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In this paper, we consider the derivation of macroscopicagqus appropriate to describe the growth
of biological tissue, employing a multiple-scale homogation method to accommodate explicitly the
influence of the underlying microscale structure of the mialteand its evolution, on the macroscale
dynamics. Such methods have been widely used to study paraliporoelastic materials; however, a
distinguishing feature of biological tissue is its abilttyremodel continuously in response to local en-
vironmental cues. Here, we present the derivation of a miodeldly applicable to tissue engineering
applications, characterised by cell proliferation andaoellular matrix deposition in porous scaffolds
used within tissue culture systems, which we use to studpltaubetween fluid flow, nutrient transport
and microscale tissue growth. Attention is restricted tdee accretion within a rigid porous medium
saturated with a Newtonian fluid; coupling between the waridynamics is achieved by specifying the
rate of microscale growth to be dependent upon the uptakgeheric diffusible nutrient. The resulting
macroscale model comprises a Darcy-type equation gowgfhird flow, with flow characteristics dic-
tated by the assumed periodic microstructure and surfanetigrate of the porous medium, coupled to
an advection—reaction equation specifying the nutrienteatration. lllustrative numerical simulations
are presented to indicate the influence of microscale growtmacroscale dynamics, and to highlight
the importance of including experimentally-relevant ragtructural information in order to correctly de-
termine flow dynamics and nutrient delivery in tissue engiitgy applications.
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1. Introduction

Biological tissue growth is an extremely complex procesgplving the interaction of a wide range
of biological and biophysical factors, which span multipfatial and temporal scales. It is becoming
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accepted that complementary study of biological growtltesses by both experimental and theoretical
methods is required in order to improve our understandirftpef observed phenomena are generated,;
realising this goal will impact on a wide range of experinaand clinical biomedical research, includ-
ing in vitro tissue engineering. The latter refers to the creation daogment tissues in a laboratory,
with which to address the shortfall in donor tissue avaddbl implantation into patients in the treatment
of a wide range of conditions. While replacement skin gradtge been successfully produced in the lab-
oratory and translated into the clinic (Horehal, 2007), the production of more complex replacement
tissues and organs is not currently possible. An experiahgaradigm for such studies entails seeding
a biodegradable porous scaffold with cells; subsequenbiation within a culture medium-filled biore-
actor allows the cells to colonise the porous scaffold (&tra tissue construct). On implantation, the
degrading scaffold is replaced by extracellular matesatsh as collagen and proteoglycans, which are
laid down by the cells (Freeet al., 1994).

The importance of this field has spawned a plethora of exmariah and theoretical studies, in-
vestigating various aspects iof vitro tissue growth and subsequentvivo implantation; the diverse
contributory processes (from intracellular signallingwerks to tissue-level patterning and mechan-
ics) has led theoretical investigators to apply myriadadtdht mathematical modelling approaches. One
class of theoretical models is those that aim to provide erg##n of the tissue construct appropriate at
the macroscale (tissue-scale). Typically, such modelgpciza systems of partial differential equations
describing (for example) the average culture medium flowattaristics, nutrient supply, cell density,
or mechanical effects (Araujo & McElwain, 2005; Lemenal,, 2006; Ambrosiet al,, 2010; O’'Dea
et al, 2010). At the microscale, however, such models are notogpiate since they do not reflect the
nature of individual cells, or the influence of tissue mitrosture on system behaviour. The modelling
literature regarding aspects of biological tissue dynaraicthe scale of a single cell is extensive and
varied; representative studies include: considerationtcdcellular (Bridgeet al., 2010) and intercellu-
lar (Collieret al,, 1996; Webb & Owen, 2004) signalling processes and theueanite on cell behaviour,
within spatially discrete models comprising systems ofrwaidy differential equations; detailed analysis
of the mechanical behaviour of individual cells via biopiegscontinuum models (Bathet al,, 2002;
Mack et al,, 2004); and lattice-free cellular automata-type modglapproaches, representing in detail
the behaviour of small populations of cells (Meinekel., 2001; Van Leeuwent al,, 2009).

The analysis of such cell-level models can be highly nunaénitnature, and to represent realisti-
cally tissue-level dynamics requires very large numbersetls, which provides significant computa-
tional challenges. The derivation of tissue-scale modadsmmodating aspects of cell-level detail, but
within continuum formulations that may admit analytic pregs or simpler numerical analysis, is there-
fore of great importance to the theoretical investigatibtissue growth. To address this, various mul-
tiscale (or homogenisation) techniques have been employgerive macroscale models directly from
underlying microscale systems, enabling some of the dycstoibe incorporated in a mathematically
precise way. Representative examples employing this mdatha biological context include: Turner
et al.(2004) and Fozardt al.(2010), in which continuum representations of the collecthotion of ad-
herent epithelial cells were derived; O’Dea & King (201112) who showed that microscale patterns
formed via discrete intercellular signalling mechanisras be represented within reaction—diffusion
systems; and Chapma al. (2008), Shipley & Chapman (2010) and Marciniak-Czochra &shtyk
(2008), in which macroscale models for transport in biatagtissues were considered. Many of these
studies of homogenisation employ and extend methods fraler gtudies of porous and poroelastic
materials such as Burridge & Keller (1981) and Mei & Aurigdl991). Historically, the inspiration for
many studies applying homogenisation theory includes timysof soil filtration — seee.g, Ptashnyk
& Roose (2010); related applications include the plantrszés (Chavarria-Krauser & Ptashnyk, 2010;



Band & King, 2012).

A distinguishing feature of biological tissue is its alyilib grow and adaptively remodel in response
to local environmental conditions. While continuum modeisgrowth and tissue remodeling abound
(seee.g.Dervaux & Ben Amar (2008, 2010), Nelsat al. (2011, 2013); a comprehensive review is
given in Humphrey (2003)), to our knowledge a macrosalerijgsan of growing tissues, obtained by
homogenisation of microscale dynamics, does not existeHge address this deficiency by consid-
ering nutrient-limited microscale growth. Specificallyewonsider appositional growth (also termed
accretion), whereby growth occurs via deposition of neweniakton the exterior of the growing tissue.
This is distinct from the alternative process of interatigirowth, in which growth occurs throughout the
tissue; such a process is problematic from a mathematidatl pbview since it leads to the genesis of
residual stresses, which must be accommodated in a pHysieakonable way. We study an idealised
representation of appositional growth within a rigid pasomedium, in which growth of the solid phase
results from a change of state from fluid to solid at the sbiii interface, this phase-change occurring
at a prescribed rate, dependent on the local availability géneric diffusible nutrient. Our model is
therefore appropriate in the ‘thin-rim’ or ‘fast-consungpt limit (King & Franks, 2007), and describes
cell growth and extracellular matrix (ECM) deposition wviithissue engineering scaffolds, such as those
employed in perfusion bioreactors, or appositional bossgug growthin vivo. Furthermore, the mul-
tiscale analysis that we employ relies on the assumptionttieamaterial under consideration has a
(locally) spatially-periodic microstructure. This homesdsation approach is widely used to describe
flows within biological tissue (either explicitly such as $hipley & Chapman (2010), or implicitly
through its underpinning of macroscale porous flow modéie)ever, the validity of its application to
tissue growth in general is undermined by the disordereatttre of many biological tissues. In such
scenarios, its accuracy is influenced by the statisticsefifisue structure (and relevant model param-
eters); see, for example, Rubinstein & Torquato (1989) iictviupper and lower bounds on the Darcy
permeability are derived for a random porous medium, andriffagskyet al. (2011) in which conver-
gence of the homogenisation approximation is considerdetail, in the context of placental transport.
In such cases, the macroscale description that arisestshotibe viewed as an exact description, rather
it provides an idealised framework that is amenable to aiglgnd provides insight into macroscale
growth processes. Further, our study focusseioritro tissue engineering applications, for which
scaffold manufacture can carefully be controlled — threeeshsional printing, stereo-lithography and
fused deposition modelling, for example, constitute dreélmethods for producing well-defined and
regular scaffolds (see Hutmachetral. (2004); Hollister (2005) and references therein) to whioh t
assumption of structural regularity will apply.

On theoretical and, subsequently, biological grounds, twdysour model in the limit for which
growth is slow, and hence relegated@¢e) in the multiple-scales analysis; however, our analysis re-
veals that such growth (and associated nutrient consunmjpsievident nevertheless in the leading-order
problem that we derive. In sum, this paper indicates thatesale surface growth may be incorpo-
rated into macroscale models in a straightforward way; teatdilly, we present illustrative numerical
simulations and, via inclusion of experimental data digtgithe microscale structure of a typical tissue
engineering scaffold, highlight how micro- and macroséiale characteristics in realistic scaffolds may
differ from more idealised models.The results that we preswlicate that these differences are likely
to influence dramatically the transport of nutrients toseeded in such structures and hence should be
accounted for in macroscale models seeking to provide a mneatistic description of tissue dynamics.

The remainder of this paper is organised as follows§2anwe summarise the equations governing
fluid flow, nutrient transport and tissue growth that applyha&t microscale, and present a derivation of
a corresponding continuum model via a multiscale homogéinis method ir§3. In §4, we present a



series of numerical experiments that indicate the modelsabiour and highlight how incorporating
knowledge of tissue microstructure into such models mag tessignificant differences in theoretical
predictions. In§5, we summarise the main theoretical results containedirwitiis work and their
implications for tissue culture, and highlight possiblaufe developments.

2. Theoretical formulation: a growing porous medium

We consider an idealised porous medium, represented ashy{oignnected material with spatially
periodic microstructure, and saturated with a viscous Maian fluid. Furthermore, we assume that the
material can be characterised by two distinct lengthscdlbe microscale domain is denot&] with
boundaryd Q, and has characteristic lendth This is further partitioned into a fluid domaf®;, and a
solid domainQs, with boundarie® Q¢ andd Qs, which may include parts of the exterior boundaty

and the fluid—solid interface, denotd@;s. The macroscale characteristic length of the porous medium
is denoted_*, and we assume that the characteristic lengthscales arseparated; correspondingly,
we introduce a dimensionless parameter 0 such that

*

I
&= E < 1 (21)

Throughout, asterisks distinguish dimensional quastiiiem their dimensionless equivalents. Figure
1 illustrates the mathematical representation of a poraatsrial via such a periodic cell geometry.
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FiG. 1. Schematic diagram indicating the mathematical reptaten of an idealised porous material by a periodic micages
domain,Q, of characteristic lengthscalé and boundary Q. The periodic domain is partitioned into fluid and solid caments,
Qs (white) andQs (shaded) respectively. The fluid—solid interface is dethdt@;; we denote a normal to this interface (oriented
pointing into the solid) by.

Flow and transport phenomena in systems of this type havewelestudied; see, for example, Mei
& Auriault (1991) and, in a biological context, Shipley & Gtraan (2010), and many other references
therein. The key distinguishing feature of the analysis i present is the inclusion of growth of
the solid phase, coupled to flow and nutrient transport withe porous medium. This modification
improves dramatically the applicability of such an ideadisnodelling approach to the representation of
biological tissue.



The remaining assumptions underpinning our model are suisatbas follows: growth of the solid
domain Qs occurs via a change of state from fluid to solid at the interf2@+s, at a rate which is
dependent upon the uptake from the fluid doma&, of a generic diffusible passive nutrient. The
resulting model therefore comprises an idealised desmniptf appositional growth (in a sense that will
be made clear in the following section), of broad relevand®siine tissue growth, or to the deposition of
extracellular matrix (ECM) on porous scaffolds within tissengineering bioreactors. Surface dissolu-
tion, relevant to construct dynamics post-implantationivo, may be accommodated easily within this
formulation by incorporating an appropriate state changefsolid to fluid.

2.1 Governing equations

The dimensional velocity of the fluid is denoted with pressurg*, and the nutrient concentration in
the fluid is denoted*. The equations governing the fluid flow and nutrient transpbthe microscale
within Q¢ are as follows:

ov*
pi (G v O ) =D T 2.2)
0*.v* =0, (2.3)
gf* fv.O°¢ = D 0%, (2.4)

in which pf andu* are the density and viscosity of the fluid, respectively, Bridienotes the nutrient
diffusivity.

As noted above, cells are not represented explicitly withinsimplified formulation; instead, tissue
growth associated with cell proliferation and ECM syntbesid deposition manifests itself as growth of
the solid phase, which occurs via a change of state from ftugblid, occurring at the interfacQjs,
and dependent upon the consumption of nutrient. Enforciagsntonservation at the interface, we
obtain the following boundary conditions @2¢s, describing nutrient consumption and the associated
interfacial growth:

¢ (V' — Vi) -n—D*O°c"-n=Q", (2.5)
Pt (V' —Vis) -N=—pgVis-n=S(Q), (2.6)

in which pg denotes the density of the solid ands the unit normal vector pointing int@s. The
remaining quantitiew;, the velocity of the interface, aréf(Q*), which denotes mass conversion from
fluid to solid at a rate dependent upon nutrient consump@bnare specified constitutively below.

2.1.1 Growth and nutrient uptake dynamicg€quation (2.5) is a standard membrane law that de-
scribes the nutrient flux atQ¢s, and is modified to account for interfacial movement. Thesyasp
condition (2.6) is simplified by assuming that the solid ghesrigid (see Ateshian (2011) for mass-
jump conditions appropriate for a growing material in a sam& more general setting), and provides a
constitutive equation defining the evolution of the fluid domdue to growth, and an explicit boundary



condition for the fluid velocity on the interfa@Q;s:

Vis-N= —%S’i (2.7)
ol

vin=(2-2]s, (2.8)
p;  Ps

and so our representation of growth is of similar form to &tgfroblems for phase change. We remark
that due to our simplifying assumption that the solid congodrnis rigid, momentum jump conditions
across the interface are not required.

In what follows we adopt simple models for nutrient uptakd growth dynamics, and assume that
nutrient uptake occurs at a rate proportional to the nutigencentration at the interface, coupled to
interfacial growth via the constitutive choices:

Q*=R'c", S'=a"Q", (2.9)

in which the permeabilityR*, regulates the rate of nutrient consumption at the interé&@;s, and
a* dictates the influence of nutrient uptake upon subsequesudigrowth. To complete the system,
we require that all solutions are periodic on the microsdal®ainQ; macroscale variation i is of
course permitted, thereby enabling spatial variation afemia structure within this formulation.

We highlight that our idealised model, in which consumptod growth occur at a non-material
interface 0 Q;s), may be obtained from a more complete description accogmxplicitly for nutrient
consumption in the tissue domain by taking the ‘thin-rinr’;fast-consumption’ limit (King & Franks,
2007), in which nutrient consumption in the tissue domaimuhates over diffusive transport. For
clarity, denoting byc a nutrient distribution in the solid regid@s, with diffusivity D and consumption
A*cz, our description is appropriate in the linfit= D} /I*2A* < 1, for which nutrient consumption (and
associated growth) occurs in a boundary layer of w'rﬁ(h/ﬁ) with the remainder of2s remaining in
a necrotic or nutrient-starved state.

2.2 Nondimensionalisation
Following Shipley & Chapman (2010), we nondimensionalséadlows:

EIIEAVAS *
“|sz\/ P, t* = \%t,
in whichV* andC* are characteristic macroscale flow velocity and nutriententration scales. There-
fore, the timescale under consideration is that of mactesavection. We remark that the timescale of
microscale growth could be analysed via the choice 1*t/V,;, (whereV; is an appropriate microscale
velocity scale); however, such a scaling increases the ity of the governing equations that result
and is therefore not considered here. We note also that tiseuRibe-type pressure scaling is key to
obtaining the proper leading-order problem in the modeds we develop below.

In dimensionless form, the equations governing flow andspart inQ; are:

X =1"x, v'=V'V, vi=V'vis, ¢c"'=C'c, p'= (2.10)

£2Re(s%’+(v-lj)v> = —Op+e0y, (2.11)

O.v=0, (2.12)
Jdc 1 5.

sﬁ +v-Oc= P—eD (o3 (2.13)



and the boundary conditions on the interfad@;s read:

c(v—vfs)-n—PieEIc-n:Q, (2.14)
v.n=(p—-1)S (2.15)

The velocity of the solid—fluid interface in the normal ditiea, and the dimensionless interfacial growth
Sand nutrient consumptio@ are given by

Vis-n=-S Q=Rc S=aQ. (2.16)
The Reynolds number and Péclet number, appropriate foraseale advective flow are defined by:

Re= Pr , Pe= ,
u* D*

(2.17)

and the remaining dimensionless groupings appearing I)2(2.16) are:p = pZ/p;, the relative
density;R = R*/V*, a parameter controlling the rate of nutrient consumptipthie solid phase at the
fluid—solid interface; andr = a*C*/pZ, which controls the rate of growth that results from nutrien
consumption.

Together with the requirement that the solutions be petiodiQ2 (macroscale variations are admit-
ted), Equations (2.11)—(2.16), comprise the microscaé firoblem’, describing the growing porous
medium. In what follows, we employ this microscale model bdain a macroscale representation of
flow and transport phenomena within a growing porous mediurder simple assumptions of growth
and consumption dynamics. The cell problem that we conssdegrosen to be particularly simple, the
better to highlight how growth may be accommodated withichsa formulation.

3. Multiple scalesanalysis

We now analyse (2.11)—(2.14) via a multiple-scales methadth the aim of deriving a macroscale
description which incorporates the microscale growth @efim (2.16). We reiterate that we follow
closely the method outlined in Burridge & Keller (1981), Sley & Chapman (2010) and many others;
the key distinguishing feature of this analysis is the is@u of growth of the solid phase in response
to nutrient consumption.

We introduce a dimensionless macroscale coordiXateelated to the microscale variabevia
x = £~ 1X; under the assumption of scale separation, we expand ahdiemt variablegs in multiple-
scales form:

WxX.te) = O x X, 1) + ey P X 1) + ... (3.1)
and note that under this coordinate transformation,
O = Ox+ 0y, 0% = 02+ 2¢Oy - Ox 4 €203, (3.2)

wherely, Ox, 02 and 0% denote the gradient and Laplacian operators in the micrd-naacroscale
descriptions.

Our aim is to employ the representation (3.1), (3.2) to ebtadescription of the flow, nutrient
transport and tissue growth at the macroscale, obtained tihe microscale dynamics. Of use will be
the following integral average defined, for some quargity

1

(@) = a1 Jo, gav. (3.3)



Additionally, we denote the porosity of the material #y = |Q¢|/|Q]|; the pore surface area is defined
by |0Q¢s|. Important to the method that we employ is the conversicmivé divergence theorem, of
volume integrals of the form (3.3) to those over the poreaxagf Correspondingly, we introduce the
following notation:

1

=7 )00 (3.4)

<g>fs

3.1 Microscale flow and transport

At 0(1), the governing equations and boundary conditions reduce to

Op©@ =0, Oy-v@ =0, X € Q, (3.5)
Ple 02¢® —v9.0,c© =, X e Qg (3.6)
v9.n=(p-1)59, X € 0Qss, (3.7)
cl0 (v“’) - v(fog) ‘n— %EEIXC(O) n=09 xe Qs (3.8)
vi?.n=-g9, X € dQs, (3.9)

together with the requirement that solutions be periodi€otWe highlight that, for the sake of gener-
ality, we do not replace the interfacial transport te®@ndQ by (2.16) in the following derivation.

The first of Equations (3.5) indicates thalf) = p(®(X,t), so that the pressure is constant on the
microscale. This implies that the microscale growth embddiy (3.7) and (3.9) cannot lead to a cor-
responding microscale pressure-induced flow. For comsigteve therefore relegate interfacial growth
(and associated nutrient uptake)dge); the necessity of such a rescaling is a consequence of (2.10)
in which we choose a Poiseuille scaling for the pressure,aaadlyse processes on the timescale of
macroscale advection. Alternative choices (such as a state growth timescale) permit leading or-
der microscale growth but increase significantly the comipleof the flow equations, by introducing
inertial terms associated with leading-order variationthe microscale geometry, for example.

In view of the above, in what follows we employ the rescalg €R (but omit carets for brevity),
so that

S9 =0, Q9=o. (3.10)

We adopt this scaling, for which changes in the geometr§ afssociated with growth appearde),
to reflect the case for which the leading order unit cell peabls particularly simple. However, below,
we will show that despite its relegation to lower order, thieletion of the microscale geometry under
the influence of interfacial microscale growth is, nevelghs, evident in the leading order macroscale
fluid flow and nutrient transport. We note in passing that Blyig Chapman (2010) motivate similar
choices by detailed consideration of experimental resabitained in the context of drug delivery to
tumours.

On application of the rescalings, the leading order probteduces top® = p(@(X,t), vﬁ) =

0. In addition, multiplying (3.6) by@, integrating overQ;, and employing the divergence theorem

together with the boundary conditions (3.7) and (3.8) (Whiow amount to no-penetration and no-

flux conditions) and microscale periodicity, reveals th hutrient concentration is locally constant:
0 = cO(X,1)

c c 1),



In summary, the leading order problempg®) = p(®(X,t), VQ =0,c@ =cO(X,t) and:

Oc-v® =0, xeQ; (3.11)
v@.n=0, xecdQss, (3.12)
and so the leading order microscale problem is under-d@tedrfor flows in more than one spatial

dimension.
At O(¢€), the equations read:

0= —O,p® — Oxp©@ + 0200, X € Q; (3.13)
0= 0Oy vV 4 Ox -V, X € Q; (3.14)
ac0 1
oc” L O, ) M) — = 26
En +V (I:Ixc + Oxc ) PeDXC , Xe Qs (3.15)
vib.n=(p-1)sY, X € 0Qss, (3.16)
1 1
2 0ue® = c® (v v . n— 2 0ve©® . n_ ol
SO -n=c (v vfs) n— 5 Oxc®-n—QW, x e 00y, (3.17)
v.on=—g, X € 0Qss, (3.18)

where the microscale invariance gf) andc©), and the leading order boundary conditions, have been
employed to simplify the equations. In the current appi@atwe anticipate that the density of the
growing porous medium will exceed that of the culture medamthatp > 1; therefore, (3.16) shows
that growth of the solid phase leads naturally to fluid flowaess the interfac@ Qs (V! - n > 0) in
order to conserve mass.

An appropriate form for the microscale leading order flow rbhaybtained by exploiting the linear-
ity of Equations (3.11) and (3.13), and the independeng@®fn the microstructure:

viO = KOy p@, (3.19)
p(l) =—a-0Ox p(O) + Py, (3.20)

in which p; = p1(X,t), while the permeability tensd€ and the vectoa, which imparts microscale
variation to theZ/(¢) pressure, exhibit both micro- and macroscale dependeuntaréindependent of
time at leading order (as a consequence of the quasi-statiaith Q2). We obtain the following Stokes
flow boundary value problem on the periodic cell:

Ox-K =0, X € Q, (3.21)
—Oa+02K =—I, xeQf, (3.22)
K =0, X € 0Qss, (3.23)

andK anda periodic onQ. Equations (3.21)—(3.23) do not specify uniquely the nmscede variabla,;
therefore, we impose the additional integral constraint:

(@) 0. (3.24)

The cell problem given by Equations (3.21)—(3.24) may, iimgple, be solved for any given choice
of Q, which reflects the microscale geometry of the porous nadtdn general, this problem requires



numerical solution (see Zick & Homsy (1982) and earlier refees therein); however, analytic results
are possible in some simplified geometries — seg, Shipley (2008) for example calculations.

The corresponding nutrient transport is governed by (3.48bject to (3.17) and (3.18), which
is insufficient to determine(®. However, our focus in this paper is the generation of apjatp
macroscalemodels, suitable to describe flow, transport and growth; liatfollows we show how the
above (well-known) microscale Stokes formulation, togethith the&'(¢) system (3.13)—(3.18) may
be exploited to determine flow and nutrient transport at tlaenwscale in the presence of microscale
nutrient-limited growth.

3.2 Macroscale flow and transport

To obtain the macroscale flow and nutrient transport eqastiove exploit the integral average (3.3).
The macroscale leading-order flow description is obtaineaMeraging Equation (3.19) to obtain

(v = —(K)¢-Oxp?, (3.25)

which is the well-known Darcy description of flow through a@as medium.
An equation governing the leading-order macroscale presswbtained in the following way. Av-
eraging (3.14) over the periodic cell and exploiting (34plies:

Ox - (V)¢ = (1—p)(SY)ss, (3.26)

in which the divergence theorem has been employed to trandfte volume integral ove®+ to one
over the surfac@Q;, which comprises, in general, both the interfacial surfd€ss and parts of the
exterior boundrygd Q. The boundary condition (3.16) is exploited to express threnal flow velocity
in terms of the microscale growth, and periodicity of sauns overQ implies that contributions arising
from exterior surfaces cancel out, leaving those from therfacial surfacedQ¢s only. Combining
(3.25) and (3.26) then yields

Ox - ((K)10xp®) = (p— 1)(8¥) 15 (3.27)

We remark that the quasi-static microscale pore geon@tigefines the flow characteristics via the
averaged porosity tensdK) ¢, which contains information from the underlying microgtue, and may
additionally vary on the macroscale. Furthermore, alttoonjcroscale growth enters the problem at
0'(g), it influences nevertheless the leading-order flow via douations to the macroscale pressure in
(3.27).

In the current work, growth is coupled explicitly to the |&aglorder nutrient consumption at the
interface via (2.16) (and (3.10)). Although the nutrieansport problem given by (3.15) and (3.17) is
insufficient to determine the microscale nutrient transpad consumption dynamics, below, we show
that leading-order macroscale description suitable taigpéully the macroscale flow, transport and
growth dynamics may be obtained.

Integrating (3.15) ove®+, and applying the divergence theorem and the leading omdpenetration
condition (3.12), yields:

@ @C_“’)+<w0>> -Oxcl? = i<u c.n) (3.28)
f ot f X = Pe X fsy .

wherein®; denotes the porosity of the material, and as previously,ate that contributions associated
with changes in the integration domain are relegated tol@naer.



The 0'(¢) diffusive nutrient flux over the solid—fluid interface in 28) may be obtained in terms
of the leading-order macroscale concentration by intagga3.17) over the interfac@Q¢s, and ap-
plying the leading order no-penetration and no-conceontrdtux conditions, together with thé'(¢)
microscale interfacial growth conditions (3.16) and (3.X8ter some algebra, the following advection—
reaction equation governing macroscale nutrient trartspobtained:

dc(o>

O ——+ (V)1 Oxc® = pc® (S V) 15— (Q) s, (3.29)

in which the interfacial growth and nutrient consumptiomrts are defined by (2.16), (3.10) as:
QW =Rd?, SV =qaqQW. (3.30)

We remark that interfacial growth appears as an apparents@uQ; because, for certain choicesaf
andp, the fluid being used to create the (denser) solid materidfst contains more nutrient than is
required; in fact, the model requiresOap < 1 in order that the dimensionless nutrient concentration
does not exceed= 1. Such behaviour arises due to our simplified ‘thin-rim’ rabeepresentation, in
which growth is described by a Stefan-type phase changegsoé& more complete description would,
presumably, prohibit this; we therefore expect that it witk be observed for physiologically-relevant
choices ofa andp.

In summary, our macroscale representation of microscafaciaccretion in a porous material
comprises the flow problem governed by Equations (3.25) &i2i7], coupled to the nutrient trans-
port problem given by Equation (3.29), via the nutrient eonption-dependent growth (3.30). These
equations are subject to suitable initial and boundary datidne macroscale, to be defined below. The
dependence of the flow and transport dynamics on the poroer®shiucture is provided by the per-
meability tensoK, obtained from (3.21)—(3.24). We remark that our model fglation is similar in
form to that derived in Shipley & Chapman (2010), which cdeséd drug transport from a fluid to a
porous medium (see Equations (70), (75), (126), (127) dfghper) in the context of tumour therapy;
however, in this work, contributions to the fluid pressurg] affective source/sink terms in the nutrient
concentration equations arise due to tissue growth. Wdigfgtthat although the preceding analysis
considers microscale growth which is slow in comparisotrhacroscale advection-based timescale
(and therefore appears@f¢)) it is evident in the leading order macroscale problem thatlerive.

4. Numerical results

We now present a series of illustrative numerical simutetiof equations (3.21)—(3.24), and (3.25),
(3.27), (3.29) and (3.30) chosen (i) to highlight how micas growth and uptake influence transport
in an idealised porous medium; (ii) to indicate how microstural information may be easily integrated
within such a model; and (iii) to demonstrate how its inasinfluences significantly the predicted flow
and transport dynamics in structures of relevance to tissgaeering applications.

To achieve this, ir§4.1, we consider the case for which the choice of the mictestamainQ is
inspired byuCT (micro computed tomography) data obtained from a tygisalie engineering scaf-
fold, and provide illustrative numerical solutions indicg the influence of such a geometry on the
microscale dynamics. 184.2 we employ this information within the macroscale ecquradj and com-
pare the resulting numerical predictions with those thigseavhen such a microstructure is replaced by
an array of circular obstructions; the substantial infleeoicour new macroscale formulation on model
dynamics, in comparison to standard representations afusditow, is highlighted by contrasting the
results obtained in the presence and absence of growth.



4.1 Microscale geometry

In this subsection, we consider a specific microscale gegnretpired byin vitro tissue engineering
applications, with which to define our domaiy for simplicity, we restrict attention to flow, nutrient
transport and growth in two dimensions.

A typical method to create tissue constructs of a size deitély implantation (while minimising
the necrotic core that often forms at the centre of such cocis) is to employ advection of culture
medium within a perfusion bioreactor to enhance oxygenignttdelivery to cells. Such an approach
is used by El Haj and coworkers within a bioreactor systenhd¢beprises a cell-seeded poly(L-lactic
acid) (PLLA) scaffold (depicted in Figure 2(a)), throughiatn culture medium is perfused (El Haj
et al, 1990; Baa%t al,, 2010). We employ data obtained frqu€T scans of such a PLLA scaffold to
define our periodic microscale domailk; in this context, the microscale growth embodied by (3.30)
represents ECM deposition and/or mineralisation on the porface by a cell population seeded within
the scaffold.

Figure 2(b) indicates a typical two-dimensional sectiorthaf scaffold, together with our chosen
computational domain. The porosity of such a scaffoldjs= 0.9 (Baaset al, 2010) and we choose
the relative areas a2t and Qs in our computational domain to reflect this. When such a stwhfs
seeded with human bone cells and cultured for four weekspsiepn of extracellular materials and
subsequent mineralisation reduce the porosity by apprateiyn 2% to®; =~ 0.88 (data omitted; see
Baaset al. (2010) for details). Such a deposition and mineralisatéte provides additional justification
for our earlier assumption that the rate of interfacial gfomay be specified &8= &'(¢).

We remark that the PLLA scaffold illustrated in Figure 2 eitd a highly inter-connected mi-
crostructure, with a significant degree of randomness:atipgperiodically our computational ur2
does not represent accurately such scaffold. We note,eiumtbre, that since we restrict attention to
two spatial dimensions for simplicity, the connected thdéeensional skeleton depicted in Figure 2(a)
appears as an array of disconnected masses. We reitena®drothat in choosing this geometry f@r
our aim is not to represent comprehensively the procesgesaé growth within a specifia vitro sys-
tem, but to illustrate the ease with which suitable expenitaldata may be incorporated and, together
with microscale growth, to highlight its importance in mbdgnamics.

FiG. 2. (a)uCT (micro computed tomography) image of a typical PLLA solaffemployed in a perfusion tissue culture system
(Baaset al., 2010). Dimensions are: 9 mm (diameter), 4 mm (height). (vA-dimensional section of the scaffold shown in
(a). Blue regions indicate solid matrix (colour online)sét: a typical element of the scaffold microstructure, \Whiee employ
as our chosen representative microscale domain in Section 4

Numerical solutions of the microscale problem given by HEiques (3.21)—(3.24) in the computa-
tional domain illustrated in Figure 2(b) were obtained vignite element method, implemented in the
software COMSOL Multiphysics. These results are illugtddh Figure 3 and indicate clearly the strong



microscale variation in the local permeability tenggrand the microscalé’ () pressure contribution
a. Figures 3(a—d) highlight additionally the disparity inrpeability in different coordinate directions,
indicating that anisotropy in the porous material’s flowgedies is induced by the microstructure.

4.2 Macroscale dynamics

In this subsection, we indicate how the microscale res@saded in Figure 3 determine the macroscale
flow, nutrient transport and growth characteristics via&opns (3.25), (3.27), (3.29) and (3.30), subject
to suitable boundary and initial conditions to be specifield. To highlight its importance, we contrast
these results with those obtained when the complex geormeligated in Figure 2 is replaced by a set
of circular obstructions, also obeyirgg; = 0.9.

The influence of the underlying porous microstructure iglent in the macroscale dynamics via
the average permeability ) ¢, calculated from the solutions to (3.21)—(3.24) via numerjuadrature.
Employing the results illustrated in Figure 3, and corresfing solutions obtained in the case for which
Qs is a circle, we obtain the following macroscale permeabiéhsors:

0.37 00014 146 0
uCTy o\ __
(K= (0.0014 064 > (Kt —< 0 1.46)’ (4.1)

in which the superscriptsuCT’ and ‘e’ differentiate the permeability tensors associated wilche
microscale geometry. Comparison of the permeability irhezase highlights the degree of macroscale
anisotropy imparted by the porous microgeometry; the ateseimacroscale variation {{K ) ; is a con-
sequence of the periodic material under considerationbFewvity, solutions equivalent to those shown
in Figure 3 for the case of a circular obstruction are notudeld here — a corresponding calculation is
provided in Zick & Homsy (1982).

To define our macroscale initial and boundary conditions @rdputational domain, we consider
an idealised model of the perfusion bioreactor describexv@brepresented by the two-dimensional
region—0.5< X £ 0.5, -1 <Y <1, and subject to an imposed axial pressure drop, which slave
flow of culture medium. We investigate how the transport offtusible nutrient through the system is
influenced by the nutrient-dependent microscale growth@tblid component. Appropriate boundary
conditions onp(@, c¢(© are as follows:

0@ =Ry, O —c,, Y=1, (4.2)
p@ =0, Y=-1, (4.3)

dc(o>

oX
wherei € {uCT, e} denotes each microstructure. These boundary conditipnesent a line source of
nutrientintroduced & = 1, which is transported through the porous medium via a presdriven flow
of culture medium, with no-penetration of culture mediunmatrient through the bioreactor walls. The
averaged culture medium velocity(?)); is calculated fronp(© via (3.25) and (4.1). We are interested
in the transport of nutrient through the scaffold, and itsalsp by the solid phase, leading to tissue
growth; we therefore specify the following initial dai@® (X,0) = 0.

In addition to the imposed pressure dr&p, and nutrient sourc&, the macroscale problem con-

tains the following dimensionless parametd&sa andp which determine the rate of nutrient consump-
tion by the interface, its influence on growth and the retatiensity of the fluid and solid phases (the

(K" Oxp©@-n=0, —0, X=+05, (4.4)
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FiG. 3. Numerical solutions of the microscale Stokes probler21(8-(3.24) in the computational domain defined in Figurat@ w

@; = 0.9, illustrating how microscale variation is imparted to flwv via (3.19) and (3.20) due to the microstructure. (a)+(e)
components of the permeability tensir, (€), (f) the components of th€(€) pressure contributiora.
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FIG. 4. Numerical solutions of the macroscale model (3.25R78B. (3.29)—(4.4), indicating (a) the macroscale nutrigist
tribution ¢(9, and (b) pressure field© within a PLLA scaffold (with the periodic microstructurdustrated in Figure 2) at
t = 10 (dimensionless units), by which time the system has edlaa a steady state. (c) The nutrient distributiorXat 0 at
t=0,1,2,...,10, indicating convergence to an axially nonuniform stestdye (the arrow indicates the direction of increasing
Parameter valuesh =Co=R=1,a =0.5,p =1.25,®; =0.9.

remaining constants that appear in the equations arise8\v, @nd are fixed by the geometry @f).

In the context of a mineralised rim of similar density to threlarlying PLLA scaffold being deposited
upon the pore surface, an appropriate choice for relatimsitieis in the rang@ = 1.25-129 (Mikos

et al, 1994), and for the reasons discussed above, we requitd/p. We emphasise that our focus
here is on highlighting model dynamics for a particular pmratructure; therefore, we choose not to
consider specific uptake/consumption parameters aptegddr individual tissue engineering applica-
tions, and nor do we undertake a detailed parameter studghelnumerical simulations that follow,
we fix Py = Cy = 1, and indicate the behaviour of the model for represematiues of the parameters
relating to uptake and growth (detailed in the relevant graptions).

Figures 4(a,b) show typical numerical results, at a repitasige time point{= 10), indicating the
distribution of nutrient and fluid pressure field on the macade, within a porous scaffold with mi-
crostructure illustrated in Figure 2(b) (that is, the peairitity tensor is(K#CT)¢). These highlight that
nutrient spreads through the porous scaffold under theeinfle of the pressure-induced flow, but that
the extent of nutrient advection is limited. Figure 4(c)whdhe time evolution of the nutrient concen-
tration atX = 0, indicating clearly that transport of nutrient from ujgstm regions slows, eventually
achieving a steady configuration in which regions distamtfthe source exhibit nutrient depletion so
that, due to (3.30), uptake and associated growth is reedrio upstream regions. We remark that these
‘steady-state’ solutions have not been verified analyificalowever, our numerical experiments indi-
cate that these represent configurations whose time-éwolist minimal. Below, we will employ the
terminology ‘steady-state’, for concision.

We highlight that due to the problem set-up, and the reptatien of culture medium flow by
a Darcy law (which prohibits application of no-slip on thetdactor walls), the solutions shown in
Figures 4(a,b) display very little dependence on the trarsg/coordinate.

In Figures 5 and 6 these results are analysed in more detaifigures 5(a,c,e), we present the
nutrient concentration, fluid pressure and axial velociti a= 0 (t = 10), while Figures 5(b,d,f) indi-
cate how the nutrient transport is influenced by changgs im andR. To highlight the influence of



the microscale scaffold anisotropy on our model predigjam Figures 5(a,c,e) we include simulation
results obtained in the case for which the periodic micuz$tire comprises an array of circlés. the
permeability is(K*)¢. The specific influence of microscale growth is indicated iguFe 6, in which
the predicted flow and transport characteristics in itsgues and absence are contrasted.

Our results indicate clearly that significant axial vapatin flow and transport characteristics is
induced by the PLLA scaffold’s porous structure, and itsngscale growth. Figures 5(a,c,e) show that
in such a structure, nutrient uptake is increased dranligtiteading to reduced flow and downstream
nutrient starvation; reduced growth associated with suthent depletion leads to axially-varying flow
and pressure profiles via (3.27). In contrast, wkxns circular, dramatically enhanced flow and trans-
port are observed. The stark differences in flow and trangpghlighted by Figures 5(a,c) arise from
the microstructure of the porous material. Nutrient constiom and subsequent growth depend on the
size of the solid—fluid interfac8Q;s; see (3.4), (3.29) and (3.30). The irregular nature of thetraio-
tions in our representation of the PLLA scaffold leads toampfox.) 3-fold increase in interfacial size
(data omitted), when compared to an array of circular obstyas. Therefore, nutrient provided by the
source alY = 1 is consumed by the solid phase more rapidly in such a steydeading to significant
axial variation in growth and flow.

Figures 5(b,d,f) indicate that the axially-dependentdyesiates discussed arise via a balance being
established between advective transport and consumptiontdent by the growing rim, governed
by the parameter®, a, p. Figure 5(b) shows that increased consumption by the gipwin leads
to a significant reduction in nutrient transport through doenain, leading to growth being localised
by the nutrient source & = 1, only. Figures 5(d,f) show how the density of the growintics@and
the ‘efficiency’ with which it is created (vi@ and a, respectively) influences nutrient transport. As
highlighted previously, growth manifests itself as an appasource of nutrient i®2;, reflecting the
possibility that the fluid contains unrequired nutrienttlasfluid is converted, this nutrient is left behind.
Figures 5(d,f) highlight that the creation of dense matéwaich requires a larger volume of fluid), or
highly efficient growth (requiring little nutrient), leads a significant nutrient source, aiding transport
through the scaffold. As discussed§iB.2, such behaviour is an interesting facet of the modelit lisit
anticipated that physiologically-relevant choicestofindp would prohibit this.

The influence of microscale growth on the macroscale priedisis highlighted explicitly in Figure
6. In the absence of growth and associated uptéke Q), (3.27), (4.1) and (4.4) providp©® =
(Y +1)/2 so that the leading-order macroscale velocity in each gémgris constant and given by:

(VOYKCT — (_0.0007,-0.32), (V)3 =(0,-0.73), (4.5)

where, as in (4.1), the superscripts indicate the micresgabmetry. Figure 6(a) indicates the disparity
between such constant flow solutions and those obtaineckiprigsence of growth, highlighting that
tissue growth leads to flow restriction and axial variation§low speed. The results in Figure 6(b)
demonstrate that in the absence of growth and associataklejpiutrient transport is complete in con-
trast to the steady-state nutrient distributions obtainefigures 4 and 5, which arise from a balance
between uptake associated with growth, and advectivefgoahs

We note that in such a parameter regime (and for suitablialidiita) nutrient transport takes the
form of a plane travelling wave, and we may construct expéinalytical solutions of the form:

¥ =g(X— (V)¢ 1), (4.6)

whereg = c¢(9 (X, 0) denotes the initial nutrient profile® = 1 atY = 1, ¢(® = 0 elsewhere), and the
macroscale advective flow velocity is given for each miawagure in (4.5). This solution describes a
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FIG. 5. Macroscale flow and transport profiles observed in nwaksimulations of (3.25), (3.27), (3.29), (3.30), (4.2)4) at
t = 10 andX = 0 (dimensionless units) within a PLLA scaffold of porosity = 0.9 ((K“CT)¢; blue lines) or an array of circular
obstructions (K *)¢; red circles). (a,c,e) Nutrient concentratiasi®, axial fluid flow velocity (denoted) and fluid pressur@(©.
(b,d,f) Nutrient concentration profiles obtained for @)= 0.1,1,10, (d) a = 0.25,0.5,0.75, (f) p = 1,1.25,1.5; in all cases,
dot-dashed (resp. dashed) lines indicate the smallegt. (fl@gest) parameter choice. Unless otherwise stajedCy = R=1,
a =0.5, p = 1.25. Colour online.
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FiG. 6. Black dashed lines: numerical solutions of the macitestedel (3.25), (3.27), (3.29)—(4.4) showing (a) axialdlflow
velocity (denoted), and (b) the macroscale nutrient distributidf in the absence of growttR(= 0) for the PLLA scaffold
((KHC€T)¢; triangles) and for an array of circular obstructiof {)¢; circles). Red and blue lines show the corresponding sult
of Figures 5(a,b), with growth included. Except as indidaf® = Co = R=1, a = 0.5, p = 1.25. Colour online.

constant flow, transporting nutrient frofn= 1 toY = —1 via a travelling (discontinuous) wave connect-
ing the state© = 1 toc(? = 0. This simple analysis emphasises the influence of mictegcawth on
the macroscale dynamics, and highlights the key role thanlang uptake associated with growth and
advection has in controlling nutrient transport through sbaffold.

To summarise, in this section we have highlighted, via itiats/e numerical simulations and simple
analysis, that the microscale geometry of a growing portuetsire influences significantly the flow,
growth and transport dynamics and, moreover, that the simuof such growth leads to substantial
differences in model dynamics in comparison to standardrgasns of flow in porous media. To
effect this, we chose a computational domain inspired byiegtjons in tissue engineering. Our results
imply that the geometry of tissue engineering scaffoldsn@y influence significantly the microscale
mechanical environment of the cells contained within theia hicroscale flow and pressure variations)
and (ii) may limit the effectiveness of perfusive bioreastas nutrient delivery systems.

5. Discussion

In this paper, we have employed a multiple scales analysietive governing equations suitable to
describe, at the macroscale, fluid flow and nutrient trartspitinin a growing tissue, which nevertheless
accomodate explicitly the influence of dynamics occurritiiha microscale. The multiple scales tech-
nique that we employ has been widely applied in studies adygp®eand poroelastic materials (Burridge
& Keller (1981), Mei & Auriault (1991) and many others); bycorporating microscale growth, we
extend significantly the applicability of the method to bigical problems. In particular, we analyse the
process of appositional growth of a rigid porous materiaégponse to its uptake of a generic diffusible
nutrient, a behaviour of particular relevance to tissuemgncand ECM deposition within appropriate
tissue engineering scaffolds.

Our microscale model comprises a Newtonian fluid, whichdpamnts a passive diffusible solute,
representing a generic nutrient, contained within a rigicops material. We consider a representative
microscale ‘pore’ (defined by a two-dimensional regioa Q), comprising both solid and fluid do-



mains; uptake of the solute by the solid component at the-fidtid interface leads to tissue growth. We
consider a simplified model for appositional growth, appiaip to the ‘thin-rim’ or ‘fast-consumption’
limit (King & Franks, 2007), in which such growth manifestsdlf as a change in position of the (non-
material) solid—fluid interface, thereby altering the pgemmetry. In this way, the flow, transport and
growth dynamics are fully coupled at the microscale. Assynthat the micro- and macroscales are
well-separated, we employ a multiple scales analysis tivelequations valid at the macroscale. The
resulting model comprises a Darcy-type equation govertiiegflow of culture medium, coupled to
an advection—reaction equation governing the transponutrient by the fluid and its uptake by the
growing rim.

On the macroscale, the influence of the porous microstreciaithe flow characteristics is evident
via the permeability tensor, obtained via a well-known rogmale Stokes flow problem. In this study,
we demonstrate how tissue growth may be incorporated. Asisecence of the timescale on which
we perform our analysis (and supported by the typical lefgrowth and mineralisation in relevant
tissue engineering scaffolds) the microscale growth ofstilel phase is relegated @(¢), so that the
leading order pore geometry is fixed. Nevertheless, our osaate equations indicate that microscale
growth influences directly the culture medium pressure.réfoee, in our macroscale representation,
culture medium flow, nutrient transport and growth are felypled.

In addition to the development of new theoretical desariitiappropriate for growing tissues, a
key aspect of the current study is the exposition by numksiozulation of our model’s predictions of
macroscale flow, transport and growth dynamics within expentally and biologically-relevant struc-
tures. As an illustrative example, we emplpZT scans of a PLLA scaffold, used in a perfusion biore-
actor system to develop bone tissue constructs, to defingaviadic unit cellQ. Numerical solution of
the relevant Stokes cell problem indicates strong deperedefithe microscale permeabilityand&' (&)
pressure contribution on the underlying pore geometry. thang local variations in these quantities
are likely to lead to correspondingly large variations ircroscale flow and transport characteristics,
factors known to be of great importance in tissue growth phesna. Indeed, the experimental studies
on which we base our microscale domain (El ldgjal., 1990; Baat al., 2010) considered explic-
itly the influence of flow-induced mechanical stimulatiopplied to cells within such a scaffold. This
microscale information is incorporated into the macros¢afmulation via an anisotropic permeability
tensor, and other coarse features of the microscale doswugh, as its porosity and pore surface area.
To highlight their influence on the macroscale dynamics, Waio numerical solutions of the contin-
uum equations corresponding to our representation of adim@nsional PLLA scaffold, and compare
them with those that arise when such a periodic microstradtureplaced by an array of circular ob-
structions. Our results indicate that the macroscale miadetporating growth that we derive leads to
substantial differences in system dynamics, in compatisstandard descriptions of flow and transport
in porous media, and that a complex microstructure, sudea®f the PLLA scaffold, leads to a marked
reduction in axial nutrient transport. The differences awfland transport dynamics between the two
microstructures arise due to a significantly larger intdeladomain in the PLLA scaffold, leading to
increased nutrient uptake; the growth associated with sptdke generates further flow restriction, and
enhanced nutrient uptake. Our simulations indicate tffitgt; an initial period in which nutrient spreads
into the domain from the source point, the distributiondewto steady spatially-varying configurations
from which further spreading is minimal for large times, doea balance between uptake associated
with growth, and transport. Therefore, scaffold regionschlare distant from the nutrient source are
starved of nutrient for the duration of the culture periaaj @axhibit very low growth.

In summary, we have indicated that current multiscale hamasgtion approaches may be extended
to accomodate microscale growth in a rigorous way. Furthernumerical results that we have pre-



sented illustrate that, together with growth, a complexrostructure of the type illustrated in Figure
2 leads to altered microscale flow patterns and significametfyricted macroscale flow and nutrient
transport in tissue engineering scaffolds. Our analysigiests that a careful balance between cellular
uptake, scaffold microstructure and perfusion velocityeguired in order to deliver effectively nutrient
to the entire scaffold. Our interest here is in the developménew theoretical models and the illus-
tration of possible model behaviour via numerical simolatind so we neither consider matching to
experimental data via appropriate parameter estimationametailed parameter study, both of which
form important future work.

While the assumption of microscale periodicity that undtesthe two-scale homogenisation method
may not apply to all tissues, withim vitro tissue engineering applications, scaffold manufacture ca
be controlled via advanced production techniques to ofatéiirghly regular microstructure. This study
indicates how experimental imaging data may be accommaddatiein such formulations — the majority
of studies in this area deal exclusively with theoreticaldelocdevelopment. The assumption of local
periodicity is partially ameliorated by noting that our fioulation accommodates macroscale variation
in the geometry of2; the reader interested in the application of the homogé&arsanethod to more
disordered media is directed to Chernyavekgl. (2011) and references therein.

We have considered a rigid porous material, and analysegrtitess of surface accretion in re-
sponse to local nutrient concentration, modelled by a @mmss-jump condition which is applied at a
non-material interface. A recent related study (Pettd.,, 2014) considers a deformable (linear-elastic)
substrate (the resulting model describes a nutrient-iedégnt growth of @oroelasticmaterial); natu-
ral extensions of the current work include considerationutfient-limited poroelastic growth, and the
inclusion of the influence of the microscale mechanical mmrent on tissue growth — the latter are
known to be crucial to the development of viable tissue qoest suitable for implantation and may be
incorporated by a suitable functional dependence of thexfimtial growth tern8Y on, e.g, the shear
stress exerted by the fluid on the fluid—solid interface. Aditmhal area of future work is to obtain, via
the methods herein, a macroscale model which includesstittal growth (in which growth, deforma-
tion and remodelling occur throughout the tissue domaihg latter presents significant mathematical
challenges, such as obtaining an appropriate represamtatigrowth-induced residual stresses; how-
ever, such a formulation will be applicable in the modellafga wide range of biological phenomena
and is therefore important future work.
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