
Scalable Grid Resource Allocation for Scientific
Workflows using Hybrid Metaheuristics

Georg Buss, Kevin Lee, Daniel Veit

Dieter Schwarz Chair of Business Administration, E-Business and E-Government
University of Mannheim, Schloss

Mannheim, Germany
{buss,lee,veit}@bwl.uni-mannheim.de

Abstract. Grid infrastructure is a valuable tool for scientific users, but it is char-
acterized by a high level of complexity which makes it difficult for them to quan-
tify their requirements and allocate resources. In this paper, we show that resource
trading is a viable and scalable approach for scientific users to consume resources.
We propose the use of Grid resource bundles to specify supply and demand com-
bined with a hybrid metaheuristic method to determine the allocation of resources
in a market-based approach. We evaluate this through the application domain of
scientific workflow execution on the Grid.

1 Introduction

Many applications in science involve complex, large-scale and computationally inten-
sive tasks which require a vast amount of computational resources provided in a glob-
ally distributed way. Computational Grids [1] allow resources from geographically dis-
tributed providers to be utilized by a single user to perform a single computational task.
There is however a disconnect between the highly technical skills often necessary to
utilize Grid resources and a scientists focus on their research domain. This is poten-
tially limiting the use of Grids by scientific users. The two main challenges to solve
this problem are i) improvements to high-level tools and task description languages [2],
and ii) market structures to enable providers and users the ability to dynamically trade
resources based on the principle of utility maximization [3].

A substantial amount of research has been undertaken in the area of high-level sup-
port for scientific usage of Grid resources, but there is of yet little practical support for
market based resource allocation for end users. Current approaches to exchange Grid re-
sources generally involve complex contractual relationships between institutions with
grid resources; because of this there is no open market for trading grid resources be-
tween providers and users. This also makes it difficult for users to seek out and get,
based on their valuation, access to specific resources for short term usage. More re-
cently Cloud Computing has emerged [4], allowing rapid access to resources, but with
very static pricing structures.

A promising solution to this problem of dynamic resource markets for Grids is the
use of bundles to describe the resources offered or needed. These resources (such as
processors, RAM or storage) are characterized by attributes (such as speed or size) and

complex scheduling requirements (such as uptime and required time spans) as well as a
valuation or reservation price. Viewing Grid resource as complex ’bundles’ allows their
availability and requirement to be described and traded in an open market. Taking such
an approach, the matching of providers and consumers of resources can take place in a
open market using combinatorial exchange mechanisms [5].

The trading of Grid resources via an exchange mechanism requires a centralized in-
stitution. Users submit bundles of required resources which are matched with provider
bundles of available resources. Previous approaches formulated this problem as a gen-
eralization of the NP-complete combinatorial allocation problem [6] which is found to
be inapproximable within given bounds[7]. In this paper we propose the use of hybrid-
metaheuristics as a scalable approach to solve the winner determination problem in Grid
resource trading to allow scientists to access resources though a marketplace.

The remainder of this paper is structured as follows. Section 2 introduces scientific
workflow execution in the Grid to motivation our approach. In Section 3 we introduce a
formal description of the problem of trading grid-based resources. Section 4 describes
a solution to the defined problem using a hybrid-metaheuristics approach. Section 5
evaluates the proposed solution. Finally, Section 6 concludes and discusses future work.

2 Workflow Execution on the Grid

Complex scientific applications are typically modeled as a workflow [2] which de-
scribes the tasks to be performed, their dependencies as well as the data and compu-
tations required to be completed. To enable as wide a range of scientists as possible to
utilize the powerful resources of global Grids, application workflows can be described
in a high level logical or abstract way, without references to concrete resources. This
allows scientists to concentrate on efficiently describing the application rather than how
it is executed. Workflow engines such as Taverna[8], Triana[9] and Pegasus[2] convert
abstract workflows to an executable workflow which can then be executed on the Grid.

To convert an abstract workflow to one that is executable, the workflow has to be
refined by mapping it to actual grid-based computational and storage resources. The
workflow engine performs a number of steps to produce a concrete workflow including
finding the actual input files, optimizing the workflow structure, finding resources and
generating grid submission configurations. For example, the Pegasus workflow engine
[2] queries the Globus Monitoring and Discovery Service (MDS) [10] to determine the
number, availability, characteristics of Grid resources.

As yet, workflow engines do not commonly make decisions to schedule resources
based on the economic impact of those decisions, even though the resources in question
are of great value and in great demand. In this paper we introduce a scalable trading
mechanism which can be used to enhance the mapping process of workflow engines,
such as the Pegasus Site-Selection [2] stage. Rather than attempting to minimize exe-
cution time [11], we propose a market-based site-selection mechanism that determines
an allocation based on the valuation for resources.

In our approach, we assume that idle resources are announced to a grid monitor-
ing service. These resources can then be offered to resource consumers as reserved
instances through a trading mechanism. Resources are offered or requested as bundles
consisting of a number of parameters [5]. A resource offer or request is structured by the

amount of required RAM, disk space and grid worker nodes. Requested hard disc space
can be aggregated from various resources sellers, however, RAM and worker nodes
have to be provided by a single seller. To allow the trading of resources, we assume
that the Grid monitoring service runs the exchange mechanism collecting resource sup-
ply and demand requests. Requests timeout after a given time frame for a predefined
amount of periods allowing reserved resources instance to be cleared.

3 Grid Resource Trading

To describe the problem of Grid resource trading we take the multi-attribute combi-
natorial exchange mechanism described in [5]. The set G = {g 1, . . . , g|G|} specifies
the computational resources available in the exchange mechanisms where G denotes
all the goods to be traded in a trading market and a gk is a specific resource. A bundle
Si denotes a subset of all the resources in G. Therefore the set S = {S1, . . . , S|S|}
of bundles covers all the possible subsets of G. A computational resource g k itself is
defined by a set of cardinal quality attributes Ak = {a1, . . . , a|Ak|}.

The exchange mechanism which is for the workflow scenario run by the grid mon-
itoring service allows both the sellers and buyers of resources to place blind orders.
Buyer orders specify what resources are required, and seller orders specify what re-
sources are available. Potential buyers n out of the set N = {n1, . . . , n|N |} of buy-
ers are allowed to submit an order of multiple bundle bids Bn = {Bn,1(S1) ⊕ . . . ⊕
Bn,u(Si)}. The respective bundle bids are XOR concatenated.

Bn,f(Si) ={〈vn(Si), sn(Si), en(Si), ln(Si),
qn(Si, g1, ag1,1), . . . , qn(Si, gG, agG,Aj),
γn(Si, g1), . . . , γn(Si, gG),
ϕn(Si, g1, g2), . . . , ϕn(Si, gG, gG−1)〉}

The valuation vn(Si) is the amount the buyer is willing to pay for the bundle S i per
time slot. The number of slots the resources are required for is given by s n(Si). A buyer
bid defines a period of time slots within which the required slots have to be allocated.
The period is given by en(Si) for the earliest possible time slot and ln(Si) for the latest
possible time slot. The minimum quality of the resources gk contained in a bundle bid Si

is specified for each resource attribute agk,Aj by qn(Si, gk, agk,Aj). In addition bundle
bids may contain two types of fulfillment constraints. A coupling constraint γ n(Si, g1)
specifies the maximum number of sellers allowed to allocate a required resource g k. The
co-allocation ϕn(Si, gk, gj) constraint requires a pair of resources gk, gj to be allocated
from the same single seller.

Following the requirements for workflows (Section 2) the set of resources for the
application domain is given as G = {RAM, disk space, worker nodes}. Each of these
resources is described by a single attribute: ARAM = {Megabyte},AHD−Space =
{Megabyte},ANodes = {Number of nodes}. For the scenario envisioned buyers re-
quest a certain quality of bundle S1. The bundle S1 is defined as S1 = { RAM, HD-
Space, Nodes}; it contains all the types of resources specified. There is no splitting
constraint present as the HD-Space can be aggregated from the whole set of seller bids.
The assumption that RAM and the number of nodes have to be allocated from the same

seller is modeled buy the coupling constraint ϕn(S1, gRAM , gNodes). A buyer submits
a request for a single bundle S1 which matches her needs exactly.

Potential sellers m out of the set of M = {m1, . . . , m|M|} may submit an order of
multiple bundle bids Bm = {Bm,1(Si) ∨ . . . ∨ Bm,u(Si)}. The bundle bids are OR
concatenated. Any number of seller orders may be part of the final allocation. A single
seller bundle bid is of the form:

Bm,f (Si) ={〈rm(Si), em(Si), lm(Si),
qm(Si, g1, ag1,1), . . . , qm(Si, gG, agG,Aj), 〉}

The reservation price rm(Si) specifies the minimum price a seller is willing to sell
the specified bundle of resources per time slot. It is assumed that a seller bid is valid
for the range of time slots given by em(Si) and lm(Si). The quality of the resource
services gk is given by qm(Si, gk, agk,Aj). For the purpose of modeling the domain of
workflows, sellers are able to submit offers in terms of two types of bundles. This is
the bundle S1 which was introduced above. The second bundle S 2 models an offer of
HD-Space only (S2 = {HD-Space}). A seller is free to submit an offer for both or one
of the bundles either. This description includes free disposal (buyers do not care about
taking extra units, sellers do not care about keeping units of winning bids) except when
resources are coupled.

Given a collection of buyer and seller bundle orders the multi-attribute winner de-
termination problem is to identify a set of winning bids out of the total set of bids. An
optimal set of winning buyer and seller bids determines an allocation that maximizes
the overall surplus while meeting time, capacity, coupling and co-allocation constraints.
An allocation is described by the variables xn,t(Si) ∈ {0, 1} and yn,m,t(Si) ∈ [0, 1].
The binary variable xn,t = 1 if buyer n is allocated bundle Si in time slot t. The real
valued variable ym,n,t denotes the percentage of bundle S i allocated from seller m to
buyer n in time slot t. The surplus of an allocation is given by:

(x, y) ∈ arg max

(∑
n∈N

∑
Si∈S

∑
t∈T

vn(Si)xn,t−
∑

m∈M

∑
n∈N

∑
Si∈S

∑
t∈T

rm(Si)ym,n,t

|(x, y) is a feasible allocation

)

4 Heuristic Solutions to the Grid Resource Trading Problem

Solving the problem with a standard solver optimally becomes computationally in-
tractable for small problems of realistic size [5]. To tackle the problem we propose
the use of local search based [12] hybrid metaheuristics. We focus on integrative hybrid
metaheuristics that incorporate an exact algorithm into a metaheuristic to solve sub-
problems to optimality [13]. Section 4.1 details the problem representation as well as
the operators which define the neighborhood structure and Section 4.2 presents solu-
tions based on hybrid metaheuristics.

4.1 Problem Representation

A problem instance is represented as depicted in figure 1. The buyer orders are split
up into the single bundle bids Bn,f (Si). The single buyer bundle bids are stored in an
ordered set Bb. For each buyer bid Bn,f (Si) a list of possible time slots t is kept. For
each of these time slots the available seller bundle bids Bm,f(Si) are stored in the set
Bs,t(Si). The overall idea is to reduce the |n| : |m| allocation problem to be scheduled
into a given number of time slots to several 1 : |m| allocation problems to be solved
for a single time slot t. The 1 : |m| allocation problem for a given buyer bundle bid
Bn,f (Si) and a given time slot t can be formalized as follows:

y ∈ arg max

(
vn(Si) −

∑
m∈M

∑
Si∈S

rm(Si)ym,n |y is a feasible allocation

)

In case of no coupling or collocation constraints the problem becomes a linear,
continuous, optimization problem. This type of problem can be solved efficiently by
a linear programming solver. If coupling or co-allocation constraints are present the
problem is of combinatorial nature with complexity reduced significantly compared to
the original |n| : |m| allocation problem.

The problem representation is evaluated by passing through the sequence of buyer
bundle bids starting with the first bundle bid. The time slots the buyer bid is valid
for (en(Si), ln(Si)) are checked in the given order. A check of a time slot requires
solving the, possibly constrained, 1 : |m| allocation problem. As soon as the amount
of computational resources requested is available for a sufficient number of time slots
the buyer bid is included into the allocation and the construction process is continued
with the next buyer bid. A check of a time slot is valid only if there is a valid solution to
the 1 : |m| allocation problem. Therefore no infeasible solution can be encoded by the
problem representation. In case the buyer is already part of the allocation with another
bid (XOR constraint) the evaluation of the specific bid is skipped and the process is
continued with the next bid in the sequence. The evaluation process is summarized in
algorithm 1. To solve the 1 : |m| problem we use the optimization engine lpsolve.
Solving the problem to optimality covers the search of a large number of solutions.

Local search based metaheuristics start from an initial point in the search space and
aim to iteratively improve on the current solution [12]. Solutions of higher quality are
identified by the evaluation of the solutions within the neighborhood of the current solu-
tion. We introduce two operators, N1(Bb) and N2(T (Bn,f (Si))), spanning the neigh-
borhood structures. Both functions are applied to an ordered set and are defined as a
transposition. A transposition is a function that swaps two elements of an ordered set.
The neighborhood structure is given by any solution that can be reached by a single
transposition on the elements of the respective sets.

The function N1(Bb) operates on the set of buyer bids Bb. Swapping two bids at
the positions (i, j) coincides to a repositioning in the evaluation procedure. In case of
scarce resources an allocation for a bid in a leading position becomes more likely, and
to sellers with lower reservation prices. The function N2(T (Bn,f(Si))) operates on the
set of slots available for a given buyer bid. It swaps for each buyer bid two of the slots
which changes the order these are passed in the evaluation procedure and therefore the
allocation. Both operators are illustrated in figure 1.

Algorithm 1 Evaluate
s← 0 \\allocation surplus
Bb \\ordered set of buyer bids
T (Bn,f (Si)) \\ordered set of slots for a given buyer bid
Bs,t(Si) \\seller bids available in time slot t for the bundle Si

Balloc ← ∅ \\buyers that are part of the allocation (XOR - Constraint)
\\iterate over all buyer bids
while hasNext(Bb) do

Bn,f (Si)←next(Bb)
\\test if the buyer n is part of the allocation already
if n ∈ Balloc then

continue with the next iteration
end if
s
′ ← 0

slots← sn(Si)
\\iterate over the slots
while hasNext(T (Bn,f (Si))) do

Bs,t(Si)← next(T (Bn,f (Si)))
s
′′ ←solve(Bn,f (Si), Bs,t(Si)) \\solve the 1 : |m| allocation problem for time slot t

if isFeasilbe(s
′′
) then

s
′ ← s

′
+ s

′′ \\add the surplus to surplus of the allocation
slots← slots− 1 \\save that the slot was successfully allocated

end if
\\test if the allocation for Bn,f (Si) is completed
if slots == 0 then

s← s + s
′ \\add surplus to overall surplus

Balloc ∪ n \\save that buyer n was successful with a bid
continue with the next buyer bid

end if
end while

end while

B
3,1

B
4,2

B
3,2

B
1,1

B
1,2

B
0,1

B
2,1

B
4,1

B
5,1

t
3

t
1

t
0

t
2

sort

s
o
r
t B

3,1

S
4,1

Period t
1

S
3,1

S
2,1

S
3,2

S
1,1

Allocation

t
4

t
1

t
3

t
1

t
0

t
2

t
4

t
3

t
1

t
0

t
2

Fig. 1. Problem Representation

4.2 Metaheuristic based Solution

Local search based methods require an initial solution to improve on, a suitable rep-
resentation of the problem to be solved and a neighborhood structure to traverse the
solution space. The initial solution is provided by a greedy type algorithm we proposed
in [14]. The basic steps are illustrated in algorithm 2. The procedure starts with an
empty allocation. In the initialization phase the buyer bundle bids and the respective
time slots are ordered. The buyer bids are sorted in descending order according to the
attractiveness for the inclusion into the allocation (cf. figure 1). The attractiveness of a
bundle bid is calculated from the valuation of a bid adjusted by the weighted average
consumption of resources (wac) and the flexibility (flex) in a time scheduling sense:
vn(Si)sn(Si)

flex∗wac .

flex =
sn(Si)

ln(Si) − en(Si)
(1)

wac(Si) =

∑
Si�gk

∑ln(Si)
en(Si)

maxagk,j∈Aj

qn(Si,gk,agk,j)∑
Bs,t(Si)�Sj

qm(Sj,gk,agk,j)

ln(Si) − en(Si)
(2)

Algorithm 2 Greedy Implementation
s← 0 \\surplus
Bb \\set of buyer bids
T (Bn,f (Si)) \\set of slots for a given buyer bid
p1 ← vn(Si)sn(Si)

flex∗wac
\\sorting criterion buyer bid

p2 ← surplus \\sorting criterion seller bid

sort(Bb, p1)
for all Bn,f (Si) ∈ B do

sortSlots(T (Bn,f (Si)), p2)
end for
s← eval(B)

The parameter flex given in equation 1 measures the flexibility of the buyer bid as
a ratio of the number of slots requested and the number of slots available to schedule the
resources request. The higher the flexibility, the more valuable a bid is considered and
the closer flex is to zero which influences the overall rating positively. The parameter
wac(Si) given in equation 2 describes the weighted average consumption of resources
of a buyer bid per time slot. For each resource requested, in each time slot the supply and
demand ratio for each of the attributes is calculated. The scarcity of a requested good for
a given time slot is determined by the maximum of these ratios. The overall aggregation
of the scarcity measures for all goods is divided by the number of requested slots to
obtain the weighted average resource consumption on a slot base. In consequence the
demand for more scarce resources is more significant in reducing the attractiveness of a
buyer bundle bid. The slots for a buyer bid are sorted according to the optimal solution
(calculated using lpsolve [15]) of the 1 : |m| allocation problem.

A simulated annealing (SA) version based on the original proposal [16] with an
adapted cooling schedule was chosen for guiding the improvement on a starting solu-
tion. SA is an intensely studied metaheuristic which has provided good results for a
various number of combinatorial problems [17]. A standard SA implementation takes
four parameters. This is the initial temperature value of the system T s, a stopping crite-
rion given by a final temperature value Te, a parameter p specifying the number of steps
at each temperature level and a temperature reduction function [18].

Algorithm 3 Simulated Annealing Implementation
Bb ← GenerateInitialSolution()
Ts ← surplus(getF irstElement(Bb)) \\initial Temperature
Te ← 0.1Ts

tmax = 180 seconds
k← 3 \\number of iterations at N2 level
p← 1 \\number of steps at each temperature level
while time limit not met do

B
′
b ← randomNeighbor(N1(Bb))

if (eval(Bb) < eval(B
′
b)) then

Bb ← B
′
b

else
if random[0, 1) < P (B

′
b, T) then

Bb ← B
′
b

else
T ← UpdateTemperature(T,p)
continue with the next iteration of the main loop

end if
end if
for k iterations do

B
′
b ← randomNeighbor(N2(Bb))

if (eval(Bb) < eval(B
′
b)) then

Bb ← B
′
b

continue with next iteration of the main loop
end if

end for
T ← UpdateTemperature(T,p)

end while

The temperature reduction function is generally given by T t+1 = αTt where T0 =
Ts. However, we are interested in a comparison of solution methods based on wall
clock time: tmax. Therefore temperature is reduced in dependence of time instead of
a static parameter: T (t) = Ts(Te

Ts
)

t
tmax [19]. The function ensures that T (0) = Ts

and T (tmax) = Te. Between these points the temperature is set according to T (t).
SA always accepts movements to superior solutions. However its key feature is its
mechanism to escape local optima by accepting with a certain probability a solution
worse compared to the current solution. The probability for accepting a solution that
causes a decrease of |Δ| in the objective function is given by the acceptance function
P (Δ) = exp(−|Δ|

T) [20]. This acceptance function implies first that a small decrease

of the objective function is more likely to be accepted than a large decrease. Second in
the beginning of the search when T is high most down-hill moves are accepted.

Algorithm 3 shows how SA is applied to the problem. The initial solution is gen-
erated based on the greedy approach presented. T s is set such that a decrease in the
objective function value by the surplus of the first accepted bid is accepted with a prob-
ability of 80 percent [21]. The surplus of the first accepted bid is used to approximate
the maximum change in the objective function by the exchange of two bids. This coin-
cides to omitting the bid from the evaluation. Te is set to ten percent of the value of Ts.
While the time limit is not met a random neighbor B

′
b according to N1(B

′
b) is chosen.

B
′
b is accepted either if it improves the solution quality or if it is accepted according

to P (Δ). The search proceeds with the next neighbor N1(Bb) otherwise. For each it-
eration the temperature is reduced. In case B

′
b is accepted a refinement phase based on

local search is started. The factor k determines how often an improvement according
to the neighborhood N2 is tested. The first time the solution is improved the process is
continued with the next iteration of the main loop.

5 Experimental Evaluation

This section evaluates the metaheuristic approach to grid resource trading using the
approach introduced in Section 4. Two sets of Experiments are performed (setup as de-
scribed in Section 5.1). We first asses the quality of the SA approach based on a compar-
ison to the allocation computed by the commonly available standard solver lpsolve [15].
We then provide the results of the initial greedy heuristic and a first improvement lo-
cal search algorithm equal to the SA approach but without the probabilistic element to
escape local optima. Results are presented in Section 5.2.

5.1 Experiment Description

To study the heuristic methods under simulation we produce random variants from a real
world data set. This allows us to keep the macro-structure of characteristic bids for the
workflow domain fixed while varying the numbers of bids. The data is obtained from the
execution of a 0.2 degree montage workflow [2] of Messier M17 on Grid resources. We
assume that a buyer wants to allocate the resources required for a complete execution
of such a workflow. This translates to specifying a bid for the bundle S 1 which satisfies
the requirements at each point in time. Based on this the attributes of a buyer bid are set
as follows: ARAM = {86.4}, AHD−Space = {171}, ANodes = {9}; a single execution
of a workflow is assumed to take 5 whole time slots while a range of 10 time slots is
open for trade. As valuations are not available from the data sets these are generated as
the sum of a fixed amount of 1000 units and a variable, from uniform distribution drawn
between 0 and 100 units. For seller bids on the bundle S 1 (S2) the attributes are defined
as: ARAM = {168}, AHD−Space = {300}, ANodes = {20} (AHD−Space = {100}).
The reservation prices are determined by a fixed part 1500 (100) and a variable, from a
uniform distribution drawn, value of up to 150 (10).

Two sets of experiments are performed (A and B) that differ in the distribution of
buyer bids. For experiment A the requests are normally distributed with a mean value
of three and variance of one. This models a peak in demand for resources between
time slot three and time slot eight. For experiment B the requests for resources are

uniformly distributed over the time slots. For each type of experiments ten bidding
scenarios differing in the number of buyer and seller bids were created. The scenarios
comprise 20,40,60,80,100,120,140,160,180 and 200 bundle bids. For each scenario the
number of bids is equally distributed between seller and buyer bids. Half of the sellers
offer bundle S1 and half of the sellers offer bundle S2. For each of the ten bidding
scenarios ten instances were generated. The time to solve the allocation problem was
set to the reasonable time of three minutes.

5.2 Experiment Results and Analysis

To asses the quality of the approach described in Section 4.2 we first performed a com-
parison between the lpsolve solver and our approach, over different time requirements.
We tested the scalability of lpsolve for very small scale bidding scenarios of type B ex-
periments. Table 1 summarizes the results indicating whether the optimal solution was
found (Opt), an intermediary solution was provided (Inter.) or the solver did not return
any solution (KO). The results show that for very simple problems lpsolve returns an
optimal solution for both 3 and 60 minutes. For slightly more complicated problems lp-
solve returns intermeadiate results only, and no optimal solution. For complex problems
lpsolve fails to produce any results. As lpsolve fails to produce results with relatively
complex experiments, the following experiments evaluate the SA approach with the
greedy approach detailed in Section 4.2 and a basic local search.

Table 2 summarizes the results of experiments A and B. The comparison of the
heuristic methods is based on the percentage deviation to the best surplus found [22].
The deviation column shows the average percentage deviation of the ten simulation
runs performed for the bidding scenario. The corresponding Best/10 column indicates
the number of times the heuristic reported the best result. The last row of the table shows
the average error for all bidding scenarios for a single heuristic method.

Table 1. Results using lpsolve for small scale scenarios

Time Scenario

2/2 4/4 6/6 10/10

3 min. (Opt/Inter./KO) 3/0/0 0/3/0 0/1/2 0/0/3
60 min. (Opt/Inter./KO) 3/0/0 0/3/0 0/1/2 0/0/3

For both experiments SA shows on average the best performance. SA does not al-
ways find the allocation with the maximum surplus but is always closer to the best so-
lution than local search. Both local search and SA improve significantly on the greedy
starting solution. With increasing number of bids the factor of improvement decreases;
this is because the time for the evaluation is kept constant while the size of the scenario
and neighborhood of an allocation to be searched is increased significantly.

The variation between the results of experiment A and B can be explained by the
structural differences of the underlying scenarios. The uniform distribution of time slot

Table 2. Experimental Results and Analysis

Scenario Experiment A Experiment B

Sim. Annealing Local Search Greedy Sim. Annealing Local Search Greedy

Dev. Best/10 Dev. Best/10 Dev. Dev. Best/10 Dev. Best/10 Dev.

10/10 0.00 10/10 4.83 0/10 35.14 0.00 10/10 5.11 0/10 26.02
20/20 0.17 9/10 2.64 1/10 32.13 1.37 5/10 1.83 5/10 27.06
30/30 0.02 8/10 2.25 2/10 27.26 0.30 8/10 1.88 2/10 25.30
40/40 0.55 6/10 1.14 4/10 28.48 0.81 7/10 1.85 3/10 23.32
50/50 0.51 7/10 2.45 3/10 22.74 0.87 8/10 3.05 2/10 19.37
60/60 0.24 7/10 2.97 3/10 21.29 1.63 5/10 2.40 5/10 16.87
70/70 0.00 10/10 7.29 0/10 21.69 2.17 5/10 1.44 5/10 15.51
80/80 0.35 8/10 7.10 2/10 17.02 0.53 8/10 2.62 2/10 14.21
90/90 0.00 10/10 5.80 0/10 12.16 0.13 7/10 1.68 3/10 10.17
100/100 0.17 7/10 4.37 3/10 8.05 0.61 8/10 5.81 2/10 9.14

Average 0.20 82/100 4.08 18/100 22.60 0.84 71/100 2.77 29/100 18.70

requirements for experiment B results in less competition for the offered resources com-
pared to the peak in demand modeled for the scenarios in experiment A. From a schedul-
ing perspective there are few options to check in experiment B. The greedy approach in
both experiments shows that the deviation to the best solution is bigger for the scenar-
ios of experiment A. The same holds for the comparison of the local search procedures.
The scenarios in experiment B require a less extensive search for a promising basic so-
lution to improve on but fine tuning of the initial solution which is the domain of local
search. This becomes evident by the smaller average deviation of the results of the local
search procedure in comparison to the SA approach. Furthermore the best solution is
identified for 71 percent of the simulation runs of experiment B by the SA approach in
comparison to 82 percent of the simulation runs of experiment A. In summary, standard
solvers like lpsolve provide allocations for very small scale scenarios only and heuristic
solutions provide a scalable alternative producing good results for the problem of re-
source allocation. The simulated annealing-based approach presented here can be used
to improve significantly on greedy results.

6 Conclusions

This paper has presented a hybrid metaheurstic approach to the trading of grid resources
for the execution of scientific workflows. It has described a trading approach for grid re-
sources and detailed metaheuristics to efficiently trade resources. These metaheuristics
have been evaluated through the execution of scientific workflows. We showed that for
the scientific workflow domain heuristic solutions provide a scalable alternative com-
pared to standard solvers like lpsolve. Future work will involve the scaling up of the
approach to more resource providers and consumers, and increasing the number and
types of scientific workflows. Expanded work will involve the evaluation of different
and more complex workflow types, as well as other types of applications.

References

1. I. Foster. The grid: A new infrastructure for 21st century science. Physics Today, 55(2):42–
47, 2002.

2. E. Deelman et al. Pegasus: A framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming, 13(3):219–237, 2005.

3. J. Broberg, S. Venugopal, and R. Buyya. Market-oriented grids and utility computing: The
state-of-the-art and future directions. Journal of Grid Computing, 6(3):255–276, 2008.

4. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and emerg-
ing it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future
Gener. Comput. Syst., 25(6):599–616, 2009.

5. B. Schnizler, D. Neumann, D. Veit, and C. Weinhardt. Trading grid services - a multi-
attribute combinatorial approach. European Journal of Operational Research, 187(3):943–
961, 2008.

6. M. H. Rothkopf, A. Pekeč, and R. M. Harstad. Computationally manageable combinational
auctions. Management Science, 44(8):1131–1147, 1998.

7. T. Sandholm. Algorithm for optimal winner determination in combinatorial auctions. Artifi-
cial Intelligence, 135(1-2):1–54, 2002.

8. T. Oinn et al. Taverna: lessons in creating a workflow environment for the life sciences:
Research articles. Concurr. Comput. : Pract. Exper., 18(10):1067–1100, 2006.

9. I. Taylor, M. Shields, I. Wang, and A. Harrison. Visual grid workflow in triana. Journal of
Grid Computing, 3(3):153–169, September 2005.

10. S. Fitzgerald. Grid information services for distributed resource sharing. In Proc. 10th IEEE
Intl Symposium on High Performance Distributed Computing, 2001.

11. K. Lee, N. W. Paton, R. Sakellariou, and A. A. A. Fernandes. Utility driven adaptive work-
flow execution. In CCGrid, 2009.

12. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and concep-
tual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

13. J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms in combi-
natorial optimization: A survey and classification. In Artificial Intelligence and Knowledge
Engineering Applications: A Bioinspired Approach, pages 41–53. Springer, Berlin, 2005.

14. G. Buss, K. Lee, and D. Veit. Scalable grid resource trading with greedy heuristics. In to
appear in Fourth International Workshop on P2P, Parallel, Grid and Internet Computing
(3PGIC-2010), Feb 2010.

15. Lpsolve 5.5.0.14, a mixed integer linear programming (milp) solver,
http://lpsolve.sourceforge.net/.

16. S. Kirkpatrick, Jr. Gelatt, C. D., and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

17. B. Suman and P. Kumar. A survey of simulated annealing as a tool for single and mul-
tiobjective optimization. Journal of the Operational Research Society, 57(10):1143–1160,
2006.

18. E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven. Simulated annealing. In E. H. L.
Aarts and J. K. Lenstra, editors, Local Search in Combinatorial Optimization, pages 91 –
120. John Wiley & Sons, Chichester, UK, 1997.

19. H. L. Petersen and O. B. G. Madsen. The double travelling salesman problem with multiple
stacks - formulation and heuristic solution approaches. European Journal of Operational
Research, 198(1):139–147, 2009.

20. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state
calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.

21. P. Kouvelis and M. W. Kim. Unidirectional loop network layout problem in automated
manufacturing systems. Oper. Res., 40(3):533–550, 1992.

22. R. L. Rardin and R. Uzsoy. Experimental evaluation of heuristic optimization algorithms: A
tutorial. Journal of Heuristics, 7(3):261–304, 2001.

