rest of the cases qualifies.
Ballpark cases = {CaseWizzAir, CaseBA,
CaseEuroLine }

4. Apply node and arc consistency on ball park
cases for the variables set V1, where node
consistency will be measured against request R, and
arc consistency will be measured against

V
1
 = {domain}

Hence, verify ball park cases to make sure that the
constraints on domain (must be Airline) are
not violated.

V
1
 = {instance, domain}

Hence, verify ball park cases to make sure that the
constraints on instance (instance must not be
EasyJet) and domain (must be Airline) are

Chapter 5: Extending SCBR for Web services Composition

 128

relationships in V1. The qualified cases are termed
plausible cases.

CaseEuroLine has value for the domain
variable= Coach, which violates constraint on
domain, hence will be excluded from the next step.
Rest of the cases qualifies.
Plausible cases = { CaseJapanAirLine,
CaseBA }

not violated.
CaseEuroLine has value for the domain
variable= Coach, which violates constraint on
domain, hence will be excluded from the next step.
Rest of the cases qualifies.
Plausible cases = {CaseWizzAir, CaseBA }

5. Apply node and arc consistency on plausible
cases for the variables set V2, where node
consistency will be measured against execution
values in Scand, and arc consistency will be
measured against relationships in V2. The qualified
cases are termed resultant cases.

V
2
= {currency, QoS

duration
, QoS

reputation
,

city }

CaseJapanAirLine has value for the currency
variable= Yen, which violates constraint on
currency, hence is invalidated.
CaseBA satisfies QoS

reputation
 QoS

duration
, and

currency
Hence,
Substitution service will be BA with the case
{CaseBA}

V
2

(variables dependent on root variables –
variables covered by V

1
)

= {QoS
duration

, QoS
reputation

, city }

CaseBA satisfies QoS

reputation
 but violates

QoS
duration

While
CaseWizzAir satisfies QoS

reputation
 and

QoS
duration

Hence,
Substitution service will be WizzAir with the case
{ CaseWizzAir }

Figure 44 CSP graph for travel domain case study

Solution

Currency

Domain

QoS

City

Chapter 5: Extending SCBR for Web services Composition

 129

Table 21 Scenario-2 (Revisited)

 Problem CaseWizzAir

with highest ADoM
C
cand

CaseJapanAirline

CaseWizzAir2

CaseBA CaseEuroLine

Constraint Instance
Steps: 3

WizzAir WizzAir JapanAirline
√

WizzAir
×

BA
√

EuroLine
√

Preference Domain
Steps: 4

Airline Airline Airline
√

Airline Airline
√

Coach
×

Preference

Currency

Steps: 5

€

€ ¥

×

€

€

√

€

QoS execution
duration
Steps: 5

<0.5 0.4 0.5 0.4 0.5
√

0.5

QoS reputation
Steps: 5

At least
GradeA

GradeA GradeA GradeA GradeA
√

GradeA

 Result Rejected by user/ADoM
not acceptable

Disqualified at step 5 Disqualified at
 step 3

Passes all stages, selected as
solution

Disqualified at step 4

Table 22 Scenario-3

 Problem CaseEuroAir highest ADoM C
cand

 CaseJapanAirline CaseWizzAir CaseBA CaseEuroLine

Preference Currency

Steps: 3

£ € ¥
×

£
√

£
√

£
√

Preference Domain
Steps: 4

Airline

Airline Airline Airline
√

Airline
√

Coach
×

Constraint Instance
Steps: 4

EasyJet EuroAir JapanAirline WizzAir
√

BA
√

EuroLine
√

QoS execution duration
Steps: 5

<0.5 0.4 0.5 0.4
√

0.5
×

0.5

QoS reputation
Steps: 5

At least
GradeA

GradeA GradeA GradeA
√

GradeA

GradeA

 Result Rejected by user/ADoM not acceptable Disqualified at step
3

Passes all stages,
selected as
solution

Disqualified
at step 5

Disqualified at step 4

Chapter 5: Extending SCBR for Web services Composition

 130

5.2.6. Planning based transformation in XSCBR framework

The planning based transformations is applicable when the available solutions can not

fulfil the problem requirements with normal matchmaking and discovery mechanism or

by applying minor modifications using ApplyKBS with DDM algorithm does not

produce any outcome. In this scenario, we can reuse existing planning technique and

existing planners to form a plan for composition from a scratch. Following is the

definition of a planning problem.

AI planning [43] problem can be described as a five-tuple problem (S, s0, G, A, Γ)

where,

S is the set of all possible states of the world,

s0 denotes the initial state of the planner,

G denotes the set of goal states the planning system should attempt to reach,

A is the set of (ground) actions the planner can perform in attempting to reach a goal
state, and the transition relation

Γ defines the semantics of each action by describing the state (or set of possible states if
the operation is non-deterministic) that results when a particular action is executed in a
given world state.

The creation of an AI planner and research on using planning for Web services

composition is out of scope for this research and we rely on the available planning

methodologies for Web services composition to form composition schemas. If XSCBR

matchmaking algorithm and ApplyKBS with DDM fails to find any solution then,

the planner is employed to do transformations where the planner generates composition

schemas from existing service descriptions, and XSCBR execution engine allows

executing these descriptions, takes feedback and stores as a case, which is analyzed for

the future problems.

5.3. Conclusions

In this chapter an aspect of CBR, case adaptation was explored to extend Web services

discovery and matchmaking framework for Web services composition.

The extension for case adaptation requires standardizing the case representation format

to make case representation applicable to any application domains. The proposed

generic case representation has provision for the facilitations to service participants and

Chapter 5: Extending SCBR for Web services Composition

 131

especially service requestor as it was outlined, extension of OWL-S descriptions to

support service requestor in terms of specifying constraint and preference on search.

The rules were introduced to handle complex constraint and preferences relationships in

case descriptions. The Quality of Service (QoS) parameters were also considered as an

important selection criterion for web services discovery and to modify (QoS)

descriptions from the previous framework inline with the modifications and

improvements in the case representation, especially using rules.

In this chapter the solution was also represented semantically in order to adapt the

solution for new problems when required. This is made possible using existing OWL-S

process model for modelling composition schemas required for adaptation module. The

richness of the workflow based patterns supported by OWL-S process model and

provision of semantics in the specification itself were the reasons selecting OWL-S. The

ModifyOWL-S algorithm was outlined to demonstrate how OWL-S process file could

be modified with the help of API to insert or remove service reference to satisfy new

problem requirements.

In the XSCBR framework, case adaptation was applied to solve a new problem by

merging the local solutions from previously solved problems and creating a globally

consistent solution for the new problem. In-depth investigation of the CBR literature

concluded that there are two major challenges in CBR for achieving case adaptation in

this manner: first the development of an efficient methodology for case adaptation and

second, maintaining consistency of solutions and knowledge supplement to assist case

adaptation. A methodology was designed based on the Constraint Satisfaction Problem

(CSP) to address these challenges and handle the inconsistency problem with a CSP

inspired Domain Dependency Module (DDM). This approach allows defining

dependency between variables of the domain and ensuring the consistency by

maintaining dependency constraints between these variables whenever a solution is

adapted.

In addition to maintaining the consistency of solution, in the XSCBR framework, we

also advocate a knowledge-intensive approach to automate the process of adaptation in

CBR inspired Web services discovery and composition problem. The argument is that

Web services composition is a developer-intrusive problem solving method, the

automation of which requires the reasoning about domain-specific knowledge at their

Chapter 5: Extending SCBR for Web services Composition

 132

disposal. This chapter also discussed the methodologies to define and utilize such

knowledge.

A case study based evaluation of the algorithms is carried out to validate the framework.

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 133

Chapter Six: Implementation and
Evaluation of XSCBR framework for Web
Services Discovery and Composition

The previous chapter overviewed the utilization of a semantic case based reasoner

XSCBR for automated Web services discovery and composition. The argument is in

favour of highlighting the importance of considering the execution values for

semantically-described non-functional Web services’ parameters in decision making

regarding Web service adequacy for particular task. A novel, semi-transparent

framework was proposed that captures Web service execution experiences as cases,

which can be subsequently orchestrated to present solutions to the new problems. The

XSCBR framework extensively uses ontologies, as semantics are used both for

describing the problem parameters and for implementing components of the CBR

system: representation, indexing, storage, matching and retrieval.

In this chapter, the details of XSCBR framework implementation for solving the

automated Web services discovery and composition problem is presented. This is

followed by an evaluation of the precision and recall of the Web services discovery

mechanism in the XSCBR framework. Investigation of the incurred impact of such

mechanism on the performance of the framework is also discussed.

6.1. Choice of Tools and Specification for Implementation

The implementation of the framework relies extensively on semantics to implement the

component of the CBR system namely indexing, matching, retrieval and ranking. These

components are developed using Web Ontology Language (OWL) ontologies and java

based ontology reasoner Pellet.

6

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 134

6.1.1. Web Ontology Language (OWL) and Pellet Reasoner

Description Logics (DL) [96] is the name for a family of knowledge representation (KR)

formalisms that represent the knowledge of an application domain (the “world”) by first

defining the relevant concepts of the domain (its terminology), and then using these

concepts to specify properties of objects and individuals occurring in the domain (the

world description). A distinguished feature of DL is the emphasis on reasoning as a

central service that allows one to infer implicitly represented knowledge from the

knowledge that is explicitly contained in the knowledge base. Based on these principles

of DL, the semantic web community have developed Web Ontology Language (OWL)

[22] to encode the knowledge required in the semantic web mission of making the

WWW machine interpretable.

To address different levels of requirements for expressivity and reasoning in Semantic

Web, OWL specification offers three different dialects: OWL- Full, OWL-DL and

OWL-Lite. They are ordered based on the expressiveness these dialects provide: OWL-

Full provides maximum expressivity while the OWL- Lite provides the least. The

OWL-DL dialect is used for XSCBR implementation, as OWL-DL imposes a number

of restrictions on RDF graphs, some of which are substantial (for example, the set of

class names and individual names be disjoint) and some less so (that every item have a

rdf:type triple) in order to achieve completeness and inference.

For implementing the components of XSCBR framework, Pellet reasoner is utilized that

works on top of OWL-DL ontologies. Pellet [71] is a sound and complete OWL-DL

reasoner with extensive support for reasoning with individuals (including nominal

support and conjunctive query), user-defined data types, and debugging of ontologies.

The support for cardinality in describing cases with non-functional parameters is

essential for frameworks such as XSCBR that allows granular service requests

involving non-functional parameters. Pellet has also proven to be a reliable tool for

working with OWL-DL ontologies and experimenting with OWL extensions [71]. Apart

from these features, open source access to Pellet has been one of the main criteria for

choosing Pellet for this research project. Bossam [97], a forward chaining rule engine

was used to reason SWRL based constraint and preferences conditions.

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 135

6.1.2. OWL-S: Specification and API

In the CBR-based approach to automatic Web services discovery and composition,

when the existing solutions are not sufficient to solve the service request, case

adaptation process is utilized to modify an existing solution to adapt to the new request.

In the XSCBR’s adaptation algorithm, the decision to select the components of an

existing solution which needs to be adapted is based on a variety of descriptions and

situational parameters, i.e., functional and non-functional parameters. Once the

components are identified, necessary adaptation changes are made to the solution of an

existing case, which in XSCBR framework is represented by OWL-S process file which

is an OWL based Web services description. The task of amending OWL based solution

will be consistent with the policy of using semantics for automation as compared to

using XML based BPEL composition schemas.

The OWL-S API [88] is used to support reading, modification and execution of the

OWL-S process models. The API is instrumental in execution of services when the user

selection is made, and also utilized for the implementation of ModifyOWL-S where

OWL-S process file is modified with the help of API to insert or remove service

reference to satisfy new problem requirements.

The following section provides detail on how various components of the XSCBR

framework are implemented using the tools and specifications explained in this section.

6.2. XSCBR Framework Implementation

A context diagram of the XSCBR framework is given in the Figure 45, outlining the

functionality of the framework. XSCBR allows service participants to perform their

publishing, composition and discovery tasks in transparent manner, where the

framework components work as a black box and dynamically match service requests

with published service definitions.

The CBR controller module is the first point of entry for the framework users and

provides matchmaking and ranking of existing services to service request and also

performs lightweight knowledge-based substitutions of service descriptions if the

resultant solution is unsatisfactory.

The indexer module is responsible for assisting controller in effective discovery of Web

services using indices to index cases in the case library. The adaptation engine module

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 136

performs substantial, necessary substitutions of service solution components if the

controller fails in finding satisfactory results and generates new executable composition

schemes using case adaptation process.

The execution engine allows enacting existing or newly generated composition schemes.

The case library and knowledge base store assist the framework in finding relevant

results by supplying knowledge stored in terms of cases and heuristic rules. The error

reporting and recovery unit stores any errors and exceptions occurring during the

framework operations into case library to avoid repetition.

Figure 45 XSCBR framework modules

The following sub-sections provide more detail on the framework components.

6.2.1. CBR Controller

The CBR controller is the main component of the architecture, which processes user

requests for solving a discovery problem and handles admin requests for framework

maintenance. The component has been divided into three units: interaction layer,

processing layer and the maintenance unit. The multi-component architecture is

intended to improve the system performance.

 CBR Controller

Interaction Layer

Processing Layer

User

Admin

Indexer

Adaptation

Engine

Execution

Engine

Error Reporting

Unit

Maintenance Unit

 Case

Library

Knowledge

Base

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 137

Interaction Layer

The interaction layer is the first point of entry for the users of the framework. This

module contains createQueryInstance method that converts user requests to an

OWL request and pass the query instance to the processing layer module for further

processing. The interaction module considers the domain of case representation selected

by the user and instantiates the request as an instance of CaseRepresentation

accordingly. For example, if the user is looking for finding a sensor service and selects

sensorCaseRepresentation1 for outlining their request among the other sensor

case representations available, then the interaction layer takes the textual data from the

user interface and creates an instance (query instance) of

sensorCaseRepresentation1, which will be the semantic equivalent of the

provided user textual request.

Processing layer

The processing layer contains the implementation of the ranking algorithm and light-

weight knowledge-based substitution algorithm which operates at the description level.

The functionality is implemented by two modules: the first is SemanticComparision,

which contains methods to handle matchmaking and ranking of requests with the

available service executions. This module is an implementation of matchmaker that

semantically compares functional and non-functional parameters in the user request

with the available cases and ranks them based on the degree of match.

SemanticComparision interacts with the second module in the processing layer:

KnowledgeSubstitution in situations where the service descriptions are not

matching hence requires finding possible bridge-rules that allow the semantic

discrepancies to be consiled. KnowledgeSubstitution takes possible discrepancies

and applies ontology and SWRL reasoning on the knowledge base to solve the

differences.

Maintenance module

The framework also includes administration module for various bookkeeping

activities i.e., entering new cases, removal of existing cases, extending case

representation and setting up domain specific acceptable degree of match.

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 138

6.2.2. Indexer

The indexer module implements the “partitioning_case_library” method,

where the case library is partitioned based on certain vocabularies and the new problem

is recognized based on the identical vocabularies to decide which partition the problem

falls into. The process of searching entire case library is computationally expensive and

indexing cases and searching cases based on indices allows frameworks to efficiently

find a solution as the indexing process effectively reduces number of cases to be

investigated. For example, case containing EasyJet as a solution can be indexed as the

AirLine domain case, hence falls under Airline partition. The framework trying to

solve any problem request that specify Airline as a domain preference will retrieve

this case as a potential solution. The processing layer in this fashion initiates the

indexer module using the information in the user request based on constraint or

preference of domain, hence portioning case library based on the domain of cases.

6.2.3. Adaptation Engine

The adaptation engine contains logic for deciding the applicability of the adaptation

process by comparing the aggregate degree of match for the best ranked result against

the acceptable ADoM (Aggregate Degree of Match) set by the administrator and also in

response to the intervention of the user, when the user deems the returned results

unsatisfactory.

The adaptation engine adapts cases using knowledge based substitution. The engine

applies substitution using available knowledge and modifies solution component of

existing case to adapt to a new problem request. The module contains two classes to

achieve this: AdaptSolution and CreateNewProcess which are implementation of

the algorithms ApplyKBS with DDM and ModifyOWL-S respectively. The

AdaptSolution class contains methods that consider a case with the highest degree of

match but with the unsatisfied constraints to modify the solution of this case and

generate a satisfactory solution that is applicable to the current problem request. The

mechanism uses Domain Dependency Module (DDM) tree to scrutinize singleton

service cases (cases that have just one service as serviceIsPartOfSolution) by

first narrowing down them to ball park cases (cases that satisfy part of DDM constraints)

to the resultant cases (cases that satisfy all of the DDM constraints). The resultant case

(caseR) along with the case that has the highest ADoM (caseE) is input to the

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 139

CreateNewProcess class, which finds the matching components (perform,

process, result, input and output bindings) from the existing case caseE and

replaces them with relevant components in case caseR. The final output of the

adaptation module is an executable composition scheme.

6.2.4. Execution Engine

The framework uses execution engine provided by the OWL-S API [88] that allows

executing WSDL-grounded OWL-S descriptions. The Input and Output in

CaseDiscovery section of CaseRepresentation class has similar semantics to

OWL-S process model functional parameters (Input and Output), hence we are able to

exploit the compatibility.

6.2.5. Knowledge sources: Knowledgebase and Case Library

The file system was utilized to store cases in case library, where OWL files of each case

along with domain ontologies and rules presenting heuristics are stored on a web server.

The implementation supports SWRL and OWL to represent such knowledge. The

knowledge contributed to the framework comes from two sources: administrator and

service providers. The administrator can input, edit or delete cases from the case library

and also can input the rules that will contribute to the functioning of the system. The

service providers can submit any knowledge in terms of ontology or rules necessary to

make their services part of composition.

6.2.6. Error reporting unit

The error reporting unit contains logic for error reporting. Errors occurring during the

functioning of the system are stored as new cases to avoid future failures. For example,

using the error reporting module, the administrator can log a new case for a service that

is no longer available at the specified access point and can delete such case when

notified as a permanent error.

6.3. Graphical User Interface

The GUI of the XSCBR framework is developed using Java programming language. It

includes a portal for each of the framework users: framework administrator (service

composer), service requestor and service provider (Figure 46). The administrator can

use the interface to set up acceptable ADoM for various domains, to add/remove cases

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 140

from the case library, update the knowledge base, or perform other maintenance duties

such as acting on errors and exceptions reported in the framework. The options

available to the service providers are to select the domain of the service they intend to

publish their service under, in addition to aid in describing their service in OWL-S.

Figure 46 Graphical Interface for the Administrator and Provider

For case searching, the framework assists the case requestor in formulating service

queries with a user interface similar to that available for case administrator, and

transparently creates semantic description for the new problem parameters (Figure 47).

The generated index for such semantically described problem governs the decision

regarding which partition the problem falls into. The cases from that partition are

retrieved for further matching. The result of the matching procedure displays the case

instances, which have similar problem situation to the new problem.

Figure 47 GUI for Web services requestor

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 141

The framework also displays the aggregate matching coefficient associated with such

suggested case instances for the case requestor to view and make appropriate

selection.

The requestor can analyze the cases using GUI (Figure 48) and can execute the service

if they are satisfied with the results or they can point to a service execution which they

will prefer to be adapted.

Figure 48 Case analyzed by requestor

The next section provides performance study results of the XSCBR framework when

measured for the effectiveness and efficiency.

6.4. Evaluation

A group of experiments were carried out to evaluate the impact of XSCBR on the

quality of precision and recall of automatically composed and the incurred overhead on

the performance of the composed application.

6.4.1. Objectives

The evaluation of the framework is categorized into qualitative and quantitative. The

qualitative evaluation answers the research questions as outlined in the motivation

section of chapter 1 and contrasts them to what has been achieved in this research effort.

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 142

For the quantitative evaluations the majority of the traditional approaches on automated

Web services discovery and composition focus only on the performance evaluation

(efficiency) of the system in terms of execution time, i.e., the average response time the

search engine takes to find a suitable service. In contrast, the argument is that the

composition engines should be also measured for effectiveness in terms of how closely

and accurately they match user requirements. Similar to evaluations of information

retrieval engine [18] the proposal is that the qualitative evaluations of service-retrieval

engine should be based on the precision and recall performance of web service

discovery engine for a range of queries. Inline with this conclusion, evaluation of

XSCBR framework on precision, recall along with execution time and performance is

performed.

6.4.2. Qualitative evaluation of the XSCBR framework

The main research question of “building dynamic web services composition framework

in semantic web” has been answered, in general, by the design and implementation of a

semantic web and case based reasoning based system for automated Web Service

retrieval and composition.

Research Questions

Following are the answers to the underlying and more specific research questions (RQi):

RQ1: Web services composition is mainly a task performed by human developer, how

can this task be automated using software programs?

At the beginning of this research it was established that to imitate human reasoning in

service composition task first and foremost it is necessary to arm software programs

with intelligence to identify the capability of Web services.

Further research lead to investigating semantic web based Web service descriptions as

such descriptions provide a mechanism to describe Web services capability. However,

to interpret these semantic descriptions and in order to compose and execute Web

services for achieving the desired functionality, it requires an intelligent layer that can

replace human developer. In other words, the intelligent layer should comprehend the

descriptions in order to accurately decide the possible services and build flow

management for those services.

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 143

RQ2: Workflow-based techniques are a popular and widely adopted option for

application integration/Web services composition. Can semantic technologies inject the

required intelligence to aid the workflow techniques in achieving more dynamic,

perhaps automated service composition?

The BPEL specification solves the immediate problems industry is facing regarding the

use of Web services for enterprise application integration. However, in its present form,

the specification overlooks the possibility of binding the service participants and

performing flow management on the fly, hence only specifies how the service composer

can perform both activities manually.

As demonstrated with the DPDWS tool in the chapter 3, enriching BPEL specification

with semantics achieved automatic selection of the Web services with pre-agreed

interfaces. The hybrid approach presents a practical solution to a current problem.

However, the approach could only achieve limited automation to the composition

process as the process model on top of WSDL, which is an XML grammar. Using XML

one cannot define concepts or relations between concepts, which is essential to convey

our understanding of real-world domains to the intelligent reasoners performing the

automation. The issue related to the current discussion is the use of non-semantic

grammar for the composition specification. For the composition engine to provide

automatic discovery and flow management, the process model needs to have the

consideration of the semantics in the specification. The addition of semantics within an

XML centric standard like BPEL will not achieve the automation as the composition

engine apart from being executable similarly to BPEL, also needs an intelligent reasoner

which can interpret the semantic description.

RQ3: Investigation of problem solving methodologies that represents a viable approach

for solving the problem of automatic Web services composition problem.

An exhaustive investigation was performed for finding a methodology that can utilize

service descriptions to achieve greater level of accuracy in web services discovery and

matchmaking compared to the existing approaches that rely on planning, agents,

software synthesis and workflow. This investigation led to consider the importance of

the execution values for semantic non-functional Web services parameters in decision

making regarding Web service adequacy for the task. The Case Based Reasoning (CBR)

was established as a methodology that supports such specification and an XSCBR

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 144

framework was developed to achieve dynamic Web services discovery and composition

mechanism.

The main benefit of using CBR for this research is the consideration of experience-

based knowledge for judging capability of Web services for the discovery phase. The

adaptation mechanism in CBR allowed the framework to model the problem of service

composition while considering role of knowledge in addressing discrepancies.

RQ4: Selecting the appropriate implementation technology from the abundance of

standards available.

The Web Ontology Language (OWL) was utilized for constructing ontologies in the

XSCBR framework. OWL is the most expressive Semantic Web knowledge

representation so far and the layered approach adopted by semantic web, allows

reasoning and inference based on ontologies, which is the most powerful and ubiquitous

feature of Semantic Web

Similarly, the vital component of XSCBR framework, case representation is an

extension of OWL-S descriptions and adds support for Preference and Constraint

components to assist the service requestors in providing granular level of request

descriptions. It was also decided to utilize existing OWL-S process model for modelling

adaptation in the framework. The richness of workflow based patterns supported by

OWL-S process model and provision of semantics in the specification itself were the

motivating factors for selection.

RQ5: The main thesis of this research work is based on the theory that assistance with

the facilitation of the composition process to the service participants (service requestor,

provider and the composers) plays a major role in encouraging the adoption of the Web

services technology. This research shall address question of the facilitation by providing

assistance to the service participants in their respective tasks in the composition process.

� We have addressed the issue of facilitation to the participants by automating the

steps the participants have to perform in their specific role in the composition

process.

o For the service requestor, the framework delivers a user-transparent search engine

that exhibits high precision and recall of results without requiring intervention

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 145

from their part, which is the first facilitation offered by XSCBR. The existing

approaches for Web services discovery and composition has no standard

representation available for requestor to request their selection. We fulfil this

requirement by extending OWL-S specification for requestor descriptions with

Constraint and Preference components of CaseRepresentation to

specify their search. The extension allows requestors to describe requests at a

granular level and allows providing more details on what they are looking for.

An additional facilitation to the service requestor is that the requestor can work

independently from the composer. For example, the framework allows service

requestor to work independently from the composer by translating text-based

request to ontology based case, allowing the description of the expected service

functionality in an unambiguous form.

o Using XSCBR, the service developers have the opportunity to reuse their services

to be part of a composition and can provide knowledge which bridges the gap

between their intentions in describing services and the standard service interfaces

they refer to. This facility serves real world scenarios as service offer, request

descriptions and composer descriptions are ideally designed independently where

service providers describes their offers, clients query services using a semantic

request and a matchmaker finding offers that match the request. XSCBR addresses

these concerns with generic case representation that caters for the circumstances

where the services with different descriptions from the composers can exist.

The service providers work independently as the framework assists provider in

subscribing services or mapping their service descriptions to existing case

representation formats but expects the provider to supply knowledge for any

mismatches in the Web services description to the existing representation. The

composer can assist this process by acting as a domain expert and either creating

or reusing heuristics to address mismatches. From this point onwards, the

framework takes care of matching service requests to service offerings and also

provides rankings indicating relevance of the match to the service request.

o In the XSCBR framework, the role of composer - who analyzes service request

and matches against service offers and if required combines number of offers to

meet the request, is transformed to a domain expert or domain administrator. In

this role, the composer is responsible for maintaining XSCBR framework since

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 146

the framework alleviates the burden of verifying the service capability and

interpreting requests and the composer is only involved in the integration of

services when the framework is initiated hence does not contain any cases and at

the time when the framework returns no results in response to a service request.

� A facilitation which is applicable to all participants is that the framework is domain-

independent and applicable to heterogeneous domains. This is achieved using

generic case representation schema which is applicable to heterogeneous application

domains services.

� With the evidence of effective and efficient implementation of framework, we

provide support for the argument of using semantics in achieving automation for

Web services discovery and composition [98].

RQ6: How does the functionality offered by the XSCBR framework compare to that

offered by other Web services composition frameworks?

The criteria for comparing the framework functionality are:

1. Expressiveness measuring how expressive the framework is in terms of

representation provided for service request and composition workflow patterns.

2. Transparency of the framework is determined in terms of how seamless it is to

utilize the framework for Web services composition with priority given to the

service consumers. It is possible to measure transparency of a framework based on

the level of automation achieved by mechanizing the process of service discovery,

composition and execution.

3. Adaptability analyzes frameworks from the perspective of finding out if the

framework can adapt to change, i.e. how particular framework deals with situations

such as when a service is no longer active in the composition or services with

various service descriptions exist?

Using the aforementioned criteria, the XSCBR framework is compared against

prominent frameworks that are based on DAML-S, UDDI and the frameworks that

extend and utilize workflow based specification such as BPEL.

Under the category of DAML-S based frameworks we consider the works of the authors

Wu, D., et al. in [42] and Richards, D., et al. in [56]. Wu, D., et al. in their framework

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 147

[42] applies SHOP2 planner that utilizes IOPE based DAML- S profile and process

model to achieve Web services composition. In their framework advocated by Richards,

D. et al. applies and extends Agent Factory- an automated facility for composing

software agents, to use Web services as agent components. Their framework use the

DAML-S profile models to provide descriptions of the components at the conceptual

level for the discovery and the grounding model to provide the descriptions at the

implementation level for the integration.

UDDI based framework in [59] by Limthanmaphon, B. et al. utilizes Case Based

Reasoning (CBR) for Web services composition. In their BPEL based framework in [67]

by Mandell, D. et al. proposes a bottom-up approach for Web services interoperation in

BPEL4WS and use OWL-S based descriptions for runtime binding of service partners.

Expressiveness

The framework presented by Wu, D., et al. relies on DAML-S profile for service

descriptions hence supports functional parameters such as IOPE; however in their

framework authors do not specify provision for non-functional parameters such as

Quality of Service(QoS). The framework also has no scope to consider Preference

and Constraint parameters to help service requestor in describing their requests at a

granular level.

The framework advocated by Richards, D. et al. utilizes DAML-S profile and process

model coordination patterns to model agents as DAML-S components although it does

not consider non-functional parameters for selection criteria and also ignores granular

service request expressiveness in their implementation.

The framework by Limthanmaphon, B. et al. relies on keyword search on service names

or tModels for Web services discovery. The framework supports Constraints and

Preferences in free-text format and contains engine to process the constraints. For

composition patterns, the framework has customized service relationship and flow

management patterns.

The framework implementation described in Mandell, D. et al. relies exclusively on the

functional parameters provided by BPEL4WS and maps the inputs and outputs in

BPEL4WS to OWL-S profile. Their approach does not extend BPEL4WS to include

non-functional or service request parameters.

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 148

The XSCBR framework supports OWL-S specification and extends it for including

granular level service requests and for QoS based non-functional parameters.

Transparency and Automation

In the planning based framework by Wu, D., et al., the service requestor starts with a

simple user interface where an OWL-S service description for any desired task can be

loaded. When the service description for the example domain is selected, a form to enter

the required parameters for the task is presented to the user. This form is generated

based on the ontologies used to describe the input parameters of the service. The UI will

also automatically fill out some of the fields such as the home address from a user

specified knowledge base. The user is shielded from the complexities of semantic web

and the background composition process.

The service provider requires providing a DAML-S description with the WSDL file

however the framework does not consider the discrepancies in the service descriptions.

In order to do planning in a given planning domain, SHOP2 needs to be given the

knowledge about that domain. A SHOP2 knowledge base consists of operators and

methods (plus, various non-action related facts and axioms). The framework provides a

DAML-S to SHOP2 translator, which is a java program that reads in a collection of

DAML-S process definitions files and outputs a SHOP2 domain file. The final output of

SHOP2 is a sequence of Web services calls that can be subsequently executed. However

the composer receives no assistance in addressing knowledge discrepancies. This way

the composer is semi-transparent from the process of composition.

In the framework advocated by Richards, D. et al., the service requestor is masked from

the underlying mechanism that is managed through agent technology. The service

provider requires providing DAML-S description of their services however the mapping

of such services to agent factory is performed transparent from the service provider. The

role of service composer and transparency provided to the composer is not apparent

from the publications as they contain internal working of Agent Factory to create

composition schemes however how much composer is involved in composition process

is not explicitly specified.

Mandell, D. et al. propose a bottom-up approach for Web services interoperation in

BPEL4WS; they use OWL-S based descriptions for runtime binding of service partners.

The Implementation collects the OWL-S profiles into a repository and exploits the

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 149

profile semantics to query partners for desired properties. The service requestor is

transparent from the background process, however there is no mention of wrapper

supporting service provider to map WSDL to OWL-S. The service composer has to

build composition schemas for abstract services hence the framework provides limited

transparency to the composer.

In Limthanmaphon, B. et al., the proposed framework utilizes UDDI for service

directory and since UDDI service registries are described in XML-based format, the

framework use JAXR (Java API for XML Registries) to parse the XML-based service

descriptions and to find out a service matching the query by comparing the XML

attributes of each service and hence enable a wider range of service selection. The

framework relies on UDDI and therefore inherits the limitation of UDDI where the user

has to form smart key words in order to receive adequate responses making the

framework less transparent. The service provider submits the services to the UDDI

where unlike semantic web based approaches provider just has to provide a WSDL

description and utilize UDDI – standards already familiar and in practice in the industry.

However, in the situation where the provider has service specification and format

conceptually similar but syntactically different from what the composition interface

expects, the approach does not offer any support to the providers. The authors provide

wrappers for converting service descriptions to CBR descriptions however the reliance

of free-text restricts the opportunity for performing discovery and composition in

dynamic manner.

Compared with the above discussed approaches, the XSCBR framework delivers a user-

transparent search engine that exhibits high precision and recall of results without

requiring intervention from their part keeping the utilization of framework completely

transparent from service requestors.

Using XSCBR, the service developers have the opportunity to reuse their services in

composed applications part of a composition and can provide or simply use existing

knowledge which bridges the gap between their intentions in describing services and the

standard service interfaces they refer to. The role of composer - someone who analyzes

service request and matches against service offers and if required combines number of

offers to meet the request, is transformed to a domain expert or administrator- someone

maintaining XSCBR system since the framework alleviates the burden of verifying the

service capability and interpreting requests. However the composer is involved in the

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 150

integration of services when the framework is initiated hence does not contain any cases

and when the framework returns no results in response to a service request making the

utilization of the framework semi-transparent to the composer.

Adaptability

The frameworks by Richards, D., et al., Limthanmaphon, B., et al. and Wu, D., et al. do

not prioritize adaptation as there is no mechanism present to deal with the situation

where the participant services have different service descriptions to what is expected by

the respective composition frameworks. Similarly, these frameworks provide no

mechanism to find out whether service is active or disabled. The framework by

Mandell, D. et al. allows to fire services with concrete details using abstract processes

supporting limited level of adaptability.

The XSCBR framework allows addressing discrepancies by accepting OWL and SWRL

rules that bridge such discrepancies. The framework also has provision of error

reporting unit containing logic for error reporting. The errors occurring during the

functioning of the system along with any unavailability of services for a suggested

solution are stored as a new case to avoid future failures. However, when using error

reporting unit, the administrator has to manually delete such case when notified as a

permanent error. Hence, the framework has provision to consider faulty and inactive

service however is performed manually. Table 23 outlines the comparison of XSCBR

with these frameworks.

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 151

Table 23 Comparing frameworks

Frameworks Expressiveness Level of transparency Level of support for

adaptation

 Support for

Functional

Parameters

Support for

Non-

Functional

Parameters

Support

for

Granular

level

service

requests

Support for

composition

patterns

Requestor Provider Composer Automation

Discrepancies in

service

interfaces

Faulty,

Inactive

services

Wu et al. [42] √ × × √ Complete Limited Limited Limited None None

 Richards et al. [56]

√ × × √ Complete Limited Inconclusive Limited None None

Limthanmaphon et

al. [59]

√ × √ √ Limited Limited Limited Limited None None

Mandell et al.[67]

√ × × √ Complete Limited Limited Limited None Limited

XSCBR

√ √ √ √ Complete Limited Limited Limited Limited Limited

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 152

6.4.3. Quantitative evaluation of XSCBR framework

This section presents the result of experiments, which were carried out to evaluate the

incurred impact of XSCBR on the quality of precision and recall of XSCBR Web

services discovery and composition mechanism.

Experiments design

The frameworks which are analyzed and compared with the XSCBR development are

an implementation of OWL-S matchmaker and jUDDI [99] which is a private UDDI

registry.

The main motivation behind selecting these tools for comparison is to evaluate the

XSCBR framework against two diverse approaches which are widely adopted by

industry and academia. The UDDI registry is an XML-based registry based on

Universal Description Discovery and Integration protocol and utilizes XML for Web

services discovery and matchmaking. Although the mainstream public registries were

closed in year 2006 after successfully demonstrating the interoperability and robustness

of the UDDI specifications through a public implementation, the majority of software

vendors now include private UDDI registry support as a key feature in their software

products where private UDDI registries are being broadly deployed to solve application

and service integration challenges [100]. For experiments, the jUDDI private registry is

used, which is an open source java implementation of the Universal Description,

Discovery, and Integration (UDDI) specification for Web Services.

The other tool used for comparison is an OWL-S matchmaker which solely relies on

matching Web services functional parameters (inputs and outputs) with service request.

OWL-S ontology provides a mechanism to describe the capability of Web services in

machine-readable form, which makes it possible to discover and integrate Web services

automatically. The matchmaker built on top of OWL-S relies only on functional

description of services, while in XSCBR we extend OWL-S with non-functional

attributes and encode CBR reasoning in the Web services discovery process.

The evaluation of the frameworks is performed on two categories of queries: coarse-

grained and fine-grained. The classification queries are an example of coarse-grained

queries and contain taxonomical terms for search. For example, a service requestor

looking for a service from taxonomical domain such as airline or sensor domain. The

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 153

classification queries are perceived to be less informative and generally serve as a

precursor to fine-grained search where the user provides more information after initial

retrieval such as constraints or preferences on some results.

Fine-grained queries are detailed queries with complex search set. An example from the

travel domain can be requesting a bus service with payment in currency USD or an

airline service with execution price of 30, with execution duration 0 seconds. Note that

it is not possible to perform such queries on the OWL-S matchmaker as the matchmaker

does not support such level of fine-grained queries.

Experimental setup

The experiments were performed on closely coupled workstations within the

Nottingham Trent University departmental LAN, the connection speed of which is 100

Mbit/se. The web services are developed using Apache Axis 1.2 and are hosted on web

services container provided by Apache Tomcat server 5.5. The hardware configuration

for the end user is with AMD Athlon XP, 2.01GHz processor, 1 GB of RAM and 100

Mbit/sec connection speed running on Windows XP platform.

The XSCBR framework and OWL-S matchmaker are implemented using NetBeans

Integrated Development Environment (IDE). Both implementations utilize reasoner

APIs from Pellet, Jena and Bossam. The implementation of ontologies and rules utilized

in frameworks is using Protégé editor.

The jUDDI version 0.9rc4 was installed and configured with tomcat 5.5 supported by

MySQL server 5.0 for persistence storage. The publication and discovery of services

was performed using Eclipse 3.2.1 IDE with Web Tools Platform (WTP) plug-in for

Web services.

In the developed test bed, there are 150 Web services with a variety of sub-domains

from travel industry and 250 cases involving these web services in the case library.

The following sections outline definitions of recall and precision for Web services

discovery and matchmaking and how the XSCBR framework is evaluated based on

these interpretations.

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 154

Recall and Precision for Web services discovery and matchmaking

We adapt definitions of Recall and Precision from the IR literature and define these

measures for Web services discovery and matchmaking as follows:

registry in servicesWeb relevant of number Total

retrieved servicesWeb relevant of Number
 recall =

Equation 6 Recall of Web services search engine

retrieved servicesWeb of number Total

retrieved servicesWeb relevant of Number
 precision =

 Equation 7 Precision of Web services search engine

Recall is a measure of the completeness of the results achieved by counting number of

relevant Web services retrieved by search engine against total number of relevant Web

services in the registry as perceived by human observer; precision measures the

usefulness of results by counting number of retrieved relevant web services out of the

total number of Web services retrieved by the search engine.

Evaluation for classification queries

In the XSCBR framework the provision for explicit consideration is achieved by

recording atomic services as part of serviceIsPartOfSolution object property in

the definition of Solution where value for this object property points to the URI of

the candidate solution services. This explicit consideration allows requestor to query

available services by providing PreferenceonSolution and allows the framework

to achieve close to 100% for classification query based precision. To contrast these

results with the other frameworks, the OWL-S matchmaker and the jUDDI framework

were evaluated on average 10 requests where the queries were formed with a variation

in the number and type of domains. Figure 49 depicts experimental results obtained for

classification queries. The abbreviations used in the figure are: Pr= Precision and

R=Recall.

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 155

Precision and Recall for Classificat ion Queries

0

0.2

0.4

0.6

0.8

1

Requ
es

t#
1

Requ
es

t#
2

Requ
es

t#
3

R
equ

es
t#

4

R
equ

es
t#

5

R
equ

es
t#

6

R
equ

est
#7

R
equ

est
#8

R
eq

ue
st
#9

R
eq

ue
st
#1

0

A
ve

ra
ge

Requests

V
a

lu
e

jUDDI(Pr) OWL-S Matchmaker(Pr) jUDDI(R) OWL-S Matchmaker(R)

Figure 49 Precision and Recall study (Classification Queries)

For the OWL-S matchmaker, the classification is based on the number of inputs and

outputs along with types of these inputs and outputs required for a particular class of

domain and comparison is performed based on comparing the number and type of these

inputs and outputs from service request and from available services in registry. For

example searching for Airline domain services requires providing the following

inputs/types pair: (Date of Departure, Date), (Date Of Arrival, Date), (City of departure,

City), (City of arrival, City), (Name of passenger, String) and (No of passengers, Integer)

while searching for hotel domain related services less number of inputs i.e., (Date Of

Arrival, Date), (City of arrival, City), (Name of passenger, String) and (No of

passengers, Integer). OWL-S matchmaker achieves average 35% recall and 52%

precision for such classification queries.

To explain why XSCBR compares favourably against OWL-S, let’s assume that the

user is looking for a hotel domain service, in OWL-S that means inputting the above

mentioned four inputs, however this will disqualify any composed service which is

integration of Hotel and Airline services, because the composed service will have more

number of inputs than aforementioned four inputs.

For experimenting with jUDDI, we form as many random queries as possible and

retrieve results from the registry and for each request we take mean value of these

results. jUDDI search achieves lowest results in terms of 20% recall and 33% precision.

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 156

R-Precision for ranking based Web services discovery and matchmaking

For evaluating frameworks for fine-grained queries the outlined measures of precision

and recall are insufficient as these measurements are set-based measures in that they are

computed using unordered sets of documents [18]. Therefore it requires using

alternative measures to evaluate ranked retrieved results that are more accurate

measurement of web services search engines such as XSCBR. To summarize, recall

and precision are measures for the entire recalled results and they do not account for the

quality of ranking the results have in the recalled results while the requestor would

ideally want the retrieved services to be ranked according to their relevance to the query

instead of just being returned as a set. R-precision provides a solution for achieving

such type of analysis.

Following is the definition of R-Precision when applied to the Web services discovery

and matchmaking problem [18]:

request to servicesWeb RelevantR

 results of number R Top from servicesWeb Relevant r
 precision-R

=

=
=

Equation 8 R-Precision of Web services search engine

If R is the number of relevant services to a request and r is the number of relevant

services from the top R results of a framework, then R-Precision for this framework will

be r/Rel. For example, a query “Bus service with payment in currency USD” has 5

relevant service, and a particular framework’s response to the query with top 5 results

has 3 relevant services then the R-Precision for such framework will be 3/5 = 0.6.

In the experimentation, 10 fine-grained queries were performed on jUDDI and XSCBR

framework to find out average R-Precision for both the frameworks. As jUDDI (UDDI

in general) only supports matchmaking and has no provision for composition, to

evaluate on fair ground the XSCBR framework was turned off. Figure 50 charts result

of the experiments for comparing R-Precision for jUDDI and XSCBR frameworks.

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 157

R-Precision

0

0.2

0.4

0.6

0.8

1

R
equ

es
t#

1

R
equ

es
t#

2

R
equ

es
t#

3

R
equ

es
t#

4

R
equ

es
t#

5

R
equ

es
t#

6

R
equ

es
t#

7

R
equ

es
t#

8

R
equ

es
t#

9

R
equ

es
t#

10

A
ve

ra
ge

Requests

V
a
lu

e

jUDDI XSCBR

Figure 50 Comparison using R-Precision

The average R-Precision for XSCBR is 67% compared to 12% in jUDDI. The support

for high-granularity in case representation to describe service requests make it possible

for XSCBR to allow specifying fine-grained queries and interpret them semantically.

However, the precision performance depends on availability of knowledge in terms of

cases, hence as high as 100% precision for requests such as request 4 and request 6

while as low as 0.2 for request 5.

Performance study

The performance of the framework largely depends on the efficiency of the underlying

semantic reasoning tools. In this effort, Pellet for DL semantic reasoning and Bossam

for rule reasoning were utilized. The performance also depends on the complexity of the

user requests. For example, if the framework doesn't require rules to describe

constraints, the computational time can be decreased significantly. Therefore, the

framework is capable of switching off peripheral modules such as those dealing with

advanced constraints to achieve better performance and for serving non-critical systems.

Figure 51 shows the result of performance study on frameworks. Please note that the

time is inclusive of external factors such as background threads served by CPU. As

shown in the graph, average request is answered by jUDDI in 98.84 sec, by OWL-S

matchmaker in 212.82 seconds and by XSCBR framework in 370.94 seconds. The

results are indicative rather than conclusive as there are various optimization techniques

employed by a mature implementation such as jUDDI, where the other implementations

use basic optimization techniques. However, these results highlight the fact that the

reasoning in OWL-S and XSCBR framework is slower than a database search

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 158

methodology adopted by frameworks such as jUDDI registries. The difference in the

execution time of OWL-S matchmaker and XSCBR highlights the fact that the addition

of knowledge consideration in XSCBR on top of OWL-S functional parameter

matchmaking has considerable overhead.

Performance Study

0

100

200

300

400

500

600

700

R
equ

es
t#

1

R
equ

es
t#

2

R
equ

es
t#

3

R
equ

es
t#

4

R
equ

es
t#

5

R
equ

es
t#

6

R
equ

es
t#

7

R
equ

es
t#

8

R
equ

es
t#

9

R
equ

es
t#

10

A
ve

ra
ge

Requests

E
x
e
c
u

ti
o

n
 T

im
e

jUDDI OWL-S XSCBR

Figure 51 Performance study

In addition to aforementioned reasons, there are some operational limitations of

semantic reasoning from the perspective of the execution speed, which is possible to

overcome by a careful design. The root of this problem can be traced to the inherent

performance penalties with XML processing. XML processing is considered resource

and time intensive task compared to text processing, as XML trades some size and

efficiency for the advantages of a portable, transparent information format. As semantic

web languages build on the layers above XML, the processing is expected to take some

toll [101] [102]. However, similar to XML, if the right tools and techniques are used, it

is possible to build production system that could work with the magnitude of the real-

world search engine that has acceptable level of performance. The rest of this section

highlights some of the approaches we have considered for building optimized XSCBR

system.

One of the major performance leaks identified during the research is the extent to which

the loading ontology models into memory affects the efficiency of the overall system.

The process of loading ontology models is slow as the reasoner needs to store and

retrieve the entire tree structure from the memory. To address this, “good practice

principles” were outlined and followed where efficient use of memory model for the

import and call back results in improved system response time. Following is the

summary of such principles:

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 159

� To use different models for storing different ontologies could result in slow system.

Therefore, when possible, create optimum number of models and share the same

model between numbers of ontologies while trading balance with the modularity.

� In case of ontology being used widely in the java class, creating model storing this

ontology within private scope of the program is less effective then having one

within public scope.

� Another main performance leak of the program was identified as the use of imported

ontologies. We employ an off-line caching system to enable framework to access

the public ontologies locally.

This optimization improved responsiveness of XSCBR framework by a factor of

approximately 1.5 as the average request is executed in 370.94 seconds compared to

668.04 seconds earlier.

These results confirmed objective of using Case Based Reasoning with semantic web

for automated Web services discovery and composition to improve the precision and

recall of Web services search with acceptable level of performance.

Observation on the computational and space costs of CBR systems

The complexity of a CBR system hence the computational and space costs are

dependent on balancing two factors in the development: a) the coverage of a case base,

i.e. the range of problems the system can solve in particular domain and b) the level of

competence of the system, i.e. system precision.

As a general principal, new cases are added in the case base initially as they offer

different perspective for the problems hence more likely to improve overall case-base

coverage. However as the case base grows new cases are more likely to overlap with

existing cases and so offer little in the way of new coverage [103]. The CBR system

developer needs to find a methodology which guides the case population process to

decide which case is worthy of storage and at the same time ensuring storage,

computational penalties.

Further discussion on this subject is beyond the scope of this research and interested

readers are referred to the works of Smyth & Keane [104] and McKenna [105] which

Chapter 6: Implementation and Evaluation of XSCBR framework for Web services Composition

 160

describe techniques for measuring the local coverage of individual cases with respect to

a system’s retrieval and adaptation characteristics.

6.5. Conclusions

The aim of this work is to create a framework that alleviates the burden of dynamic

Web services composition. The argument is that despite the evident popularity of Web

services as a secure distributed computing paradigm and the value-added dimension that

composition adds to it, the practical adoption of the technology is still hindered by the

knowledge and effort required for the compilation of the composition process and the

manual adaptation of new and existing web services to it. A semantic case based

reasoner was implemented, which captures Web service execution experiences as cases

and uses these cases for finding a solution for newly posed problems.

A qualitative and quantitative analysis was carried out to evaluate the XSCBR

framework. In the quantitative analysis experiments were carried out to investigate and

evaluate the effectiveness using the recall, precision, R-precision measurements and

execution time for measuring efficiency of the framework. The results of the

experiments have shown that XSCBR has higher precision compared to UDDI and

OWL-S albeit there are performance penalties in developing a higher level semantic

web based tool such as XSCBR. It is feasible to believe that this performance

shortcoming will steadily improve, as processing costs decrease and the need to more

intelligently and automatically integrate services increases; hence the evaluation

outcome was favourable and that the overheads are acceptable since the developer has

the opportunity to balance the performance against the application requirements giving

the indicator of applying XSCBR approach to automated Web services discovery and

composition.

In the qualitative analysis, the XSCBR framework was evaluated against the research

objectives set out at the beginning of this research. The XSCBR framework has satisfied

all of these objectives in terms of providing a transparent and dynamic search engine for

Web services discovery and composition.

Chapter 7: Conclusions

 161

Chapter Seven: Conclusions

This chapter highlights the contribution of this research work in utilizing semantic web

based Case Based Reasoning (CBR) methodology for automated Web services

discovery and composition.

In principle, every solution brings new limitations. Thus, the limitations of the proposed

framework and unresolved issues are also discussed in this chapter. The lesson learnt

during investigation stages of research are presented as guidance for further research.

This thesis is an effort to enrich the scientific knowledge of the automated Web services

discovery and composition technology. Although there are no limits to scientific

knowledge in general, the contributions this thesis embodies may motivate the research

debates of evolution in Semantic Web research with respect to Web services

composition. Accordingly, an outline of how the presented work can be improved by

further research effort is given.

7.1. Overview

XML based Web services technologies have emerged as the de-facto middleware that

can openly facilitate wide range of applications within enterprises and over the Internet.

The seamless composition of such Web services using composition methodologies can

be considered as the value-added dimension to the applicability of Web services.

The aim of this work is to create a framework that alleviates the burden of dynamic

Web services composition. The argument is that despite the evident popularity of Web

services as a secure distributed computing paradigm and the value-added dimension that

composition adds to it, the practical adoption of the technology is still hindered by the

knowledge required for the compilation of the composition process and the manual

7

Chapter 7: Conclusions

 162

adaptation of new and existing web services to it. The main thesis of this research work

is based on the theory that assistance with the facilitation of the composition process to

the service providers and the composers play a major role in encouraging the adoption

of the Web services technology. For the service composer, which can be a human

developer or intelligent agent, the facilitation constitutes automating as many steps as

possible in order to build and program the composition logic. The facilitation to be

provided to the service providers can be considered in terms of minimizing the effort

they have to endeavour to subscribe their services to composition schemes.

The investigation identified that by and large enterprise based solutions utilize static

composition methods which require performing composition stages of service selection

and flow management done a priori and manually. Considering the growth of Web

services and the scale and velocity with which new services are made available for

Internet-based services, the manual effort involved in static composition is cost-

prohibitive.

After critical analysis of current approaches to Web services composition, the

conclusion was that there is scope for developing a practical and current solution that

merges the benefit of practicality of use and adoption popularity of static workflow-

based (BPEL-based) composition, with the advantage of using semantic description to

aid the composition participants in automatic discovery and interoperability of the

composed services.

To address this issue, a hybrid Web services composition framework was created that

exploits BPEL for practicality of use and adoption popularity of workflow-based

composition while utilizing semantics to aid both service providers and composers in

building the composition scheme and adapting new Web services to it. In this

framework, the domain functionality described in WSDL-XML grammar is

accompanied by a semantic description of service parameters expressed in OWL

ontology, allowing the description of the expected domain functionality in an

unambiguous form and catering for any mismatches in the Web services description. A

domain membership verification module was developed that allows the service

providers to adapt their application services to the domain interface and making them

with minimal effort.

Once a domain Web service is declared composition-ready, the dynamic composition

framework transparently integrates the Web service into the BPEL process file, i.e. it is

Chapter 7: Conclusions

 163

automatically added to a pool of dynamic Web services for this domain. Chapter 3

described an algorithm for dynamic population of the domain pool with Web services,

thus allowing the service composer to effortlessly select any possible combination of

services from the composition domains and fire the composed service.

This hybrid approach presents a practical solution to a current and an urgent problem.

However, the approach could achieve only limited automation to the composition

process because for the composition engine to provide automatic discovery and flow

management, the process model needs to take into the consideration of the semantics in

the specification. The addition of semantics within an XML centric standard like BPEL

will not achieve the sought-after automation as that would require an intelligent

reasoner that can interpret the semantic description. Hence, the second phase of research

introduced an intelligent semantic-based reasoner that builds on the AI theory of Case

Based Reasoning.

Semantic description of Web services’ profiles paves the way for automating the

discovery and matchmaking of services since it allows intelligent agents to reason about

the service parameters and capabilities. However, the accuracy of such automatic search

mechanism largely relies on how soundly formal methods working on such semantic

descriptions consume them.

In the second phase of the research work, the importance of considering the execution

values for semantically described non-functional Web services parameters was stressed

in decision making regarding Web service adequacy for the task. This is because the

service behaviour is impossible to presume prior execution and can be only generalized

if such execution values are stored and reasoned for deciding service capability. The AI

planning and Intelligent Agent based reasoning methods provide rule-based reasoning

methodology rather than experience-based. A Semantic Case based Reasoner (SCBR)

was implemented, which captures Web service execution experiences as cases and uses

these cases for finding a solution for new problems. The implemented framework

extensively uses ontologies, as semantics are used for describing the problem

parameters and for implementing components of CBR system: representation, indexing,

storage, matching and retrieval. These components are modelled based on ontologies,

making the application logic captured within semantic descriptions. The semantic

approach for modelling CBR reasoner achieves the required automation in the Web

Chapter 7: Conclusions

 164

services discovery and matchmaking processes and also makes the CBR reasoner

extensible and reusable.

In the following stage of research SCBR framework was extended to facilitate dynamic

Web services composition using CBR methodology of case adaptation. The resultant

framework is termed as eXtensible Semantic Case Based Reasoner (XSCBR).

The final framework (XSCBR) also provides a standardized case representation format

that is applicable to any application domain. The proposed generic case representation

has provision for the facilitations to service participants and especially service requestor

as we outlined extension of OWL-S descriptions to support service requestor in terms of

specifying constraint and preference on search. The rules were introduced to handle

complex constraint and preferences relationships in the case descriptions. The Quality

of Service (QoS) was also considered as an important selection criterion for web

services discovery and modify (QoS) descriptions from the previous framework inline

with the modifications and improvements in the case representation, especially using

rules.

In the XSCBR framework, a methodology was outlined to represent solution

semantically in order to adapt the solution for new problems whenever required. This is

made possible using existing OWL-S process model for modelling adaptation in the

XSCBR framework. The richness of the workflow based patterns supported by OWL-S

process model and provision of semantics in the specification itself were the reasons

selecting OWL-S. The ModifyOWL-S algorithm was outlined that formalizes the steps

to modify OWL-S process file with the help of API to insert or remove service

reference to satisfy new problem requirements.

In the XSCBR framework, case adaptation is applied to solve a new problem by

merging the local solutions from previously solved problems and creating a globally

consistent solution for the new problem. In-depth investigation of the CBR literature

concluded that there are two major challenges in CBR: the first is the development of an

efficient methodology for case adaptation, and the second is maintaining consistency of

solutions and knowledge supplement to assist case adaptation.

A methodology based on Constraint Satisfaction Problem (CSP) was designed to

address these challenges and handle the inconsistency problem with a CSP inspired

Domain Dependency Module (DDM). The approach allows defining dependency

Chapter 7: Conclusions

 165

between variables of the domain and ensuring the consistency by maintaining

dependency constraints between these variables whenever a solution is adapted.

In addition to maintaining the consistency of solution in the XSCBR framework, a

knowledge-intensive approach is advocated to automate the process of adaptation in

CBR inspired Web services discovery and composition problem. The argument is that

the Web services composition is a developer-intrusive problem solving method, the

automation of which requires the reasoning about domain-specific knowledge at their

disposal. In contrast, existing composition approaches focus only on semantic

descriptions of web services but are oblivious to the fact that in the process of Web

services discovery discrepancies could occur and knowledge is required to address them.

Finally, qualitative and quantitative analysis was carried out for the framework. In the

quantitative analysis experiments were performed to investigate and evaluate the

effectiveness using the recall, precision, R-precision measurements and execution time

for measuring efficiency of the framework. The results of the experiments have shown

that XSCBR has higher precision compared to UDDI and OWL-S albeit there are

performance penalties in developing a higher level semantic web based tool such as

XSCBR. It is feasible to believe that this performance shortcoming will steadily

improve over time, as processing costs decrease and the need to more intelligently and

automatically integrate services increases. The conclusion was that the evaluation

outcome was favourable and that the overheads were acceptable since the developer has

the opportunity to balance the performance against the application requirements giving

the indicator of applying XSCBR approach to automated Web services discovery and

composition.

In the qualitative analysis, XSCBR framework was evaluated against the research

objectives set out at the beginning of this research. The XSCBR framework has satisfied

all of objectives in terms of providing a transparent and dynamic search engine for Web

services discovery and composition.

The main contribution of the thesis is summarized in the following section.

7.2. Thesis contributions

This work has been undertaken at The Nottingham Trent University, School of Science

and Technology as one of the Semantic Web services research network activities, within

Chapter 7: Conclusions

 166

the research track of Web services composition. Some of the contributions of this work

have been published in [106] [107] [108].

A major contribution of this thesis is the development of an intelligent engine by

modelling existing formal approach (Case Based Reasoning) to support the Semantic

Web service composition problem. The contributions (Ci) of this thesis made to

scientific knowledge are outlined in the following points.

C1: In this research, the concept of run-time behaviour of services and it’s

consideration in the Web services selection process was introduced. The static

behaviour of a service can be measured in terms of whether the service has similar

description to problem in terms of functional and non-functional parameters. The run-

time behaviour of a service is the result of service execution and how the service will

behave under different circumstances, which is difficult to presume prior to service

execution. Moreover, with implementation it was demonstrated that the accuracy of

automatic matchmaking of Web services can be further improved by taking into account

the adequacy of past matchmaking experiences for the requested task. The research

utilized experience-based reasoning methodology, Case Based Reasoning (CBR) to

capture run-time behaviour of services.

C2: We have persuaded a pragmatic approach to the problem of Web services

composition that strongly advocates considering the facilitation provided to the

participants in the composition process. We believe that the facilitation to participants is

required as Web services composition is very complex task and also believe that

facilitation to participants will encourage yet further adoption of the Web services

technology.

C3: In this research, the existing OWL-S specification was extended for facilitating

service requestor in providing components to support a finer level of requests. We

believe that we have contributed to the ongoing efforts [109][110] to support natural

language queries for search, as our extension component to OWL-S covers very diverse

range of queries that rely on constraints and preferences on the expected results.

C4: We identified number of areas of further research while investigating the use of

semantics to inject intelligence into Web services composition. One such problem has

not yet addressed sufficiently is the interoperation between independently developed

reasoning engines for semantic matchmaking and composition. Without this

Chapter 7: Conclusions

 167

interoperation, the reasoning engines remain imprisoned within their own framework,

which is a drawback, especially that most engines usually specialize in serving a

particular domain, hence interoperation can facilitate inter-domain orchestration. The

XSCBR framework extensively uses ontologies, as semantics are used both for

describing the problem parameters and for implementing components of the CBR

system: representation, indexing, storage, matching and retrieval. We believe that in this

work we took a small step towards standardization at the reasoner level by describing

the CBR reasoning model semantically.

C5: The central theme of our approach to the problem of automated Web services

discovery and composition is to explore existing solutions before devising a full-fledged

solution from scratch. To achieve this we apply case adaptation process by adapting

local solutions from previously solved problems to create a globally consistent solution

for the new problem.

While investigating case adaptation we discovered that the process of modifying

existing solutions is more complex than reported in the literature. When individual

service instances are composed, they might compromise the consistency of the solution

primarily because they originate from different solution sets. We have designed a

methodology based on Constraint Satisfaction Problem (CSP) to address this challenge

and address the inconsistency problem with a CSP inspired Domain Dependency

Module (DDM). Our approach allows defining dependency between variables of the

domain and ensuring the consistency by maintaining dependency constraints between

these variables whenever a solution is adapted.

To conclude, the work described in this thesis presents a significant advance towards the

aims of the research and all the stated objectives were achieved.

7.3. Limitations

This section outlines limitations of the XSCBR framework.

Service composer transparency

One of the goals of the XSCBR framework was complete composer transparency to the

composition mechanism. However, the problem of acquiring knowledge to bridge

discrepancies led us to adopt a user-intrusive approach where the framework is reliant

on the composer to supply the knowledge necessary for the framework operation. The

Chapter 7: Conclusions

 168

priority was to model human behaviour in solving composition problem and arm the

system with knowledge, but that was achieved at the price of transparency to the

application composer as the system expects composer to provide heuristics and casual

models to bridge discrepancies in service descriptions.

The knowledge acquisition in CBR concentrates on acquiring knowledge such as

adaptation rules that can bridge discrepancies in case descriptions and casual models

that can provide rules to guide the reasoner in case of a particular decision making

situation. Hence, in Case Based Reasoning (CBR), knowledge acquisition plays an

important role allowing to progressively improving the system’s functionality.

However, the process of knowledge acquisition is a complex and time-consuming task

in general which requiring tools to assist with the acquisition in the process of case-

based reasoning. There are some approaches in the literature that allow generating

knowledge automatically. The approach presented in [111] consists of techniques to

generate knowledge by recording property value differences of each pair of cases in

case library. In their approach they create rules by finding difference in values of this

pair of cases and making this difference as antecedent part of an adaptation rule, with

the consequent part of the adaptation rule being the differences between the solutions in

the compared cases. For example, if the case library contains following two case_A and

case_B (See Figure 52) then comparison of property value differences between case_A

and case_B gives rule R1 as follows:

Figure 52 Generating adaptation knowledge

R1: if the value of the kitchen changes from excellent to good and the value of nr-rec-

rooms changes from 2-rec-rooms to 1-rec-rooms then the house price is decreased by

4500.

Property Value

Case_id case_A

Nr_Bedrooms 2

nr-rec-rms 1-rec-rm

kitchen good-kitchen

prices 20500

Property Value

Case_id case_B

Nr_Bedrooms 2

nr-rec-rms 2-rec-rm

kitchen excellent-kitchen

price 25000

Chapter 7: Conclusions

 169

In the same light, [112] propose an approach of knowledge learning based on a

particular search technique called frequent pattern extraction.

These approaches are promising however are more effective in acquiring initial-stage

knowledge only and need further work in order to expand the knowledge using learning

process throughout the functioning of CBR cycle.

Reliance on the reasoner tools and performance penalties

The semantic web reasoners are inferior in functionality and performance compared to

XML parsers and other XML-centric tools. The performance of reasoners is still far

from achieving relational database par efficiency.

An example of the immaturity of standards is the disagreement surrounding the

necessity of a more expressive language (SWRL) that exploits the capabilities of OWL

descriptions to include complex relationship in terms that they include mathematical

and logical operations. There are two main schools of thought: the first, to which this

report author subscribes to, is that OWL-DL is not sufficient to provide the reasoning

capability required by applications such as Web services composition engines and rule

language such as SWRL is required to define complex concept relationships. The other

school argues that SWRL descriptions lead to undecidability which is the main asset of

OWL-DL descriptions hence not worth sacrificing.

This sort of uncertainty about OWL-DL extensions (such as SWRL) has dampened the

enthusiasm for the development and optimization of tools that can support SWRL

reasoning, and at present available tools either have preliminary support (such as Pellet)

or are computationally expensive (such as Bossam). As we rely on Bossam for

implementing our framework, the performance of our framework is affected. In the

future, once the arguments are settled, we envisage that there will be efficient tools

supporting SWRL reasoning and our framework will be able to take advantage of them.

Efficient Case Library Management

In the current version of the framework, the insertion of cases is automatic while the

maintenance by editing and deletion is manual. The general principal applied in SCBR

for inserting new cases in the case library is as follows: if a case extends or affects

existing knowledge than the case shall be stored in the case library. This translates into

Chapter 7: Conclusions

 170

comparing the execution value of a new case against the stored cases and if they are

better (hence contributes knowledge), then the case is worthy of storage. However,

garbage collection of cases as a result of error-reporting and long term maintenance

(periodical cleanups) is the responsibility of the administrator of the framework. In

production systems where the framework utilization will be continuous and intensive,

manual maintenance is a clear limitation.

7.4. Observations and Lessons Learned

Following are the number of observations made while investigating the use of semantics

to inject intelligence into Web services composition.

Interoperation of Composition Engines

The interoperation between independently developed reasoning engines for semantic

matchmaking and composition. Without this interoperation, the reasoning engines

remain imprisoned within their own framework, which is a drawback, especially that

most engines usually specialize in serving a particular domain, hence interoperation can

facilitate inter-domain orchestration. We believe that in this work we took a small step

towards standardization at the reasoner level by describing the CBR reasoning model

semantically.

Sharing ontologies

Another issue is related to the use of ontologies. Traditionally ontologies are

constructed for each new semantic web project limiting the reuse of existing knowledge

structures. The reasons for such flawed approach include diversity of domain

knowledge, different perspective for the same ontologies and most importantly the close

coupling of domain knowledge with reasoning processes. Semantic web based Web

services composition approaches need to address this problem in order to benefit from

existing implementations. Industrial experience in taxonomy specifications [113] [114]

for different domains can be a guideline to overcome this limitation. Similar to the

taxonomy standardization, ontology elements or concepts can be standardized

facilitating re-usability.

Chapter 7: Conclusions

 171

Tools for Transparency

Another problem demanding further investigation is related to the readability of the

implementation code while using XML based standards i.e. OWL, due to the strong-

type syntactical structure restrictions in XML. Semantic web being based on XML

layers complicates this problem further as the readability of the ontologies is very poor.

In addition applications built on semantics require great deal of knowledge from the

developers related to artificial intelligence, logical reasoning and knowledge

management demanding major efforts to build tools that abstract underlying

complexity.

7.5. Future Work

Based on the aforementioned limitations, we propose some outstanding research issues

that can take our effort further.

Close-coupling with planner

In the framework, when the Knowledge Based Substitution (KBS) algorithm fails to

serve user’s request with the process of case adaptation, we leverage the request for the

AI planner to perform transformations where planner generates composition schemas

from existing service descriptions. Although the experience of integrating semantic web

with case based reasoner for solving the problem is successful, we would like to extend

the current framework by passing the knowledge KBS algorithm might have gathered in

the failed attempt to find a solution, to an AI planner. The planner can then benefit from

this matchmaking attempt rather than relying on service descriptions to solve the

composition problem from the scratch. This knowledge could be in terms of narrowing

down the number of services planner has to inspect in order to build composition

schema or such knowledge can state preferred services for the planner to utilize in the

composition.

Extension to include other semantic web services specifications

In last couple of years, the semantic web community have seen the emergence of

alternative semantic web services specifications to OWL-S such as WSMO (Web

Service Modelling Ontology) [23] and Web services semantics (WSDL-S) [24].

Chapter 7: Conclusions

 172

WSMO provides ontological specifications for describing the core elements of Semantic

Web services and consists of four main elements: (1) ontologies that provide the

terminology, (2) goals that state the intentions that should be solved by Web services,

(3) Web services descriptions that define their various aspects, and (4) mediators which

resolve interoperability problems. WSMO specification proposal was submitted to the

W3C in June, 2005. WSDL-S defines a mechanism to semantically annotate Web

services described using WSDL. Annotations can be provided with different ontology

languages (e.g. OWL, UML). WSDL-S specification proposal was submitted to the

W3C in November, 2005.

The XSCBR framework can take advantage of these emerging service specifications by

providing description support in all three major specifications of OWL-S, WSMO and

WSDL-S while maintaining the intelligent layer of CBR that works on top of service

descriptions. This way the framework will achieve wider adoption in the semantic web

services community. The major challenge here would be sustaining the transparency

offered by SCBR to their participants considering the introduced heterogeneity in

service specifications.

Integration with Grid computing

We have recently witnessed increases in demand-driven access to computational power

by integrating heterogeneous, distributed systems in a so-called computational grid. In

recent times, many enterprise software vendors have borrowed from this concept,

offering on-demand access for software applications prone to peak congestion patterns

or what is being marketed as a pay-as-you-use mechanism, a process which is strikingly

similar to other non-IT grids, such as the electrical grid [115]. As it turns out, this

process of virtually pooling computing resources and making them readily available via

a network presents many of the underlying issues resolved by Web services

technologies such as security, reliability and scalability common to distributed

computing. In light of these similarities, a special initiative whose intent is to jointly

advance grid and Web services technologies was created, its name: Open Grid Services

Architecture (OGSA) [116].

We clearly see the benefit of applying our XSCBR service discovery and composition

mechanism by mapping web services to OGSA grid services and by managing other

grid administration tasks. The dynamic discovery of grid resources this way to address

Chapter 7: Conclusions

 173

computational requirements on the fly will rapidly increase the motivation towards

deploying more applications.

Semantic Web based Query Expansion for interpreting user requests

Lately query expansion (QE) techniques [117] have gained a lot of attention in

attempting to improve the recall of document and media queries. QE methods fit

naturally into our web services retrieval technology as we rely on computing the

aggregate degree of match (ADoM) for the semantic relations describing a particular

service to determine its match to the original query. Hence, we can easily determine the

quality of the returned results in terms of accuracy and volume and decide whether to

apply QE techniques for replacing the query concepts to improve the quality of the

recall. This is particularly feasible for semantic-based knowledge bases as they provide

language expressiveness for specifying the similarity of the concepts (Implicit and

Explicit) at different granularity. For example, it is possible to define that two individual

are equal (for example, Taxi and Cab are the same individuals of the concept

TravelMedium) or to specify that due to subsumption relationship if the child concept

has no matching individuals then the individual of the parent concept are potential

replacement.

References

 174

References

[1] Nickull, D., Kumar, R. & Mccabe,F., 2006. Reference Model for Service

Oriented Architecture 1.0. OASIS Standard, 12 October 2006 [Internet]
Available at: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html [accessed 22
March 2008]

[2] Lomow, G. & Newcomer, E., 2005. Understanding SOA with Web Services. 1st
Ed. Boston: Addison-Wesley.

[3] Fremantle, P., Weerawarana, S. & Khalaf, R. 2002. Enterprise Services:
Examining the Emerging Trends of Web services and How It is Integrated into
Existing Enterprise Infrastructures. Communications of the ACM, 45(20), p.77-
82.

[4] Kim, M.S. & Rosu, M.C., 2004. A Survey of Public Web Services, 5th

International Conference, EC-Web 2004, Zaragoza, Spain, August 31-
September 3, 2004. Lecture Notes in Computer Science, Springer Verlag, p. 96-
105.

[5] Amazon Web services, Amazon.com, [Internet] Available at:
http://www.amazon.com/gp/browse.html?node=3435361 [accessed 10 April
2008]

[6] BEA, 2007. Avis Budget Group Implements SOA on BEA WebLogic server.

BEA Systems, Inc. Press Release.

[7] Vaughan-Nichols, S., 2002. Web Services: Beyond the Hype, IEEE Computer,
35(2), pp. 18-21.

[8] W3C, 2002. Charter on Web Services Architecture. W3C Working Group, 22
July 2002 [Internet] Available at: http://www.w3.org/2002/01/ws-arch-charter
[accessed 22 March 2008]

[9] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J. & Nielsen, H.F., 2000.
Simple Object Access Protocol Version 1.2. W3C Note, 8 May 2000 [Internet]
Available at: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ [accessed
18 September 2007]

[10] Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S., 2001. Web

Services Description Language Version 1.1. W3C Note, 15 March 2001
[Internet] Available at: http://www.w3.org/TR/wsdl [accessed 18 September
2007]

[11] Bryan, D., Draluk, V., Ehnebuske, D., Glover, T., Hately, A., Husband, Y. L &
Karp, A., 2003. Universal Description Discovery and Integration (UDDI),

Version 2.0, Oasis Standard, 9 July 2002 [Internet] Available at:
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2
[accessed 18 September 2007]

[12] Glatard, T., Emsellem, D. & Montagnat, J., 2006. Generic Web Service Wrapper
for Efficient Embedding Of Legacy Codes in Service-Based Workflows. The

References

 175

Grid-Enabling Legacy Applications and Supporting End Users Workshop

(GELA'06). Paris, France, 20 June 2006. Springer Verlag, p. 44-53.

[13] Peltz, C., 2003. Web Services Orchestration and Choreography. IEEE Computer,

36 (10), p. 7-46.

[14] Castro-Leon, E., 2004. The web within the web, IEEE Spectrum, 41(2), p. 42-
46.

[15] Berners-Lee, T., Hendler, J. & Lassila,O., 2001. The Semantic Web, Scientific
American, May, 2001 [Internet] Available at:
http://www.sciam.com/article.cfm?id=the-semantic-web, [accessed 10 July 2007]

[16] Klyne, G. & Carroll, J., 2004. Resource Description Framework (RDF):

Concepts and Abstract Syntax. W3C Recommendation, 10 February 2004
[Internet] Available at: http://www.w3.org/TR/rdf-concepts/ [accessed 15 May
2008]

[17] McGuinness, D. & Harmelen, F., 2004. Web Ontology Language Overview.
W3C recommendation, 10 February, 2004 [Internet] Available at:
http://www.w3.org/TR/owl-features/ [accessed 15 May 2008]

[18] Singhal, A., 2001. Modern Information Retrieval: A Brief Overview. Bulletin of

the IEEE Computer Society Technical Committee on Data Engineering, 24 (4),
p. 35-43.

[19] Berendt, B., Hotho, A. & Stumme, G., 2002. Towards Semantic Web Mining,
Proceedings of the First International Semantic Web Conference on the

Semantic Web, Brisbane, Australia, June 09 - 12, 2002. Springer-Verlag, p. 264 -
278

[20] Sussna, M., 1993. Word Sense Disambiguation for Free-Text Indexing Using a
Massive Semantic Network. The Second International Conference on

Information and Knowledge Management, Washington, D.C., United States,
ACM Press, p. 8-13.

[21] Martin, D., Paolucci, M., Mcilraith, S., Burnstein, M., Mcdermott, D.,
Mcguinness, D., Parsia, B., Payne, T. R., Sabou, M., Solanki, M., Srinivasan, N.
& Sycara,K., 2004. OWL-S: Semantic Mark-up for Web Services. W3C Member
Submission, 22 November 2004 [Internet] Available at:
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/ [accessed 15
May 2008]

[22] Mcilraith, S., Son, T. C., & Zeng, H. 2001. Semantic Web Services. IEEE

Intelligent Systems, Special Issue on the Semantic Web, 16(2), p.46-53.

[23] Roman,D., Keller,U., Lausen,H., Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,
Feier, C., Bussler., C. & Fensel, D., 2005. Web Service Modelling Ontology.
Applied Ontology, 1 (1), p. 30-77.

[24] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A. &
Verma,K., 2005. Web Service Semantics - WSDL-S Version 1.0. , W3C Member

Submission, 7 November 2005 [Internet] Available at:
http://www.w3.org/Submission/WSDL-S/ [accessed 15 May 2008]

References

 176

[25] White, P. & Grundy, J., 2003. Experiences Developing a Collaborative Travel
Planning Application With .Net Web Services. The 2003 International

Conference on Web Services (ICWS). Las Vegas, USA, June 23-26,
2003.CSREA Press, p.306-312.

[26] Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B. & Barros,
A.P., 2003. Workflow Patterns. Distributed and Parallel Databases, 14 (3),
p.45-5.

[27] Zisman, M.D., 1977. Representation, Specification and Automation of Office

Procedures. Ph.D Dissertation, Working Paper 77-09-04., The Warthon School,
University of Pennsylvania, Scrancton, 1977

[28] Leymann, F., Roller, D. & Schmidt, M-T., 2002. Web Services and Business
Process Management. IBM Systems Journal, 41 (2), p.13-198.

[29] High, R., Kinder, S. & Graham., S., 2004. IBM's SOA Foundation: an

Architectural Introduction and Overview, V 1.0, White Paper, IBM Corporation,
December 8, 2005 [Internet] available at:

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-

whitepaper/ [accessed November 10, 2007]

[30] Pasley, J. 2005. How BPEL and SOA Are Changing Web Services Development.
IEEE Internet Computing, 9(3), p. 60-67.

[31] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I. & Weerawarana, S., 2003.
Business Process Execution Language for Web Services Version 1.1. OASIS
Specification, 5 May 2003 [Internet] available at:
http://xml.coverpages.org/ni2003-04-16-a.html [accessed 20 September 2006]

[32] Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y. & Barreto,C.,
2005. Web Services Choreography Description Language Version 1.0. W3C
Candidate Recommendation, 9 November 2005 [Internet] Available at:
http://www.w3.org/TR/ws-cdl-10/ [accessed 20 September 2006]

[33] Van Der Aalst, W.M.P., Dumas, M., Ter Hofstede, A.H.M. & Wohed, P., 2002.
Pattern-Based Analysis of BPML (and WSCI). Brisbane: Queensland University
of Technology.

[34] S. Thatte. 2001. XLANG: Web Services for Business Process Design. Microsoft.

[35] F. Leymann. 2001. Web Services Flow Language (WSFL 1.0). IBM.

[36] WSIF, 2005. WSIF Apache Software Foundation Web Services Project.

[37] Austin, D., Barbir, A., Peters, E. & Ross-Talbot, S., 2004. Web Services

Choreography Requirements. W3C Working Draft, 11 March 2004 [Internet]
http://www.w3.org/TR/2004/WD-ws-chor-reqs-20040311/ [accessed 20
September 2006]

[38] Oracle, 2005. Oracle BPEL Process Manager, Available at:

http://www.oracle.com/technology/bpel/index.html

References

 177

[39] BizTalk, 2008. Microsoft BizTalk Server, Available at:

http://www.microsoft.com/biztalk/en/us/default.aspx

[40] BPWS4J, 2005. IBM Run Time Environment for BPEL4WS1.1, Available at:

http://www.alphaworks.ibm.com/tech/bpws4j

[41] Russell, S. & Norvig, P., 2003. Artificial Intelligence: A Modern Approach. 2nd
Ed. New York: Prentice Hall.

[42] Wu, D., Parsia, B., Sirin, E., Hendler, J. & Nau,D., 2003. Automating DAML-S
Web Services Composition Using SHOP2. The 2nd International Semantic Web

Conference (ISWC2003). Florida, USA, October 21-23, 2003. IEEE computer
society, p. 195-210.

[43] Kuter, U., Sirin, E., Nau, D., Parsia, B. & Hendler,J., 2005. Information
Gathering During Planning For Web Service Composition. Journal of Web

Semantics, 3 (2-3), p. 183-205.

[44] Sirin, E. & Parsia, B., 2004. Planning For Semantic Web Services. In Semantic

Web Services Workshop at the 3rd International Semantic Web Conference.

Florida, USA, November 8-10, 2004.

[45] Peer, J., 2004. A PDDL Based Tool for Automatic Web Service Composition.
Principles and Practice of Semantic Web Reasoning. St. Malo, France,
September 6-10, 2004. Springer, p. 149-163.

[46] Ghallab, M., Howe, A., Knoblock, C., Mcdermott, D., Ram, A., Veloso, M.,
Weld, D. & Wilkins, D., 1998. PDDL the Planning Domain Definition
Language. AIPS-98 Planning Committee.

[47] Mcilraith, S. & Son, S., 2002. Adapting Golog for Composition of Semantic
Web Services. The 8th International Conference on Principles of Knowledge

Representation and Reasoning. Toulouse, France, April 20-22 2002. Morgan
Kaufmann. p. 482-496.

[48] Levesque, H., Reiter, R., Lespérance, Y., Lin, F. & Scherl, R., 1997. Golog: A
Logic Programming Language for Dynamic Domains. Journal of Logic

Programming, 31(1), p.59-84.

[49] Srivastava, B. & Koehler, 2003. Web Service Composition – Current Solutions
and Open Problems. ICAPS’03 Workshop on Planning for Web Services. 10
June, 2003. Trento, Italy.

[50] Matskin, M. & Rao, J., 2002. Value Added Web Services Composition Using
Automatic Program Synthesis. International Workshop on Web Services, E-

Business, and the Semantic Web. London, UK, June 16-17, 2002. Springer-
Verlag, p. 213-224.

[51] Mihhail, M., & Tyugu, E., 2001. Structural Synthesis of Programs and Its
Extensions. Computing and Informatics Journal, 20(1), p.1–25.

[52] Rao, J., Kungas, P., & Matskin,M., 2003. Application of Linear Logic to Web
Service Composition. The 1st International Conference on Web Services. Las
Vegas, USA, June 23-26, 2003. CSREA Press, p. 3-9.

References

 178

[53] Nwana, H., 1996. Software Agents: An Overview. Knowledge Engineering

Review, 11(3), p.1-40.

[54] Buhler, P.A. & Vidal, J.M., 2003. Semantic Web Services as Agent Behaviours.
Agentcities: Challenges in Open Agent Environments, Springer- Verlag, p. 25-31.

[55] Knoblock, C., 2001. Mixed-Initiative Multi-Source Information Assistants. The

10
th

 International World Wide Web Conference. Hong Kong, China, May 1-5
2001, ACM Press, p. 697-707.

[56] Richards, D., Van Splunter, S., Brazier, F. & Sabou, M., 2003. Composing Web
Services Using an Agent Factory. AAMAS Workshop on Web Services and

Agent-Based Engineering. Melbourne, Australia. p. 1-6.

[57] Hewitt, C., 1996. Viewing control structures as patterns of passing messages, AI

Memo 410, MIT AI Laboratory, Cambridge, MA.

[58] Hammond, K., 1986. Learning to Anticipate and Avoid Planning Problems
through the Explanation of Failures. Fifth Conference on Artificial Intelligence,

AAAI86. Philadelphia, USA, August 11-15, 1986. Morgan Kaufmann, p. 556-
560.

[59] Limthanmaphon, B. & Zhang, Y., 2003. Web Service Composition with Case-
Based Reasoning. The Fourteenth Australasian Database Conference on

Database Technologies. Adelaide, Australia, February, 2003. ACM International
Conference Proceeding Series, p. 201 – 208.

[60] Diaz, O. G. F., Salgado, R. S., Moreno, I. S. & Ortiz, G.R., 2006. Searching and
Selecting Web Services Using Case Based Reasoning. Workshop on Ubiquitous

Web Systems and Intelligence (UWSI 2006) In Conjunction with Computational

Science and Its Applications (ICCSA 2006). Glasgow, UK, May 8-11, 2006.
Springer Berlin/ Heidelberg, p. 50-57.

[61] Porter, B. W. & Bareiss, R.E., 1986. Protos: An Experiment in Knowledge
Acquisition for Heuristic Classification Tasks. First International Meeting on

Advances in Learning (IMAL86). Les Arcs, France, p. 159-174.

[62] Madhusudan, T., Leon Zhao J. & Marshall, B., 2004. A Case-Based Reasoning
Framework for Workflow Model Management. Data & Knowledge Engineering,

50 (1), p. 87-115.

[63] Cardoso, J. & Sheth, A. 2005. Adaptation and Workflow Management Systems.
International Conference WWW/Internet, Lisbon, Portugal, 19-22 October, 2005.
p. 356-364.

[64] Freuder, E., 1978. Synthesizing Constraint Expressions. Communications ACM,

21 (11), p. 958-966.

[65] Maruyama, D., Paik, I. & Shinozawa, M., 2006. A Flexible and Dynamic CSP
Solver for Web Service Composition in the Semantic Web Environment. Sixth

IEEE International Conference on Computer and Information Technology.

Seoul, Korea, September 20-22, 2006. IEEE Computer Society, p. 43-43.

References

 179

[66] Aggarwal, R., Verma, K., Miller, J. & Milnor, W., 2004. Constraint Driven
Web Service Composition in Meteor-S. IEEE International Conference on

Services Computing. Shanghai, China, September 15 - 18, 2004. IEEE Computer
Society, p. 23-30.

[67] Mandell, D. & Mcilraith, S., 2003. Adapting BPEL4WS for the Semantic Web:
The Bottom-Up Approach to Web Service Interoperation. The 2nd International

Semantic Web Conference (ISWC2003). Sanibel Island, Florida, 20-23 October
2003. Lecture notes in computer science, Springer, p. 227-241.

[68] Traverso, P. & Pistore, I. 2004. Automated Composition Of Semantic Web
Services Into Executable Processes. Third International Semantic Web

Conference (ISWC2004), Hiroshima, Japan, November 9-11, 2004. Springer
Berlin, p. 380-394.

[69] Milanovic, N. & Malek, I., 2004. Current Solutions for Web Service
Composition. IEEE Internet Computing, 8 (6), p.51-59.

[70] McBride, B., 2002. Jena: A Semantic Web Toolkit. IEEE Internet Computing, 6
(6), p.55-59.

[71] Sirin, E., Parsia, B., Grau, B., Kalyanpur, A. & Katz,Y., 2007. Pellet: A Practical
Owl-Dl Reasoner. Web Semantics: Science, Services and Agents on the World

Wide Web, 5 (2), p. 51-53.

[72] Kolodner, J., 1993. Case-Based Reasoning. 1st Ed. San Mateo: Morgan
Kaufmann.

[73] Schank, R. & Abelson, R., 1979. Scripts, Plans, Goals, and Understanding: An
Inquiry into Human Knowledge Structures. The American Journal of

Psychology, 92 (1), p. 176-178.

[74] Aamodt, A. & Plaza, E., 1994. Case-based reasoning: foundational issues,
methodological variations, and system approaches. AI Communications, 7 (1),
p.39-59.

[75] Minsky, M., 1974. A Framework for Representing Knowledge. 2nd Ed.
Cambridge, MA, USA: Massachusetts Institute of Technology.

[76] Rich, E. & Knight, K., 1992. Artificial Intelligence. 2nd Ed. New York:
McGraw-Hill.

[77] Currency, 2003. Currency Ontology, Available at:
http://www.daml.ecs.soton.ac.uk/ont/currency.owl

[78] Hennessey, D. & Hinkle, D., 1992. Applying Case-Based Reasoning to
Autoclave Loading. IEEE Expert, 7(5), p.21-26.

[79] Remind 1992. Developer’s Reference Manual, Cognitive Systems. Boston.

[80] Zhang, R., Budak, I. & Aleman-Meza, B., 2003. Automatic Composition of
Semantic Web Services. The International Conference on Web Services, ICWS

'03. June 23 - 26, 2003, Las Vegas, Nevada, USA. CSREA Press 2003, p. 38-41.

References

 180

[81] Diaz-Agudo, B., Gonzalez-Calero, P, A. & Gomez-Martin, P, P., 2005. On
Developing a Distributed CBR Framework through Semantic Web Services.
OWL Workshop. Galway, Ireland, November 11-12, 2005.

[82] Agre, G., Atanasova, T. & Nern, H-J., 2005. Case-Based Semantic Web Service
Designer and Composer. Euromedia 2005. Toulouse, France, April 11-13, 2005.
Springer Verlag, p. 226-229.

[83] Zaremba, M., Vitvar, T. & Moran, M., 2007. Towards Optimized Data Fetching
For Service Discovery. The European Conference on Web service. Halle,
Germany, November 26-28, 2007. IEEE Computer Society, p. 191-200.

[84] Gurevich, Y., 2000. Abstract State Machines: Theory and Applications. 1st Ed.
Berlin: Springer.

[85] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B & Dean, M.,
2004. SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
W3C Member Submission 21 May 2004 [Internet] available at:
http://www.w3.org/Submission/SWRL/ [accessed 10 June 2007].

[86] Martin, D., Paolucci, M., McIlraith, S., Burnstein, M., McDermott, D.,
McGuinness, D., Parsia, B., Payne, T. R., Sabou, M., Solanki, M., Srinivasan, N.
& Sycara, K. 2004 Bringing Semantics to Web Services: The OWL-S Approach.
First International Workshop on Semantic Web Services and Web Process

Composition (SWSWPC 2004), San Diego, CA, July 6-9, 2004. Kluwer
Academic Publishers, p. 243-277

[87] Staab, S., 2003. Where Are The Rules? IEEE Intelligent Systems, 1 (1), p.76-83.

[88] OWL-SAPI, MINDSWAP Group, University Of Maryland, Institute for
Advanced Computer Studies. [Internet] Available at:
http://www.mindswap.org/2004/owl-s/api/ [accessed 14 May 2008]

[89] Watson, I., & Marir, F., 1994. Case-Based Reasoning: A Review. The

Knowledge Engineering Review, 9 (4), p.355-381.

[90] Sqalli, M., Purvis, L., & Freuder, E., 1999. Survey of Applications Integrating
Constraint Satisfaction and Case-Based Reasoning. PACLP99: The First

International Conference and Exhibition on the Practical Application of

Constraint Technologies and Logic Programming. London, UK, April 19-21,
1999. p.69-82.

[91] Purvis, L. & Pu, P., 1995. Adaptation using Constraint Satisfaction Techniques.
The First International Conference on Case-Based Reasoning Research and

Development. Springer, p. 88-97.

[92] Leake, D., Kinley, A. & Wilson, D., 2006. Learning to Improve Case Adaptation
by Introspective Reasoning and CBR, First International Conference (ICCBR-

95). Sesimbra, Portugal, October 23-26, 1995, Springer, p. 229-240.

[93] Koton, P., 1988. Reasoning About Evidence in Causal Explanations. The 7th

National Conference on Artificial Intelligence. St. Paul, MN, USA, August 21-
26, 1988, AAAI Press / the MIT Press, p. 256-263

References

 181

[94] Codd, E.F., 1970. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13 (6), p. 377-387.

[95] Kumar, V., 1992. Algorithms for Constraint Satisfaction Problems: A Survey. AI

Magazine, 13 (1), p.3-44.

[96] Baader, F. & Nutt, W., 2003. Basic Description Logics.. 1st ed. Cambridge:
Cambridge University Press.

[97] Jang, M. & Joo-Chan, S., 2004. Bossam: An Extended Rule Engine for OWL
Inferencing. Third International Workshop of RuleML (RuleML 2004.
Hiroshima, 8-11 November 2004. Springer Berlin, p. 128-138.

[98] Cooper, W.S., 1997. On Selecting a Measure of Retrieval Effectiveness. 1st ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

[99] JUDDI, 2008. JUDDI Private Registries. Available At:
http://ws.apache.org/juddi/

[100] Srinivasan, N., Paolucci, M. & Sycara, K., 2005. An Efficient Algorithm for
OWL-S Based Semantic Search in UDDI. First International Workshop on

Semantic Web Services and Web Process Composition (SWSWPC 2004). 6-9
January, 2004, San Diego, California, USA. p. 96-110.

[101] Pan, Z., 2005. Benchmarking DL Reasoners Using Realistic Ontologies. The

workshop on OWL: Experiences and Directions. Galway, Ireland, November 11-
12, 2005.

[102] Gardiner, T., Horrocks, I. & Tsarkov, D., Automated Benchmarking of
Description Logic Reasoners. The 2006 International Workshop on Description

Logics (DL2006). Windermere, Lake District, UK, May 30 - June 1.

[103] Mántaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Boi, F.,
Maher, M.L., Cox, M., Forbus, K.,Keane, M. &Watson, I., 2006. Retrieval,
reuse, revision and retention in case-based reasoning. The Knowledge

Engineering Review, 20(3), p.215-240.

[104] Smyth, B. & Keane, M. T., 1995. Remembering to Forget: A Competence
Preserving Case Deletion Policy for CBR Systems. Proceedings of the 14th

International Joint Conference on Artificial Intelligence. Canada. Morgan
Kaufmann, p. 377-382.

[105] Mckenna, E., 1998. Modelling the competence of case-bases. Advances in Case-
Based Reasoning: Proceedings of the Fourth European Workshop on Case-

Based Reasoning. Dublin, Ireland, September 23-25, 1998. Springer-Verlag, p.
208 – 220.

[106] Thakker, D., Osman, T. & Al-Dabass, D., 2007. Semantic-Driven Matchmaking
and Composition of Web services using Case-Based Reasoning. The fifth IEEE

European Web Services Conference (ECOWS 2007), Halle, Germany,
November 26-28, 2007. IEEE Computer Society, p. 67-76.

[107] Osman, T., Thakker, D., Al-Dabass, D., Lazer, D. & Deleplanque, G., 2006.
Semantic-Driven Matchmaking of Web services using Case-Based Reasoning.

References

 182

The fourth IEEE International Conference on Web Services (ICWS

2006), September 18-22, 2006, Chicago, USA. IEEE Computer Society, p. 29-
36

[108] Thakker, D., Osman, T. & Al-Dabass, D., 2006. S-CBR: Semantic Case Based
Reasoner for Web services discovery and matchmaking. The 20th European

Conference on Modelling and Simulation (ECMS 2006), Bonn, Germany, 28-31
May 2006. ECMS Press, p. 723-729.

[109] Flank, S., 1998. A layered approach to NLP-based information retrieval.
International Conference on Computational Linguistics. San Francisco,
California, 1998. Morgan Kaufmann Publishers, p.397-403.

[110] Liddy, E. D., 2000. Searching & search engines: When is current research going
to lead to major progress? The Year 2000 International Chemical Information

Conference & Exhibition. Annecy, France, 22-25 October 2000. Springer Verlag,
p.109-114.

[111] Hanney, K. & Keane, M., 1996. Learning Adaptation Rules from a Case-Base,
Third European Workshop on Advances in Case-Based Reasoning. Lausanne,
Switzerland, November 14-16, 1996, Springer Verlag, p.179-192.

[112] d’Aquin, M., Badra, F., Lafronge, F. & Szathmary, L. 2007. Case base mining
for adaptation knowledge acquisition. The 20th International Joint Conference

on Artificial Intelligence (IJCAI’07). Hyderabad, India, January 6-12, 2007.
Springer Verlag, p. 750-755.

[113] DUNS. D-U-N-S ® number identifier system [Internet]
http://www.dnb.com/us/duns_update/index.html [accessed 10 May 2007]

[114] NAICS. North American Industry Classification System [Internet]
http://www.census.gov/epcd/www/naics.html [accessed 10 May 2007]

[115] Foster, I., Kesselman, C., Nick, J. & Tuecke, S., 2002. Grid services for
distributed system integration. Computer, 35(6), p.37-46.

[116] Foster, I., Kesselman, C., Nick, J. & Tuecke, S., 2002. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration.
Open Grid Service Infrastructure WG, Global Grid Forum, Edinburgh, Scotland,
June 22, 2002.

[117] Yonggang, Q. & Frei, H., 1993. Concept based query expansion. Annual ACM

Conference on Research and Development in Information Retrieval, Pittsburgh,
Pennsylvania, United States, June 27 - July 1, 1993. ACM press, p.160 - 169.

Appendix A

 183

Appendix A

Table 24 An example of a skeleton BPEL file

<process name="travelagency" targetNamespace="http://ntu.ac.uk/bpel/travelagency/"

xmlns:wizzair=http://travelagent.ntu.ac.uk/WizzAirFlightService
…
>

<partnerLinks>

<partnerLink name="WizzAirPL" partnerLinkType="wizzAir: WizzAirWSLink"
partnerRole="WizzAirWSProvider"/>
…

</partnerLinks>
<variables>
 <variable name="input" messageType="tns:travelagencyRequestMessage">
 <variable name="inputWizzAir" messageType="wizzair:getWizzAirFlightsRequest">
…
</variables>

<assign name="assign-deptdate">
 <copy>
 <from variable="input" part="payload" query="/tns:FlightQuery/tns:departure-date">
 </from>

 <to variable="inputWizzair" part="pQuery" query="/wizzair:FlightQuery/departure-date"/>
 </copy>
</assign>

<sequence name="RetrievePriceQuoteSequence">

<invoke name partnerLink="WizzAirPL" portType="wizzair:WizzAirPortType"
operation="checkReservation" inputVariable="inputWizzAir" outputVariable="outputWizzAir"/>

</sequence>
…

Table 25 A composition scheme with EasyJet Service

<process name="travelagency" targetNamespace="http://ntu.ac.uk/bpel/travelagency/"
xmlns:ejet=http://travelagent.ntu.ac.uk/
EasyJetFlightService
…
>

<partnerLinks>
<partnerLink name="EasyJetPL" partnerLinkType="ejet:EasyJetWSLink"
partnerRole="EasyJetWSProvider"/>
…
</partnerLinks>

<variables>
 <variable name="input" messageType="tns:travelagencyRequestMessage">
 <variable name="inputEasyJet" messageType="ejet:getEasyJetFlightsRequest"/>
…
</variables>

Appendix A

 184

<assign name="assign-deptdate">
 <copy>

<from variable="input" part="payload" query="/tns:FlightQuery/tns:departure-date">
 </from>

 <to variable="inputEasyJet" part="pQuery" query="/ejet:FlightQuery/departureFlightDate "/>
 </copy>
</assign>

<sequence name="RetrievePriceQuoteSequence">

<invoke name partnerLink="EasyJetPL" portType="ejet:EasyJetPortType"
operation="checkReservation"

inputVariable="inputEasyJet" outputVariable="outputEasyJet"/>

</sequence>

List of Publications

 185

List of Publications

Osman, T., Thakker, D. & Al-Dabass, D., Utilization of Case Based Reasoning for
Semantic Web Services Composition, Submitted for the International Journal of Web
and Grid Services (IJWGS).

Thakker, D., Osman, T., & Peytchev, E., Automated Run-time Composition of Web
Services with Constraint Satisfaction, submitted for the seventh IEEE International

Semantic Web Conference (ISWC 2008),IEEE Computer Society, Karlsruhe, Germany,
October 26-30, 2008.

Osman, T., Thakker, D. & Schaefer G., 2008. Semantic-based Expansion of Image
Retrieval Queries. Accepted for the 2nd International Language Resources for Content-

Based Image Retrieval Workshop, The sixth international conference on Language

Resources and Evaluation, LREC 2008, Marrakech, Morocco, May 26, 2008, Springer
Verlag.

Thakker, D., Osman, T. & Al-Dabass, D., 2008. Knowledge-Intensive Semantic Web
services Composition. The tenth IEEE conference on Computer Modelling and

Simulation (UKSIM 2008), Cambridge, United Kingdom, April 1-3, 2008. IEEE
Computer Society, p. 673-678.

Osman, T., Thakker, D. & Al-Dabass, D., Chapter XIII: Web Services Hybrid Dynamic
Composition Models For Enterprise. In the Book: Enterprise Architecture and

Integration: Methods, Implementation and Technologies Editors: Wing Lam and Venky
Shankararaman, Publishers: Idea Group Inc, USA

Thakker, D., Osman, T. & Al-Dabass, D., 2007. Semantic-Driven Matchmaking and
Composition of Web services using Case-Based Reasoning. The fifth IEEE European

Web Services Conference (ECOWS 2007), Halle, Germany, November 26-28, 2007.
IEEE Computer Society pp. 67-76.

Osman, T., Thakker, D., Schaefer G. & Lakin, P., 2007. An Integrative Semantic
Framework for Image Annotation and Retrieval. The 2007 IEEE/ACM conference on

web intelligence, Silicon Valley, USA, November 11-13, 2007, IEEE Computer Society,
p. 366-373.

Osman, T., Thakker, D., Schaefer, G., Leroy, M. & Fournier, A., 2007. Semantic
Annotation and Retrieval of Image Collections. The 21st European Conference on

Modelling and Simulation, Prague, Czech Republic, June 4-6, 2007.

Osman,T., Thakker, D., Yang, Y. & Claramunt, C., 2006. Semantic Spatial Web
Services with Case-Based Reasoning. The 6th International Symposium on Web and

Wireless Geographical Information Systems (W2GIS 2006), Hong Kong, China, 4-5
December 2006. Springer Verlag Lecture Notes in Computer Science, p.247-258.

Osman, T., Thakker, D., Al-Dabass, D., Lazer, D. & Deleplanque, G., 2006. Semantic-
Driven Matchmaking of Web services using Case-Based Reasoning. The fourth IEEE

International Conference on Web Services (ICWS 2006), September 18-22, 2006,
Chicago, USA. IEEE Computer Society, p. 29-36.

List of Publications

 186

Thakker, D., Osman, T., & Al-Dabass, D., 2006. S-CBR: Semantic Case Based
Reasoner for Web services discovery and matchmaking. The 20th European Conference

on Modelling and Simulation (ECMS 2006), Bonn, Germany, 28-31 May 2006. ECMS
Press, p. 723-729.

Thakker, D., Osman, T., & Al-Dabass, D., Semantics based automatic assignment in
Web services composition. The 9th International Conference on Computer Modelling

and Simulation Conference, 4-6 April, 2006, Oxford, UK. p. 67-72.

Thakker, D., Osman, T. & Al-Dabass, D., Web Services Hybrid Dynamic Composition
Models for Ubiquitous Computing Networks. IEEE 8th Int. Conf. on Advanced

Communication Technology, Phoenix Park, Korea, 22-24 Feb 2006. IEEE Computer
Society, p. 274-280.

Osman, T., Thakker, D. & Al-Dabass, D., 2005. Bridging the Gap between Workflow
and Semantic-based Web services Composition. The Workshop on WWW Service

Composition with Semantic Web Services 2005 (wscomps05), the 2005 IEEE/WIC/ACM

International Joint Conference on Web Intelligence (WI 2005) and Intelligent Agent

Technology (IAT 2005), Compiègne, France, September 19, 2005. IEEE Computer
Society, p. 13-23.

Thakker, D., Osman, T. & Al-Dabass, D., 2005. Web services Composition: A
Pragmatic View of the present and the future. The 19th European Conference on
Modelling and Simulation, Riga, Latvia, June 1-4, 2005. p. 826-832.

Thakker, D., Osman, T. & Al-Dabass, D., 2005. Private UDDI registry models for B2B
Web Services. The Eighth United Kingdom Simulation Society (UKSIM) Conference,

Oxford, UK, 6-8 April, 2005. p. 13-16.

