
TOWARDS A GENERIC PROGRAMMING
MODEL FOR NETWORK PROCESSORS

Kevin Lee, Geoff Coulson, Gordon Blair, Ackbar Joolia, Jo Ueyama

Lancaster University, Lancaster, LA1 4YR, UK

Abstract-Network Processors (NPs) are emerging as a cost
effective network element technology that can he more readily
updated and evolved than custom hardware or ASIC-based
designs. Moreover, NPs promise support for run-time reconfigu-
ration of low-level networking software. However, it is notoriously
difficult to develop software for NPs because of their complex
design, architectural heterogeneity, and demanding performance
constraints. In this paper we present a runtime component-
based approach to programming NPs. The approach promotes
conceptual uniformity and design portability acros a wide
variety of NP types while simultaneously exploiting hardware
assists that are specific to individual NPs. To show how our
approach can be applied in a wide range of types of NPs
we characterise the design space of NPs and demonstrate the
applicability of our concepts to the various classes identified.
Then, as a detailed case study, we focus on programming the
Intel IXP1200 NP. This demonstrates that our approach can be
effectively applied, e.g. in terms of performance, in a demanding
real-world NP environment

I. INTRODUCTION
Network Processors (NPs) are an attempt by hardware

vendors to fulfill the growing need for low-priced specialised
network hardware elements that are more future proof than
conventional custom hardware or ASIC-based designs, and can
be applied in a wider range of situations (e.g. in networked
devices, as edge-network routers and even in the network
core). In addition, NPs are seen by some as potential vehicles
for the deployment of active networking-derived technologies
[I] which exploit the potential of NPs for run-time software
reconfiguration. Architecturally, NPs are multiprocessor-based
hardware units that support a number of network ports and
provide software-programmahle packet processing facilities.
They have the ability to perform relatively complex packet
processing at line speeds.

There is a downside to current NP designs, however: they
are notoriously difficult to program [2], [3]. This is because
of their complex design (e.g. involving multiple processors,
including both gcneral purpose and specialised processors; and
multiple memory and interconnect technologies), their extreme
architectural heterogeneity across vendors and products [4],
and their demanding performance constraints.

Therefore, NPs often exhibit richly-featured hardware de-
signs that remain underexploited by software [SI; and their
extreme heterogeneity tends to inhibit translation of software,
software designs, or even skills across brands. The problem
is exacerbated by the need for high performance and runtime
reconfiguration, both of which add considerably to software

complexity. In particular, because of their complexity, many
NP software toolkits fail to provide any support at all for
runtime reconfiguration.

The aim of the research discussed in this paper is to
develop a generic programming model for NPs that accom-
modates complex architectures and architectural heterogeneity
while also supporting design portability, high performance and
runtime reconfigurahility. Our approach is based on a run-
time software component model. This promotes conceptual
uniformity and design portability across a wide variety of
NP types while simultaneously exploiting hardware assists
that are specific to individual NPs. It features a distributed
runtime with low memory footprint, employs formally speci-
fied interfaces, supports components written in different pro-
gramming languages, and uniformly abstracts over different
processor types and different inter-processor communication
mechanisms without loss of performance. I t also explicitly
supports run-time reconfiguration of software.

The remainder of the paper is structured as follows. In
section 11, we characterise the design space of NPs as a basis
for arguing the genericity of our approach, and also survey
a number of existing programming models provided both by
the manufacturers of various NP products, and by indepen-
dent researchers. In section 111, we present our approach to
programming NPs and show how this improves on existing
approaches. Then, in section IV, we provide a detailed case
study of the application of our approach to the Intel 1XP1200
NP. Finally, in section V we offer our conclusions.

11. NETWORK PROCESSORS

A. Classification

As mentioned, the field of NPs is notable for its great
architectural heterogeneity. In general, however, it can safely
he said that NPs universally provide programmable support
for processing packets. and that this usually takes the form
of one or more packer processors. These can be supported
either on a single chip or across multiple chips. In addition,
NPs universally support a number of MAC-level pons, some
memory, and some form or forms of processor interconnect.

In this section we attempt to capture the design space of
NPs in terms of a small number of orthogonal dimensions.
In particular, we have chosenfour key dimensions which. we
believe, most usefully partition the NP design space. These
are :

0-7803-8783-X/O4/$20.00 0 2004 IEEE 504

Fig. I . The Intel IXP1200 (from [71)

. the pucker processor dimension - the range of types of

. the memory architecture dimension - the range of tech-

. the irrterconnect dimension - the range of interconnect

. the control and mariagemen! dimension - the degree of

We also demonstrate how some prominent NP products
map to this space. In so doing, we lay the groundwork
for a discussion on how our component-based programming
approach can accommodate the full diversity of NPs.

I) The Packet Processor Dimension: Most NPs feature
multiple packets processors, hut the nature of these can vary
from CPUs with very general instruction sets to single-purpose
dedicated units for, e.g., checksumming or hashing, which
are not programmable. Furthermore, some NF's feature only
one type of packet processor and others support a number of
different types.

For example, the Intel IXP1200 NP [6] (see figure I) sup-
ports a uniform set of six so-called microengines which serve
as packet processors. These are 233-600Mhz CPUs whose in-
struction set includes YO tolfrom MAC-ports, packet queuing
support, and checksumming. They support hardware threads
with zero context switch overhead and can he programmed
either in assembler or C. The IXP1200 also includes a general
purpose StrongARM CPU which serves as a controller and
also typically performs slow-path operations.

On the other hand, the Motorola C-Port [E] employs so-
called chamel processors which are generic packet processors
grouped in sets of four that share an area of fast memory.
But in addition it supports a range of dedicated, non pro-
grammable, processors that perform functions such as queue
management, table lookup, and buffer management.

As a third example, the EZChip NP-I 191 has no fully
generic processors. Rather, it employs dedicated packet pro-
cessors that perform specilic tasks such as parsing packets,

packet processors supported by an architecture

nologies and organisations of the memory provided

technologies employed

support for centralised control and management

table lookup or packet modification. Although these are ded-
icated to their given 'domain', they are quite flexible and
programmable within that domain.

2) The Memory Dimension: Memory is used in all the
fundamental operations of a NP, including packet storage,
table lookup. queuing and synchronisation. The properties of
different memory types typically differ in terms of size and
speed, whereas their organisation differs in terms of the degree
of centralisation employed and the accessibility from different
packet processors.

Memory types and organisations greatly affect the structure
of NP software. To deal with the memory organisation of a
particular platform, the programmer has to choose the hest
memory use strategy for a particular operation. For example,
when creating a flow-table for high-speed connections an Intel
IXPl200 programmer might choose on-chip scratch memory,
whereas an IBM PowerNP programmer [IO] might use that
architecture's high-speed internal S U M .

3) The Interconnect Dimension: Different NPs provide
different mechanisms for inter-processor communication such
as shared registers, buses (of varying types), shared memory
(perhaps a range of types that make different trade-offs he-
tween capacity and speed), and dedicated channels.

For example, the IXP1200 provides a fast bus for commu-
nication between its microengines, MAC ports and memory.
It also provides shared registers and a range of memory types
(i.e. SRAM, SDRAM). The shared registers and memory
are typically used together at the software level to realise
inter-processor communication. The newer IXF2.400 NP from
Intel also provides 'next-neighbour' registers that provide a
dedicated interconnect between two 'adjacent' microengines.

The Motorola C-Port employs shared fast memory for
interconnection between grouped channel processors (as men-
tioned above). It also employs multiple onboard buses for
communication hetween these groups, and shared memory that
is managed by a dedicated processor.

Unlike the two examples above, the EZChip offers a very
static and limited interconnect which arranges the packet pro-
cessors in a strict pipeline topology. The Cisco PXF [I I] uses
a variant of this approach: i t offers multiple parallel pipelines
and some capability for communication between pipelines.
Clearly, these architectures are less flexible, although poten-
tially faster, than the bus-based interconnects discussed above.

4) The Control and Management Dimension: Apart from
the genericitylspecificity of their packet processors, different
NPs make different choices regarding centralisation/ decen-
tralisation of control and management. For example. some
NPs rely exclusively on external control in the form of a
host workstation. Others (e.g. the IXPl200) incorporate a
commodity CPU on the NP itself which runs an operating
system, and others support sufficiently powerful and general
packet processors that any of these can potentially serve as a
locus of control and management.

The IXP 1200's on-hoard StrongARM CPU runs a com-
modity OS such as Linux. As well as handling slow-path
packet processing, the StrongARM is responsible for loading

505

code onto the microengines and stopping and starting them as
required.

The Motorola C-Port, on the other hand, has no built-in
centralised controller. Instead, it relies on a host workstation
to load and supervise the operation of its ‘channel controller’
packet processors. Nevertheless, it is theoretically possible to
dedicate one of the channel controllers to take the supervisory
role, especially if fine-grained dynamic reconfiguration of the
NP is a goal.

Similarly, the EZChip relies on a host workstation for
control and management. In this case, there is no alternative
because dedicating one of the packet processors, even if
possible (cf. their lack of generality), would introduce an
unacceptable bottleneck in the pipeline.

B. Sofhvare f o r Network Processors
The provision of software development environments for

different NPs is almost as diverse as NP hardware architecture.
In this section we examine both proprietary and research-
derived programming environments and show that each is hard
to generalise beyond the specific architecture at which it is
targeted.

In terms of proprietary software, we focus on programming
models and development environments for the IXPIZOO and
the IBM PowerNP. Information on the software environments
used by other NPs is unfortunately hard to obtain without
signing non-disclosure agreements.

Intel’s MicroACE [I21 is targeted at the IXF’12OO and
other Intel IXA products. In this model, proxy-like software
elements (called active computing elements or ACES) on the
IXPl Zoo’s StrongARM control processor are ‘mirrored’ by
blocks of code (called microblocks) that run on microengines.
Thanks to this mirroring, when the programmer loads a Stron-
gARM element, the corresponding microblock is transparently
loaded onto a microengine as a side effect. The microblock can
choose to offload packets to its associated ACE for handling
on the slow path.

Although it provides a useful degree of abstraction, the
MicroACE approach is limited to IXPl ZOO-like architectures
that employ a tightly integrated control processor. Further-
more, the model leaves linkages between microblocks implicit
in the way the microblocks are written: is not possible to
combine microblocks in unanticipated topologies or to exploit
interconnect mechanisms other than those explicitly chosen
by the microblock author. Also, the ACE approach cannot be
used to perform dynamic software reconfiguration as it takes
no account of the integrity of a running configuration: if a com-
ponent is replaced, a neighbouring component will inevitably
fail as components expect to interact directly. Eja NP [I31 is
another commercial product targeted at the IXPIZOO, although
it also runs on the IBM PowerNP series which is very similar
architecturally (at least in terms of our classification scheme)
to the IXPIZOO. Rather than offer an abstract programming
model like MicroACE, Teja focuses on the provision of an
integrated tool chain and development environment. Although
this eases the development of NP software it provides minimal

architectural abstraction and therefore minimal design porta-
bility.

Turning to research-derived programming environments,
NetBind [14] provides the abstraction of a set of packet-
processing components that can be’bound into a data path.
This is done by adopting the convention of a standard entry
and exit instruction sequence for microblocks, and offering the
capability to dynamically ‘morph’ jump instructions in these
sequences so that execution is transferred to the entry point
of the microblock to be executed next. This separates the raw
functionality of a microblock from the way it is composed with
others, and also gives the NetBind programmer the ability to
dynamically reconfigure compositions of microblocks.

NetBind goes beyond MicroACE in supporting flexible
composition of microblocks, but i t offers no abstraction over
the N P s memory organisation, interconnects, or over different
sorts of processors (e.g. the microengines- StrongARM, and
workstation host of an IXPIZOO-based router). It therefore
offers no more design portability across different NPs than
MicroACE.

NF-Click [151 is another component-based programming
model for NPs; it is derived from an earlier PC-based software
router model called Click. Again, NP-Click has been primarily
targeted at the IXP1200.It is founded on a much richer model
of components than NetBind. While communication between
NetBind microblocks takes place over low-level untyped entry
and exit points, Click components have typed pons; and
connections between ports can be designated as either ‘push’
or ‘pull’ which provides declarative control over flow of
control and threading. In addition, NP-Click abstracts, to a
degree, over the different memory technologies offered by the
IXP1200 by providing keywords such as ‘global’, ‘regional’
or ‘local’ which cause the associated component to be auto-
matically allocated an appropriate memory type. Furthermore,
it provides low level abstractions such as mallocO andfree0
to facilitate and manage the allocation of NP resources such
as microengine LIFO registers.

NP-Click does a much better job of abstracting NP architec-
ture than NetBind, but it still falls short of providing a generic
approach to NP programming. While it abstracts pmicular fea-
tures of the IXPIZOO. it has no notion of abstracting arbitrary
architectures in a principled way, and thereby encouraging
design portability and transferable skills across NP types. That
is, there is no necessary commonality between the abstractions
provided over different architectures (e.g. NPs other than the
IXPIZOO may not use LIFOs). In addition, NP-Click provides
no support for dynamic reconfiguration.

VERA [16], 1171 is an extensible software router archi-
tecture that comprises three layers: the top layer provides
the abstraction of a router, the boltom layer abstracts the
hardware, and a middle ‘distributed operating system’ layer
mediates between the two. The latter layer organises the
available packet processors into a hierarchy of levels. Initial
classification occurs on a ‘low level’ processor attached to
the MAC-port, and if the packet requires further or more
complex processing then a ‘higher level’ processor is used.

0-7803-8783-x/M/$20.00 0 2004 IEEE 506

.

Fig. 2. lllustnlian of capsules and caplets

This provides a high degree of abstraction, but i t is heavily
dependent on the IXP1200 architecture. For example, it is hard
to see how this same abstraction of levels could be maintained
on the EZChip N P (see section 11).

Apart from the work discussed above, additional research
has focused on creating toolsets for specific NPs such as C
compilers, simulators, debuggers and benchmarkers; some of
this work is described in [IS], [19], [20]. Like Teja, however,
this work focuses on making tools more usable rather than
on providing NP-tailored programming models that promote
design portability and transferable programming skills.

Finally, the Network Processor Forum [21], a Industry
consortium that aims to facilitate and accelerate the devel-
opment of NP products, is starting to take an interest in NP
programming interface standardisation. To date their focus has
been on hardware level interoperability, but they have recently
announced the formation of a study group that will define a
software API for network-computing applications. However,
it is not yet envisaged that this API will address low level
programming of individual NP products.

111. TOWARDS A GENERIC PROGRAMMING MODEL FOR
NETWORK PROCESSORS

A. Overview of the OpenCOM Component Model
A high-level view of our proposed component model, called

OpenCOM [22], is given in figure 2. This depicts the central
concepts of components (the filled circles), capsules (the
outer dotted box), cuplets (the inner dotted boxes), interfaces
(the amall circles), receptacles (the small cups), and bindings
(the implied association between the adjacent interfaces and
receptacles).

Components, Capsules and Caplets Components are
encapsulated units of functionality and deployment that in-
teract with their environment (i.e. other components) exclu-
sively through interfaces and receptacles. Components cany
negligible inherent overhead and can effectively be used in
extremely fine grained compositions. Crucially, OpenCOM is
a runtime component model meaning that (unlike, say, NP-
Click) components can be dynamically deployed at any time
during run-time. The locus of deployment is either a capsule
or a caplet. Both of these concepts represents a scope for
component deployment; the latter are sub-scopes of the former
(they can he nested to arbitrary depth). In principle (if the
deployment environment permits), caplcts can he created and

destroyed at run-time. Different caplets can also host com-
ponents written in different languages (e.g. to accommodate
interpreted languages like Java; or to accommodate different
machine languages where caplets run on different CPU types).

Each capsule offers a simple run-time API for component
lifecycle management (i.e. loading components into the cap-
sule and instantiating and destroying them), and interface/
receptacle binding (see below). To accomplish loading, the
model supports the notion of plug-in loaders. New loaders
with different behaviours can be added at runtime, and they
can be selected according to their particular properties. Exam-
ples are given below. Importantly, the loading of components
into a capsule can he requested by any component hosted by
the capsule no matter which caplet is hosting it (this is referred
to as third-parry deployment).

Interfaces and Receptacles Interfaces are units of ser-
vice provision offered by components; they are expressed in
terms of sets of operation signatures and associated datatypes.
For language independence, OMG IDL [23] is used as a
specification language. As in Click, components can support
multiple interfaces: this is useful in recognising separations of
concerns (e.g. between base functionality and management).
Receptacles are ‘anti-interfaces’ used to make explicit the
dependencies of components on other components: whereas
an interface represents an element of service provision, a re-
ceptacle represents a unit of service requirement. Receptacles
are key to supporting a third-party style of composition (to
complement the third-party deployment referred to above):
when third-party-deploying a component into a capsule, one
knows by looking at the component’s receptacles precisely
which other component types must be present to satisfy its
dependencies.

Bindings Finally, bindings are associations between a
single interface and a single receptacle that reside in a common
capsule (but not necessarily a common caplet). Similarly to
plug-in loaders, OpenCOM also supports a notion of plug-
in binders. Again, the idea is to give access to an extensible
range of binding mechanisms with varying characteristics. See
below for examples. As mentioned, the creation of bindings
is inherently third-party in nature; it can be performed by
any party within the capsule (i.e. not only by the ‘first-party’
components whose interface or receptacle participates in the
binding).

B. Applying OpenCOM in NPs
We now consider how the above concepts can be applied in

the diverse range of NP types characterised in section 11. First,
the scoping-related notions of capsules and caplets are useful
in distinguishing different processors and types of processors
on the NP in a generic manner (cf. the packet processor
dimension). For example, in an IXP1200, we might map a
single capsule onto the entire NP, and sub-scope individual mi-
croengines, and the StrongARM control processor, as caplets.
The capsule runtime in such a mapping would reside on the
StrongARM where it could run in a standard operating system
environment. An alternative mapping could encapsulate all the

SO7

microengines within a single caplet. Furthermore, a plug-in
loader associated with this caplet could perform intelligent
load balancing of components across microengines, thus pro-
viding a higher level of abstraction than the first alternative.
The notion of caplets is also useful in isolating untrusted code,
which is important in active networking environments. For
example, a Java sandbox could be isolated as a caplet.

The IXP1200 is situated towards the ‘centralised’ end of
the control dimension defined in section 11-A. In an NP with
less centralisation, such as the Motorola C-Port or the EZChip,
the capsule abstraction could span both the NP itself and its
hosting workstation. In this case, the capsule runtime would
execute on the host. Alternatively, the capsule abstraction
could be restricted to the NP itself, and the capsule runtime
could execute on one of the general packet processors, if
present. This would be possible in principle on the Motorola
C-Port, but not on the EZChip which has no general purpose
processors.

The pluggable loader concept is closely associated with
capsules/caplets. Typically, at least one loader will be provided
for each type of caplet, and each will know how to load
components into the hardware (and/ or language) environment
underlying its particular caplet type. For example, on the
IXP1200 mapping referred to above, there would be (at least)
one loader for the StrongARM caplet and another for the
microengine caplets. Importantly, the OpenCOM API allows
selective transparency in the use of loaders. If full loader-
selection transparency is desired, one can issue a call such
as load(component-cl. caplet_/) which will deduce an appro-
priate loader type from meta-data attached to component-cl,
and use this to load the component into the designated caplet.
This essentially masks the fact that different components
may be implemented in different machine languages. Even
more transparency can bc requested by issuing a call of the
form load(componentr1) which causes the runtime to load
compunenr.cl into a default capsule using a default loader.
Alternatively, one can opt for complete control and zero
transparency by issuing a call of the form load(component.cl.
caplet.1, loader3).

other hand, if i t is important to select a particular mechanism,
we can say bind(interface.1, receptacle.15, louder-4). And so
on.

Note that the abstract model of binding provided by the
pluggable binder framework is consistent across all types of
NP regardless of the nature and diversity of the interconnects
between packet processors. For example, it can uniformly
accommodate the fixed hardware channels supported by the
pipeline-oriented EZChip, or the bus and shared memory
interconnects of the Motorola C-Port, in just the same way
as the various mechanisms supported by the IXP1200. Of
course, different NP architectures may impose constraints on
the form of possible bindings. For example, i t would not be
straightforward to directly bind components on non-adjacent
processors on the EZChip NP; although even here it would
be possible (if perhaps undesirable) to provide a plug-in
binder that implemented this type of binding by transparently
instantiating a forwarder on the intermediary processor(s).

The component concept alone is capable of providing con-
siderable abstraction power in terms of accommodating dedi-
cated non-programmable processors such as those provided by
the Motorola C-Port. These processors can be accommodated
by representing them with a ‘dummy’ component and an
associated special plug-in loader and binder pair. Loading
the component and binding it to the client component has
the effect of making the service provided by the dedicated
processor (e.g. table lookup) look as if it were a normal
software component.

A final crucial property of the component model is its
radically third-party nature in terms of loading and binding.
Thanks to this, a component on an IXP1200 microen,’ Dine can
load and bind two components on the StrongARM control
processor, or even on the host workstation, if that comes within
the scope of the capsule.

Note that in this paper we omit, for lack of space, any
discussion of the important OpenCOM notion of component
frameworks which are used to support safe dynamic software
reconfiguration. Information on this topic is available in the
literature [221.

The pluggable binder concept is equally central to the
comoonent model’s abstraction Dower. In this case, the abstrac- IV. CASE STUDY: OPENCOM ON THE INTEL I x P l 2 0 0
tion is over the interconnect dimension. For example, on the
IXP1200 we can encapsulate the NetBind binding mechanism
(see section 11-B) as a plug-in binder that is competent to
bind components that have been loaded into a common caplet
that represents a single underlying microengine. But equally
well, we can provide a binder that is competent to bind
components on different microengines (e.g. based on a shared
memory or a next-neighbour register mechanism), or even
between components on a microengine and components on the
StrongARM. Again, the use of plug-in binders is selectively
transparent. If we don’t know or care in which caplets our two
target components are located, we can say bind(interface.1,
recepIacle.15) and an appropriate loader will be selected
according to location-rclated meta-data attached to the com-
ponents that own the specified interface and receptacle. On the

For the past year we have been working to deploy and eval-
uate the OpznCOM component model on the Intel IXP1200.
The IXPIZOO was selected because of its open and well
documented architecture, and because it is a richly-fcatured
NP in terms of the dimensions presented in section 11-A.

To generate useful components with which to populate the
implementation, we have taken as our starting point various
modules (e.g. classifiers, forwarders, schedulers etc.) provided
by the NetBind project [I41 from Columbia University. We
have transformed these bare modules, which are written in C
or assembler, for both the StrongARM CPU and the micro-
engines, into standard OpenCOM components by attaching
appropriate meta-data (e.g. IDL interfaces. and loader and
binder attributes) to produce standardly-packaged and deploy-
able units.

0-7803-8783-x/04/$20.00 0 2004 IEEE 508

The mapping we currently employ of OpenCOM capsules
and caplets to the IXP1200 involves a single capsule that en-
compasses both the NP and the host workstation, and contains
separate caplets for: the host workstation (actually, a single
Linux process on the workstation); the SuongARM (again,
a single Linux process); and each of the six microengines.
The OpenCOM runtime runs in the StrongARM caplet; all the
other caplets are ‘slaves’ of this ‘central’ runtime and incur
only minimal memory overheads (see below). The memory
footprint of the central runtime itself is of the order of
300Kb, although we believe that there is considerable scope
for reducing this.

The central runtime in the StrongARM caplet communicates
with the other caplets by means of so-called caplet channels.
The role of these is to bootstrap plug-in loaders and binders
associated with non-cenual caplets, and to support commu-
nication between their two parts: such loaders/ binders are
implemented as a ‘delegator’ part that resides in the central
StrongARM caplet, and a (minimal) ‘delegate’ part that resides
in the other caplet. As examples, we now briefly describe
example loader and binder plug-ins that are associated with
the microengine caplets.

The microengine louder plug-in is of interest in that it
provides the illusion of dynamic loading despite the fact that
the microengine hardware only allows modification of its
instruction store when the CPU is stopped [12]. The basic
capability provided by the microengine hardware is to stop
the microengine, read/ write arbitraty instruction store loca-
tions, and then restart it at a hard-wired address. To achieve
transparent dynamic loading it is therefore necessary for the
loader to not only load the new component hut also to patch
the (hard-wired) restart address so that subsequent execution
resumes at the point it left off. The loader also has the ability
to autonomously move code around within the instruction store
to avoid memory fragmentation as components are loaded and
unloaded. The loader is also of interest in that i t constrains
the form of OpenCOM components it is willing to load. The
general notion of particular loaders somehow restricting the
components they can work with is a general and powerful
pattern in OpenCOM. In the present case, the IDL interfaces
of loaded components are restricted to supporting operations
that accept and return a single integer. This restriction, which is
enforced by inspecting the component’s IDL meta-data at load
time, is imposed partly to simplify the design of the associated
hinder (see below), and partly because the assumed model of
component composition on the microengines (borrowed from
above-mentioned NetBind work) is that components are bound
into a more-or-less linear sequence and cooperatively work
on queues of network packets whose addresscs are passed as
integer arguments.

Our intra-microengine binder plug-in is strongly coupled to
the loader just described. It builds on the above-mentioned
NetBind technique (see section 11-B) of creating bindings
by ‘morphing‘ jump instructions. However, the hinder is
more complex than the NetBind implementation because,
together with the loader, it supports multiple instantiations

of components (unlike NetBind which only supports single-
ton components). The single argument and return value are
passed via a designated register. The necessary entry and exit
point information is obtained from IDL meta-data attached to
the packaged component, which is transformed from relative
offsets to absolute offsets by the loader. It is important to
notice, by the way, that the IDL-specified interfaces do not
incur performance overhead. In fact, the overhead of the binder
in calling a null operation with no arguments or return values
is only five (I-cycle) instructions. These subsume passing on
the stack a pointer to the per-instance state vector of the
called component, and the return address. Note that NetBind
incurs an overhead of just two I-cycle jump instructions (for
the call and the return). But this is because NetBind does
not support multiple instantiations of components. Crucially,
however, we could easily retrieve the NetBind performance
in the OpenCOM environment simply by implementing and
installing an new hinder plug-in that understands components
that observe the NetBind calling convention and (therefore)
does not support multiple component instantiation. The es-
sential point is that OpenCOM’s plug-in architecture enables
us to support any appropriate trade-off. More generally, it is
important to observe that the performance of the OpenCOM
programming model as a whole is almost entirely dependent
on the performance of the binding mechanisms used. Almost
all the value-added features of OpenCOM are confined to the
central runtime and do not ‘get in the way’ when components
communicate with each other on the NP‘s fast path.

Apart from the microengine loader and binder discussed
above, we are currently implementing loaders that load com-
ponents into S t r o n g A M and host workstation caplets; and
binders that bind components across any pairwise combina-
tions of the three caplet types. Bindings between the micro-
engines and the other two caplet types are considerably more
complex than intra- and inter-microengine bindings as they
require stubs and skeletons to map the parameter and return
value to a bus packet. To minimise memory overhead, the
microengine-side stubs/ skeletons can be hand coded rather
than generated automatically from the IDL specification.

v. CONCLUSIONS A N D FUTURE WORK

In this paper we have characterised the design space of
NPs and proposed a component-based programming model
that, we have argued, can be applied generally within this
design space. The component model, mainly through its plug-
in loaders and binders and its associated notion of caplets,
provides a high degree of design portability and potential
for skill transfer. We have also demonstrated how plug-in
loaders and hinders can exploit NP-specific features to provide
both high performance (for example, our microengine binder
incurs comparable overheads to NetBind on the IXPl200), and
value-added behavior (for example, our microengine loader/
hinder supports multiple instantiations of components and
transparently optimises instruction store use as components
are dynamically loaded/ instantiatedl destroyed).

509

Most importantly, we have argued that our abstractions
are generally applicable. NP-Click also abstracts Np.specific
features e.g. it provides an to manage and allocate
microengine LIFO resources on the IXP1200. But this API
would ,,,de no on an ~p that did not support ~ 1 ~ 0 ~ .
The OpenCoM approach would be to provide a Plug in
binder (a generic abstraction) that internally uses, manages

1141 A. T. Campbell. M. E. Kounavis. D. A. Villela J. B. Vicente, H. G.
de Meer, K. Miki, and K. S. Kalaichelvan. NetBind: A Binding
Tml far Constructing Dam Paths in Network Processor-based Routers.
In 5th IEEE Intemorionol Conference on Open Architectures (OPE-
NARCH'OZJ, June 2002.

(151 N. Shah, W. Plishker, and K. Keutzer. NP-Click APrognmming Model
for the Intel IXP1200. In 2nd Workhop on Nerwork Pmcerrors (NP-
2) at the Yfh Inlemotiond Sympmium on High Pecfirmnce Computer
Archilecture (HPCA-9). Anaheim. CA, F e b m q 2003.

1161 S . Karlin and L. Peterson. VERA An Extensible Router Archilecture.
In 4th lntemational Conference on O ~ e n Architectures and Newor k

and allocates ~ 1 ~ 0 ~ (if present) to build a binder . . plug-in.
OpenCOM also supports run-time reconfiguration. In this

paper we have discussed the hasic mechanisms behind this
(i.e. receptacles, and the ability lo hind and unbind components
at runtime). But we have not elaborated on OpenCOM's ap-
proach to managing integrity, consistency, safety and security
when performing reconfiguration operations. As mentioned,
we rely on the notion of comporrentframeworks [22] to support
this. We have already explored the provision of component
frameworks in other domains in which we have applied
OpenCOM (e.g. Middleware [24]); one aspect of our future
work will be to further explore this interesting and demanding
area in the NP domain.

The main thrust of our future work, however, will be to
explore the use of OpenCOM in other NP environments. We
are already investigating the more advanced IXP2400 from
Intel and the IBM PowerNP hut we would also like to provide
further evidence for the generality of our approach by looking
in more detail at NPs elsewhere in the design space outlined
in this paper.

REFERENCES
[I] L. Ruf, R. Pletka, P. Emi. and P. Dmz. Towards High-Performance

Active Networking. Pmceedinp </' the F$th A w " Inleniutinriui
Working Conference "11 Active Nerworkr (IWAN 2W3). December 2003.
Kyoto. Japan.

[2] C . Kulkmi. M. Cries. C. Sauer, and K. Keutzer. Programming
Challenges in Network Processor Deployment. In bit. Cmlference on
Cnmpi1er.r. Archirecture. orid Synlherirfor Embedded S y s t e m (CASES).
October 2003.

[3] Agere Systems Proprietq. The Challenge for Next Generation Network
Pracessors. April ?001

[4] M. Tsai. C . Kulkami, C. Sauer, N. Shah. and K. Keutrer. A benchmark-
ing methodology for network processors. In Irr Workshop on network
pmcerrorr ulon,ng wirh HPCA 2W2. February 2002.

[5] P. G. Pauli". Network Processors: A Perspective on Market Require-
ments. Processor Architectures and Embedded S M I Tools. STMicmeler-
troni<;.y, 200 I .

hire1 Techrioloiv Joz~mtl. Volume 6. i . w e 3. Aueust I5 2002.
[6] M. Adiletta et al. The Next Gcnemtian of Intel Network Pr&esson.

[7] Radisys Corp&lion. IXP1200 White Paper: U& the Intel IXP1200
Network Proccssor to Optimize Packet-Processing Application Devcl-
opment. 2001.

[B] Motorola Research. Architecture guidc. C-5dC-3r Network Processor,
Silicon Revision BO. 2003.

[Y] EZchip Technologies. Network Pmcessar Designs for Next-Generation
Networking Equipment White Paper. 2003.

IBM PowerNP Network Processor: Hardware Soft-
ware and Applications. ISM Jounml ,/' Re.wrch urzd Dewloprneat.
47(2/3):177-194, MarchJMay 2003.

[I l l Cisco Systems Inc. Parallel Express Forwarding on the Cisco I0000

LIZ] Intel Press. MicraACE. Design Document, revision I .O. /rite/ Pie.~s

[I 31 A. Drshpande. K. Crozier. and M. Bainrs. The Teja Software Platform
for Network Processon.

[IO] J. Allen et ill.

senes. 2003.

/,,rei c<,rp,,rati<,,L 200 I

~ m ~ ~ ~ ~ ~ ~ " i n g (OPENARCH), ~ p r i i 2001.
T. Spalink. S. Karlin, L. Peterson. and Y. Gottlieb. Building a Robust
Software-Based Router Using Network Processon. Oct 2001.
J. Wagner and R. Leupen. C Compiler Design far an Industrial Network
PmCessor. Proceedings oj the ZWI ACM SIGPLAN Workshop on
Optimization of Middleware and Dirrribated Systems, 2001
G. Memik, W. H. Mangiane-Smith, and W. Hu. NetBench A Bench-
marking Suite for Network Processan. ICCAD, 2001.
M. Cries, C. Kulkami. C. Sauer, and K. Keutzer. Comparing Analytical
Modeling with Simulation for Newark Processon: A Case Study.
Design. Asmmrrrion. ond Terl in Europe (DATE). Munich. Gernlrnry,
March. 2003.
Working Group, Network Processing Forum. Network Processing Forum
Backgrounder, O n 2002. hltp://www.npfarum.org/.
G. Coulson. G. Blair, D. Hutchison, A. Jaolia. K. Lee, J. Ueyama,
A. Comes, and Y. Ye. NETKIT: A Software Component-Based Ap-
proach to Prognmmable Networking . In ACM SIGCOMM Compeler

Object Management Group. Inc. CORBA 3.0 - IDL Syntax and
Semantics chapter. formal/O2-06-07.
G. Caulson. G . Blair. M. Clarke, and N. Parlavantws. The Design of
a Highly Configunble and Reconhgurable Middleware Platform. ACM
Distributed Comprrrinfi Joumul. 15(2): 10Y-1?6, April 2002.

~ ~ ~ ~ ~ ~ ~ i ~ ~ t i ~ ~ ~ ~ ~ i ~ ~ , 33. NO 5, october 2003.

0-7803-8781-X/04/$20.00 0 2004 IEEE 510

http://hltp://www.npfarum.org

