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In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth
of biological tissue, employing a multiple-scale homogenisation method to accommodate explicitly the
influence of the underlying microscale structure of the material, and its evolution, on the macroscale
dynamics. Such methods have been widely used to study porousand poroelastic materials; however, a
distinguishing feature of biological tissue is its abilityto remodel continuously in response to local en-
vironmental cues. Here, we present the derivation of a modelbroadly applicable to tissue engineering
applications, characterised by cell proliferation and extracellular matrix deposition in porous scaffolds
used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport
and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium
saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the
rate of microscale growth to be dependent upon the uptake of ageneric diffusible nutrient. The resulting
macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dic-
tated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to
an advection–reaction equation specifying the nutrient concentration. Illustrative numerical simulations
are presented to indicate the influence of microscale growthon macroscale dynamics, and to highlight
the importance of including experimentally-relevant microstructural information in order to correctly de-
termine flow dynamics and nutrient delivery in tissue engineering applications.
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1. Introduction

Biological tissue growth is an extremely complex process, involving the interaction of a wide range
of biological and biophysical factors, which span multiplespatial and temporal scales. It is becoming
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accepted that complementary study of biological growth processes by both experimental and theoretical
methods is required in order to improve our understanding ofhow observed phenomena are generated;
realising this goal will impact on a wide range of experimental and clinical biomedical research, includ-
ing in vitro tissue engineering. The latter refers to the creation of replacement tissues in a laboratory,
with which to address the shortfall in donor tissue available for implantation into patients in the treatment
of a wide range of conditions. While replacement skin graftshave been successfully produced in the lab-
oratory and translated into the clinic (Horchet al., 2007), the production of more complex replacement
tissues and organs is not currently possible. An experimental paradigm for such studies entails seeding
a biodegradable porous scaffold with cells; subsequent incubation within a culture medium-filled biore-
actor allows the cells to colonise the porous scaffold (termed a tissue construct). On implantation, the
degrading scaffold is replaced by extracellular materialssuch as collagen and proteoglycans, which are
laid down by the cells (Freedet al., 1994).

The importance of this field has spawned a plethora of experimental and theoretical studies, in-
vestigating various aspects ofin vitro tissue growth and subsequentin vivo implantation; the diverse
contributory processes (from intracellular signalling networks to tissue-level patterning and mechan-
ics) has led theoretical investigators to apply myriad different mathematical modelling approaches. One
class of theoretical models is those that aim to provide a description of the tissue construct appropriate at
the macroscale (tissue-scale). Typically, such models comprise systems of partial differential equations
describing (for example) the average culture medium flow characteristics, nutrient supply, cell density,
or mechanical effects (Araujo & McElwain, 2005; Lemonet al., 2006; Ambrosiet al., 2010; O’Dea
et al., 2010). At the microscale, however, such models are not appropriate since they do not reflect the
nature of individual cells, or the influence of tissue microstructure on system behaviour. The modelling
literature regarding aspects of biological tissue dynamics at the scale of a single cell is extensive and
varied; representative studies include: consideration ofintracellular (Bridgeet al., 2010) and intercellu-
lar (Collieret al., 1996; Webb & Owen, 2004) signalling processes and their influence on cell behaviour,
within spatially discrete models comprising systems of ordinary differential equations; detailed analysis
of the mechanical behaviour of individual cells via biophysical continuum models (Batheet al., 2002;
Mack et al., 2004); and lattice-free cellular automata-type modelling approaches, representing in detail
the behaviour of small populations of cells (Meinekeet al., 2001; Van Leeuwenet al., 2009).

The analysis of such cell-level models can be highly numerical in nature, and to represent realisti-
cally tissue-level dynamics requires very large numbers ofcells, which provides significant computa-
tional challenges. The derivation of tissue-scale models accommodating aspects of cell-level detail, but
within continuum formulations that may admit analytic progress or simpler numerical analysis, is there-
fore of great importance to the theoretical investigation of tissue growth. To address this, various mul-
tiscale (or homogenisation) techniques have been employedto derive macroscale models directly from
underlying microscale systems, enabling some of the dynamics to be incorporated in a mathematically
precise way. Representative examples employing this method in a biological context include: Turner
et al.(2004) and Fozardet al.(2010), in which continuum representations of the collective motion of ad-
herent epithelial cells were derived; O’Dea & King (2011, 2012), who showed that microscale patterns
formed via discrete intercellular signalling mechanisms can be represented within reaction–diffusion
systems; and Chapmanet al. (2008), Shipley & Chapman (2010) and Marciniak-Czochra & Ptashnyk
(2008), in which macroscale models for transport in biological tissues were considered. Many of these
studies of homogenisation employ and extend methods from older studies of porous and poroelastic
materials such as Burridge & Keller (1981) and Mei & Auriault(1991). Historically, the inspiration for
many studies applying homogenisation theory includes the study of soil filtration – see,e.g., Ptashnyk
& Roose (2010); related applications include the plant sciences (Chavarrı́a-Krauser & Ptashnyk, 2010;



Band & King, 2012).
A distinguishing feature of biological tissue is its ability to grow and adaptively remodel in response

to local environmental conditions. While continuum modelsfor growth and tissue remodeling abound
(seee.g.Dervaux & Ben Amar (2008, 2010), Nelsonet al. (2011, 2013); a comprehensive review is
given in Humphrey (2003)), to our knowledge a macrosale description of growing tissues, obtained by
homogenisation of microscale dynamics, does not exist. Here, we address this deficiency by consid-
ering nutrient-limited microscale growth. Specifically, we consider appositional growth (also termed
accretion), whereby growth occurs via deposition of new material on the exterior of the growing tissue.
This is distinct from the alternative process of interstitial growth, in which growth occurs throughout the
tissue; such a process is problematic from a mathematical point of view since it leads to the genesis of
residual stresses, which must be accommodated in a physically-reasonable way. We study an idealised
representation of appositional growth within a rigid porous medium, in which growth of the solid phase
results from a change of state from fluid to solid at the solid-fluid interface, this phase-change occurring
at a prescribed rate, dependent on the local availability ofa generic diffusible nutrient. Our model is
therefore appropriate in the ‘thin-rim’ or ‘fast-consumption’ limit (King & Franks, 2007), and describes
cell growth and extracellular matrix (ECM) deposition within tissue engineering scaffolds, such as those
employed in perfusion bioreactors, or appositional bone tissue growth,in vivo. Furthermore, the mul-
tiscale analysis that we employ relies on the assumption that the material under consideration has a
(locally) spatially-periodic microstructure. This homogenisation approach is widely used to describe
flows within biological tissue (either explicitly such as inShipley & Chapman (2010), or implicitly
through its underpinning of macroscale porous flow models);however, the validity of its application to
tissue growth in general is undermined by the disordered structure of many biological tissues. In such
scenarios, its accuracy is influenced by the statistics of the tissue structure (and relevant model param-
eters); see, for example, Rubinstein & Torquato (1989) in which upper and lower bounds on the Darcy
permeability are derived for a random porous medium, and Chernyavskyet al. (2011) in which conver-
gence of the homogenisation approximation is considered indetail, in the context of placental transport.
In such cases, the macroscale description that arises should not be viewed as an exact description, rather
it provides an idealised framework that is amenable to analysis and provides insight into macroscale
growth processes. Further, our study focusses onin vitro tissue engineering applications, for which
scaffold manufacture can carefully be controlled — three-dimensional printing, stereo-lithography and
fused deposition modelling, for example, constitute excellent methods for producing well-defined and
regular scaffolds (see Hutmacheret al. (2004); Hollister (2005) and references therein) to which the
assumption of structural regularity will apply.

On theoretical and, subsequently, biological grounds, we study our model in the limit for which
growth is slow, and hence relegated toO(ε) in the multiple-scales analysis; however, our analysis re-
veals that such growth (and associated nutrient consumption) is evident nevertheless in the leading-order
problem that we derive. In sum, this paper indicates that microscale surface growth may be incorpo-
rated into macroscale models in a straightforward way; additionally, we present illustrative numerical
simulations and, via inclusion of experimental data detailing the microscale structure of a typical tissue
engineering scaffold, highlight how micro- and macroscaleflow characteristics in realistic scaffolds may
differ from more idealised models.The results that we present indicate that these differences are likely
to influence dramatically the transport of nutrients to cells seeded in such structures and hence should be
accounted for in macroscale models seeking to provide a morerealistic description of tissue dynamics.

The remainder of this paper is organised as follows. In§2, we summarise the equations governing
fluid flow, nutrient transport and tissue growth that apply atthe microscale, and present a derivation of
a corresponding continuum model via a multiscale homogenisation method in§3. In §4, we present a



series of numerical experiments that indicate the model’s behaviour and highlight how incorporating
knowledge of tissue microstructure into such models may lead to significant differences in theoretical
predictions. In§5, we summarise the main theoretical results contained within this work and their
implications for tissue culture, and highlight possible future developments.

2. Theoretical formulation: a growing porous medium

We consider an idealised porous medium, represented as a highly-connected material with spatially
periodic microstructure, and saturated with a viscous Newtonian fluid. Furthermore, we assume that the
material can be characterised by two distinct lengthscales. The microscale domain is denotedΩ , with
boundary∂Ω , and has characteristic lengthl∗. This is further partitioned into a fluid domainΩ f , and a
solid domainΩs, with boundaries∂Ω f and∂Ωs, which may include parts of the exterior boundary∂Ω
and the fluid–solid interface, denoted∂Ω f s. The macroscale characteristic length of the porous medium
is denotedL∗, and we assume that the characteristic lengthscales are well-separated; correspondingly,
we introduce a dimensionless parameterε > 0 such that

ε =
l∗

L∗
≪ 1. (2.1)

Throughout, asterisks distinguish dimensional quantities from their dimensionless equivalents. Figure
1 illustrates the mathematical representation of a porous material via such a periodic cell geometry.

l∗

Ω fΩs

∂Ω f s

∂Ω
nnn

FIG. 1. Schematic diagram indicating the mathematical representation of an idealised porous material by a periodic microscale
domain,Ω , of characteristic lengthscalel∗ and boundary∂Ω . The periodic domain is partitioned into fluid and solid components,
Ω f (white) andΩs (shaded) respectively. The fluid–solid interface is denoted ∂Ω f s; we denote a normal to this interface (oriented
pointing into the solid) bynnn.

Flow and transport phenomena in systems of this type have been well-studied; see, for example, Mei
& Auriault (1991) and, in a biological context, Shipley & Chapman (2010), and many other references
therein. The key distinguishing feature of the analysis that we present is the inclusion of growth of
the solid phase, coupled to flow and nutrient transport within the porous medium. This modification
improves dramatically the applicability of such an idealised modelling approach to the representation of
biological tissue.



The remaining assumptions underpinning our model are summarised as follows: growth of the solid
domainΩs occurs via a change of state from fluid to solid at the interface ∂Ω f s, at a rate which is
dependent upon the uptake from the fluid domain,Ω f , of a generic diffusible passive nutrient. The
resulting model therefore comprises an idealised description of appositional growth (in a sense that will
be made clear in the following section), of broad relevance to bone tissue growth, or to the deposition of
extracellular matrix (ECM) on porous scaffolds within tissue engineering bioreactors. Surface dissolu-
tion, relevant to construct dynamics post-implantationin vivo, may be accommodated easily within this
formulation by incorporating an appropriate state change from solid to fluid.

2.1 Governing equations

The dimensional velocity of the fluid is denotedvvv∗, with pressurep∗, and the nutrient concentration in
the fluid is denotedc∗. The equations governing the fluid flow and nutrient transport at the microscale
within Ω f are as follows:

ρ∗
f

(

∂vvv∗

∂ t∗
+(vvv∗ ·∇∇∇∗)vvv∗

)

= −∇∇∇∗p∗ + µ∗∇∗2vvv∗, (2.2)

∇∇∇∗ ·vvv∗ = 0, (2.3)

∂c∗

∂ t∗
+vvv∗ ·∇∇∇∗c∗ = D∗∇∗2c∗, (2.4)

in which ρ∗
f andµ∗ are the density and viscosity of the fluid, respectively, andD∗ denotes the nutrient

diffusivity.
As noted above, cells are not represented explicitly withinour simplified formulation; instead, tissue

growth associated with cell proliferation and ECM synthesis and deposition manifests itself as growth of
the solid phase, which occurs via a change of state from fluid to solid, occurring at the interface∂Ω f s,
and dependent upon the consumption of nutrient. Enforcing mass conservation at the interface, we
obtain the following boundary conditions on∂Ω f s, describing nutrient consumption and the associated
interfacial growth:

c∗
(

vvv∗−vvv∗f s

)

·nnn−D∗∇∇∇∗c∗ ·nnn = Q∗, (2.5)

ρ∗
f (vvv

∗−vvv∗f s) ·nnn = −ρ∗
s vvv∗f s ·nnn = S∗(Q∗), (2.6)

in which ρ∗
s denotes the density of the solid andnnn is the unit normal vector pointing intoΩs. The

remaining quantitiesvvv∗f s, the velocity of the interface, andS∗(Q∗), which denotes mass conversion from
fluid to solid at a rate dependent upon nutrient consumption,Q∗, are specified constitutively below.

2.1.1 Growth and nutrient uptake dynamicsEquation (2.5) is a standard membrane law that de-
scribes the nutrient flux at∂Ω f s, and is modified to account for interfacial movement. The mass-jump
condition (2.6) is simplified by assuming that the solid phase is rigid (see Ateshian (2011) for mass-
jump conditions appropriate for a growing material in a somewhat more general setting), and provides a
constitutive equation defining the evolution of the fluid domain due to growth, and an explicit boundary



condition for the fluid velocity on the interface∂Ω f s:

vvv∗f s ·nnn = −
1

ρ∗
s

S∗, (2.7)

vvv∗ ·nnn =

(

1
ρ∗

f
−

1
ρ∗

s

)

S∗, (2.8)

and so our representation of growth is of similar form to Stefan problems for phase change. We remark
that due to our simplifying assumption that the solid component is rigid, momentum jump conditions
across the interface are not required.

In what follows we adopt simple models for nutrient uptake and growth dynamics, and assume that
nutrient uptake occurs at a rate proportional to the nutrient concentration at the interface, coupled to
interfacial growth via the constitutive choices:

Q∗ = R∗c∗, S∗ = α∗Q∗, (2.9)

in which the permeability,R∗, regulates the rate of nutrient consumption at the interface ∂Ω f s, and
α∗ dictates the influence of nutrient uptake upon subsequent tissue growth. To complete the system,
we require that all solutions are periodic on the microscaledomainΩ ; macroscale variation inΩ is of
course permitted, thereby enabling spatial variation of material structure within this formulation.

We highlight that our idealised model, in which consumptionand growth occur at a non-material
interface (∂Ω f s), may be obtained from a more complete description accounting explicitly for nutrient
consumption in the tissue domain by taking the ‘thin-rim’, or ‘fast-consumption’ limit (King & Franks,
2007), in which nutrient consumption in the tissue domain dominates over diffusive transport. For
clarity, denoting byc∗s a nutrient distribution in the solid regionΩs, with diffusivity D∗

s and consumption
λ ∗c∗s, our description is appropriate in the limitβ = D∗

s/l∗2λ ∗ ≪ 1, for which nutrient consumption (and
associated growth) occurs in a boundary layer of widthO(

√

β ) with the remainder ofΩs remaining in
a necrotic or nutrient-starved state.

2.2 Nondimensionalisation

Following Shipley & Chapman (2010), we nondimensionalise as follows:

xxx∗ = l∗xxx, vvv∗ = V∗vvv, vvv∗f s = V∗vvvf s, c∗ = C∗c, p∗ =
µ∗L∗V∗

l∗2 p, t∗ =
L∗

V∗
t, (2.10)

in whichV∗ andC∗ are characteristic macroscale flow velocity and nutrient concentration scales. There-
fore, the timescale under consideration is that of macroscale advection. We remark that the timescale of
microscale growth could be analysed via the choicet∗ = l∗t/V∗

m (whereV∗
m is an appropriate microscale

velocity scale); however, such a scaling increases the complexity of the governing equations that result
and is therefore not considered here. We note also that the Poiseuille-type pressure scaling is key to
obtaining the proper leading-order problem in the models that we develop below.

In dimensionless form, the equations governing flow and transport inΩ f are:

ε2Re

(

ε
∂vvv
∂ t

+(vvv·∇∇∇)vvv

)

= −∇∇∇p+ ε∇2vvv, (2.11)

∇∇∇ ·vvv = 0, (2.12)

ε
∂c
∂ t

+vvv·∇c =
1
Pe

∇2c; (2.13)



and the boundary conditions on the interface∂Ω f s read:

c
(

vvv−vvvf s
)

·nnn−
1
Pe

∇∇∇c ·nnn = Q, (2.14)

vvv·nnn = (ρ −1)S. (2.15)

The velocity of the solid–fluid interface in the normal direction, and the dimensionless interfacial growth
Sand nutrient consumptionQ are given by

vvvf s ·nnn = −S, Q = Rc, S= αQ. (2.16)

The Reynolds number and Péclet number, appropriate for macroscale advective flow are defined by:

Re=
ρ∗

f V
∗L∗

µ∗
, Pe=

V∗l∗

D∗
, (2.17)

and the remaining dimensionless groupings appearing in (2.11)–(2.16) are:ρ = ρ∗
s /ρ∗

f , the relative
density;R= R∗/V∗, a parameter controlling the rate of nutrient consumption by the solid phase at the
fluid–solid interface; andα = α∗C∗/ρ∗

s , which controls the rate of growth that results from nutrient
consumption.

Together with the requirement that the solutions be periodic onΩ (macroscale variations are admit-
ted), Equations (2.11)–(2.16), comprise the microscale ‘cell problem’, describing the growing porous
medium. In what follows, we employ this microscale model to obtain a macroscale representation of
flow and transport phenomena within a growing porous medium,under simple assumptions of growth
and consumption dynamics. The cell problem that we consideris chosen to be particularly simple, the
better to highlight how growth may be accommodated within such a formulation.

3. Multiple scales analysis

We now analyse (2.11)–(2.14) via a multiple-scales method,with the aim of deriving a macroscale
description which incorporates the microscale growth defined in (2.16). We reiterate that we follow
closely the method outlined in Burridge & Keller (1981), Shipley & Chapman (2010) and many others;
the key distinguishing feature of this analysis is the inclusion of growth of the solid phase in response
to nutrient consumption.

We introduce a dimensionless macroscale coordinateXXX, related to the microscale variablexxx via
xxx = ε−1XXX; under the assumption of scale separation, we expand all dependent variablesψ in multiple-
scales form:

ψ(xxx,XXX, t;ε) = ψ(0)(xxx,XXX,t)+ εψ(1)(xxx,XXX,t)+ . . . , (3.1)

and note that under this coordinate transformation,

∇∇∇ = ∇∇∇x + ε∇∇∇X, ∇2 = ∇2
x +2ε∇∇∇x ·∇∇∇X + ε2∇2

X , (3.2)

where∇∇∇x, ∇∇∇X , ∇2
x and∇2

X denote the gradient and Laplacian operators in the micro- and macroscale
descriptions.

Our aim is to employ the representation (3.1), (3.2) to obtain a description of the flow, nutrient
transport and tissue growth at the macroscale, obtained from the microscale dynamics. Of use will be
the following integral average defined, for some quantityg:

〈g〉 f =
1
|Ω |

∫

Ω f

gdV. (3.3)



Additionally, we denote the porosity of the material byΦ f = |Ω f |/|Ω |; the pore surface area is defined
by |∂Ω f s|. Important to the method that we employ is the conversion, via the divergence theorem, of
volume integrals of the form (3.3) to those over the pore surface. Correspondingly, we introduce the
following notation:

〈g〉 f s =
1
|Ω |

∫

∂Ω f s

gdS. (3.4)

3.1 Microscale flow and transport

At O(1), the governing equations and boundary conditions reduce to:

∇∇∇xp(0) = 000, ∇∇∇x ·vvv
(0) = 0, xxx∈ Ω f , (3.5)

1
Pe

∇2
xc(0)−vvv(0) ·∇∇∇xc

(0) = 0, xxx∈ Ω f (3.6)

vvv(0) ·nnn = (ρ −1)S(0), xxx∈ ∂Ω f s, (3.7)

c(0)
(

vvv(0)−vvv(0)
f s

)

·nnn−
1
Pe

∇∇∇xc
(0) ·nnn = Q(0), xxx∈ ∂Ω f s, (3.8)

vvv(0)
f s ·nnn = −S(0), xxx∈ ∂Ω f s, (3.9)

together with the requirement that solutions be periodic onΩ . We highlight that, for the sake of gener-
ality, we do not replace the interfacial transport termsSandQ by (2.16) in the following derivation.

The first of Equations (3.5) indicates thatp(0) = p(0)(XXX,t), so that the pressure is constant on the
microscale. This implies that the microscale growth embodied by (3.7) and (3.9) cannot lead to a cor-
responding microscale pressure-induced flow. For consistency, we therefore relegate interfacial growth
(and associated nutrient uptake) toO(ε); the necessity of such a rescaling is a consequence of (2.10),
in which we choose a Poiseuille scaling for the pressure, andanalyse processes on the timescale of
macroscale advection. Alternative choices (such as a microscale growth timescale) permit leading or-
der microscale growth but increase significantly the complexity of the flow equations, by introducing
inertial terms associated with leading-order variations in the microscale geometry, for example.

In view of the above, in what follows we employ the rescalingR= εR̂ (but omit carets for brevity),
so that

S(0) = 0, Q(0) = 0. (3.10)

We adopt this scaling, for which changes in the geometry ofΩ associated with growth appear atO(ε),
to reflect the case for which the leading order unit cell problem is particularly simple. However, below,
we will show that despite its relegation to lower order, the evolution of the microscale geometry under
the influence of interfacial microscale growth is, nevertheless, evident in the leading order macroscale
fluid flow and nutrient transport. We note in passing that Shipley & Chapman (2010) motivate similar
choices by detailed consideration of experimental resultsobtained in the context of drug delivery to
tumours.

On application of the rescalings, the leading order problemreduces top(0) = p(0)(XXX,t), vvv(0)
f s =

000. In addition, multiplying (3.6) byc(0), integrating overΩ f , and employing the divergence theorem
together with the boundary conditions (3.7) and (3.8) (which now amount to no-penetration and no-
flux conditions) and microscale periodicity, reveals that the nutrient concentration is locally constant:
c(0) = c(0)(XXX, t).



In summary, the leading order problem isp(0) = p(0)(XXX,t), vvv(0)
f s = 000, c(0) = c(0)(XXX,t) and:

∇∇∇x ·vvv
(0) = 0, xxx∈ Ω f (3.11)

vvv(0) ·nnn = 0, xxx∈ ∂Ω f s, (3.12)

and so the leading order microscale problem is under-determined for flows in more than one spatial
dimension.

At O(ε), the equations read:

000 = −∇∇∇xp(1)−∇∇∇X p(0) + ∇2
xvvv(0), xxx∈ Ω f (3.13)

0 = ∇∇∇x ·vvv
(1) + ∇∇∇X ·vvv(0), xxx∈ Ω f (3.14)

∂c(0)

∂ t
+vvv(0) ·

(

∇∇∇Xc(0) + ∇∇∇xc
(1)
)

=
1
Pe

∇2
xc(1), xxx∈ Ω f (3.15)

vvv(1) ·nnn = (ρ −1)S(1), xxx∈ ∂Ω f s, (3.16)

1
Pe

∇∇∇xc
(1) ·nnn = c(0)

(

vvv(1)−vvv(1)
f s

)

·nnn−
1
Pe

∇∇∇Xc(0) ·nnn−Q(1), xxx∈ ∂Ω f s, (3.17)

vvv(1)
f s ·nnn = −S(1), xxx∈ ∂Ω f s, (3.18)

where the microscale invariance ofp(0) andc(0), and the leading order boundary conditions, have been
employed to simplify the equations. In the current application, we anticipate that the density of the
growing porous medium will exceed that of the culture mediumso thatρ > 1; therefore, (3.16) shows
that growth of the solid phase leads naturally to fluid flow towards the interface∂Ω f s (vvv(1) ·nnn > 0) in
order to conserve mass.

An appropriate form for the microscale leading order flow maybe obtained by exploiting the linear-
ity of Equations (3.11) and (3.13), and the independence ofp(0) on the microstructure:

vvv(0) = −K∇∇∇X p(0), (3.19)

p(1) = −aaa·∇∇∇X p(0) + p1, (3.20)

in which p1 = p1(XXX, t), while the permeability tensorK and the vectoraaa, which imparts microscale
variation to theO(ε) pressure, exhibit both micro- and macroscale dependence, but are independent of
time at leading order (as a consequence of the quasi-static domainΩ ). We obtain the following Stokes
flow boundary value problem on the periodic cell:

∇∇∇x ·K = 0, xxx∈ Ω f , (3.21)

−∇∇∇xaaa+ ∇2
xK = −I, xxx∈ Ω f , (3.22)

K = 0, xxx∈ ∂Ω f s, (3.23)

andK andaaa periodic onΩ . Equations (3.21)–(3.23) do not specify uniquely the microscale variableaaa;
therefore, we impose the additional integral constraint:

〈aaa〉 f = 000. (3.24)

The cell problem given by Equations (3.21)–(3.24) may, in principle, be solved for any given choice
of Ω , which reflects the microscale geometry of the porous material. In general, this problem requires



numerical solution (see Zick & Homsy (1982) and earlier references therein); however, analytic results
are possible in some simplified geometries – see,e.g., Shipley (2008) for example calculations.

The corresponding nutrient transport is governed by (3.15), subject to (3.17) and (3.18), which
is insufficient to determinec(0). However, our focus in this paper is the generation of appropriate
macroscalemodels, suitable to describe flow, transport and growth; in what follows we show how the
above (well-known) microscale Stokes formulation, together with theO(ε) system (3.13)–(3.18) may
be exploited to determine flow and nutrient transport at the macroscale in the presence of microscale
nutrient-limited growth.

3.2 Macroscale flow and transport

To obtain the macroscale flow and nutrient transport equations, we exploit the integral average (3.3).
The macroscale leading-order flow description is obtained by averaging Equation (3.19) to obtain

〈vvv(0)〉 f = −〈K〉 f ·∇∇∇X p(0), (3.25)

which is the well-known Darcy description of flow through a porous medium.
An equation governing the leading-order macroscale pressure is obtained in the following way. Av-

eraging (3.14) over the periodic cell and exploiting (3.4) supplies:

∇∇∇X · 〈vvv(0)〉 f = (1−ρ)〈S(1)〉 f s, (3.26)

in which the divergence theorem has been employed to transform the volume integral overΩ f to one
over the surface∂Ω f , which comprises, in general, both the interfacial surface∂Ω f s and parts of the
exterior boundry,∂Ω . The boundary condition (3.16) is exploited to express the normal flow velocity
in terms of the microscale growth, and periodicity of solutions overΩ implies that contributions arising
from exterior surfaces cancel out, leaving those from the interfacial surface∂Ω f s only. Combining
(3.25) and (3.26) then yields

∇∇∇X ·
(

〈K〉 f ∇∇∇X p(0)
)

= (ρ −1)〈S(1)〉 f s. (3.27)

We remark that the quasi-static microscale pore geometryΩ defines the flow characteristics via the
averaged porosity tensor〈K〉 f , which contains information from the underlying microstucture, and may
additionally vary on the macroscale. Furthermore, although microscale growth enters the problem at
O(ε), it influences nevertheless the leading-order flow via contributions to the macroscale pressure in
(3.27).

In the current work, growth is coupled explicitly to the leading-order nutrient consumption at the
interface via (2.16) (and (3.10)). Although the nutrient transport problem given by (3.15) and (3.17) is
insufficient to determine the microscale nutrient transport and consumption dynamics, below, we show
that leading-order macroscale description suitable to specify fully the macroscale flow, transport and
growth dynamics may be obtained.

Integrating (3.15) overΩ f , and applying the divergence theorem and the leading order no-penetration
condition (3.12), yields:

Φ f
∂c(0)

∂ t
+ 〈vvv(0)〉 f ·∇∇∇Xc(0) =

1
Pe

〈∇∇∇xc
(1) ·nnn〉 f s, (3.28)

whereinΦ f denotes the porosity of the material, and as previously, we note that contributions associated
with changes in the integration domain are relegated to lower order.



TheO(ε) diffusive nutrient flux over the solid–fluid interface in (3.28) may be obtained in terms
of the leading-order macroscale concentration by integrating (3.17) over the interface∂Ω f s, and ap-
plying the leading order no-penetration and no-concentration flux conditions, together with theO(ε)
microscale interfacial growth conditions (3.16) and (3.18). After some algebra, the following advection–
reaction equation governing macroscale nutrient transport is obtained:

Φ f
∂c(0)

∂ t
+ 〈vvv(0)〉 f ·∇∇∇Xc(0) = ρc(0)〈S(1)〉 f s−〈Q(1)〉 f s, (3.29)

in which the interfacial growth and nutrient consumption terms are defined by (2.16), (3.10) as:

Q(1) = Rc(0), S(1) = αQ(1). (3.30)

We remark that interfacial growth appears as an apparent source inΩ f because, for certain choices ofα
andρ , the fluid being used to create the (denser) solid material at∂Ω f s contains more nutrient than is
required; in fact, the model requires 06 αρ 6 1 in order that the dimensionless nutrient concentration
does not exceedc = 1. Such behaviour arises due to our simplified ‘thin-rim’ model representation, in
which growth is described by a Stefan-type phase change process. A more complete description would,
presumably, prohibit this; we therefore expect that it willnot be observed for physiologically-relevant
choices ofα andρ .

In summary, our macroscale representation of microscale surface accretion in a porous material
comprises the flow problem governed by Equations (3.25) and (3.27), coupled to the nutrient trans-
port problem given by Equation (3.29), via the nutrient consumption-dependent growth (3.30). These
equations are subject to suitable initial and boundary dataon the macroscale, to be defined below. The
dependence of the flow and transport dynamics on the porous microstructure is provided by the per-
meability tensorK, obtained from (3.21)–(3.24). We remark that our model formulation is similar in
form to that derived in Shipley & Chapman (2010), which considered drug transport from a fluid to a
porous medium (see Equations (70), (75), (126), (127) of that paper) in the context of tumour therapy;
however, in this work, contributions to the fluid pressure, and effective source/sink terms in the nutrient
concentration equations arise due to tissue growth. We highlight that although the preceding analysis
considers microscale growth which is slow in comparison to the macroscale advection-based timescale
(and therefore appears atO(ε)) it is evident in the leading order macroscale problem that we derive.

4. Numerical results

We now present a series of illustrative numerical simulations of equations (3.21)–(3.24), and (3.25),
(3.27), (3.29) and (3.30) chosen (i) to highlight how microscale growth and uptake influence transport
in an idealised porous medium; (ii) to indicate how microstructural information may be easily integrated
within such a model; and (iii) to demonstrate how its inclusion influences significantly the predicted flow
and transport dynamics in structures of relevance to tissueengineering applications.

To achieve this, in§4.1, we consider the case for which the choice of the microscale domainΩ is
inspired byµCT (micro computed tomography) data obtained from a typicaltissue engineering scaf-
fold, and provide illustrative numerical solutions indicating the influence of such a geometry on the
microscale dynamics. In§4.2 we employ this information within the macroscale equations, and com-
pare the resulting numerical predictions with those that arise when such a microstructure is replaced by
an array of circular obstructions; the substantial influence of our new macroscale formulation on model
dynamics, in comparison to standard representations of porous flow, is highlighted by contrasting the
results obtained in the presence and absence of growth.



4.1 Microscale geometry

In this subsection, we consider a specific microscale geometry inspired byin vitro tissue engineering
applications, with which to define our domainΩ ; for simplicity, we restrict attention to flow, nutrient
transport and growth in two dimensions.

A typical method to create tissue constructs of a size suitable for implantation (while minimising
the necrotic core that often forms at the centre of such constructs) is to employ advection of culture
medium within a perfusion bioreactor to enhance oxygen/nutrient delivery to cells. Such an approach
is used by El Haj and coworkers within a bioreactor system that comprises a cell-seeded poly(L-lactic
acid) (PLLA) scaffold (depicted in Figure 2(a)), through which culture medium is perfused (El Haj
et al., 1990; Baaset al., 2010). We employ data obtained fromµCT scans of such a PLLA scaffold to
define our periodic microscale domainΩ ; in this context, the microscale growth embodied by (3.30)
represents ECM deposition and/or mineralisation on the pore surface by a cell population seeded within
the scaffold.

Figure 2(b) indicates a typical two-dimensional section ofthe scaffold, together with our chosen
computational domain. The porosity of such a scaffold isΦ f = 0.9 (Baaset al., 2010) and we choose
the relative areas ofΩ f andΩs in our computational domain to reflect this. When such a scaffold is
seeded with human bone cells and cultured for four weeks, deposition of extracellular materials and
subsequent mineralisation reduce the porosity by approximately 2% toΦ f ≈ 0.88 (data omitted; see
Baaset al.(2010) for details). Such a deposition and mineralisation rate provides additional justification
for our earlier assumption that the rate of interfacial growth may be specified asS= O(ε).

We remark that the PLLA scaffold illustrated in Figure 2 exhibits a highly inter-connected mi-
crostructure, with a significant degree of randomness: repeating periodically our computational unitΩ
does not represent accurately such scaffold. We note, furthermore, that since we restrict attention to
two spatial dimensions for simplicity, the connected three-dimensional skeleton depicted in Figure 2(a)
appears as an array of disconnected masses. We reiterate, however, that in choosing this geometry forΩ
our aim is not to represent comprehensively the processes oftissue growth within a specificin vitro sys-
tem, but to illustrate the ease with which suitable experimental data may be incorporated and, together
with microscale growth, to highlight its importance in model dynamics.

(a) (b)

FIG. 2. (a)µCT (micro computed tomography) image of a typical PLLA scaffold employed in a perfusion tissue culture system
(Baaset al., 2010). Dimensions are: 9 mm (diameter), 4 mm (height). (b) Atwo-dimensional section of the scaffold shown in
(a). Blue regions indicate solid matrix (colour online). Inset: a typical element of the scaffold microstructure, which we employ
as our chosen representative microscale domain in Section 4

Numerical solutions of the microscale problem given by Equations (3.21)–(3.24) in the computa-
tional domain illustrated in Figure 2(b) were obtained via afinite element method, implemented in the
software COMSOL Multiphysics. These results are illustrated in Figure 3 and indicate clearly the strong



microscale variation in the local permeability tensorK, and the microscaleO(ε) pressure contribution
aaa. Figures 3(a–d) highlight additionally the disparity in permeability in different coordinate directions,
indicating that anisotropy in the porous material’s flow properties is induced by the microstructure.

4.2 Macroscale dynamics

In this subsection, we indicate how the microscale results depicted in Figure 3 determine the macroscale
flow, nutrient transport and growth characteristics via Equations (3.25), (3.27), (3.29) and (3.30), subject
to suitable boundary and initial conditions to be specified below. To highlight its importance, we contrast
these results with those obtained when the complex geometryindicated in Figure 2 is replaced by a set
of circular obstructions, also obeyingΦ f = 0.9.

The influence of the underlying porous microstructure is evident in the macroscale dynamics via
the average permeability,〈K〉 f , calculated from the solutions to (3.21)–(3.24) via numerical quadrature.
Employing the results illustrated in Figure 3, and corresponding solutions obtained in the case for which
Ωs is a circle, we obtain the following macroscale permeability tensors:

〈KµCT〉 f =

(

0.37 0.0014
0.0014 0.64

)

, 〈K•〉 f =

(

1.46 0
0 1.46

)

, (4.1)

in which the superscripts ‘µCT’ and ‘•’ differentiate the permeability tensors associated with each
microscale geometry. Comparison of the permeability in each case highlights the degree of macroscale
anisotropy imparted by the porous microgeometry; the absence of macroscale variation in〈K〉 f is a con-
sequence of the periodic material under consideration. Forbrevity, solutions equivalent to those shown
in Figure 3 for the case of a circular obstruction are not included here – a corresponding calculation is
provided in Zick & Homsy (1982).

To define our macroscale initial and boundary conditions andcomputational domain, we consider
an idealised model of the perfusion bioreactor described above, represented by the two-dimensional
region−0.5 6 X 6 0.5, −1 6 Y 6 1, and subject to an imposed axial pressure drop, which drives a
flow of culture medium. We investigate how the transport of a diffusible nutrient through the system is
influenced by the nutrient-dependent microscale growth of the solid component. Appropriate boundary
conditions onp(0), c(0) are as follows:

p(0) = P0, c(0) = C0, Y = 1, (4.2)

p(0) = 0, Y = −1, (4.3)

〈Ki〉 f ∇∇∇X p(0) ·nnn = 0,
∂c(0)

∂X
= 0, X = ±0.5, (4.4)

wherei ∈ {µCT,•} denotes each microstructure. These boundary conditions represent a line source of
nutrient introduced atY = 1, which is transported through the porous medium via a pressure-driven flow
of culture medium, with no-penetration of culture medium ornutrient through the bioreactor walls. The
averaged culture medium velocity〈vvv(0)〉 f is calculated fromp(0) via (3.25) and (4.1). We are interested
in the transport of nutrient through the scaffold, and its uptake by the solid phase, leading to tissue
growth; we therefore specify the following initial data:c(0)(XXX,0) = 0.

In addition to the imposed pressure drop,P0, and nutrient source,C0, the macroscale problem con-
tains the following dimensionless parameters:R, α andρ which determine the rate of nutrient consump-
tion by the interface, its influence on growth and the relative density of the fluid and solid phases (the
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FIG. 3. Numerical solutions of the microscale Stokes problem (3.21)–(3.24) in the computational domain defined in Figure 2 with
Φ f = 0.9, illustrating how microscale variation is imparted to theflow via (3.19) and (3.20) due to the microstructure. (a)–(d)the
components of the permeability tensor,K; (e), (f) the components of theO(ε) pressure contribution,aaa.
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FIG. 4. Numerical solutions of the macroscale model (3.25), (3.27), (3.29)–(4.4), indicating (a) the macroscale nutrientdis-
tribution c(0) , and (b) pressure fieldp(0) within a PLLA scaffold (with the periodic microstructure illustrated in Figure 2) at
t = 10 (dimensionless units), by which time the system has relaxed to a steady state. (c) The nutrient distribution atX = 0 at
t = 0,1,2, . . . ,10, indicating convergence to an axially nonuniform steadystate (the arrow indicates the direction of increasingt).
Parameter values:P0 = C0 = R= 1, α = 0.5, ρ = 1.25,Φ f = 0.9.

remaining constants that appear in the equations arise via (3.4), and are fixed by the geometry ofΩ ).
In the context of a mineralised rim of similar density to the underlying PLLA scaffold being deposited
upon the pore surface, an appropriate choice for relative density is in the rangeρ = 1.25–1.29 (Mikos
et al., 1994), and for the reasons discussed above, we requireα 6 1/ρ . We emphasise that our focus
here is on highlighting model dynamics for a particular porous structure; therefore, we choose not to
consider specific uptake/consumption parameters appropriate for individual tissue engineering applica-
tions, and nor do we undertake a detailed parameter study. Inthe numerical simulations that follow,
we fix P0 = C0 = 1, and indicate the behaviour of the model for representative values of the parameters
relating to uptake and growth (detailed in the relevant figure captions).

Figures 4(a,b) show typical numerical results, at a representative time point (t = 10), indicating the
distribution of nutrient and fluid pressure field on the macroscale, within a porous scaffold with mi-
crostructure illustrated in Figure 2(b) (that is, the permeability tensor is〈KµCT〉 f ). These highlight that
nutrient spreads through the porous scaffold under the influence of the pressure-induced flow, but that
the extent of nutrient advection is limited. Figure 4(c) shows the time evolution of the nutrient concen-
tration atX = 0, indicating clearly that transport of nutrient from upstream regions slows, eventually
achieving a steady configuration in which regions distant from the source exhibit nutrient depletion so
that, due to (3.30), uptake and associated growth is restricted to upstream regions. We remark that these
‘steady-state’ solutions have not been verified analytically; however, our numerical experiments indi-
cate that these represent configurations whose time-evolution is minimal. Below, we will employ the
terminology ‘steady-state’, for concision.

We highlight that due to the problem set-up, and the representation of culture medium flow by
a Darcy law (which prohibits application of no-slip on the bioreactor walls), the solutions shown in
Figures 4(a,b) display very little dependence on the transverse coordinate.

In Figures 5 and 6 these results are analysed in more detail. In Figures 5(a,c,e), we present the
nutrient concentration, fluid pressure and axial velocity at X = 0 (t = 10), while Figures 5(b,d,f) indi-
cate how the nutrient transport is influenced by changes inρ , α andR. To highlight the influence of



the microscale scaffold anisotropy on our model predictions, in Figures 5(a,c,e) we include simulation
results obtained in the case for which the periodic microstructure comprises an array of circles;i.e. the
permeability is〈K•〉 f . The specific influence of microscale growth is indicated in Figure 6, in which
the predicted flow and transport characteristics in its presence and absence are contrasted.

Our results indicate clearly that significant axial variation in flow and transport characteristics is
induced by the PLLA scaffold’s porous structure, and its microscale growth. Figures 5(a,c,e) show that
in such a structure, nutrient uptake is increased dramatically, leading to reduced flow and downstream
nutrient starvation; reduced growth associated with such nutrient depletion leads to axially-varying flow
and pressure profiles via (3.27). In contrast, whenΩs is circular, dramatically enhanced flow and trans-
port are observed. The stark differences in flow and transport highlighted by Figures 5(a,c) arise from
the microstructure of the porous material. Nutrient consumption and subsequent growth depend on the
size of the solid–fluid interface∂Ω f s; see (3.4), (3.29) and (3.30). The irregular nature of the obstruc-
tions in our representation of the PLLA scaffold leads to an (approx.) 3-fold increase in interfacial size
(data omitted), when compared to an array of circular obstructions. Therefore, nutrient provided by the
source atY = 1 is consumed by the solid phase more rapidly in such a structure, leading to significant
axial variation in growth and flow.

Figures 5(b,d,f) indicate that the axially-dependent steady states discussed arise via a balance being
established between advective transport and consumption of nutrient by the growing rim, governed
by the parametersR, α, ρ . Figure 5(b) shows that increased consumption by the growing rim leads
to a significant reduction in nutrient transport through thedomain, leading to growth being localised
by the nutrient source atY = 1, only. Figures 5(d,f) show how the density of the growing solid, and
the ‘efficiency’ with which it is created (viaρ andα, respectively) influences nutrient transport. As
highlighted previously, growth manifests itself as an apparent source of nutrient inΩ f , reflecting the
possibility that the fluid contains unrequired nutrient; asthe fluid is converted, this nutrient is left behind.
Figures 5(d,f) highlight that the creation of dense material (which requires a larger volume of fluid), or
highly efficient growth (requiring little nutrient), leadsto a significant nutrient source, aiding transport
through the scaffold. As discussed in§3.2, such behaviour is an interesting facet of the model, butit is
anticipated that physiologically-relevant choices ofα andρ would prohibit this.

The influence of microscale growth on the macroscale predictions is highlighted explicitly in Figure
6. In the absence of growth and associated uptake (R = 0), (3.27), (4.1) and (4.4) providep(0) =
(Y+1)/2 so that the leading-order macroscale velocity in each geometry is constant and given by:

〈vvv(0)〉
µCT
f = (−0.0007,−0.32), 〈vvv(0)〉•f = (0,−0.73), (4.5)

where, as in (4.1), the superscripts indicate the microscale geometry. Figure 6(a) indicates the disparity
between such constant flow solutions and those obtained in the presence of growth, highlighting that
tissue growth leads to flow restriction and axial variationsin flow speed. The results in Figure 6(b)
demonstrate that in the absence of growth and associated uptake, nutrient transport is complete in con-
trast to the steady-state nutrient distributions obtainedin Figures 4 and 5, which arise from a balance
between uptake associated with growth, and advective transport.

We note that in such a parameter regime (and for suitable initial data) nutrient transport takes the
form of a plane travelling wave, and we may construct explicit analytical solutions of the form:

c(0) = g(XXX−〈vvv(0)〉 f t), (4.6)

whereg = c(0)(XXX,0) denotes the initial nutrient profile (c(0) = 1 atY = 1, c(0) = 0 elsewhere), and the
macroscale advective flow velocity is given for each microstructure in (4.5). This solution describes a
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FIG. 5. Macroscale flow and transport profiles observed in numerical simulations of (3.25), (3.27), (3.29), (3.30), (4.2)–(4.4) at
t = 10 andX = 0 (dimensionless units) within a PLLA scaffold of porosityΦ f = 0.9 (〈KµCT〉 f ; blue lines) or an array of circular
obstructions (〈K•〉 f ; red circles). (a,c,e) Nutrient concentrationsc(0) , axial fluid flow velocity (denotedv) and fluid pressurep(0).
(b,d,f) Nutrient concentration profiles obtained for (b)R = 0.1,1,10, (d) α = 0.25,0.5,0.75, (f) ρ = 1,1.25,1.5; in all cases,
dot-dashed (resp. dashed) lines indicate the smallest (resp. largest) parameter choice. Unless otherwise statedP0 = C0 = R= 1,
α = 0.5, ρ = 1.25. Colour online.
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FIG. 6. Black dashed lines: numerical solutions of the macroscale model (3.25), (3.27), (3.29)–(4.4) showing (a) axial fluid flow
velocity (denotedv), and (b) the macroscale nutrient distributionc(0) in the absence of growth (R = 0) for the PLLA scaffold
(〈KµCT〉 f ; triangles) and for an array of circular obstructions (〈K•〉 f ; circles). Red and blue lines show the corresponding results
of Figures 5(a,b), with growth included. Except as indicated, P0 = C0 = R= 1, α = 0.5, ρ = 1.25. Colour online.

constant flow, transporting nutrient fromY = 1 toY =−1 via a travelling (discontinuous) wave connect-
ing the statec(0) = 1 toc(0) = 0. This simple analysis emphasises the influence of microscale growth on
the macroscale dynamics, and highlights the key role that balancing uptake associated with growth and
advection has in controlling nutrient transport through the scaffold.

To summarise, in this section we have highlighted, via illustrative numerical simulations and simple
analysis, that the microscale geometry of a growing porous structure influences significantly the flow,
growth and transport dynamics and, moreover, that the inclusion of such growth leads to substantial
differences in model dynamics in comparison to standard descriptions of flow in porous media. To
effect this, we chose a computational domain inspired by applications in tissue engineering. Our results
imply that the geometry of tissue engineering scaffolds (i)may influence significantly the microscale
mechanical environment of the cells contained within them (via microscale flow and pressure variations)
and (ii) may limit the effectiveness of perfusive bioreactors as nutrient delivery systems.

5. Discussion

In this paper, we have employed a multiple scales analysis toderive governing equations suitable to
describe, at the macroscale, fluid flow and nutrient transport within a growing tissue, which nevertheless
accomodate explicitly the influence of dynamics occurring at the microscale. The multiple scales tech-
nique that we employ has been widely applied in studies of porous and poroelastic materials (Burridge
& Keller (1981), Mei & Auriault (1991) and many others); by incorporating microscale growth, we
extend significantly the applicability of the method to biological problems. In particular, we analyse the
process of appositional growth of a rigid porous material inresponse to its uptake of a generic diffusible
nutrient, a behaviour of particular relevance to tissue growth and ECM deposition within appropriate
tissue engineering scaffolds.

Our microscale model comprises a Newtonian fluid, which transports a passive diffusible solute,
representing a generic nutrient, contained within a rigid porous material. We consider a representative
microscale ‘pore’ (defined by a two-dimensional regionxxx ∈ Ω ), comprising both solid and fluid do-



mains; uptake of the solute by the solid component at the fluid–solid interface leads to tissue growth. We
consider a simplified model for appositional growth, appropriate to the ‘thin-rim’ or ‘fast-consumption’
limit (King & Franks, 2007), in which such growth manifests itself as a change in position of the (non-
material) solid–fluid interface, thereby altering the poregeometry. In this way, the flow, transport and
growth dynamics are fully coupled at the microscale. Assuming that the micro- and macroscales are
well-separated, we employ a multiple scales analysis to derive equations valid at the macroscale. The
resulting model comprises a Darcy-type equation governingthe flow of culture medium, coupled to
an advection–reaction equation governing the transport ofnutrient by the fluid and its uptake by the
growing rim.

On the macroscale, the influence of the porous microstructure on the flow characteristics is evident
via the permeability tensor, obtained via a well-known microscale Stokes flow problem. In this study,
we demonstrate how tissue growth may be incorporated. As a consequence of the timescale on which
we perform our analysis (and supported by the typical level of growth and mineralisation in relevant
tissue engineering scaffolds) the microscale growth of thesolid phase is relegated toO(ε), so that the
leading order pore geometry is fixed. Nevertheless, our macroscale equations indicate that microscale
growth influences directly the culture medium pressure. Therefore, in our macroscale representation,
culture medium flow, nutrient transport and growth are fullycoupled.

In addition to the development of new theoretical descriptions appropriate for growing tissues, a
key aspect of the current study is the exposition by numerical simulation of our model’s predictions of
macroscale flow, transport and growth dynamics within experimentally and biologically-relevant struc-
tures. As an illustrative example, we employµCT scans of a PLLA scaffold, used in a perfusion biore-
actor system to develop bone tissue constructs, to define ourperiodic unit cellΩ . Numerical solution of
the relevant Stokes cell problem indicates strong dependence of the microscale permeabilityK andO(ε)
pressure contribution on the underlying pore geometry. Thestrong local variations in these quantities
are likely to lead to correspondingly large variations in microscale flow and transport characteristics,
factors known to be of great importance in tissue growth phenomena. Indeed, the experimental studies
on which we base our microscale domain (El Hajet al., 1990; Baaset al., 2010) considered explic-
itly the influence of flow-induced mechanical stimulation supplied to cells within such a scaffold. This
microscale information is incorporated into the macroscale formulation via an anisotropic permeability
tensor, and other coarse features of the microscale domain,such as its porosity and pore surface area.
To highlight their influence on the macroscale dynamics, we obtain numerical solutions of the contin-
uum equations corresponding to our representation of a two-dimensional PLLA scaffold, and compare
them with those that arise when such a periodic microstructure is replaced by an array of circular ob-
structions. Our results indicate that the macroscale modelincorporating growth that we derive leads to
substantial differences in system dynamics, in comparisonto standard descriptions of flow and transport
in porous media, and that a complex microstructure, such as that of the PLLA scaffold, leads to a marked
reduction in axial nutrient transport. The differences in flow and transport dynamics between the two
microstructures arise due to a significantly larger interfacial domain in the PLLA scaffold, leading to
increased nutrient uptake; the growth associated with suchuptake generates further flow restriction, and
enhanced nutrient uptake. Our simulations indicate that, after an initial period in which nutrient spreads
into the domain from the source point, the distributions evolve to steady spatially-varying configurations
from which further spreading is minimal for large times, dueto a balance between uptake associated
with growth, and transport. Therefore, scaffold regions which are distant from the nutrient source are
starved of nutrient for the duration of the culture period, and exhibit very low growth.

In summary, we have indicated that current multiscale homogenisation approaches may be extended
to accomodate microscale growth in a rigorous way. Further,the numerical results that we have pre-



sented illustrate that, together with growth, a complex microstructure of the type illustrated in Figure
2 leads to altered microscale flow patterns and significantlyrestricted macroscale flow and nutrient
transport in tissue engineering scaffolds. Our analysis suggests that a careful balance between cellular
uptake, scaffold microstructure and perfusion velocity isrequired in order to deliver effectively nutrient
to the entire scaffold. Our interest here is in the development of new theoretical models and the illus-
tration of possible model behaviour via numerical simulation and so we neither consider matching to
experimental data via appropriate parameter estimation, nor a detailed parameter study, both of which
form important future work.

While the assumption of microscale periodicity that underpins the two-scale homogenisation method
may not apply to all tissues, withinin vitro tissue engineering applications, scaffold manufacture can
be controlled via advanced production techniques to obtaina highly regular microstructure. This study
indicates how experimental imaging data may be accommodated within such formulations – the majority
of studies in this area deal exclusively with theoretical model development. The assumption of local
periodicity is partially ameliorated by noting that our formulation accommodates macroscale variation
in the geometry ofΩ ; the reader interested in the application of the homogenisation method to more
disordered media is directed to Chernyavskyet al. (2011) and references therein.

We have considered a rigid porous material, and analysed theprocess of surface accretion in re-
sponse to local nutrient concentration, modelled by a simple mass-jump condition which is applied at a
non-material interface. A recent related study (Pentaet al., 2014) considers a deformable (linear-elastic)
substrate (the resulting model describes a nutrient-independent growth of aporoelasticmaterial); natu-
ral extensions of the current work include consideration ofnutrient-limited poroelastic growth, and the
inclusion of the influence of the microscale mechanical environment on tissue growth – the latter are
known to be crucial to the development of viable tissue constructs suitable for implantation and may be
incorporated by a suitable functional dependence of the interfacial growth termS(1) on, e.g., the shear
stress exerted by the fluid on the fluid–solid interface. An additional area of future work is to obtain, via
the methods herein, a macroscale model which includes interstitial growth (in which growth, deforma-
tion and remodelling occur throughout the tissue domain). The latter presents significant mathematical
challenges, such as obtaining an appropriate representation of growth-induced residual stresses; how-
ever, such a formulation will be applicable in the modellingof a wide range of biological phenomena
and is therefore important future work.
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