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ABSTRACT 

Short arm of chromosome 8 is a hot spot for chromosomal breaks, losses and amplifications 

in breast cancer. Although such genetic changes may have phenotypic consequences, the 

identity of candidate gene(s) remains to be clearly defined. Pol β gene is localized to 

chromosome 8p12-p11 and encodes a key DNA base excision repair protein. Pol β may be a 

tumour suppressor and involved in breast cancer pathogenesis. We conducted the first and the 

largest study to comprehensively evaluate pol β in breast cancer.  We investigated pol β gene 

copy number changes in two cohorts (n=128 & n=1952), pol β mRNA expression in two 

cohorts (n=249 & n=1952) and pol β protein expression in two cohorts (n=1406 & n=252).  

Artificial neural network analysis for pol β interacting genes was performed in 249 tumours.  

For mechanistic insights, pol β gene copy number changes, mRNA and protein levels were 

investigated together in 128 tumours and validated in 1952 tumours. Low pol β mRNA 

expression as well as low pol β protein expression was associated high grade, lymph node 

positivity, pleomorphism, triple negative, basal–like phenotypes and poor survival 

(ps<0.001). In oestrogen receptor (ER) positive sub-group that received tamoxifen, low pol β 

protein remains associated with aggressive phenotype and poor survival (ps<0.001). Artificial 

neural network analysis revealed ER as a top pol β interacting gene. Mechanistically, there 

was strong positive correlation between pol β gene copy number changes and pol β mRNA 

expression (p<0.0000001) and between pol β mRNA and pol β protein expression 

(p<0.0000001). This is the first study to provide evidence that pol β deficiency is linked to 

aggressive breast cancer and may have prognostic and predictive significance in patients.    
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INTRODUCTION 

 

Impaired DNA repair is a driving force for carcinogenesis. Base excision repair (BER) is 

required for the accurate removal of bases that have been damage by alkylation, oxidation or 

ring-saturation (Dianov and Hubscher, 2013; Kim and Wilson, 2012; Wallace et al., 2012).  

DNA polymerase β (pol β) is a key factor in BER (Nicolay et al., 2012; Wallace et al., 2012; 

Yamtich and Sweasy, 2010). The pol β gene is localised to p11 region of chromosome 8, a 

hot spot for chromosomal breaks, losses and amplifications in breast cancer (Armes et al., 

2004; Kerangueven et al., 1994; Pole et al., 2006; Sigbjornsdottir et al., 2000; Tagawa et al., 

2003; Ugolini et al., 1999; Venter et al., 2005).  The pol β gene encodes a 39kDa protein with 

two functional domains; the N-terminal domain is essential for the dRP lyase activity and the 

C-terminal domain performs the nucleotidyl transferase activity during BER.  Pol β interacts 

with several components of the BER machinery such as XRCC1, FEN1, PARP1, APE1 and 

ligase III to accomplish its biochemical functions (Nicolay et al., 2012; Wallace et al., 2012; 

Yamtich and Sweasy, 2010).   

Pol β deficiency in mice is embryonically lethal (Gu et al., 1994) and embryonic fibroblasts 

derived from such mice are hypersensitive to alkylating agents (Poltoratsky et al., 2005; 

Sobol et al., 1996). Depletion of pol β expression by siRNA in human cancer cell lines is 

associated with sensitivity to chemotherapy (Albertella et al., 2005; Yang et al., 2010). On 

the other hand, pol β overexpression in pre-clinical models is associated with relative 

resistance to DNA damaging agents (Canitrot et al., 1998; Nicolay et al., 2012). Germ line 

polymorphism of pol β gene (rs3136797) that encodes a pol β variant with a low catalytic 

activity has been recently shown to induce cellular transformation and may be associated 

with increased cancer susceptibility (Yamtich et al., 2010). About 30% of human tumours 
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appear to express pol β variant proteins (such as K289M, I260M) which can induce cellular 

transformation in vitro, associated with aggressive mutator phenotype  (Starcevic et al., 

2004). Moreover, pol β mRNA expression may also be dysregulated in certain tumours. In a 

small study of 68 human tumours of diverse origin that also included nine breast tumours, pol 

β mRNA was found to be low in 20% of breast cancer samples (Albertella et al., 2005).   

Our hypothesis is that in breast cancers with aberrations at chromosome 8p, alterations to pol 

β gene copy number and the consequent changes in pol β mRNA and/or protein levels could 

influence breast cancer pathogenesis and influence clinical outcomes in patients. In the 

current study, we have conducted a comprehensive evaluation of pol β by array comparative 

genomic hybridization (CGH), gene expression profiling and immunohistochemistry in large 

cohorts of breast cancer.  We provide the first evidence that Pol β deficiency is associated 

with aggressive breast cancers. In ER positive breast cancers specifically, our data suggest 

that pol β could influence tamoxifen response and may allow therapy stratification.   
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Material and Methods 

Tumour samples 

We have investigated multiple cohorts of breast tumours for the analyses described here. We 

have   obtained   appropriate   consent   and   the   studies were approved by the relevant 

research ethics boards.  

A. Breast cancer cohorts 

1. Discovery cohort 

Pol β gene expression was investigated in Uppsala cohort that was originally composed of 

315 women representing 65% of all breast cancers resected in Uppsala County, Sweden, from 

January 1, 1987, to December 31, 1989. Demographics are summarized in supplementary 

Table S1 of supporting information and also described elsewhere (Chin et al., 2007). Tumour 

samples were microarray profiled on the Affymetrix U133A&B gene-chips. Microarray 

analysis was carried out at the Genome institute of Singapore.  All microarray data are 

accessible at NCBI-GEO (http://www.ncbi.nlm.nih.gov/geo/) via series accession number 

(GSE4922). RNA preparation, microarray hybridization, and data processing were carried out 

essentially as previously described (Pawitan et al., 2005).   All data were normalized using 

the global mean method (MAS5), and probe set signal intensities were natural log 

transformed and scaled by adjusting the mean signal to a target value of log 500. The 

expression intensity of the POLB probe 234907_x_at, located on the HG-U133b gene chip 

was utilized for the analysis and to generate artificial neural network (ANN) model.  Data 

were available for 249 patients. 

Artificial neural network (ANN) model: A non-linear, ANN modeling based, data mining 

approach was utilised for the Uppsala cohort to identify the best gene probes for sample 

http://www.ncbi.nlm.nih.gov/geo/
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classification. 47,293 probes were screened for each sample. The data mining algorithm 

comprised a three layer multilayer perception architecture modified with a feed forward back-

propagation algorithm and a sigmoidal transfer function, as previously described (Lancashire 

et al., 2010). The network momentum and learning rate were respectively set as 0.1 and 0.5. 

A parsimonious structure using two hidden nodes and three split Monte Carlo Cross 

validation were utilised to prevent over fitting. The output node was coded as 0 if a case was 

low Pol β expression (<the median) and 1 if high Pol β expression (>median). Inputs were 

ranked in ascending order based on their classification error. The top 100 predictive genes 

identified were then applied to an ANN based network inference algorithm as described in 

earlier studies (Lemetre, 2009).  This model predicted a weighted link (direction and 

magnitude) between each of the top 100 gene probe markers associated with Pol β expression 

and every other marker in the top 100. The 100 strongest interactions based on the magnitude 

were then visualised as a map with Cyto-scape (Smoot et al., 2011). 

Ensemble classification and cross-validation analysis: In a second bioinformatics analysis 

step in Uppsala cohort, we sought to obtain a robust ranking of genes that are differentially 

expressed between the mRNA Pol β +  cases and the mRNA Pol β - and have high predictive 

power, by applying an ensemble sample classification method within a leave-one-out cross-

validation scheme. For this purpose, the 249 patient samples were first grouped into 249 

different training/test set partitions, using 248 samples for the training sets and the remaining 

sample as the test set. For each of the 248 training sets differentially expressed genes were 

selected independently with the "Empirical Bayes moderated t-statistic"  (Smyth, 2004) and 

used to train a machine learning model, which was evaluated based on the left-out sample (a 

procedure known as "external cross-validation"). To classify the left-out sample, the 

prediction results of four algorithms (Support Vector Machine, Random Forest, kNN and 

Prediction Analysis for Microarrays, with all parameters being optimised by using a grid 
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search within a nested cross-validation) (Tibshirani et al., 2002) were combined to a 

majority-vote ensemble classifier as to compensate for the inevitable inherent biases and 

variances that exists amongst each of these machine learning algorithms. In order to rank the 

genes based on the cross-validation results, their frequency of occurrence in the list of 

significantly differentially expressed genes (p-value < 0.05) across different cross-validation 

cycles was recorded, and genes received higher scores the more often they had been selected.   

All steps of the analysis were conducted using an in-house web-application for microarray 

analysis, available at www.arraymining.net. 

2. METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) 

validation cohort 

Pol β gene copy number changes as well as pol β mRNA gene expression was performed in 

METABRIC cohort which refers to a set of 1980 breast cancer samples with a minimum of 5 

years of clinical follow up (Curtis et al., 2012). Patient demographics are summarized in 

supplementary Table S2. ER positive and/or lymph-node negative patients did not receive 

adjuvant chemotherapy. ER negative and/or lymph-node positive patients received adjuvant 

chemotherapy.  For   this   cohort,   mRNA   was   hybridized   to   Illumina   HT-12 v3 

platform (Bead Arrays) and the data were pre-processed and normalized as described 

previously (Curtis et al., 2012).  Genes copy number was assayed on the Affymetrix SNP 6.0 

platform (data available through the European Genotype Archive 

(http://www.ebi.ac.uk/ega/page.php under accession   Number: EGAS00000000082). 

Samples were classified into the intrinsic subtypes based on the PAM50   gene   list. A   

description   of   the   normalization, segmentation, and statistical analyses was previously 

described (Curtis et al., 2012).   Real time PCR RT-qPCR was performed on the ABI Prism 

7900HT sequence detection system   (Applied   Biosystems)   using   SYBR1 Green   

http://www.ebi.ac.uk/ega/page.php
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reporter.   All   the samples were analysed as triplicates. The Chi-square test was used for 

testing association between categorical variables and a multivariate Cox model was fitted to 

the data using as endpoint breast cancer specific death. Recursive partitioning (Hothorn et al., 

2006) was used to identify a cut-off in gene expression values such that the resulting 

subgroups have significantly different survival courses. Jonckheere’s trend test was 

performed to evaluate correlation between pol β gene copy number and pol β m RNA 

expression in the METABRIC cohort.  

3. Nottingham Tenovus Primary Breast Carcinoma cohort (NTP-BC) 

Pol β protein expression was performed in a consecutive series of 1650 patients with primary 

invasive breast carcinomas who were diagnosed between 1986 and 1999 and entered into the 

Nottingham Tenovus Primary Breast Carcinoma series.  All patients were treated uniformly 

in a single institution and have been investigated in a wide range of biomarker studies (Ellis 

et al., 1992; Elston and Ellis, 1991; Galea et al., 1992).  Supplemental Table S3 summarizes 

patient demographics. Supplemental treatment data 1 summarizes various adjuvant treatments 

received by patients in this cohort.   

4. Early primary ER negative (EP-ER-) BC cohort 

We also evaluated Pol β protein expression in an independent series of 281 ER-α negative 

invasive BCs diagnosed and managed at the Nottingham University Hospitals between 1999 

and 2007.  All patients were primarily treated with surgery, followed by radiotherapy and 

anthracycline chemotherapy. The characteristics of this cohort are summarised in 

supplementary Table S4. 

B. Mechanistic studies  
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Nottingham (NT) series: Pol β gene copy number changes, mRNA gene expression and 

protein expression were derived from the ‘NT-series’ that was a set of 171 stage I and II 

primary operable invasive BC previously described by our group in several molecular profiling 

studies (Blenkiron et al., 2007; Chin et al., 2007). The raw and mode-normalized data for gene 

copy number changes are available from National Centre for Biotechnology Information Gene 

Expression Omnibus (NCBI-GEO)-http://www.ncbi.nlm.nih.gov/geo/ under the series 

accession number GSE8757 and the expression data are available at the EBI website 

(http://www.ebi.ac.uk/miamexpress/) with the accession number E-TABM-576.   

Pol β gene copy number changes: Copy number changes at Pol β locus (8p11.21 spanning 

from 42195973 to 42229321 with size of 33348 bases) were retrieved from oligonucleotide 

microarrays profiling previously described by our group (Chin et al., 2007).  Briefly, DNA was 

extracted using the Promega DNA Wizard kit (Promega, UK) according to manufacturer's 

instructions. Labelled DNAs were hybridized to a customized 30,000 60-mer oligo probes, 

for which 27,801 unique map positions were defined [Human Mar. 2006 assembly (hg18)]. 

The median interval between mapped elements was 39.4 kb, 75% of intervals were less than 

104.2 kb and 95% were less than 402 kb.  

Pol β mRNA expression:  128 out of the 171 breast tumours were also profiled on Agilent 

gene expression arrays and have been previously described (Chin et al., 2007). Briefly, total 

RNA was extracted from a series of frozen breast cancers retrieved from Nottingham 

Hospitals NHS Trust Tumour Bank between 1986 and 1992. RNA integrity and DNA 

contamination were analysed using Agilent 2100 Bioanalyzer (Agilent Technologies, Palo 

Alto, CA, USA). Total RNA was biotin-labelled using the Illumina TotalPrep RNA 

Amplification kit (Ambion, Austin, TX, USA) according to manufacturer’s instructions. 

Biotin-labelled cRNA (1.5 µg) was used for each hybridisation on Sentrix Human-6 

http://www.ebi.ac.uk/miamexpress/
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BeadChips (Illumina, San Diego, CA, USA) in accordance with the manufacturer’s protocol. 

Illumina gene expression data containing 47,293 transcripts were analysed and summarised in 

the Illumina Bead Studio software. Analyses of the probe level data were done using the 

beadarray Bioconductor package.  

Pol β protein expression and other biological biomarkers: The 128 cases which had both 

a-CGH and mRNA data were then evaluated for Pol β protein expression by 

immunohistochemistry on tissue microarray (TMAs) as described below. Demographics of 

this cohort is summarised in supplementary Table S5.  

Integrated array CGH, mRNA gene expression and protein expression analysis:  Gene-

dosage levels to gene expression were evaluated using Wilcoxon test to evaluate the 

significance of the association between copy number and aberrant expression. To determine 

whether mRNA expression levels correlated with protein levels, Pearson correlations were 

performed between Pol β mRNA expression log intensity values and Pol β protein expression 

(H-score). Jonckheere’s trend test was performed to evaluate correlation between pol β gene 

copy number and pol β m RNA expression in the METABRIC cohort.  

Survival data 

Survival data including survival time, disease-free survival (DFS), and development of loco-

regional and distant metastases (DM) were maintained on a prospective basis.  DFS was 

defined as the number of months from diagnosis to the occurrence of recurrence or DM 

relapse.  BC specific survival (BCSS) was defined as the number of months from diagnosis to 

the occurrence of BC related-death. Survival was censored if the patient was still alive, lost to 

follow-up, or died from other causes.   
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The Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK) criteria 

were followed throughout this study.  

Tissue Microarrays (TMAs) and immunohistochemistry (IHC) 

Tumours from NT-BC, NTP-BC and EP-ER-BC cohorts were arrayed in tissue microarrays 

(TMAs) constructed with 6 replicate 0.6 mm cores from the centre and periphery of the 

tumors for each patient.  The TMAs were immunohistochemically profiled for Pol β and 

other biological antibodies (Supplementary Table S6).  Immunohistochemical staining for Pol 

β was performed using the Thermo Scientific Shandon Sequenza chamber system (REF: 

72110017), in combination with the Novolink Max Polymer Detection System (RE7280-K: 

1250 tests), and the Leica Bond Primary Antibody Diluent (AR9352), each used according to 

the manufacturer’s instructions (Leica Microsystems). Pre-treatment antigen retrieval was 

performed on the TMA sections using citrate buffer (pH 6.0), heated for 20 minutes at 95
0
C 

in a microwave (Whirpool JT359 Jet Chef 1000W). TMA sections were then incubated for 60 

minutes at room temperature with 1:200 anti-Polβ rabbit polyclonal antibody (ab26343, 

Abcam, Cambridge, UK). Also, positive and negative (by omission of the primary antibody 

and IgG-matched serum) controls were prepared for each set of samples. To validate the use 

of TMAs for immunophenotyping, full-face sections of 40 cases were stained and protein 

expression levels of the different antibodies were compared.  The concordance between 

TMAs and full-face sections was excellent (k = 0.8). Positive and negative (by omission of 

the primary antibody and IgG-matched serum) controls were included in each run. HER2, ER 

and PR expressions were assessed according to the new American Society of Clinical 

Oncology/College of American Pathologists (ASCO/CAP) guidelines.  HER2 status was 

assessed using both IHC and fluorescence in situ hybridization (FISH). 
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Evaluation of pol β immunohistochemical staining: The tumour cores were evaluated by 

expert pathologists blinded to the clinico-pathological characteristics of patients in two 

different settings. There was excellent intra and inter-observer agreements (k > 0.8; Cohen’s 

κ and multi-rater κ tests, respectively). In this study, nuclei immunoreactivity was 

quantitatively evaluated with the Histoscore (H score). The absence (negative) of nuclear 

staining was given a score of 0 and the presence of nuclear stain was dependent on its 

intensity as 1, 2 or 3 equivalent to weak, moderate and strong nuclear stain respectively. The 

percentage staining of each core was defined as 0-100% and the H-score was obtained by 

multiplying intensity of staining and percentage of staining.  H-score in a range of 0 – 300 

was generated. The median H-score of 100 was taken as the cut-off and low pol β expression 

was classed as H-score of ≤ 100 and >100 was classed as high for Pol β expression.  Not all 

cores within the TMA were suitable for IHC analysis as some cores were missing or lacked 

tumour. 

Breast cancer cell lines and Western blot analysis: MCF-7, MDA-MB-231 and MDA-

MB-436 breast cancer cell lines were purchased from ATCC and grown in RPMI medium 

supplemented with 10% FBS, 1% penicillin/streptomycin. Western blot analysis performed 

as described previously (Sultana et al., 2013). Primary antibodies used was anti-Polβ rabbit 

polyclonal antibody (1:200 dilution, ab26343, Abcam, Cambridge, UK).  

Statistical analysis: Data analysis was performed using SPSS (SPSS, version 17 Chicago, 

IL). Where appropriate, Pearson’s Chi-square, Fisher’s exact, 
2 

for trend, Student’s t and 

ANOVAs one way tests were performed using SPSS software (SPSS, version16 Chicago, IL).  

The Mann–Whitney test was used to compare the genomic copy number and MDM4 protein 

expression.  Pearson correlation coefficients assessed the correlation between array CGH and 

mRNA gene expression.  Cumulative survival probabilities were estimated using the Kaplan–
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Meier method. Differences between survival rates were tested for significance using the log-

rank test.  Multivariate analysis for survival was performed using the Cox hazard model. The 

proportional hazards assumption was tested using standard log-log plots.  Each variable was 

assessed in univariate analysis as a continuous and categorical variable and the two models 

were compared using an appropriate likelihood ratio test.  Hazard ratios (HR) and 95% 

confidence intervals (95% CI) were estimated for each variable.  All tests were two-sided 

with a 95% CI. P values for each test were adjusted with Benjamini and Hochberg multiple 

P-value adjustment and an adjusted p value of <0.05 was considered significant. 
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RESULTS 

 

Low Pol β mRNA levels correlate to aggressive breast cancer 

In the Uppsala cohort (n=249), low pol β mRNA expression (29%) was associated with 

lymph node positive disease (p=0.03) (supplementary Table S7) and poor survival (p=0.004) 

(Figure 1A). We then proceeded to investigate pol β mRNA expression in a large series of 

1950 tumours comprising the METABRIC (Molecular Taxonomy of Breast Cancer 

International Consortium) cohort (Table 1). 10% (195/1950) of tumours had low Pol β 

mRNA expression in this cohort which was significantly associated with high histological 

grade (p=0.001), pleomorphism (p=0.04), glandular de-differentiation (p=0.006), lymph node 

positivity (0.039), HER2 overexpression (p<0.0001), absence of ER(ER-) (p<0.0001), 

presence of basal like phenotypes (p<0.0001) and triple negative phenotypes (p<0.0001).  

Low pol β mRNA mRNA expression was also found to be associated with previously 

described molecular phenotypes in breast cancer: PAM50.Her2 (p<0.0001), PAM50.Basal 

(p<0.0001) molecular phenotypes. However, PAM50.LumA (p<0.0001) and PAM50.LumB 

(p=0.0097) breast tumours where more likely in tumours that have high levels of pol β 

mRNA (p<0.0001). Similarly, ER+/Her-2-/high proliferation (p=0.001) and ER+/Her-2-/low 

proliferation tumours (p<0.0001) were more likely in tumours that have high levels of pol β 

mRNA whereas low pol β mRNA levels was associated with ER-/Her-2- (p<0.0001) and her-

2 positive tumours (p=0.001). Low pol β mRNA expressing tumours had significantly worse 

breast cancer specific survival compared to tumours with high pol β mRNA levels 

(p<0.0001) (Figure 1B).  

The data provides confirmatory evidence that pol β mRNA expression has prognostic 

significance in breast cancer. 
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Artificial neural network (ANN), ensemble classification and cross-validation analysis 

reveals oesotrogen receptor (ESR1) as a novel pol β interaction gene 

To investigate pol β interactions in breast cancer, a non-linear, ANN modeling based, data 

mining approach was utilised to identify the best gene probes for sample classification.   

47,293 probes were screened for each sample in 249 breast tumours (Uppsala cohort). ANN, 

ensemble classification and cross-validation analysis were conducted (Figure 1C).  The 

biological functions of pol β interaction genes are summarized in supplementary data 2 and 

shown in Figure 1C.  Oestrogen receptor (ESR1) gene was identified as a key pol β 

interacting gene in this study. We therefore proceeded to investigate pol β protein expression 

in breast cancer with a specific focus on ER positive breast cancers. 

Low Pol β protein levels correlate to aggressive ER + breast cancers 

A total of 1406 tumours were suitable for pol β protein expression analysis. We first 

investigated specificity of the antibody used in the current study as well as pol β protein 

expression in a panel of breast cancer cell lines. Compared to MCF-7 and MDA-MB-231 

breast cancer cells, MDA-MB-436 had more than 80% reduction in pol β protein expression 

(Figure 2A1). In human tumours, 540/1406 (38.4%) of the tumours had low pol β protein 

expression whereas 866/1406 (61.6%) expressed high pol β protein expression (Figure 2A2 

and 2A3) (Table 2). Low pol β protein expression is significantly associated with high 

tumour grade (p<0.0001), high mitotic index (p<0.001), pleomorphism (p<0.0001), de-

differentiation (p<0.0001), triple negative phenotype (p<0.001), basal-like phenotype 

(p<0.0001), presence of cytokeratin (CK) 6 (p<0.0001), CK14 (p=0.002) and CK18 

(p=0.006), absence of hormone receptors including ER- (p<0.001), progesterone receptor 

(PgR-) (p<0.001) and androgen receptor (AR-) (p<0.001).  Low pol β protein expression is 

also significantly associated with low expression of other DNA repair proteins such as 
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BRCA1 (p<0.0001), XRCC1 (p<0.001), SMUG1 (p=0.01) and FEN1 (p<0.0001). Low pol β 

protein expression was significantly associated with high proliferation index (high MIB1, 

p<0.0001) and absence of anti-apoptotic factor (Bcl-2, p=<0.001). Low pol β was 

significantly associated with poor breast cancer specific survival (BCSS) (p<0.0001) (Figure 

2B1) and disease free survival (DFS) (p<0.0001) (Supplementary Figure 1A).  In multivariate 

cox regression analysis, low pol β protein expression was an independent predictor for BCSS 

(p=0.022) (Supplementary Table S8). 

Pol β and ER+ breast cancer: We then proceeded to perform subgroup analysis in various 

sub-types of breast cancers. A total of 1009 ER positive tumours were first investigated.  

328/1009 (32.5%) of tumours had low pol β protein expression whereas 681/1009 (67.5%) of 

the tumours had high pol β expression (Table 3). Low DNA pol β expression was 

significantly associated with adverse pathological parameters including; high grade 

(p<0.001), high mitotic index (p<0.001), glandular de-differentiation (p=0.019) and 

pleomorphisim (p=0.02). Low pol β was associated with low BRCA1 (p<0.0001), low 

XRCC1 (p<0.001), low FEN1 (p=0.001) and low SMUG1 (p=0.025) protein expression. Low 

pol β expression was also significantly associated with high proliferation index (MIB1, 

p=0.005), mutant p53 (p=0.016) and absence of anti-apoptotic factor (Bcl-2, p=0.002). Low 

pol β was significantly associated with poor BCSS (p<0.0001) (Supplementary Figure 1B) 

and DFS (p=0.001) (Supplementary Figure 1C) in all ER+ tumours that are high risk 

(NPI>3.4). Interestingly, in ER+ tumours that received tamoxifen therapy, low pol β remains 

significantly associated with poor BCSS (p<0.0001) (Figure 2B2) and DFS (Supplementary 

Figure 1D). On the other hand, ER+ tumours that did not receive tamoxifen, there was no 

difference in BCSS between high and low pol β expressing tumours (Figure 2B3) as well as 

DFS (Supplementary Figure 1E).    
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In Luminal A ER+ breast cancers, low pol β expression remains associated with high mitotic 

index (p=0.01), HER-2 overexpression (p=0.002), low BRCA1 (p=0.019), XRCC1 

(p<0.0001) and FEN1 (p=0.015) (Supplementary Table S9). In high risk tumours (NPI>3.4), 

low pol β was significantly associated with poor BCSS (p=0.001) (Figure 2C1) and DFS 

(p=0.006) (Supplementary Figure 2A). In luminal A tumours that received tamoxifen 

therapy, low pol β remains significantly associated with BCSS (p=0.003) (Figure 2C2) and 

DFS (p=0.004) (Supplementary Figure 2B). On the other hand, luminal A tumours that did 

not receive tamoxifen, there was no difference in BCSS between high and low pol β 

expressing tumours (Figure 2C3) and DFS (Supplementary Figure 2C).  

 

In Luminal B ER+ breast cancers, low pol β expression was associated with high grade 

(p=0.006), high mitotic index (p=0.008), HER-2 overexpression (p=0.002), CK6 (p=0.009),  

low BRCA1 (p=0.001), XRCC1 (p<0.0001) and FEN1 (p=0.038) (Supplementary Table 

S10). ). In luminal B tumours that received tamoxifen therapy, low pol β was significantly 

associated with poor BCSS (p=0.002) (Figure 2D2) but not for DFS (p=0.112) 

(Supplementary Figure 2E). In luminal B tumours that did not receive tamoxifen, there was 

no difference in BCSS between high and low pol β expressing tumours (Figure 2D3) and 

DFS (Supplementary Figure 2F). 

 

Taken together the data confirms that low pol β protein expression has clinicopathological, 

prognostic and predictive significance in ER positive breast cancers. 

 

Pol β and ER- breast cancer: We then proceeded to investigate pol β protein expression in 

363 ER- breast tumours. 192/363 (52.9%) of tumours had low pol β protein expression 

whereas 171/363 (47.1%) of the tumours had high pol β expression (Supplementary Table 
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S11). There were no significant clinicopathological correlations although there were 

associations with ATM, XRCC1 and DNA-PK expression (Supplementary Table S11). We 

then investigated pol β protein expression in another independent cohort of 347 ER- breast 

cancers. 229/347 (66%) of tumours had low pol β protein expression whereas 118/347 (34%) 

of the tumours had high pol β expression (Supplementary Table S12). There were no 

significant clinicopathological correlations although there were some associations with ATM, 

XRCC1, BRCA1 and Bcl-2 expression. There were no significant associations between pol β 

protein expression and survival in ER- tumours in both cohorts (Supplementary Figure 3).  

 

Taken together the data confirms that pol β has no clinical significance in ER negative breast 

cancers. Whereas in ER positive tumours, pol β deficiency is a poor prognostic as well as a 

predictive biomarker.  

 

Mechanistic insights  

Pol β gene copy number and pol β mRNA levels: Integrated array CGH and mRNA gene 

expression analysis was conducted in 125 breast tumours (Nottingham cohort) where pol β 

gene copy number and pol β mRNA expression data were all available. 29%, 8% and 11% of 

tumours showed gain, amplification and losses of pol β gene locus at chromosome 8p12-p11 

respectively. 52% of tumours were neutral for pol β gene copy number.    There was a strong 

correlation between pol β gene copy number changes and pol β mRNA expression in tumours 

(adjusted p value= 0.00126).  

In the METABRIC cohort, integrated array CGH and mRNA gene expression analysis was 

conducted in 1952 breast tumours. 16.2%, 3.6% and 5.0% showed gain, amplification and 

losses of pol β gene locus at chromosome 8p12-p11 respectively.  75% of tumours were 
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neutral for pol β gene copy number in the METABRIC cohort. A very strong correlation 

between gene copy number and mRNA expression was demonstrated in the METABRIC 

cohort (p=5.6 x 10
-93

) (Figure 3A). Together the data confirms that low pol β mRNA is direct 

consequence of loss of pol β gene copy number in a proportion of breast tumours. 

Pol β mRNA and pol β protein levels: We compared pol β mRNA levels and protein 

expression in 125 breast tumours (Nottingham cohort). As shown in Figure 3B, there was 

positive correlation between pol β mRNA and pol β protein expression (r=0.55, p= 2.17x10
-

11
) in tumour. The data suggests that low pol β protein is direct consequence of low pol β 

mRNA in a proportion of breast tumours.  
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DISCUSSION 

Pol β is a key player in base excision repair and promotes genomic stability.  Pol β gene is 

localised to chromosome 8p12-p11 which is a hot spot for genetic changes in breast cancer 

(Armes et al., 2004; Kerangueven et al., 1994; Pole et al., 2006; Sigbjornsdottir et al., 2000; 

Tagawa et al., 2003; Ugolini et al., 1999; Venter et al., 2005). In the current study we have 

demonstrated for the first time that pol β gene deletion at chromosome 8 is associated with 

low pol β mRNA levels as well low pol β protein levels in a proportion of breast cancers. 

Low pol β mRNA was significantly linked to aggressive features such as high grade, high 

mitotic index, pleomorphism, triple negative, PAM50. Her2, PAM50. Basal, PAM50. 

Luminal A and PAM50. Luminal B molecular phenotypes.  At the protein level, similarly, 

low pol β expression was associated with aggressive clinical phenotype. Interestingly, low 

pol β protein also associated with other DNA repair factors such as absent BRCA1, low 

XRCC1, low FEN1 and low SMUG1 protein expression.  The data provides evidence that pol 

β loss may be associated with genomic instability in breast tumours. In sub-group analysis in 

ER positive tumour we also observed consistent association with aggressive 

clinicopathological features. In ER negative tumours, however, no significant associations 

were evident. Together the data provides evidence for a novel role for pol β in ER positive 

breast tumours. This hypothesis is further supported by artificial neural network analysis of 

gene expression in 249 breast tumours, where oestrogen receptor was found to be a top pol β 

interacting gene. In ER positive tumours we also found that pol β expression predicts 

resistance to endocrine therapy as evidenced by poor survival in patients whose tumours that 

had low pol β expression and received tamoxifen therapy. The poor predictive significance 

was seen in luminal A as well as luminal B tumours implying that pol β is a novel predictive 

biomarker and is likely related to the role of pol β in cell proliferation.  Taken together, our 
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data provides the first compelling evidence that pol β is involved in breast cancer 

pathogenesis.  

Previous studies have shown that about 30% of human solid tumours may harbour pol β 

variants that have sub-optimal DNA repair capacity, promote genomic instability and confer 

a mutator phenotype that is associated with aggressive clinical behaviour (Starcevic et al., 

2004; Yamtich et al. 2010). Whether such pol β variants exist in breast cancer is unknown. 

Nevertheless, the data presented in our study suggests that deletions at the chromosome 8p12-

p11 locus is a mechanism for pol β deficiency which is associated with an aggressive 

phenotype in breast cancer.  The link between pol β and ER was surprising. However, 

emerging evidence does suggest a potential association between oestrogen and base excision 

repair (BER). For example, oestrogen induced oxidative stress may play a key role in 

oestrogen driven carcinogenesis (Bhat et al., 2003). Oxidative stress is a major source of 

oxidative base damage which is a strong stimulus for activation of BER (Amouroux et al., 

2010; Cabelof et al., 2002; Unnikrishnan et al., 2011). In preclinical models, pol β is strongly 

induced in response to oxidative stress. Accumulation of DNA damage has been 

demonstrated in cells with reduced pol β levels (Cabelof et al., 2002).  We therefore speculate 

that in oestrogen/oestrogen receptor driven breast cancers with impaired BER, the consequent 

genomic instability and accelerated accumulation of mutations may drive an aggressive 

cancerous phenotype. However, confirmation of such a pol β related mechanism would need 

detailed pre-clinical studies which is an area of on-going investigation in our laboratory.  The 

association with endocrine therapy resistance and low pol β levels in ER positive tumours 

implies that pol β is also a promising predictive biomarker. Although the mechanism for 

resistance is unclear, the high proliferation rate consistently observed in pol β  deficient 

tumours in our study may account for the endocrine resistance seen in patients.  
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We have recently investigated XRCC1, a key BER factor, in breast cancer.  Loss of XRCC1 

was associated with high grade, loss of hormone receptors, triple negative, basal like 

phenotypes and poor survival. In ER+ cohort that received adjuvant endocrine therapy, low 

XRCC1 remained associated with poor survival (Sultana et al., 2013). The pol β expression 

study presented here as well as the XRCC1 data in breast cancer supports the hypothesis that 

BER pathway may not only operate as a tumour suppressor but BER down-regulation may 

also result in an aggressive phenotype in breast cancer (Sweasy et al., 2006). Moreover, in 

XRCC1 deficient cells we also demonstrated a novel synthetic lethality application using 

inhibitors of DNA double strand break repair such as those targeting ATM, DNA-Pk and 

ATR (Sultana et al., 2013).  Taken together, our data suggests that identification of BER 

deficiency in breast cancers could be an exciting new approach for a personalized treatment 

strategy.  
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TABLES 

Table1.  Pol β mRNA expression and breast cancer (METABRIC cohort, n= 1952)  

 

Variable 

POLB  mRNA Expression  

 

X
2 

 

p value 

Low  

 N (%) 

 

        High  

N (%)  

 

 

A) Pathological    Parameters 

Lymph node stage     

Negative 90 (44.5%)   922 (53%) 0.023* 

Positive   112 (55.5%)   822 (47%) 0.039* 

Grade**    

G1  7 (3.6%)  156 (9.2%) 0.01* 

G2  67 (34.2%)  698 (41.5%) 0.059 

G3 122 (62.2%) 829 (49.3%) 0.001* 

Mitotic Index    

M1 (low; mitoses < 10)  92 (54.5%) 909 (62%) 0.07 

M2 (medium; mitoses 10-18)   41 (24.2%) 337 (23%) 0.852 

M3 (high; mitosis >18) 36 (21.3%) 220 (15%) 0.05 

Pleomorphism    

1 (small-regular uniform)    1 (0.6%)  16 (1%) 1.0 

2 (Moderate variation)    47 (27.8%) 549 (37.4%) 0.017* 

3 (Marked variation) 121 (71.6%) 902 (61.4%) 0.044* 
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Tubule formation    

1 (>75% of definite tubule)  5 (3%) 52 (3.5%) 0.84 

2 (10%-75% definite tubule) 35 (20.7%) 319 (21.7%) 0.77 

3 (<10% definite tubule) 129 (76.3%) 1096 (74.7%) 0.941 

Triple negative (No)        141 (69.1%)  1498 (85.7%) 1.8 x 10
-9

* 

                          (Yes)     63 (30.9%) 250 (14.3%) 1.8 x 10
-9

* 

Basal like          (No)  39 (19.1%) 1653 (94.6%) 7.6 x 10
-13

* 

                          (Yes)  165 (80.9%) 95 (5.4%) 7.6 x 10
-13

* 

ER   (Negative) 82 (41%) 355 (20.6%) 2.0 x 10
-10

* 

        (Positive) 118 (59%) 1367 (79.3%) 1.9 x 10
-10

* 

Genefu subtype    

ER-/Her-2 negative 63 (35%) 

 

236 (15.0%) 

 

1.3 x 10
-10

* 

ER+/Her-2 negative/high 

proliferation 

45 (25%) 

 

584 (37.5%) 

 

0.001* 

ER+/Her-2 negative/low 

proliferation 

39 (19.5%) 587 (37.5%) 

 

3.9 x 10
-5

* 

Her-2 positive 33 (16.5%) 156 (10%) 0.001* 

PAM50 subtype    

PAM50.Her2 47 (26.4%) 

 

     191 (12%) 

 

1.0 x 10
-6

* 

PAM50.Basal   57 (32.2%) 

 

265 (16.7%) 

 

5.2 x 10
-6

* 

PAM50.LumA 39 (21.9%) 

 

675 (42.7%) 

 

6.8 x 10
-8

* 

PAM50.LumB 35(19.7%) 449 (28.4%) 0.0097 
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* Statistically significant; **: grade as defined by NGS; HER2: human epidermal growth factor 

receptor 2; ER: oestrogen receptor; PgR: progesterone receptor; CK: cytokeratin; Basal-like: ER-, 

HER2 and positive expression of either CK5/6, CK14 or EGFR; Triple negative: ER-/PgR-/HER2- 
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Table 2. Pol β protein expression and breast cancer (Nottingham Cohort, n=1406) 

   

 

                    VARIABLE 

 

POL β PROTEIN EXPRESSION 

                  Total n = 1406 

 

 

P- valve 

         LOW 

          N (%) 

         HIGH 

N (%) 

A) Pathological    Parameters 

Tumour Size  

 <1cm 

 >1-2cm 

 >2-5cm 

 >5cm 

 

39 (7.2%) 

271 (50.4%) 

210 (39.0%) 

18 (3.3%) 

 

115 (13.4%) 

429 (49.9%) 

297 (34.5%) 

19 (2.2%) 

0.002 

Tumour Stage                                 

1 

2 

3 

 

327 (60.7%) 

148 (27.5) 

64 (11.9%) 

 

549 (63.7%) 

251 (29.1%) 

62 (7.2%) 

0.012 

Tumour Grade                              

 G1 

 G2 

 G3 

 

58 (10.8%) 

133 (24.7%) 

347 (64.5%) 

 

167 (19.4%) 

326 (37.9%) 

367 (42.7%) 

1.4x10
-14 

 

Mitotic Index  

M1 (low; mitoses < 10) 

M2 (medium; mitoses 10-18) 

M3 (high; mitosis >18) 

 

122 (22.9%) 

84 (15.8%) 

326 (61.3%) 

 

361 (42.1%) 

180 (21.0%) 

316 (36.9%) 

<0.001 

Pleomorphism                                

1 (small-regular uniform) 

2 (Moderate variation) 

 

9 (1.7%) 

156 (29.4%) 

 

28 (3.3%) 

360 (42.1%) 

1.0x10
-6

 

 



33 
 

3 (Marked variation) 366 (68.9%) 468 (54.7%) 

Tubule Formation                          

1 (>75% of definite tubule) 

2 (10%-75% definite tubule) 

3 (<10% definite tubule) 

 

15 (2.8%) 

161 (30.3%) 

356 (66.9%) 

 

63 (7.4%) 

291 (34.0%) 

503 (58.7%) 

1.0x10
-6

 

 

Tumour Type                

IDC-NST 

Tubular Carcinoma 

Medullary Carcinoma 

ILC 

Others 

 

307 (67.0%) 

69 (15.1%) 

16 (3.5%) 

32 (7.0%) 

34 (7.4%) 

 

402 (54.3%) 

182 (24.6%) 

13 (1.8%) 

74 (10.0%) 

70 (9.4%) 

1.4x10
-5

 

Lymphovascular Invasion                   

No 

Yes 

 

335 (63.7%) 

191 (36.3%) 

 

591 (69.1) 

264 (30.9%) 

0.037 

B) Aggressive phenotype 

 

Her2 overexpression                     

No 

Yes 

 

446 (85.1%) 

78 (14.9%) 

 

757 (90.1%) 

83 (9.9%) 

0.005 

Triple Negative Phenotype               

No 

Yes 

 

381 (74.0%) 

134 (26.0%) 

 

729 (85.9%) 

120 (14.1%) 

<0.001 

Basal Like Phenotype           

No 

Yes 

 

412 (83.6%) 

81 (16.4%) 

 

753 (90.7%) 

77 (9.3%) 

1.1x10
-4
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Cytokeratin 6 (CK6)                                  

Negative 

Positive 

 

355 (79.1%) 

94 (20.9%) 

 

982 (84.4%) 

182 (15.6%) 

8.0x10
-4

 

 

Cytokeratin 14 (CK14)                                                                     

Negative 

Positive 

 

372 (83.8%) 

72 (16.2%) 

 

642 (89.9%) 

72 (10.1%) 

0.002 

Cytokeratin 18 (CK18)                                   

Negative 

Positive 

 

57 (13.8%) 

355 (86.2%) 

 

57 (8.5%) 

610 (91.5%) 

0.006 

C) Hormone receptors 

 

ER               

Negative 

Positive 

 

192 (36.9%) 

329 (63.1%) 

 

171 (20.0%) 

684 (80.0%) 

<0.001 

PgR                                   

Negative 

Positive 

 

265 (53.8%) 

228 (46.2%) 

 

284 (35.2%) 

523 (64.8%) 

<0.001 

AR                     

Negative 

Positive 

 

197 (47.0%) 

222 (53.0%) 

 

201 (30.2%) 

465 (69.8%) 

<0.001 

D)DNA Repair 

 

ATM                           

Absent 

 Normal 

 

178 (54.6%) 

148 (45.4%) 

 

266 (52.8%) 

238 (47.2%) 

0.607 

BRCA1                     

Absent 

 Normal 

 

101 (27.4%) 

267 (72.6%) 

 

92 (15.4%) 

506 (84.6%) 

5.0x10
-6
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XRCC1                             

Low 

High 

 

102 (26.1%) 

289 (73.9%) 

 

55 (9.0%) 

554 (91.0%) 

<0.001 

FEN1                   

Low 

High 

 

288 (79.3%) 

75 (20.7%) 

 

388 (68.7%) 

252 (27.2%) 

3.6x10
-4

 

 

SMUG1                  

Low 

High 

 

155 (43.5%) 

201 (56.5%) 

 

188 (34.9%) 

350 (65.1%) 

0.010 

E) Cell cycle/apoptosis regulators 

 

MIB1                       

Low 

High 

 

125 (28.0%) 

321 (72.0%) 

 

295 (40.9%) 

427 (59.1%) 

9X10
-6

 

 

P53              

Low expression 

High expression 

 

 

316 (73.7%) 

113 (26.3%) 

 

564 (82.3%) 

121 (17.7%) 

0.001 

Bcl-2                            

Negative 

Positive 

 

215 (45.6%) 

257 (54.4%) 

 

216 (28.3%) 

546 (71.7%) 

<0.001 

TOP2A                    

Low 

Overexpression 

 

 

193 (51.3%) 

183 (48.7%) 

 

252 (42.1%) 

347 (57.9%) 

0.005 

 * Statistically significant; **: grade as defined by NGS;  BRCA1: Breast cancer 1, early onset; HER2: 

human epidermal growth factor receptor 2; ER: oestrogen receptor; PgR: progesterone receptor; CK: 

cytokeratin; Basal-like: ER-, HER2 and positive expression of either CK5/6, CK14 or EGFR; Triple 

negative: ER-/PgR-/HER2- 
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Table 3. Pol β protein expression and ER positive breast cancer (n= 1009). 

 

   

 

                    VARIABLE 

 

     POL β PROTEIN EXPRESSION 

                   

 

 

P- valve 

       LOW 

        N (%) 

      HIGH 

       N (%) 

A) Pathological    Parameters 

Tumour Size  

 <1cm 

 >1-2cm 

 >2-5cm 

 >5cm 

 

25 (7.6%) 

176 (53.7%) 

117 (35.7%) 

10 (3.0%) 

 

102 (15.0%) 

349 (51.2%) 

219 (32.2%) 

11 (1.6%) 

0.005 

Tumour Stage                                 

1 

2 

3 

 

197 (59.9%) 

97 (29.5%) 

35 (10.6%) 

 

436 (63.8%) 

203 (29.7%) 

44 (6.4%) 

0.062 

Tumour Grade                              

 G1 

 G2 

 G3 

 

53 (16.2%) 

112 (34.1%) 

163 (49.7%) 

 

158 (23.2%) 

304 (44.6%) 

219 (32.2%) 

<0.001
 

 

Mitotic Index  

M1 (low; mitoses < 10) 

M2 (medium; mitoses 10-18) 

M3 (high; mitosis >18) 

 

109 (33.4%) 

64 (19.6%) 

153 (46.9%) 

 

341 (50.1%) 

158 (23.2%) 

181 (26.6%) 

<0.001
 

 

Pleomorphism                                

1 (small-regular uniform) 

 

8 (2.5%) 

 

26 (3.8%) 

0.020 
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2 (Moderate variation) 

3 (Marked variation) 

138 (42.5%) 

179 (55.1%) 

 

342 (50.3%) 

312 (45.9%) 

 

Tubule Formation                          

1 (>75% of definite tubule) 

2 (10%-75% definite tubule) 

3 (<10% definite tubule) 

 

13 (4.0%) 

123 (37.7%) 

190 (58.3%) 

 

58 (8.5%) 

266 (39.1%) 

356 (52.4%) 

0.019 

 

Tumour Type                

IDC-NST 

Tubular Carcinoma 

Medullary Carcinoma 

ILC 

Others 

 

172 (59.1%) 

61 (21.0%) 

4 (1.4%) 

27 (9.3%) 

27 (9.3%) 

 

280 (47.5%) 

175 (29.7%) 

0 (0.0%) 

71 (12.0%) 

64 (10.8%) 

3.9x10
-4

 

 

Lymphovascular Invasion                   

No 

Yes 

 

200 (61.9%) 

123 (38.1%) 

 

474 (70.0%) 

203 (30.0%) 

0.011 

B) Aggressive phenotype 

 

Her2 overexpression                     

No 

Yes 

 

291 (90.7%) 

30 (9.3%) 

 

623 (93.8%) 

41 (6.2%) 

0.071 

Cytokeratin 6 (CK6)                                  

Negative 

Positive 

 

261 (92.2%) 

22 (7.8%) 

 

546 (94.8%) 

30 (5.2%) 

0.138 

 

Cytokeratin 14 (CK14)                                                                     

Negative 

Positive 

 

260 (92.5%) 

21 (7.5%) 

 

534 (93.5%) 

37 (6.5%) 

0.588 
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Cytokeratin 18 (CK18)                                   

Negative 

Positive 

 

16 (5.9%) 

253 (94.1%) 

 

12 (2.2%) 

524 (97.8%) 

0.007 

C) Hormone receptors 

 

PgR                                   

Negative 

Positive 

 

81 (26.6%) 

224 (73.4%) 

 

125 (19.3%) 

521 (80.7%) 

0.012 

AR                     

Negative 

Positive 

 

94 (34.6%) 

178 (65.4%) 

 

104 (19.4%) 

432 (80.6%) 

2.0x10
-6

 

 

D)DNA Repair 

 

ATM                           

Absent 

 Normal 

 

104 (51.7%) 

97 (48.3%) 

 

194 (49.4%) 

199 (50.6%) 

0.583 

BRCA1                     

Absent 

 Normal 

 

58 (23.9%) 

185 (76.1%) 

 

52 (10.9%) 

424 (89.1%) 

5.0x10
-6

 

 

XRCC1                             

Low 

High 

 

52 (21.6%) 

189 (78.4%) 

 

32 (6.6%) 

455 (93.4%) 

<0.001 

FEN1                   

Low 

High 

 

180 (79.3%) 

47 (20.7%) 

 

300 (66.5%) 

151 (33.5%) 

0.001 

 

SMUG1                  

Low 

High 

 

84 (37.7%) 

139 (62.3%) 

 

121 (29.0%) 

296 (71.0%) 

0.025 
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E) Cell cycle/apoptosis regulators 

 

MIB1                       

Low 

High 

 

103 (36.3%) 

181 (63.7%) 

 

266 (46.3%) 

308 (53.7%) 

0.005 

 

P53              

Low expression 

High expression 

 

 

227 (83.8%) 

44 (16.2%) 

 

493 (89.6%) 

57 (10.4%) 

0.016 

 

Bcl-2                            

Negative 

Positive 

 

80 (26.8%) 

218 (73.2%) 

 

109 (17.9%) 

499 (82.1%) 

0.002 

 

TOP2A                    

Low 

Overexpression 

 

 

125 (55.3%) 

101 (44.7%) 

 

203 (43.0%) 

269 (57.0%) 

0.002 

 

* Statistically significant; **: grade as defined by NGS;  BRCA1: Breast cancer 1, early onset; HER2: 

human epidermal growth factor receptor 2; ER: oestrogen receptor; PgR: progesterone receptor; CK: 

cytokeratin; Basal-like: ER-, HER2 and positive expression of either CK5/6, CK14 or EGFR; Triple 

negative: ER-/PgR-/HER2- 
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FIGURE LEGENDS 

Figure 1. Pol β mRNA expression in breast cancer. A. Kaplan Meier curves showing breast 

cancer specific survival in the Uppsala cohort. B. Kaplan Meier curves showing breast cancer 

specific survival in the Metabric cohort.  C. Artificial neural network analysis. Top pair-wise 

interactions for gene probe markers associated with Pol β expression in 249 breast cancers is 

shown here. Each gene probe is represented by a node and the interaction weight between 

them as an edge, the width being defined by the magnitude of the weight. Interactions are 

directed from a source gene to a target gene as indicated by arrows.  Red interactions indicate 

an excitatory interaction and blue indicates an inhibitory interaction. Highly linked genes 

represent hubs that are indicated to be highly influential or highly regulated in the Pol β 

system. See supplementary data 2 for the biological functions of individual genes.  

Figure 2. Pol β protein expression in breast cancer. A. Western blot showing pol β in breast 

cancer cell lines (A1). Microphotographs of Pol β protein expression in breast cancer tissue 

(magnification x 200) showing tumour with low pol β expression (A2) and high pol β 

expression (A3). B. Kaplan Meier curves showing breast cancer specific survival in whole 

cohort (B1), ER+ treated with tamoxifen (B2), ER+ no tamoxifen (B3). C. Kaplan Meier 

curves showing breast cancer specific survival in luminal A sub-group whole cohort (C1), 

luminal A treated with tamoxifen (C2), luminal A no tamoxifen (C3).D. Kaplan Meier curves 

showing breast cancer specific survival in luminal B sub-group whole cohort (D1), luminal A 

treated with tamoxifen (D2), luminal A no tamoxifen (D3). 

Figure 3. A. Correlation between Pol β gene copy number and Pol β mRNA expression in 

the Metabric cohort [AMP=amplification, NEUT= neutral, HETD= heterozygous deletion, 

HOMD= homozygous deletion]. B.  Correlation between Pol β mRNA and Pol β protein 

expression in the Nottingham cohort.  
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Highlights 

 Pol β is a key base excision repair protein and may be involved in breast cancer. 

 Pol β gene, mRNA, protein expression was investigated in large cohorts.   

 Pol β deficiency is associated with aggressive breast cancer and poor prognosis. 

 Pol β deficiency predicts response to endocrine therapy. 
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