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On a family of linear recurrences

C M Wilmott

Faculty of Informatics, Masaryk University, Šumavská 416/15, 602 00 Brno, Czech Republic

E-mail: wilmott@fi.muni.cz

Abstract. We concern ourselves with the family of linear recurrence relations aj = aj−1+aj−d

with the initial conditions a0 = . . . = ad−1 = 1. We discuss the periodicity evaluation of
such recurrences for prime powers d, and demonstrate that a key feature of our evaluation
method relates to an instance of Shor’s algorithm for factoring. As an application, we discuss
how efficient quantum circuit designs may be completely recast as a problem relating to linear
recurrence relations.

1. Introduction
Recurrence relations possess a rich history with applications extending from biology to
economics. Indeed, many algorithms have time complexities that can be modelled by recurrence
relations. In this paper, we will discuss a family of dth-order linear recurrence relations before
revealing a novel application to quantum circuit designs. Our main result focuses on the task of
evaluating the periodicity of a family of recurrence relations.

Let d be a positive integer and consider the recurrence relation

aj = aj−1 + aj−d + [j = 0] (mod d) (1)

where [j = 0] adds 1 when j = 0. The solution to this recurrence relation is given by the
binomial summation

aj =

j/d∑
i=0

(
j − (d− 1)i

i

)
, (2)

and, furthermore, its closed-form is given by

aj =

d∑
l=1

βlα
j
l , (3)

where αl denote the reciprocals of the roots of B(z) = 1−z−zd and βl = −αl/B′(1/αl) [1]. For
d prime, the periodicity of the recurrence relation is d2 − 1. For the prime power case d = pm

with p prime, the periodicity of this recurrence relation remains an open problem, however, it
is conjectured to be pm−1(p2m − 1) [1].

Interestingly, Wilmott [1] established that the periodic property of recurrence relations can be
used to study the computational problem associated with the construction of certain quantum
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circuits possessing an exact number of constituent gates; in particular, quantum SWAP gates
with a minimal number of CNOT gates. Crucially, however, the answer to this question directly
depends on knowing the periodicity for the family of recurrence relations presented in Eq. (1).
We now present some preliminary material before progressing to our main result.

2. Recurrence relations and Shor’s Algorithm
Consider a d-dimensional complex Hilbert space Cd and fix each orthonormal basis state of
the d-dimensional space to correspond to an element of ring Zd of integers modulo d. The
basis elements {|0〉 , |1〉 , . . . , |d− 1〉} ⊂ Cd correspond to the column vectors of the identity
matrix Id and is called the computational basis. A qudit is then a d-dimensional quantum state
|ψ〉 ∈ Cd written |ψ〉 =

∑d−1
i=0 αi |i〉 where αi ∈ C and

∑d−1
i=0 |αi|2 = 1. An n-qudit state is

the tensor product of the basis states of the single system Cd; (Cd)⊗n, and its basis states are
|i1〉 ⊗ |i2〉 ⊗ . . . ⊗ |in〉 = |i1i2 . . . in〉 where ij ∈ Zd. Further, the CNOT gate is a two-qudit
quantum gate whose action on the basis states |i〉 ⊗ |j〉 ∈ Cd ⊗ Cd is given by

CNOT |i〉 ⊗ |j〉 = |i〉 ⊗ |j ⊕ i〉 , i, j ∈ Zd, (4)

with ⊕ denoting addition modulo d. We will now outline how Shor’s algorithm [2] can be used
to confirm the conjecture relating the period of the recurrence relation presented in Eq. (1).

Consider an initial state written as a composition of two registers;

|Ψ0〉 = |0〉 |1, 1, . . . , 1〉 . (5)

The first register is prepared in the zero state while the second register is prepared as a collection
of d one states. For d = pm, let r = pm−1(p2m − 1) be the period of the recurrence relation
in Eq. (1), and choose an n ∈ N such that r divides dn. Placing the first register in a uniform
superposition of states representing integers a mod dn, we have

|Ψ1〉 =
1√
dn

dn−1∑
a=0

|a〉 |1, 1, . . . , 1〉. (6)

Focusing on the second register of Eq. (6), let us define a set of states |us〉 by

|us〉 :=
1√
r

r−1∑
k=0

e−2πιks/r

∣∣∣∣∣
d∑
l=1

βlα
k
l ,

d∑
l=1

βlα
k+1
l , . . . ,

d∑
l=1

βlα
k+d−1
l (mod d)

〉
(7)

with 0 ≤ s < r. Following the style style presented in Nielsen & Chuang [3], we exploit the
fact that a suitable combination of such states |us〉 yields the state of the second register. In
particular,

1√
r

r−1∑
s=0

|us〉 =
1

r

r−1∑
s=0

r−1∑
k=0

e−2πιks/r

∣∣∣∣∣
d∑
l=1

βlα
k
l ,

d∑
l=1

βlα
k+1
l , . . . ,

d∑
l=1

βlα
k+d−1
l (mod d)

〉

=

r−1∑
k=0

δk,0

∣∣∣∣∣
d∑
l=1

βlα
k
l ,

d∑
l=1

βlα
k+1
l , . . . ,

d∑
l=1

βlα
k+d−1
l (mod d)

〉
= |1, 1, . . . , 1〉 . (8)

Next, we define a unitary transformation Λ(U) := I ⊗Ua which acts according to the circuit of
Fig. 1. The unitary transformation Λ(U) is a controlled-Ua operation and acts on the state of

IC-MSQUARE 2012: International Conference on Mathematical Modelling in Physical Sciences IOP Publishing
Journal of Physics: Conference Series 410 (2013) 012057 doi:10.1088/1742-6596/410/1/012057

2



(a) |a〉 t
|1〉

...
|1〉

|1〉
Ua

(b)

U ≡

r

d rd rd
. . . d

. . . d rd
Figure 1. (a) The unitary transformation Λ(U) is represented as a controlled-Ua operation.
When the state of the first register is |a〉, an a-fold product of U is applied to the second register.
(b) The transformation U consist of d CNOT gates which produce clock cycles of length d of
the recurrence relation given in Eq. (1).

the second register. The effect of Λ(U) is to produce a set of disjoint cycles of coefficients
of length d related to the recurrence relation of Eq. (1). For example, when the state of
the first register is one, Λ(U) will act on the state |1〉 |us〉 by applying a set of d CNOT
gates conditioned on successive states of the target register. The effect of these gates mimics
the action of the recurrence relation transforming the second register from |a0, a1 . . . , ad−1〉 to
|ad, ad+1, . . . , a2d−1〉;

Λ(U) |1〉 |us〉 = |1〉U1 |us〉

=
1√
r

r−1∑
k=0

e−2πιks/r |1〉U

∣∣∣∣∣
d∑
l=1

βlα
k
l ,

d∑
l=1

βlα
k+1
l , . . . ,

d∑
l=1

βlα
k+d−1
l (mod d)

〉

=
1√
r

r−1∑
k=0

e−2πιks/r |1〉

∣∣∣∣∣
d∑
l=1

βlα
k+d
l ,

d∑
l=1

βlα
k+d+1
l , . . . ,

d∑
l=1

βlα
k+2d−1
l (mod d)

〉
. (9)

When the shift invariance property of the Fourier transform is applied to Eq. (9), it is readily
established that input state |1〉 |us〉 is an eigenstate of Λ(U);

1√
r

r−1∑
k=0

e−2πι(k−d)s/r |1〉

∣∣∣∣∣
d∑
l=1

βlα
k
l ,

d∑
l=1

βlα
k+1
l , . . . ,

d∑
l=1

βlα
k+d−1
l (mod d)

〉
= e2πιds/r |1〉 |us〉. (10)

More generally, it can be shown that |a〉 |us〉 is also an eigenstate of Λ(U) and, as such, we have
it that Λ(U) |a〉 |us〉 = |a〉Ua |us〉 = e2πιads/r |a〉 |us〉. Noting this, we apply Λ(U) to state |Ψ1〉;

Λ(U) |Ψ1〉 = Λ(U)

(
1√
dn

dn−1∑
a=0

|a〉 |11 . . . 1〉

)

= Λ(U)

(
1√
dnr

dn−1∑
a=0

r−1∑
s=0

r−1∑
k=0

e−2πιks/r |a〉

∣∣∣∣∣
d∑
l=1

βlα
k
l ,

d∑
l=1

βlα
k+1
l , . . . ,

d∑
l=1

βlα
k+d−1
l (mod d)

〉)

=
1√
dnr

dn−1∑
a=0

r−1∑
s=0

r−1∑
k=0

e−2πιks/r |a〉Ua
∣∣∣∣∣
d∑
l=1

βlα
k
l ,

d∑
l=1

βlα
k+1
l , . . . ,

d∑
l=1

βlα
k+d−1
l (mod d)

〉

=
1√
dnr

dn−1∑
a=0

r−1∑
s=0

r−1∑
k=0

e−2πιks/r |a〉

∣∣∣∣∣
d∑
l=1

βlα
k+ad
l ,

d∑
l=1

βlα
k+ad+1
l , . . . ,

d∑
l=1

βlα
k+(a+1)d−1
l (mod d)

〉
.

(11)

The sequence values recorded in the second register is periodic as the recurrence relation is
reversible and must repeat as soon as d consecutive terms, of which there are only finitely
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many possibilities, are repeated. Therefore, there exists an a = jr + l for some 1 ≤ l < r and
0 ≤ j < dn/r such that Eq. (11) can be written as

1√
dnr

dn/r−1∑
j=0

r−1∑
l=0

r−1∑
s=0

r−1∑
k=0

e−2πιks/r |jr + l〉

∣∣∣∣∣
d∑
l=1

βlα
k+(jr+l)d
l , . . . ,

d∑
l=1

βlα
k+(jr+l+1)d−1
l (mod d)

〉
.(12)

Applying the shift invariance property of the Fourier transform yields

1√
dnr

dn/r−1∑
j=0

r−1∑
l=0

r−1∑
s=0

r−1∑
k=0

e−2πι(k−(jr+l)d)s/r |jr + l〉

∣∣∣∣∣
d∑
l=1

βlα
k
l , . . . ,

d∑
l=1

βlα
k+d−1
l (mod d)

〉
(13)

and, by definition of |us〉, we can simplify Eq. (13) to

1√
dnr

dn/r−1∑
j=0

r−1∑
l=0

r−1∑
s=0

e2πι(jr+l)ds/r |jr + l〉 |us〉. (14)

Implementing the inverse Fourier transform on the first register transforms Eq. (14) to

1

dn
√
r

dn−1∑
m=0

dn/r−1∑
j=0

r−1∑
l=0

r−1∑
s=0

e2πιj(ds−mr/d
n)e2πιl(ds/r−m/d

n) |m〉 |us〉. (15)

Now, noting that

dn/r−1∑
j=0

(
e2πι(ds−mr/d

n)
)j

=

{
dn/r if e2πι(ds−mr/d

n) = 1
0 otherwise

. (16)

However, e2πι(ds−mr/d
n) = 1 if and only if ds − mr/dn is an integer. Therefore, m must be a

multiple of dn/r. Thus, the state of the system can be given as

1

r
√
r

r−1∑
c=0

r−1∑
l=0

r−1∑
s=0

e2πιl(ds−c)/r |cdn/r〉 |us〉. (17)

Again, since
∑r−1

l=0 e
2πιl(ds−c)/r = rδds−c,0, it follows that Eq. (17) can be written as

1√
r

r−1∑
s=0

∣∣sdn+1/r
〉
|us〉 . (18)

Finally measuring the first register, we find an m equal to sdn+1/r for some integer s with
0 ≤ s < r. Since both m and dn+1 are known, the value r can be confirmed by writing m/dn+1

in its lowest form.

3. Conclusion
We discussed the problem of determining the period of a family of linear recurrences and related
this problem to a particular instance of Shor’s algorithm for factoring.
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