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Abstract 

Reliable predictive accident models (PAMs) have a variety of important uses in traffic safety 

research and practice. They are used to help identify sites in need of remedial treatment, in the 

design of transport schemes to assess safety implications, and to estimate the effectiveness of 

remedial treatments. The PAMs currently in use in the UK are now quite old; the data used in 

their development was gathered up to 30 years ago. Many changes have occurred over that 

period in road and vehicle design, in road safety campaigns and legislation, and the national 

accident rate has fallen substantially. It seems unlikely that these aging models can be relied 

upon to provide accurate and reliable predictions of accident frequencies on the roads today. 

This paper addresses a number of methodological issues that arise in seeking practical and 

efficient ways to update PAMs. Models for accidents on rural single carriageway roads have 

been chosen to illustrate these issues, including the choice of distributional assumption for 

overdispersion, the choice of goodness of fit measures, questions of independence between 

observations in different years, and between links on the same scheme, the estimation of trends 

in the models, the uncertainty of predictions, as well as considerations about the most efficient 

and convenient ways to fit the required models, given the considerable advances that have been 

seen in statistical computing software in recent years. 

Introduction 

Reliable predictive accident models (or safety performance functions) have a wide variety of 

uses in traffic safety analysis and modelling. For scheme appraisal, when it is necessary to 

consider the likely effects of alternative transport proposals, this includes the effect on 

accidents. For example, PAMs can be used in the design of junctions to estimate the effects of 

any proposed design on safety as well as on operational measures such as capacity or averages 

queues and delays. In trying to identify sites in need of remedial treatment, rather than focus 

on sites with the highest number of accidents in recent years, it is more efficient to compare 

the observed number of accidents with the number expected from a site of that type, carrying 

that amount of traffic. In order to estimate the effectiveness of any treatment, it is natural to 

carry out before and after comparisons of the accident frequencies. However, simple 

comparisons are known to suffer from the regression to mean effect that, if not corrected for, 

can lead to exaggerated estimates of the treatment effectiveness. One way to overcome this 

problem is through the use of the empirical Bayes (EB) method, which requires a reliable PAM 

(see, for example, Mountain et al., 2005; Persaud and Lyon, 2007). The widespread importance 

of PAMs is therefore clear; meanwhile the availability of high quality models is rather less 

certain. 
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A PAM is derived, for any given type of site, by the fitting of a regression model using data 

from a large number of such sites. These models relate the expected number of accidents at a 

site to the flows passing through the site and, possibly, to variables that describe the design, or 

geometry of the site. In the case of the UK, following a review by Satterthwaite (1981), the 

Transport Research Laboratory (TRL) carried out a series of large-scale studies for various 

junction and link types in the 1980s and 1990s, starting with 4-arm urban traffic signals (Hall, 

1986) and 4-arm roundabouts (Maycock and Hall, 1984). The models were at various levels of 

detail, from models relating total accidents to an overall measure of total flow, through to 

models for specific accident types in terms of relevant flows and various design variables. 

These models are widely-used in the UK for scheme appraisal, being incorporated in software 

such as ARCADY, PICADY and OSCADY for the design of roundabouts, priority junctions 

and signalised junctions respectively. 

These TRL studies were amongst the first to recognise the need to model overdispersion (which 

is the effect on the mean accident rate of variables other than those in the precitive model), and 

to propose the use of a negative binomial (NB) error structure in the regression modelling. This 

approach has since become commonplace in accident modelling, though primarily for 

mathematical convenience. Indeed, it has been demonstrated that other error structures are 

equally plausible (see Maher and Mountain, 2009, Lord and Mannering, 2011) and possibly 

more appropriate. Modern statistical techniques and software have mostly overcome the need 

to restrict attention to the NB distribution for modelling overdispersion. 

However, perhaps the most serious problem in the use of these models is the passage of time 

since they were developed and the data on which they were based was collected. Over these 

decades there have been changes in both road and vehicle design, in safety initiatives and 

legislation and in driver training, so that the relationships between expected accidents and the 

explanatory variables may well have changed. For example, the PAMs for 4-arm roundabouts 

are based on data from 1974-79 (Maycock and Hall 1984), and those for rural priority junctions 

on data from 1979-83 (Summersgill et al, 1996). In the UK, the annual number of personal 

injury accidents fell by 30% from 1985 to 2009, whilst the annual total traffic (in veh-kms) 

increased by 61% (DfT 2010a; DfT 2010b). 

While it seems unlikely that the PAMs still in use but derived using data from 20-30 years ago 

should provide accurate predictions now, it is not necessarily practicable to repeat the large and 

expensive studies carried out by TRL to derive entirely new models. A more sensible approach 

is to see how existing models may be updated rather than disposed of and replaced by new 

ones. This is the objective of the present research study, of which this paper is one part. To 

achieve this, a new database has been compiled containing recent data on accidents, flows and 

geometric design parameters. In this paper we use data for modern rural single carriageway 

roads. 

Data 

The database comprises 341 links distributed amongst 73 schemes. A scheme refers to the 

largest structure studied, and is a section of road with similar flow characteristics, between two 
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major junctions (where the traffic flow on the scheme has to give way). Each scheme is 

partitioned into minor junctions (defined as any other junction properly marked with a give 

way or stop line and a centre line on at least one junction arm), and links (the section of road 

between any two junctions). Most of the schemes were analysed across a five year period 

(2005-2009), with annual accident frequencies obtained from the STATS19 database or from 

local authorities, and annual flow measures from the DfT or local authorities. 

The total length of the 341 links was 310 km, with lengths ranging from 0.01 km to 3.9 km. 

There was a total of 996 accidents giving an average of 2.92 accidents per link, or 3.21 per km, 

over the five years. The flows (measured in two-way AADTs) ranged from 2887 to 42520, 

with a mean of 13590. Further details of the data gathered and a comparison with the data used 

in the original TRL studies can be found in Wood et al (2012).  

The TRL Models 

Similar methodological issues arise when fitting PAMs for each type of junction, link or 

scheme. For simplicity we restrict attention here to models for the total number of accidents on 

rural single carriageway links. One of the simpler TRL models for rural links has the expected 

number of accidents 𝜇𝑖 at site i over a period of T years given by: 

 
𝑖

= 𝑎 𝑇 𝑄𝑖
𝐿𝑖 exp (

2𝑏

𝐿𝑖
)         (1) 

where Li is the link length (in km), and 𝑄𝑖 is the flow (two-way AADT in thousands). The 

parameter estimates obtained by TRL were: a = 0.0552,  = 0.831, b = 0.0576. The exponential 

term accounts for any “spillover” effects from the junctions at the two ends of the link; the 

junction density is approximately 2 𝐿𝑖⁄  (accidents occurring within 20m of the junction, as 

determined by the police officer attending the accident, were excluded). However, the form of 

this correction term is not ideal as it tends to infinity as Li tends to zero. For a link of length 

20m the correction term has the effect of multiplying the predicted number of accidents by 317; 

whilst for a length of 50m, the factor is 10. The TRL data presumably did not include any short 

links, and hence TRL cannot have realised the effect of this term on short links. Our data set 

includes seven links that are less than 50m in length, so these are excluded from the data in our 

analyses. 

Aims of the study 

Our objective is to address the following questions: how should the TRL models be formulated 

in order to estimate the model parameters including the long-term and current trend; what 

assumptions should be made; how robust or sensitive are the estimates to model assumptions; 

how should the fitted models be checked or compared; and how can the models be fitted most 

conveniently using existing software? Each of these issues is discussed in turn in the following 

sections 

Distributional assumptions for overdispersion 
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Equation (1) gives a prediction for the expected number of accidents 𝜇𝑖 at site 𝑖 in terms of the 

flow and design variables. Typically it is assumed that the observed number of accidents 𝑦𝑖 is 

Poisson distributed about the mean 𝑚𝑖 for site 𝑖, where the difference between 𝑚𝑖 and 𝜇𝑖 is due 

to other variables, not in the model, that affect the actual value of the mean at that site and 

thereby contribute to what is known as overdispersion. 

Conventionally it is assumed that 𝑚𝑖  follows a gamma distribution about 𝜇𝑖 , so that the 

combined distribution of 𝑦𝑖  is negative binomial (NB). This has been motivated by 

computational convenience, as there is no particular reason to suppose that the overdispersion 

truly follows a gamma distribution. Availability of suitable and easy-to-use software inevitably 

plays a role in the formulation of models and most statistical software packages include a 

routine for fitting regression models with NB errors.  

For some time now it has been noted that alternative distributions for the overdispersion are 

equally plausible and whilst less straightforward they can be fitted using either Markov Chain 

Monte Carlo (MCMC) methods or methods involving numerical integration and maximum 

likelihood. There is potentially a long list of possible distributions that are appropriate to 

describe continuous and non-negative variables but it is not practicable to consider them all.  

Distributions that have been proposed and used include the lognormal, Weibull, variable 

shaped gamma and others, in addition to the standard gamma (see Maher and Summersgill 

(1996), Maher and Mountain (2007), Lord and Park (2008), for example).  

The general form of model can be formulated as: 𝑦𝑖 is Poisson distributed with a mean 𝑚𝑖 and 

𝑚𝑖 =  𝑓𝑖𝜇𝑖  (𝑖 =  1, . . 𝑛) where the site factors 𝑓𝑖 are randomly and independently drawn for 

each site i from an appropriate overdispersion distribution scaled so that its mean is 1. Each 

overdispersion distribution has a parameter that measures its variability or spread: for example 

the shape parameter r in the gamma, the standard deviation  in the lognormal, and v in the 

Weibull. Table 1 shows the density functions for these distributions, the parameterisation used, 

and the expressions for the mean, variance, and the coefficient of variation, 𝐶𝑣 (the ratio of 

standard deviation to mean).  

Table 1: Density functions of distributions, and expressions for 𝑬(𝑿), 𝑽𝒂𝒓(𝑿), 𝑪𝒗 

Distribution Density function: 𝒇(𝒙) E(X), Var(X), Cv 

Gamma 

 

𝑋 ~ 𝐺(𝑟, ) 

1

Γ(𝑟)
𝛽𝑟𝑥𝑟−1 exp(−𝑥) 

𝐸(𝑋) =
𝑟


,  𝑉𝑎𝑟(𝑋) =

𝑟


2 , 𝐶𝑣 =

1

√𝑟
 

𝐸(𝑋) = 1 needs 𝑟 =  

Lognormal 

 

𝑙𝑜𝑔(𝑋) ~ 𝑁(𝑑, 𝜎2) 

1

𝑥
√

1

2𝜋𝜎2
exp (−

(ln(𝑥) − 𝑑)2

2 𝜎2
)  

𝐸(𝑋) = exp (𝑑 +
𝜎2

2 
) 

𝑉𝑎𝑟(𝑋) = 𝑒𝜎2−1e2d+σ2
 

𝐶𝑣 = √(𝑒𝜎2
− 1) 

E(X) = 1 needs 𝑑 = −
2

2
 

Weibull 

 

𝑋 ~ 𝑊(𝑣, ) 
𝑣𝜆𝑥𝑣−1 exp(−𝜆𝑥𝑣) 𝐸(𝑋) =

1

𝜆
1

𝑣⁄
 Γ (1 +

1

𝑣
) 
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𝑉𝑎𝑟(𝑋) =
1

𝜆
2

𝑣⁄
 [Γ (1 +

2

𝑣
)

− Γ2 (1 +
1

𝑣
)] 

𝐶𝑣 = √
Γ (1 +

2
𝑣)

Γ2 (1 +
1
𝑣)

− 1  

𝐸(𝑋) = 1 needs  𝜆 = (Γ (1 +
1

𝑣
))

𝑣

 

 

 
Figure 1: gamma, lognormal and Weibull 

density functions, with 𝑬(𝑿) =  𝟏  and 

𝑪𝒗  =  𝟎. 𝟖. 

 
Figure 2: Weibull density functions, with 

𝑬(𝑿)  =  𝟏 and 𝑪𝒗 = 1.0, 0.5 and 0.25. 

 

Figure 1 shows a comparison of these density functions when all have a mean of 1, and 𝐶𝑣 

values of 0.8. To achieve this, the parameter values required are: r =  = 1.563 (gamma), d = -

0.247 and  = 0.703 (lognormal), and  = 0.913 and v = 1.258 (Weibull). Figure 2 shows 

Weibull densities for three different 𝐶𝑣  values, all with unit mean, showing very different 

shapes. Clearly the choice of distribution may play a role in determining the goodness of fit 

achievable from any model for overdispersion, but the degree of dispersion (𝐶𝑣 value) is the 

dominant factor.  

The key question is whether, for any particular data set, the regression parameter estimates are 

sensitive to the distribution used, and whether one distribution fits significantly better than 

others. We fit the PAM in (1) to the links data (with the 5-year totals and the average flow) to 

obtain estimates of 𝑎, 𝛼  and 𝑏 , using gamma, lognormal and Weibull distributions. The 

resulting parameter estimates (and standard errors in parentheses) are shown in the first three 

rows of Table 2. These models were all fitted using MCMC methods, in WinBUGS (Lunn et 

al, 2000), using a burn-in stage of 5000 iterations, followed by 25000 further iterations to 
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collect the statistics on the parameters. Core parts of the WinBUGS code for the lognormal 

model are given in Appendix A1. 

It can be seen that there is very little difference between the parameter estimates for the gamma, 

lognormal and Weibull models, and that the values of the dispersion parameters are such that 

the implied coefficients of variation 𝐶𝑣 are again very similar. Of the three models, the Weibull 

has the lowest value of the DIC and so would be the preferred model. 

Table 2: Comparison of estimates from six models 

Model 𝒂 𝜶 𝒃 dispersion 𝑪𝒗  DIC 

Gamma 0.4532 (0.14) 0.7352 (0.12) 0.0396 (0.013) r = 2.976 (0.55) 0.5797 1233.57 

Lognormal 0.4363 (0.12) 0.7489 (0.11) 0.0385 (0.013)  = 0.5652 (0.05) 0.6135 1243.95 

Weibull 0.4624 (0.13) 0.7227 (0.11) 0.0405 (0.012) v = 1.806 (0.18) 0.5731 1226.87 

VS-G 0.4493 (0.14) 0.7417 (0.11) 0.0394 (0.014) 
c = 0.8667 (0.16) 

n = -0.2966 (0.14) 

0.8667 (=1) 

0.4378 (=10) 
1221.93 

VS-LN 0.4542 (0.14) 0.7370 (0.11) 0.04161 (0.015) 
c = 1.029 (0.28) 

n = -0.3669 (0.18) 

1.029 (=1) 

0.4421 (=10) 
1236.84 

VS-W 0.4941 (0.13) 0.7024 (0.10) 0.03924 (0.014) 
c = 0.8621 (0.17) 

n = -0.3299 (0.14) 

0.8646 (=1) 

0.4311 (=10) 
1217.34 

L&P VS-G 0.5156 (0.16) 0.6892 (0.10) 0.0411 (0.013) 

a = 0.3868 (0.433) 

 = 0.8220 (0.375) 

b = 0.1352 (0.086) 

- 1225.46 

 

Lord and Park (2008) illustrate the application of what they refer to as a generalised negative 

binomial distribution in which they allow the NB dispersion parameter (or reciprocal of the 

shape), as well as the mean 𝜇, to be a regression function of the covariates instead of taking a 

fixed value for all sites. This form of model is rather similar to the variable-shaped NB, 

suggested by Cameron and Trivedi (1986), and applied by Maher and Summersgill (1996), in 

which r the shape parameter, instead of being constant for all observations, is a function of the 

predicted mean . The Lord and Park model (denoted by L&P VS-G) was fitted to the links 

data, with the shape r having the same functional form as  in (1) but with parameters a,  

and b instead of a,  and b.  Code is given in section A2 of the Appendix to show how this 

was fitted in R.  The technique adopted was to fit the fixed-shape negative binomial model first 

(using the function glm.nb), and use the estimates of the parameters k,  and b to provide 

initial values (together with n = 0, and c = r where r is the estimate of the fixed shape) in a 

maximum likelihood estimation routine using the function maxLik.  The NB likelihood for a 

single observation is given in (2).The estimates obtained are very close to those obtained from 

WinBUGS which are shown in Table 2 (the WinBUGS estimates are shown in order to allow 

comparison of the parameter estimates and DIC values with those of the other models in Table 

2). 

 𝑝(𝑌 = 𝑦) =  
(𝑦+𝑟)

𝑦!(𝑟)
(

𝑟

𝑟+
)

𝑟

(


𝑟+
)

𝑦

       (2) 
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Figure 3 shows a scatter plot of r, the fitted shape value, versus the predicted  values, from 

which a clear and strong relationship can be seen. So it is clear that the shape of the gamma 

overdispersion distribution should be allowed to vary, but it would seem that this is best 

achieved by allowing r to be a function of , as this is a more parsimonious and smoother way 

than fitting r as a  regression function as done by Lord and Park. Therefore we allow r to be a 

power function of . However, because the shape and the coefficient of variation in the gamma 

are related (with 𝐶𝑣 = 1/√𝑟), this is equivalent to expressing 𝐶𝑣 as a function of 𝜇, and the 

power function 𝐶𝑣  =  𝑐𝜇𝑛 seems appropriate. For reasons that will be become clear later, this 

is the form in which we prefer to express the dependence on 𝜇. This variable-shape gamma (or 

VS-G) model has then additional flexibility over the standard gamma, because of the extra 

parameter, 𝑛, and it includes, as special cases, the standard gamma (𝑛 = 0) and the quasi-

Poisson (𝑛 = −½).  

 

Figure 3: scatter plot of fitted shape 𝒓̂ versus ̂ from the Park and Lord generalized 

gamma model 

The results from fitting this VS-G model are given in Table 2, from where it can been that the 

VS-G gives a lower DIC value (1221.93) than both the fixed-shape gamma (1233.57) and the 

Lord and Park model (1225.46).  The spread, as measured by the coefficient of variation 𝐶𝑣 

then depends on : for example, if 𝜇 =  1, 𝐶𝑣  = 0.867, whilst if 𝜇 =  10, 𝐶𝑣  = 0.438. The 

average number of accidents per site over the five years corresponds to 𝜇 =  2.98, giving  𝐶𝑣 

= 0.627 and shape parameter 𝑟 = 2.54, which is quite close to the values of 𝐶𝑣 for the other 

three fixed-shape models. 
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The reason why the spread of the overdispersion distribution reduces as the predicted value 

increases is probably because of aggregation effects.  Sites with higher  are generally sites 

that have longer length, or have long observation period, or have more traffic.  A longer link, 

for example, might be thought of as being an aggregate of several shorter sub-links, with similar 

but not necessary identical overdispersion errors.  The aggregation of these sub-links with 

partly correlated errors leads to a reduction in the relative amount of overdispersion. 

It is possible to bring the same type of flexibility into the other two distributions. By inverting 

the expression for 𝐶𝑣 in Table 1 for the lognormal distribution, it is possible to see how the 

value of 𝜎2 for a site must be related to the predicted mean 𝜇, for any particular values of c and 

n in 𝐶𝑣 = cn.  

 

Figure 4: plot of 𝒍𝒐𝒈(𝑪𝒗) versus 𝒍𝒐𝒈(𝟏 𝝂⁄ )for the Weibull model, showing their close 

approximation  

For the Weibull distribution it is not possible to invert the relationship between 𝐶𝑣  and v. 

However, the plot of log(𝐶𝑣) versus log(1 ν⁄ ) in Figure 4 reveals an almost linear relationship 

over the range of practical interest: v > 1, and 𝐶𝑣 < 1. Therefore, if we allow 1/𝑣 to follow a 

power law with 𝜇 in the Weibull case, it is almost equivalent to assuming the same power law 

relationship between 𝐶𝑣 and 𝜇 as used in the gamma and lognormal cases. Hence we can fit 

models VS-G, VS-LN and VS-W that are each generalisations of the gamma, lognormal and 

Weibull cases in which the spread of the distribution is not fixed, but is related to the predicted 

mean. The results from these three cases are shown in the lower part of Table 2. It can be seen 

that the goodness of fit, given by the DIC value, is markedly improved using a variable-shape 
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for all three distributions, and that the lowest is that from the VS-W case (DIC = 1217.34). 

WinBUGS code illustrating the VS-W model is shown in section A3 of the Appendix. 

Overall, then, we would conclude that the choice of distribution has only a limited effect on 

the fitted value and a marginal effect on the goodness-of-fit but that the freedom of allowing 

the shape parameter in the gamma to vary with the mean has a more significant effect, and that 

this beneficial effect is of similar magnitude for each of the three distributions. For this 

particular data set, the variable-shaped Weibull distribution provides the best-fitting 

description of the overdispersion  

Estimation of long-term trend and goodness-of-fit criteria 

Suppose we have a set of predictions 𝜇𝑖 from the TRL model for a set of sites (i = 1, .. N) , and 

observed accident frequencies 𝑦𝑖. To update the model, it is thought appropriate to modify the 

constant 𝑎 in the model, and hence estimate a factor 𝑘 by which the model predictions should 

be scaled to make them produce reliable predictions of the current frequencies. A number of 

summary statistics are available, to measure the goodness-of-fit and to compare the 

performance of different models, some of which have been suggested by Lord and Park (2008). 

Examples include the root mean squared error (RMSE), the root mean squared relative error 

(RMSRE), scaled deviance (SD) and the mean absolute deviation (MAD). These statistics will 

generally provide differing estimates of the optimal scaling factor 𝑘. For example, if we choose 

to scale so as to give unbiased predictions, the estimate will be: 𝑘1 = ∑ 𝑦𝑗 ∑ 𝜇𝑗⁄  . This 

minimises the absolute value of the mean error (AME): |∑(𝑦𝑗 − 𝑘1𝑗
)| 𝑁⁄  by making it zero. 

If instead we minimise the RMSE, it can be shown that this gives: 𝑘2 = ∑ 𝑦𝑗𝜇𝑗 ∑ 𝜇𝑗
2⁄ . Again, 

if we minimise the RMSRE, it can be shown that this gives: 𝑘3 = (1 𝑁⁄ ) ∑ 𝑦𝑗 𝜇𝑗⁄ . Next if we 

maximise the log likelihood in a NB fit, this minimises the (NB) scaled deviance. Finally we 

could choose to minimise the MAD, so that 𝑘5 minimises ∑ |𝑦𝑗 − 𝑘5𝑗
| 𝑁⁄ . 

To illustrate, consider the 341 rural single carriageway links, and the TRL model (1), with no 

scaling factor. As explained earlier, because of the vastly disproportionate effect of the 

correction term exp(2𝑏 𝐿⁄ ) for short links referred to earlier, it was omit those seven links of 

length of 50m or less.  There are 996 observed accidents, whilst the sum of the (modified) 

predictions from the TRL model in (1) is 840.8. The scatter plot of 𝑦 versus 𝜇 is shown in 

Figure 5. 
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Figure 5: Scatter plot of observed accidents versus those predicted by the TRL model 

Table 3 shows the values of all five scaling factors, and the goodness of fit measures obtained 

when using each scaling factor. The optimum values are italicised, and by definition occur on 

the main diagonal. 

Table 3: Comparison of goodness-of-fit measures for five estimators of scaling factor 

Scaling Factor AME RMSE RMSRE SD MAD 

𝑘1 = 1.185 0.000 2.662 1.107 0.561 1.851 

𝑘2 = 1.238 0.134 2.657 1.113 0.564 1.873 

𝑘3 = 1.093 0.217 2.692 1.104 0.562 1.830 

𝑘4 = 1.151 0.085 2.671 1.105 0.560 1.841 

𝑘5 = 1.052 0.334 2.719 1.105 0.566 1.826 

 

There is no unique, best way of determining the scaling factor, because the different methods 

each optimise a different criterion for goodness of fit, although in many cases there is only a 

small difference between the values for the five estimators. All of the criteria are sensible and 

desirable (eg unbiassedness, minimum RMSE, max likelihood etc). The same considerations 

hold when we wish to compare the performance of alternative models: which is the best fitting 

model will depend on the criterion used to measure the goodness-of-fit of the models. 

As well as summary statistics, graphical methods have been proposed for evaluating or 

comparing model performance. One such method is the CURE plot (Hauer and Bamfo, 1997) 

as used, for example, in Lord and Park (2008). The CUmulative REsiduals (𝑦𝑖 − 𝜇𝑖) are plotted 
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against the ordered explanatory variables (or the fitted values) to examine how closely the plot 

follows the zero-residual line, or horizontal axis. The main benefit of this plot is that it 

aggregates the data, damping random fluctuations in individual residuals. Substantial 

deviations from the horizontal axis indicate a systematic weakness in the model. 

A plot of raw residuals versus the flow values for the rural links data set is not very informative, 

because of the large amount of variability in each individual point. Figure 6 shows a CURE 

plot for the same data (with the predictions scaled by a factor of 𝑘1 = 1.185, in order to give 

unbiassedness) and contains more useful information due to the degree of aggregation (the code 

for this is given in section A4 of the Appendix). For example, it can be seen that for flow values 

between 5 and 8.5, there is a steady accumulation of positive residuals; followed by a steadily 

decline for flows between 8.5 and 11; then a shallow rise between 11 and 16; a steep fall 

between 16 and 20; and then a steady rise from there to 29 or so. Interpretation is therefore 

through the rates of change in the graph rather than the deviations from the horizontal axis: the 

steady rises and falls indicate a run of observations where the residuals are mainly positive or 

mainly negative.  

 

Figure 6: CURE plot of cumulative residuals against flow 
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Figure 7: Plot of observed versus predicted and standardised residuals versus predicted 

(for individual sites and in bins of size 10) 

An alternative, and simpler, approach is to use “binning”, in which the sites are sorted by 

ascending order of the predicted value and grouped into bins containing equal numbers of 

successive sites. The top left-hand plot in Figure 7 shows the observed value versus the 

predicted, for all 334 individual sites; and the top right plot is of the standardised residuals 

versus the predicted values. The lower plots are similar but for the grouped data, using 34 

“bins” each containing nine or ten sites. In the left-hand plot, the mean of the observed values 

in each group is plotted against the mean of the predictions, and in the right-hand plot the mean 

of these standardised residuals is plotted against the mean predicted value for each group. The 

horizontal dotted lines in the residual plots indicate approximate 95% confidence bands. It can 

be seen that, by aggregating the data, a lot of the variability is removed and this permits a more 

informative view of the data and any systematic deviations. 
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Estimation of current trend: a multinomial model 

The links data consists of annual accident frequencies 𝑦𝑖𝑡 and annual flows 𝑄𝑖𝑡 over the period 

2005-2009 (𝑖 = 1, … ,334; 𝑡 = 0, … ,4), along with link lengths 𝐿𝑖 and other design variables 

that do not change over time. The disaggregate nature of the data (in the sense of disaggregation 

by year and not by accident type) allows the estimation of a current trend term of the form 

exp(𝛽𝑡) that multiplies the base year (2005) prediction so that we have: 

 
𝑖𝑡

= 𝑎 𝑄𝑖𝑡
𝐿𝑖 exp (

2𝑏

𝐿𝑖
) exp (𝑡)       (3) 

as the predictive model. 

Whilst we could use the annual data as the observational unit, this involves the assumption of 

complete independence between all observations. This issue will be discussed in the next 

section. An alternative approach that avoids this assumption is to consider the model in two 

linked parts. In the first we model the aggregate data: using the total accidents at a site 𝑦𝑖 and 

relating it to the average flow 𝑄̅𝑖 to obtain estimates of the parameters a,  and b. In the second 

part, we model the distribution of the total accidents at each site across the five years via a 

multinomial distribution. Using the estimate of 𝛼, the probability of observing the distribution 

of 𝑦𝑖 (total accidents at site i) is given by  

𝑃(𝑦𝑖1, … 𝑦𝑖5) =
𝑦𝑖!

𝑦𝑖1!..𝑦𝑖5!
𝑝𝑖1

𝑦𝑖1 … 𝑝𝑖5
𝑦𝑖5       (4) 

where the probabilities are given by: 

𝑝𝑖𝑡 =
𝑄𝑖𝑡
exp (β𝑡)

∑ 𝑄𝑖𝑠
exp (β𝑠)𝑠

         (5) 

Then, to find the maximum likelihood estimate of 𝛽, we need to maximise  

𝑧 = ∑ ∑ 𝑦𝑖𝑡log (𝑝𝑖𝑡)𝑡𝑖          (6) 

with respect to the single parameter 𝛽 using, for example, the maxLik function in R on the log 

likelihood function in (6) . To complete the loop between parts 1 and 2, we iterate between 

estimation of the trend and the aggregate fitting, with a revised set of weighted average flows: 

𝑄̅𝑖 = ∑ 𝑤𝑡𝑄𝑖𝑡𝑡    where 𝑤𝑡 =
exp (𝛽𝑡)

∑ exp (𝛽𝑠)
       (7) 

and repeat until convergence. R code for this is in section A5 of the Appendix. 

To illustrate, consider the re-fitting of the model (1) using annual data on accidents and flows, 

with an exponential trend term. In the first iteration we assume 𝛽 = 0, and an NB model is 

fitted to the aggregate data to give estimates for a,  and b. In the second half of the iteration, 

these estimates are used to fit the multinomial model in (5) and (6) to re-estimate 𝛽. Table 4 

shows the estimates at the end of successive iterations. The rapid convergence is clear, even 

with the excessive level of precision quoted here. 
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Table 4: Convergence of the multinomial model 

Iteration 𝑎 𝛼 𝑏 𝛽 

1 0.08872734 0.7301594 0.03350563 -0.06004986 

2 0.08848451 0.7310552 0.03347281 -0.06004527 

3 0.08848452 0.7310551 0.03347281 -0.06004527 

4 0.08848452 0.7310551 0.03347281 -0.06004527 

 

The advantage of this approach is its simplicity: it uses the aggregate accident data in fitting 

the predictive model, and the multinomial model to estimate the trend (which here is a 100 ∗

(1 − 𝑒𝛽) ≈ 6% per year reduction in accident risk). Crucially in this method, no assumptions 

are made about the independence of observations from difference years at the same site: a topic 

which will be discussed in the next section. 

Assumption of independence  

When using disaggregate data for the accident frequencies 𝑦𝑖𝑡 and flows 𝑄𝑖𝑡 the question arises 

as to whether it is safe to assume independence between years at each site. Given that the 

overdispersion error represents the effect of the unobserved design variables of a site, it would 

seem likely that this effect remains the same from one year to another at any site, so that 

although the Poisson errors are independent, the overdispersion errors are common (or at least 

highly correlated) across different years at any site. Therefore if the number of accidents at site 

i in year t is denoted by 𝑦𝑖𝑡 it may be better to assume that these are drawn randomly and 

independently from Poisson distributions with means 𝑚𝑖𝑡  and that 𝑚𝑖𝑡 = 𝑓𝑖  𝜇𝑖𝑡  where the 

factor 𝑓𝑖 is randomly drawn from the overdispersion distribution independently for each site i 

but is constant for all years t at any site. The question arises as to whether the fitted model from 

this formulation is much different from that from a model in which independence between the 

𝑦𝑖𝑡 is assumed for all sites and all years. 

We therefore have two alternative versions of the model: 

M1: 𝑦𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚𝑖𝑡) where  𝑚𝑖𝑡 = 𝑓𝑖𝑡𝜇𝑖𝑡 and the 𝑓𝑖𝑡 are independent for all 𝑖, 𝑡. 

M2: 𝑦𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚𝑖𝑡) where  𝑚𝑖𝑡 = 𝑓𝑖𝜇𝑖𝑡 and the 𝑓𝑖 are independent for all 𝑖. 

These models were fitted to the links data using WinBUGS for the four overdispersion 

distributions (gamma, lognormal, Weibull and VSG) and for the two versions of each model. 

The results are shown in Table 5. In the VSG, the coefficient of variation 𝐶𝑣 = 𝑐 𝜇𝑛 where  

is the per-year average prediction for a site. The WinBUGS code for version M2 is given in 

section A6 of the Appendix. 

Table 5: Results from models with alternative independence assumptions 

Model 𝑎 𝛽 dispersion 𝐶𝑣  DIC 

M1: gamma 
0.0733 

(0.0043) 
-0.063 r = 3.475 0.5364 3065.8 
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M2: gamma 
0.0714 

(0.0046) 
-0.060 r = 2.934 0.5839 2969.2 

M1: lognormal 
0.0732 

(0.0043) 
-0.062 

 = 

0.5144 
0.5504 3088.3 

M2: lognormal 
0.0716 

(0.0045) 
-0.060 

 = 

0.5502 
0.5946 2980.2 

M1: Weibull 
0.0732 

(0.0044) 
-0.062 v = 2.047 0.5120 3052.2 

M2: Weibull 
0.0716 

(0.0045) 
-0.061 v = 1.799 0.5752 2963.0 

M1:VSG 0.0730 -0.059 
c = 0.519 

n = -0.264 

0.623 ( = 0.5) 

0.466 ( = 1.5) 
3049.2 

M2: VSG 
0.0730 

(0.0048) 
-0.062 

c =0.529 

n = -0.298 

0.650 ( = 0.5) 

0.469 ( = 1.5) 
2957.6 

 

The results show the superiority of the VSG over the three other models but more strongly 

show the superiority of version M2 in each case. This confirms that the overdispersion error is, 

for any site, constant from year to year. The DIC for model (M1) indicates this assumption of 

independence (in both 𝑖 and 𝑡) is not valid. 

If it is not safe to assume independence between years at the same site, it might also be the case 

that it is not safe to assume independence between all links on the same scheme. Wang et al 

(2009), and Noland and Quddus (2004) have fitted models that include a spatial autocorrelation 

effect: in the former case, between neighbouring segments of a motorway when investigating 

the possible effect of congestion on accident frequency; and in the latter, between neighbouring 

wards when considering the effect of deprivation on road casualties. Recall that in the rural 

links data there are 334 links drawn from 73 schemes: some schemes contain just a single link, 

whilst others comprise up to ten links. Therefore if link 𝑖 is part of scheme 𝑛, it could be that 

there is correlation between the overdispersion errors for links on the same scheme, on the 

grounds that the design of one the link within a scheme will be similar to that of another link 

within the same scheme. In an extreme case, with perfect correlation, the 𝑦𝑖 may be drawn 

randomly and independently from Poisson distributions with means 𝑚𝑖 = 𝑔𝑛𝜇𝑖  where the 

overdispersion factor 𝑔𝑛  is randomly and independently drawn from the overdispersion 

distribution for each scheme 𝑛 but is the same for all links 𝑖 within that scheme. 

Here we can formulate three alternative versions of the model: 

M1: 𝑦𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚𝑖𝑡) where  𝑚𝑖𝑡 = 𝑓𝑖𝜇𝑖𝑡 and the 𝑓𝑖 are independent for all 𝑖. 

M2: 𝑦𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚𝑖𝑡) where  𝑚𝑖𝑡 = 𝑔𝑛𝜇𝑖𝑡 and the 𝑔𝑛 are independent for all 𝑛. 

M3: 𝑦𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚𝑖𝑡) where  𝑚𝑖𝑡 = 𝑓𝑖𝑔𝑛𝜇𝑖𝑡 and the 𝑓𝑖 are independent for all 𝑖, and 

the 𝑔𝑛 are independent for all 𝑛. 

These were fitted for the gamma model, with results as in Table 6. In each of M1 and M2 there 

is just one source of overdispersion error: from the link and the scheme respectively. In the 
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case of M3 there are two separate sources: from the link (with shape 𝑟𝑖) and from the scheme 

(with shape 𝑟𝑛). It can be seen from the results that the best fitting model is M1, as it clearly 

has the lowest DIC value. The very large shape value for the scheme errors in M3 confirms 

that there is no virtually no correlation between the errors for different links within the same 

scheme. So, the conclusion is that it is safe to assume independence between all links, including 

those on the same scheme: that is there is no discernible scheme effect. 

Table 6: comparison of three model versions, investigating scheme effects 

Model a  dispersion Cv DIC 

M1: gamma 
0.0714 

(0.0045) 
-0.059 𝑟𝑖  =  2.925 0.5364 2969.1 

M2: gamma 
0.0781 

(0.0058) 
-0.058 𝑟𝑛 =  6.300 0.5839 3073.9 

M3: gamma 
0.0721 

(0.0049) 
-0.061 

𝑟𝑖 =  3.053 
𝑟𝑛 =  259.6 

0.5504 2992.4 

 

Similar fits were carried out for other distributional forms (Weibull and lognormal), and the 

conclusions were the same. 

Software for model fitting 

As mentioned earlier, the formulation of a model and the assumptions made within it, may be 

influenced by the software available for fitting the required regression models. For many years 

the NB (Poisson + gamma) model was the standard choice largely because of it could be fitted 

using a wide range of statistical packages, whereas few of these packages could be used to fit 

a Poisson + lognormal or Poisson + Weibull regression model. The advent of MCMC methods 

implemented in open-source packages such WinBUGS (Lunn et al, 2000) has vastly widened 

the range of possible model models that can be fitted, and in a relatively simple manner. In 

principle any form of overdispersion distribution can be assumed for the 𝑓𝑖 or 𝑔𝑛 factors and 

the regression parameters estimated. MCMC methods are simulation-based and are therefore 

considerably more time-consuming to run than numerically-based NB regression models, and 

this may well be a severe disadvantage when the data set is large or there are many different 

models that need to be run. Furthermore, there are convergence problems and instabilities that 

can arise and this too may serve as a discouragement to apply the approach, although the 

models whose results were shown in Table 2 were all fitted without such problems occurring.  

Deterministic methods that take little time to run and for which there are convenient 

implementations in readily available software such as R, will always have an advantage over 

MCMC methods. MCMC methods are in principle “exact” but only with the use of very large 

numbers of iterations; with acceptably short run times the results have to be regarded as 

approximate. As an illustration, we have compared the results obtained from fitting the model 

in (1) for the links data, with 5-year total accidents and average flow, for two run lengths using 

MCMC methods (5000 and 25000 iterations respectively, after 5000 iterations for burn-in for 

each case) with the results obtained from exact, deterministic methods using R. These 
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comparisons are for the gamma and variable-shape gamma models for overdispersion. The R 

function glm.nb was used for the standard gamma case, whilst for the VS-gamma model the 

log likelihood function was maximised using the generic optimiser maxLik function in R, 

with initial values for the parameters a,  and b given by the estimates from the fixed-shape 

fit, with c = the shape estimate, plus n = 0. The estimates are shown in Table 6, from which it 

can be observed that there is very close agreement between the estimates from R and the 

MCMC method with the larger number of iterations. 

Table 6: comparison of estimates from MCMC method and max likelihood methods 

Model Method 𝑎 𝛼 𝑏 dispersion 

gamm

a 

MCMC 

5000 iterations 
0.5012(0.1607) 0.6956(0.1148) 

0.0394(0.01244

) 
r = 3.011(0.5654) 

gamm

a 

MCMC 

25000 

iterations 

0.4532(0.1437) 0.7352(0.1212) 
0.0396(0.01257

) 
r = 2.976(0.5481) 

gamm

a 
R 0.4451(0.1364) 

0.7210 

(0.1163) 

0.0411 

(0.0128) 
r = 2.950(0.5330) 

VS-G 
MCMC 

5000 iterations 
0.4179(0.1200) 0.7679(0.1075) 0.0389(0.0146) 

c = 0.8455(0.1498) 

n = -0.2794(0.1355) 

VS-G 

MCMC 

25000 

iterations 

0.4493(0.1435) 0.7417(0.1119) 0.0394(0.0141) 
c = 0.8667(0.1592) 

n = -0.2966(0.1351) 

VS-G R 0.4461(0.1353) 
0.7278 

(0.1136) 

0.0391 

(0.0143) 

c = 0.8699 (0.1486) 

n = -0.3114 (0.1263) 

 

One recently-developed approach that removes the problem of excessive run-times in Bayesian 

MCMC methods for some classes of model formulation is that known as INLA (Integrated 

Nested Laplace Approximations) – see Rue et al (2009). These can be used when there are 

random Gaussian, or Normal, effects in an additive Bayesian regression model and provide 

very good approximate results in a matter of seconds of computation time for problems which 

might take hours using MCMC Bayesian methods. For example, the Poisson + lognormal 

model can be fitted using this approach, and can be implemented via the R software package 

using the R-INLA command (see http://www.r-inla.org/ ). 

To illustrate, we fit the model in (2) using annual accident frequencies yit, so as to estimate the 

parameters a, , b, and  using a lognormal model to describe the overdispersion for the links 

(but assuming the same overdispersion error for each year at any site). The model is fitted using 

MCMC methods, with 25,000 iterations, in WinBUGS and then using INLA in the R package. 

Whilst the run of WinBUGS takes of the order of 10 minutes, R-INLA takes about 10 seconds. 

The estimates are shown in Table 7. Here, 𝑘 = log(𝑎), and 𝜏 is the precision parameter (=

1 𝜎2⁄ ) in the lognormal. There is close, but not perfect, agreement between the two sets of 

estimates. We need to recognise, of course, that the estimates from WinBUGS are approximate 

for a finite number of iterations. Therefore it seems that R-INLA provides an acceptable and 

much faster alternative to obtain Bayesian estimates for this type of model (when the random 

http://www.r-inla.org/
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effects are normal) than the use of MCMC methods. The R code for fitting the INLA model is 

given in section A7 of the Appendix. 

Table 7: comparison of lognormal estimates from MCMC methods and R-INLA 

Method 𝑘 𝛼 𝑏 𝛽 𝜏 

MCMC 
-

2.370(0.3344) 
0.7515(0.1256) 0.03856(0.01274) 

-0.05968 

(0.02274) 
3.203(0.6306) 

R-

INLA 

-2.439 

(0.3041) 

0.7177 

(0.1134) 

0.03974 

(0.01235) 

-

0.06015(0.02251) 
3.3792(0.6507) 

 

Overall, there is now little excuse for adopting the conventional NB model without at least the 

consideration of alternative forms or consideration of the possibility of the sensitivity of the 

fitted model to the assumed form of overdispersion distribution. Maher and Mountain (2007) 

for example investigated the effect of the assumed form of distribution on estimates of 

regression to the mean and applied this to the findings from a UK study into the effectiveness 

of speed cameras (Gains et al, 2005). Park and Lord (2007), El-Basyouny and Sayed (2009), 

and Ma et al (2008) have all used Poisson-lognormal predictive accident models. 

Prediction uncertainty 

The purpose of fitting models is generally to use them for prediction. Whilst the fitted model, 

such as that in (1) or (2), provides a point estimate for 𝜇, it is usually desirable to have an idea 

of the uncertainty that should be attached to this prediction of the number of accidents to be 

expected at a new site: either in the form of a standard error or as a confidence interval. Since 

𝑚 = 𝑓𝜇 , with 𝐸(𝑓) = 1 , we have log(𝑚) = log(𝑓) + log(𝜇) , so that because of the 

independence of the log(𝑓) and log(𝜇)variables, we can write: 

𝑉𝑎𝑟(log(𝑚)) = 𝑉𝑎𝑟(log(𝑓)) +  𝑉𝑎𝑟(log(μ))    (8) 

Because of this additive form, and the fact that both 𝜇 and 𝑚 are non-negative, it is best to 

obtain confidence intervals on the log scale, and then transform. The second term on the right 

hand side is the variance of the linear predictor: 𝜂 = log(𝜇) and, following a fit in R, 𝑉𝑎𝑟(𝜂) 

is given by the function predict for any specified new sites with given values of Q, L and T. 

Since 𝐸(𝑓) = 1, 𝑉𝑎𝑟(log(𝑓)) is given approximately by 𝐶𝑣
2  which, for the gamma case, is 

equal to 1/𝑟 where 𝑟 is the shape estimated in the fitting process. 

For example, consider the model in (1) with gamma overdispersion, the estimates from which 

are given in the third row of Table 6, fitted using R. Details of the calculations, and the R code, 

for the calculations and plotting of 95% CIs for both 𝜇 and 𝑚 can be found in section A8 of 

the Appendix. Figure 8(a) shows a plot of the 95% confidence intervals for 𝜇 and 𝑚, for sites 

that have values of 𝑄 ranging from 0 to 60 (the range in the fitting data set is from 2 to 42), 

whilst holding 𝑇 at 5 years and the link length 𝐿 at 1km (close to the mean for the data set). It 

is noticeable how the CI widens appreciably as 𝑄 increases, especially beyond the range in the 

original data. It can also be noted how much wider the confidence intervals are for 𝑚 compared 

with those for 𝜇. 
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Figure 8: plots showing the 95% confidence intervals on predicted values of 𝝁  and 𝒎  

as (a) 𝑸 varies, and (b) as 𝑳 varies (gamma case, using R). 

 

Similarly if we investigate the prediction uncertainty when we vary 𝐿 over the range 0 to 2 

kms, whilst keeping 𝑄 = 14 (the approximate mean of the data), and 𝑇 = 5 years, we obtain the 

plot in  Figure 8(b), where the rapid rise in the predicted number of accidents is evident as L 

becomes small. The CI width also increases rapidly. This effect was discussed earlier and as a 

consequence seven short links (of less than 50m) were omitted from the fitting process. 

Altogether these plots illustrate the potential dangers in extrapolating beyond the extent of the 

fitting data set.  

For models fitted using WinBUGS, similar information can be obtained rather simply by 

adding a set of dummy links for which predictions, and their uncertainties, are to be calculated. 

These extra links do not affect the model fitting (they have no values for the observed numbers 

of accidents) but use the fitted model. WinBUGS code for this can be seen in Appendix A6. In 

Figure 9, for example, a lognormal distribution was assumed for the overdispersion (the model 

whose results were given in second row of Table 3). In addition to the 334 real links, 60 dummy 

links were included. These had no observed accident frequencies, but all had T = 5 years, and 

L = 1km, and values of flow Q ranging from 1 to 60. At the end of the model run, using 25,000 

iterations following 5000 iterations for burn in, the output showed not only the statistics for the 

model parameters a, b,  and  but also for the i and mi (i = 1, ... 60), including the mean, 

2.5% percentile and 97.5% percentile. From these the graphs in Figure 9(a) can be drawn. 

Figure 9(b) shows the same sort of results for variation in the link length L which was allowed 

to vary over the range 0 to 2 kms. Details of the WinBUGS code to produce these results are 

given in section A7 of the Appendix. The slight wobbles in the upper limit for 𝑚 are due to the 

process being Monte Carlo. The overall nature of these plots for this lognormal case, fitted in 

WinBUGS, is very similar to those produced for the gamma case, fitted in R, in Figure 8, 

thereby showing a reasonable degree of robustness of the uncertainty estimation to the 

distributional assumptions. 
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Figure 9: plots showing the 95% confidence intervals on predicted values of 𝝁 and 𝒎  

as (a) 𝑸 varies, and (b) as 𝑳 varies (lognormal case, using WinBUGS). 

 

Conclusions 

The paper has reported on a number of methodological issues that have arisen in the fitting, or 

re-fitting, of predictive accident models, here illustrated by application to data on the accidents 

occurring over a five-year period on 341 rural single-carriageway links in the UK. These issues 

are not specific to that particular type of data but may arise in a wide variety of circumstances.  

Therefore the intention is to contribute to the steadily-widening literature on the subject of 

predictive accident modelling.  

The widely-used negative binomial regression model implies that the overdispersion 

distribution is gamma.  Developments in statistical modelling software (especially the wider 

use of MCMC methods) have demonstrated that other distributions such as the lognormal and 

Weibull are practicable alternatives to the gamma, and may indeed allow a better fit to the data.  

The paper has shown that when these alternative models are fitted, their resulting 𝐶𝑣 values are 

very close, and that more substantial improvements in goodness-of-fit come from allowing this 

coefficient of variation to depend on the predicted mean  in a power function.  The form and 

effect of this additional freedom is somewhat similar to that adopted by Lord and Park (2008), 

but uses fewer parameters.  This variable shape device 𝐶𝑣 = 𝑐𝑛 may be equally-well applied 

to other distributions, and not just to the gamma, it has been shown. 

In the context of scaling up an out-of-date model to enable it to fit well to current data, the 

question of goodness-of-fit measures arises as there are a number of seemingly sensible criteria 

by which to assess the effect of applying any given scaling factor; these include the 

unbiassedness, minimising the RMS error or the RMS relative error, and minimising the mean 

absolute deviation or scaled deviance.  The paper highlights the fact that these different criteria 

generally will result in quite different values of the scaling factor and that there is, therefore, 

no unique or correct criterion.  Others have proposed graphical approaches, such the CURE 

plot, in which the pattern of the cumulative residuals is inspected, to provide insights into where 
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the model does not fit well, or to confirm its satisfactory behaviour.  The paper has suggested 

the use of “binned” residual plots as a way of overcoming the inevitable variability associated 

with individual observations and their residuals, as it is easier to detect any systematic pattern 

without the eye being distracted by a small number of outliers. 

When using disaggregate (eg annual) flow and accident count data in order to fit a model with 

current trend estimated, it is important to consider the way in which the overdispersion errors 

are modelled.  Since the overdispersion error (the difference between a site mean 𝑚𝑖and the 

predicted value 
𝑖
) is due to site factors that are not included in the predictive model, it seems 

likely that these site factors will largely remain at a site from year to year.  Therefore it is 

important to recognise this in the model formulation and not treat the observations from all 

links and all years as if they were independent.  It is relatively easy, using MCMC methods, to 

formulate a model either with independent overdispersion errors 𝑓𝑖𝑡 or with constant (year-to-

year) errors 𝑓𝑖. Comparisons between these alternative formulations showed, with the links data 

set, that the latter model gave a far superior AIC value, confirming that the overdispersion 

effect does remain constant at any site from year to year, and that the independence model is 

incorrect.  An alternative way to fit such a model, without the need for MCMC methods was 

shown to be the use of the multinomial model to estimate the trend effect.  

Finally, whilst in principle almost any model form for the distribution of observations can be 

used and the likelihood function written as a numerical integral, and maximised using some 

general function minimisation routine, users generally are influenced in the choice of model 

formulation by the availability of software and algorithms to solve the model.  Therefore, the 

negative binomial model, with fixed shape, has dominated in predictive accident modelling 

work in recent years.  But the increasing use of MCMC methods, and the availability of other 

software now means that the typical user has a wider choice of model and solution methods 

than was previously the case.  By providing details of algorithms, and code for R and 

WinBUGS, we hope that this encourages others to try alternative model formulations and 

thereby improve the fit to their data. 
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Appendix A 

Here we give sample code (for R and WinBUGS) for some of the model fitting and other 

calculations carried out in the paper.  In each case, only the core part of the code is shown: that 

is, excluding data entry and manipulation.  The versions used were R 2.14.1 and WinBUGS 

14. 

http://www.r-project.org/
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A1.  Fitting a lognormal model in WinBUGS 
# lognormal model for SC links data 

# y = accidents; Q = flow; L = link length 

model{a <- exp(k) 

  sigma <- 1/sqrt(tau); av <- -0.5/tau  # to make E(f)=1 

  for(j in 1:NLinks){ 

    y[j] ~ dpois(m[j]) 

    m[j] <- f[j]*mu[j] 

    log(mu[j]) <- k+log(L[j])+alpha*log(Q[j])+b*(2/L[j])  

    f[j] ~ dlnorm(av, tau) 

   } # end Links loop 

 k ~ dnorm(0,0.0001) 

 alpha ~ dnorm(0,0.0001) 

 b ~ dnorm(0,0.0001) 

 tau ~ dgamma(0.001,0.001) 

} 

 

A2. Fitting a variable-shaped negative binomial model in R 
require(MASS);require(maxLik); require(miscTools) 

# uses max likelihood to fit variable-shaped gamma 

# y = vector of accidents; Qav = vector of flows;  

# L = vector of link lengths; T = no. years data 

nrate <- 2/L 

 

# fit standard (fixed-shape) gamma first 

fit <- glm.nb(y ~ log(Qav)+nrate+offset(log(T*L))) 

k0 <- summary(fit)$coef[1,1]; alpha0 <- summary(fit)$coef[2,1]; 

b0 <- summary(fit)$coef[3,1]; shape0 <- theta.ml(fit); 

cv0 <- 1/sqrt(shape0[1]); param0 <- c(k0,alpha0,b0,cv0,0)   

# extracted coeffs to act as initial values in VS fit 

 

# set up log likelihood function 

logL <- function(param){ 

k <- param[1];alpha <- param[2];b <- param[3];c <- param[4];n <- param[5] 

mu <- exp(k)*T*(Qav^alpha)*L*exp(b*nrate) 

cv <- c*(mu^n); shape <- 1/(cv*cv) 

t1 <- log(gamma(y+shape))-log(gamma(y+1))-log(gamma(shape)) 

t2 <- shape*log(shape)+y*log(mu)-(shape+y)*log(mu+shape) 

z <- sum(t1)+sum(t2)} 

 

# now optimise log likelihood for variable-shaped case 

optbeta <- maxLik(logL,start=param0) 

summary(optbeta) 

 

A3. Fitting a variable-shaped Weibull model in WinBUGS 
# variable shape Weibull model for SC links data  

# y = accidents; Q = flow; L = link length 

model{a <- exp(k) 

  for(j in 1:NLinks){ 

    y[j] ~ dpois(m[j]) 

    m[j] <- f[j]*mu[j] 

    log(mu[j]) <- k+log(L[j])+alpha*log(Q[j])+b*(2/L[j]) 

    v[j] <- 1/(c*pow(mu[j],n))  # 1/v is power function of mu 

    lam[j] <- pow(exp(loggam(1 + 1/v[j])),v[j]) # to make E(f)=1 

    f[j] ~ dweib(v[j], lam[j])  

  }   # end Links loop 

 k ~ dnorm(0,0.0001) 

 alpha ~ dnorm(0,0.0001) 

 b ~ dnorm(0,0.0001) 

 n ~ dnorm(0, 0.001) 
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 c ~ dgamma(0.001,0.001) 

} 

 

A4. Drawing a CURE plot in R 
nLinks = 341; nrate <- 2/L; T <- 5; alpha <- 0.831; b <- 0.0576 

a <- 0.0552;  

mu <- a*T*(Q^alpha)*L*exp(b*nrate) 

res <- y - mu   # residuals 

# order the data by increasing value of Q 

o <- order(Q) ; rord <- res[o]; Q <- Q[o]; r <- cumsum(rord)    

# r = cumulative sum of residuals 

Qmax <- max(Q); rmin <- min(r); rmax <- max(r) 

plot(c(0,Qmax),c(rmin,rmax),type="n",xlab="flow",ylab="cumulative 

residuals") 

lines(Q,r); lines(c(0,Qmax),c(0,0)); lines(c(0,0),c(rmin,rmax)) 

 

A5.  Multinomial model for fitting model with trend in R 
require(MASS);require(maxLik); require(miscTools) 

# y[i,t] = accidents on link i in year t 

# Q[i,t] = flow on link i in year t 

# L = vector of link lengths 

# T = no. years; N = no. links 

ytot <- dim(N); Qav <- dim(N);p <- dim(T);mu <- dim(T);sumL <- dim(N);w <- 

dim(T) 

nrate <- 2/L;  

beta <- 0  # initial estimate of beta (current trend) 

for(i in 1:N) {ytot[i] <- sum(y[i, ])} 

 

#  Stage 1: fit using aggregate data, with current beta value, to estimate 

k, alpha, b 

for(t in 1:T){w[t] <- exp(beta*(t-1))} 

for(i in 1:N){Qav[i] <- sum(w*Q[i, ])/sum(w)}  # weighted average of flow 

fit <- glm.nb(ytot ~ log(Qav)+nrate+offset(log(T*L))) 

k <- exp(fit$coef[1]); alpha <- fit$coef[2]; b <- fit$coef[3] 

 

# Stage 2: fit multinomial model, with current k, alpha, b to get beta 

estimate 

beta0 <- beta 

logL <- function(beta){ 

for(i in 1:N){ 

for(t in 1:T){mu[t] <- k*(Q[i,t]^alpha)*L[i]*exp(b*nrate[i]) 

p[t] <- mu[t]*exp(beta*(t-1))} 

sump <- sum(p) 

for(t in 1:T){p[t] <- p[t]/sump} 

sumL[i] <- sum(y[i, ]*log(p))} 

totL <- sum(sumL)} 

optbeta <- maxLik(logL,start=beta0)  # find MLE of beta 

beta <- optbeta$estimate  # new estimate of beta 

k; alpha; b; beta   # print latest estimates.  Return to Stage 1. 

 

A6. WinBUGS code for fitting VSG model with trend 
# VSG model for SC links data with trend 

# overdispersion error same in each year 

# y[j,t], Q[j,t] = accidents/flows on link j in year t; L[j] = link length 

model{a <- exp(k) 

    for(j in 1:NLinks){ 

    f[j] ~ dgamma(shape[j], shape[j]) # ensures E(f) = 1 

    for (t in 1:5){ 

      y[j,t] ~ dpois(m[j,t]) 

      m[j,t] <- f[j]*mu[j,t] 
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      log(mu[j,t]) <- k+log(L[j])+alpha*log(Q[j,t])+b*(2/L[j])+beta*(t-1) 

    } # end t loop 

  muav[j] <- mean(mu[j, ])  # average mu for this site 

  cv[j] <- c*pow(muav[j],n)  # cv a function of av mu  

  shape[j] <- 1/sqrt(cv[j]) 

  } # end Links loop 

  k ~ dnorm(0,0.0001) 

  alpha ~ dnorm(0,0.0001) 

  b ~ dnorm(0,0.0001) 

  beta ~ dnorm(0,0.0001) 

  n ~ dnorm(0,0.001) 

  c ~ dgamma(0.001,0.001)  

} 

 

A7.  R code for INLA (lognormal) model with trend 
# N = No. links; L = link length vector 

# Q1, Q2 etc = vectors of flows in years 1, 2 .. 

# y1, y2 etc = vectors of accidents in years 1, 2 .. 

require(INLA) 

Qall <- c(Q1,Q2,Q3,Q4,Q5); # vector of all Qs 

yall <- c(y1,y2,y3,y4,y5); # vector of all accidents 

tall <- (rep(0,N),rep(1,N),rep(2,N),rep(3,N),rep(4,N)) 

Lall = rep(L,5); Links = c(rep(1:N,5)); x1 = log(Qall); x2 = 2/Lall 

formula <- yall ~ 

offset(log(Lall))+1+x1+x2+tall+f(Links,model="iid",param=c(0.5,0.005)) 

data <- data.frame(yall,x1,x2,Links,tall) 

fit <- inla(formula,data=data,family="poisson") 

summary(fit) 

 

A8. Prediction uncertainty in R for gamma model 
# y = accidents; L = link length(km); T = time period; Q = flow (000s) 

nrate <- 2/L  # junction rate (per km) 

fit <- glm.nb(y ~ log(Q)+nrate+offset(log(T*L))) 

# plot of prediction and uncertainty for range of values of Q 

# keeping T = 5, and L = 1  

Qnew <- 0.1*c(1:600)  # range of Q's for predictions: (0,60) 

Tnew <- rep(5,600); Lnew <- rep(1,600); nratenew <- 2/Lnew 

new <- data.frame(Qnew,nratenew,Tnew,Lnew) 

colnames(new) <- c("Q","nrate","T","L") 

pred <- predict(fit,new,se.fit=TRUE) 

eta <- pred$fit; etase <- pred$se.fit; mu <- exp(eta) 

mulow <- exp(eta - 1.96*etase); muhigh <- exp(eta + 1.96*etase) 

lmse <- sqrt(etase^2+1/shape); 

mlow <- exp(eta - 1.96*lmse); mhigh <- exp(eta + 1.96*lmse)  

plot(c(0,60), c(0,20), type = "n",xlab="Q",ylab="predicted accidents") 

lines(Qnew,mu,lwd=2) 

lines(Qnew,mulow,lty="dashed",lwd=1.5,col="blue"); 

lines(Qnew,muhigh,lty="dashed",lwd=1.5,col="blue") 

lines(Qnew,mlow,lty="dashed",lwd=1.5,col="red"); 

lines(Qnew,mhigh,lty="dashed",lwd=1.5,col="red") 


