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Abstract 

The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly 

understood. In this study, we investigated the modulation of TG2 activity by the A1 

adenosine receptor in cardiomyocyte-like H9c2 cells.H9c2 cells were lysed following 

stimulation with the A1 adenosine receptor agonist N6-cyclopentyladenosine (CPA). 

Transglutaminase activity was determined using an amine incorporating and a protein 

cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and 

Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was 

investigated by monitoring hypoxia-induced cell death. CPA induced time and 

concentration-dependent increases in amine incorporating and protein crosslinking 

activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 

inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), 

MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by 

removal of extracellular Ca2+. CPA triggered robust increases in the levels of TG2-

associated phosphoserine and phosphothreonine, which were attenuated by PKC, 

MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-

X-cadaverine incorporation into proteins and proteomic analysis identified known 

(Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment 

reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors 

R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity 

was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase 

dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-

induced cytoprotection. 
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Abbreviations:  
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Dulbecco's modified Eagle’s medium; DPCPX, 8-cyclopentyl-1,3-dipropylxanthine, EDTA, 

ethylenediaminetetraacetic acid; ERK1/2, extracellular signal-regulated kinases 1 and 2; 

FITC, fluorescein isothiocyanate; GPCRs, G-protein coupled receptors; HRP, horseradish 

peroxidase; IGEPAL CA-630, octylphenyl-polyethylene glycol; JNK, c-Jun N-terminal kinase; 

LDH, lactate dehydrogenase; MAPK, mitogen activated protein kinase; MEK1/2, mitogen-

activated protein kinase kinase 1/2; MKK4/7, mitogen activated protein kinase kinase 4 and 

7; MTT, 3-(4-5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide; PBS, phosphate-

buffered saline; PD 98059, 2’-amino-3’-methoxyflavone; PI-3K, phosphatidylinositol 3-

kinase; PKB, protein kinase B; PKA, protein kinase A; PKC, protein kinase C; PMA, 

phorbol-12-myristate-13-acetate; R283, 1,3-dimethyl-2[(2-oxopropyl)thio]imidazolium 

chloride; Ro 31-8220, 3-{1-[3-(2-isothioureido) propyl]indol-3-yl}-4-(1-methylindol-3-yl)-

3-pyrrolin-2,5-dione; SB 203580, 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-

pyridyl)1H-imidazole; SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel 

electrophoresis; SP 600125, anthra[1-9-cd]pyrazol-6(2H)-one; SWATH-MS, Sequential 

Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra; TG2, 

transglutaminase type 2; Z-DON, benzyloxycarbonyl-(6-Diazo-5-oxonleucinyl)-L-valiyl-L-

prolinyl-L-leucinmethylester.  
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1. Introduction 

Transglutaminases (TGs) comprise a family of calcium (Ca2+) dependent enzymes (TG1-

7 and Factor XIIIa) that catalyse post-translational modification of proteins. Once Ca2+ 

binds to TG, a cysteine is exposed leading to the formation of a bond between ε-amide 

(as an isodipeptide or polyamine bond) and γ-carboxamide of protein bound glutamine 

residues [1]. Transglutaminase 2 (TG2), the most widely studied member of the TG 

family, has been implicated in the regulation of a wide range of processes, including cell 

adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix 

organization [2]. The role of TG2 in cell survival and cell death is cell-specific with 

respect to whether it has pro- or anti-apoptotic effects [3]. Dysregulation of TG2 occurs 

in many pathologies, including coeliac disease, neurodegenerative disorders, some 

cancers and, as such, represents a potential therapeutic target [4].  

Transglutaminase 2 possesses multiple enzymic functions that include transmidation, 

protein disulphide isomerase and protein kinase activity [5]. The transamidase activity of 

TG2 is inhibited by GTP/GDP and when  bound to GTP/GDP, TG2 functions as a G-protein 

known as Gh independently of its transamidase activity [6]. Interestingly, the activity of 

TG2 and other TGs can be regulated by protein kinases. For example, phosphorylation of 

TG2 by protein kinase A (PKA) inhibits its transamidating activity but enhances its kinase 

activity [7], whereas cross-linking activity of TG1 is enhanced by phorbol ester-induced 

stimulation of protein kinase C (PKC) and extracellular signal-regulated kinases 1 and 2 

(ERK1/2) [8]. Finally, PKC-δ has been shown to regulate TG2 expression in pancreatic 

cancer cells [9]. Overall, these observations suggest that the activity and expression of 

specific TG isoenzymes can be regulated by signaling pathways associated with G-

protein coupled receptors (GPCRs). However, little is currently known about the 

regulation of TG2 enzymic activity following GPCR stimulation.  

The A1 adenosine receptor is a member of the GPCR superfamily, which couples to 

pertussis toxin-sensitive Gi/Go-proteins [10]. Although the A1 adenosine receptor 

stimulation is traditionally associated with inhibition of adenylyl cyclase, it also triggers 

the activation of additional signalling cascades involving PKC, PKB, ERK1/2, and p38 

MAPK [11-16]. Since PKC and ERK1/2 pathways are associated with modulation of TG 

activity [7,8], it is conceivable that the A1 adenosine receptor regulates TG activity. 

Since H9c2 cells express functional A1 adenosine receptors [17] the primary aims of this 

study were (i) to determine whether the A1 adenosine receptor modulates TG2 activity in 

these cells, and (ii) whether TG2 is involved in A1 adenosine receptor induced 

cytoprotection [17]. The results obtained indicate that A1 adenosine receptor stimulation 
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modulates TG2 phosphorylation and activity via a multi protein kinase and extracellular 

Ca2+-dependent pathway.  
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2. Materials and methods 

2.1. Materials 

BAPTA/AM, forskolin, PD 98059, Ro-31-8220 ({3-[1-[3-(amidinothio) propyl-1H-indol-3-

yl]-3-(1-methyl-1H-indol-3-yl)maleimide bisindolylmaleimide IX, methanesulfonate}) SB 

203580, SP 600 125, and thapsigargin were obtained from Tocris Bioscience (Bristol, 

UK). Adenosine, casein, DPCPX (1,3-dipropylcyclopentylxanthine), IGEPAL, MTT (3-(4-5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), N6-cyclopentyladenosine, N′,N′-

dimethylcasein, paraformaldehyde, pertussis toxin, protease inhibitor cocktail, 

phosphatase inhibitor cocktail 2 and 3, ExtrAvidin®-HRP and ExtrAvidin®-FITC and 

Triton™ X-100 were obtained from Sigma-Aldrich Co. Ltd. (Gillingham, UK). Fluo-8/AM 

was purchased from Stratech Scientific Ltd (Newmarket, UK). The TG2 inhibitors Z-DON 

(Z-ZON-Val-Pro-Leu-OMe) and R283 along with purified standard guinea-pig liver TG2 

were obtained from Zedira GmbH (Darmstadt, Germany). Biotin-TVQQEL was purchased 

from Pepceuticals (Enderby, UK). DAPI was from Vector Laboratories Inc (Peterborough, 

UK). Coomassie blue (InstantBlue™ stain) was purchased from Expedeon (Swavesey, 

UK). Biotin cadaverine (N-(5-Aminopentyl)biotinamide) and biotin-X-cadaverine(5-([(N-

(Biotinoyl)amino)hexanoyl]amino)pentylamine) were purchased from Invitrogen UK 

(Loughborough, UK). DMEM (Dulbecco´s modified Eagle´s medium), foetal bovine serum, 

trypsin (10X), L-glutamine (200 mM), penicillin (10,000 U/ml)/streptomycin (10,000 

g/ml) were purchased from Lonza, (Castleford, UK). All other reagents were purchased 

from Sigma-Aldrich Co. Ltd. (Gillingham, UK) and were of analytical grade. Antibodies 

were obtained from the following suppliers: monoclonal phospho-specific ERK1/2 

(Thr202/Tyr204) from Sigma-Aldrich Co. Ltd; polyclonal phospho-specific PKB (Ser473), 

polyclonal total unphosphorylated PKB, monoclonal total unphosphorylated ERK1/2, 

polyclonal total unphosphorylated JNK, polyclonal total unphosphorylated p38 MAPK, 

monoclonal phospho-specific p38 MAPK and monoclonal phospho-specific JNK were from 

New England Biolabs (UK) Ltd (Hitchin, UK);  monoclonal anti-TG2 (CUB 7402) from 

Thermo Scientific (Leicestershire, UK); polyclonal anti-phosphoserine and polyclonal 

anti-phosphothreonine from Abcam (Cambridge, UK). 

 

2.2. Cell Culture 

Rat embryonic cardiomyoblast-derived H9c2 cells were obtained from the European 

Collection of Animal Cell Cultures (Porton Down, Salisbury, UK). These cells, derived from 

embryonic rat heart tissue [18], are increasingly used as an in vitro model for studies 

exploring cardioprotection since they display similar morphological, electrophysiological 

and biochemical properties to primary cardiac myocytes [19]. Cells were cultured in 

DMEM supplemented with 2 mM L-glutamine, 10% (v/v) foetal bovine serum and penicillin 

(100 U/ml)/streptomycin (100 g/ml). They were maintained in a humidified incubator (95% 
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air/5% CO2 at 37°C) until 70-80% confluent and sub-cultured (1:5 split ratio) using trypsin 

(0.05% w/v)/EDTA (0.02% w/v). Experiments were performed on passage numbers 2-28. 

 

 

2.3. Transglutaminase activity assays 

Time course profiles and concentration-response response curves were obtained for CPA 

and adenosine. Where appropriate, cells were also pre-incubated for 30 min in medium 

with or without the protein kinase inhibitors Ro 31-8220 (PKC; 10 µM; [20]), PD 98059 

(MEK1/2, 50 µM; [21]), SB 203580 (p38 MAPK; 20 µM; [22]), and SP 600 125 (JNK1/2; 

20 µM; [23]) prior to treatment with 100 nM CPA or 100 µM adenosine. Following 

stimulation, cells were rinsed twice with 2.0 ml of chilled PBS, lysed with 500 μl of ice-

cold lysis buffer (50 mM Tris-HCl pH 8.0, 0.5% (w/v) sodium deoxycholate, 0.1% (v/v) 

protease inhibitor cocktail, and 1% (v/v) phosphatase inhibitor cocktail 2). Cell lysates 

were clarified by centrifugation at 4°C for 10 min at 14000 x g prior to being assayed for 

TG2 activity, as described below. Protein was determined using the bicinchoninic acid 

(BCA) protein assay [24], using a commercially available kit (Sigma-Aldrich Co. Ltd), 

with bovine serum albumin (BSA) as the standard  

 

Biotin-labeled cadaverine-incorporation assays were performed according to Slaughter et 

al. [25] with modifications [26], as described previously [27]. The biotin-labeled peptide 

cross-linking assay was performed according to the method of Trigwell et al. [28] with 

minor modifications [27]. The reaction was started by the addition of 50 μl of samples, 

positive control (50 ng/well of guinea-pig liver TG2) or negative control (100 mM Tris-

HCl, pH 8.0) and allowed to proceed for 1 h at 37°C. In both assays, the reaction was 

terminated by adding 50 μl of 5.0 M sulphuric acid and the absorbance read at 450 nm. 

One unit of TG2 was defined as a change in absorbance of one unit h-1.  

 

2.4. Hypoxia-induced cell death 

H9c2 cells in glucose-free and serum-free DMEM (Gibco™, Life Technologies Ltd, Paisley, 

UK) were exposed to 8 h hypoxia using a hypoxic incubator (5% CO2/1% O2 at 37°C) in 

which O2 was replaced by N2.  

 

2.5. Cell viability assays 

H9c2 cells were plated in 24-well flat bottomed plates (15,000 cells per well) and cultured 

for 24 h in fully supplemented DMEM, before cell viability was determined by measuring the 

reduction of MTT [29]. The amount of DMSO-solubilised reduced formazan product was 

determined by measurement of absorbance at a wavelength 570 nm. Alternatively, cells 

were plated in 96-well flat bottomed plates (5,000 cells per well) and incubated as above. 
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Following normoxia/hypoxia exposure, the activity of lactate dehydrogenase (LDH) 

released into the culture medium was detected using the CytoTox 96®non-radioactive 

cytotoxicity assay (Promega, Southampton, UK) with measurement of absorbance at 490 

nm. 

 

2.6. SDS-polyacrylamide gel electrophoresis and Western blot analysis 

Protein samples (15-20 μg) were separated by SDS-PAGE in 10% (w/v) polyacrylamide 

gels using a Bio-Rad Mini-Protean III system. Proteins were transferred to nitrocellulose 

membranes in a Bio-Rad Trans-Blot system, using electro-transfer buffer comprising 25 

mM Tris, 192 mM glycine pH 8.3 and 20% (v/v) MeOH. Following transfer, the 

membranes were blocked and probed with antibodies as described by Alamami et al. 

[27]. The primary antibodies (1:500 dilutions unless otherwise indicated) used were 

phospho-specific ERK1/2 (1:1000), phospho-specific PKB, phospho-specific p38 MAPK, 

phospho-specific JNK.  Horseradish peroxidase-conjugated secondary antibodies (New 

England Biolabs (UK) Ltd), diluted 1:1000 in blocking buffer, were applied for 2h at room 

temperature. Following removal of the unbound secondary antibody, blots were 

extensively washed and developed using the Enhanced Chemiluminescence (ECL) 

Detection System (Uptima, Interchim, France) and quantified by densitometry using 

Advanced Image Data Analysis Software (Fuji; version 3.52). Samples were also 

analysed using primary antibodies that recognise total ERK1/2, PKB, p38 MAPK and JNK 

(1:1000) in order to confirm the uniformity of protein loading. 

 

2.7. Measurement of in situ TG2 activity 

H9c2 cells were seeded on 8-well chamber slides (15,000 cells well-1) and cultured for 24 

h in fully supplemented DMEM. The cells were then incubated for 6 h in medium 

containing 1 mM biotin-X-cadaverine (a cell permeable TG2 substrate; [30]) before 

experimentation. Where appropriate, cells were treated for 1 h with TG2 inhibitors Z-

DON (150 µM) or R283 (200 µM) before the addition of 100 nM CPA or 100 µM 

adenosine. Following stimulation, cells were fixed with 3.7 % (w/v) paraformaldehyde 

and permeabilised with 0.1% (v/v) Triton-X100, both in PBS, for 15 min at room 

temperature. After washing, cells were blocked with 3% (w/v) BSA for 1 h at room 

temperature and the transglutaminase-mediated biotin-X-cadaverine labeled protein 

substrates detected by incubation with (1:200 v/v) FITC-conjugated ExtrAvidin® (Sigma-

Aldrich Co. Ltd). Nuclei were stained with DAPI and images acquired using a Leica TCS 

SP5 II confocal microscope (Leica Microsystems, GmbH, Manheim, Germany) equipped 

with a 20x air objective. Optical sections were typically 1-2 µm and the highest 

fluorescence intensity was acquired using forskolin (10 µM) as a positive control [27].  

Image analysis and quantification were carried out using Leica LAS AF software.  
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2.8. Measurement of intracellular calcium 

H9c2 cells were plated in 24-well flat-bottomed plates (15,000 cells well-1) and cultured 

for 24 h in fully supplemented DMEM. Cells were loaded with Fluo-8 AM (5 µM, 30-40 

min) before mounting on the stage of an Leica TCS SP5 II confocal microscope (Leica 

Microsystems, GmbH, Manheim, Germany) equipped with a 20x air objective. Cells were 

incubated at 37°C using a temperature controller and micro incubator (The Cube, Life 

Imaging Services, Basel, Switzerland) in the presence of imaging buffer (134 mM NaCl 

134, 6 mM KCl 6, 1.3 mM CaCl2 1 mM MgCl2 1, 10 mM HEPES, and 10 mM glucose; pH 

7.4. Using an excitation wavelength of 490 nm , emissions over 514 nm were collected. 

Images were collected every 1.7 s for 10 min. Increases in intracellular Ca2+ were 

defined as F/F0 where F was the fluorescence at any given time, and F0 was the initial 

basal level of Ca2+. 

 

2.9. Determination of TG2 phosphorylation 

Following stimulation, H9c2 cells were rinsed twice with 2.0 ml of chilled PBS and lysed 

with 500 μl of ice-cold lysis buffer (2mM EDTA, 1.5 mM MgCl2, 10% (v/v) glycerol, 0.5% 

(v/v) IGEPAL, 0.1% (v/v) protease inhibitor cocktail, and 1% (v/v) phosphatase inhibitor 

cocktail 2 and 3 in PBS). Cell lysates were clarified by centrifugation (4°C for 10 min at 

14000 x g), after which 500 µg of supernatant protein were incubated overnight at 4°C 

with 2 µg of anti-TG2 monoclonal antibody or IgG. Immune complexes were precipitated 

using Pierce™ Classic Magnetic IP/Co-IP Kit (Loughborough, UK). The precipitates were 

resolved by SDS-PAGE and Western blotting, then probed using anti-phosphoserine or 

anti-phosphothreonine antibodies (1:1000). Antibody reactivity was visualised by ECL 

and quantified densitometrically, as described above. 

 

2.10. Measurement of biotin-X-cadaverine incorporation into proteins serving 

as substrates for TG2 

Cellular proteins acting as substrates for endogenous TG2-catalysed polyamine 

incorporation reactions were investigated as described by Singh et al. [31]. Biotin-

cadaverine labelled proteins were enriched using CaptAvidin™-agarose sedimentation 

beads (Life Technologies, UK), subjected to SDS-PAGE and separated proteins stained 

with Coomassie blue.  

 

 

2.11. Proteomic analysis of TG2 biotin-cadaverine labelled substrate proteins 

Following pre-treatment with 1 mM biotin-X-cadaverine Hc92 cells were treated with CPA 

or adenosine and extracted as described above. The proteins labelled with biotin-X-
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cadaverine were purified using CaptAvidin™-agarose and biotin-cadaverine labelled 

proteins were processed for trypsin digestion (trypsin gold; Promega, Southampton, UK).  

Samples (~50 µg protein) were reduced and alkylated (1 µl 0.5 M DTT, 56° C for 20 min; 

2.7 µl 0.55 M iodoacetamide, room temperature 15 min in the dark), dried in a vacuum 

concentrator (Eppendorf, UK) and resuspended in 100 µl 50 mM tri-ethyl ammonium 

bicarbonate (TEAB).  Sigma Trypsin (2 µg) was added in 2 µl of 1 mM HCl, and incubated 

overnight at 37° C in a thermomixer.  Samples were then evaporated to dryness in a 

vacuum concentrator and resuspended in 5% (v/v) acetonitrile/0.1% (v/v) formic acid 

(20 µl) and transferred to a HPLC vial for MS analysis. Samples (3 µl) were injected by 

autosampler (Eksigent nanoLC 425 LC system) at 5 µl/min onto a YMC Triart-C18 

column (25 cm, 3 µm, 300 µm i.d.) using gradient elution (2-40% Mobile phase B, 

followed by wash at 80% B and re-equilibration) over either 110 (120 min run time) min 

(for spectral library construction using data/information dependent acquisition DDA/IDA) 

or 50 min (60 min run time) for SWATH/DIA (Data Independent Acquisition) analysis 

[32]. Mobile phases consisted of A: 2% (v/v) acetonitrile, 5% (v/v) DMSO in 0.1% (v/v) 

formic acid; B: acetonitrile containing 5% (v/v) DMSO in 0.1% (v/v) formic acid. 

A spectral library was constructed using the output from ProteinPilot 5 (SCIEX) 

combining 4 IDA runs per group (Control, CPA treated) and filtered and aligned to spiked 

in iRT peptides (Biognosys, Switzerland) using PeakView 2.0 (SCIEX).  SWATH data 

extraction, quantitation and fold change analysis were carried out using SCIEX OneOmics 

cloud processing software [33].  

 

2.12. Statistical analysis 

All graphs and statistics (one-way ANOVA followed by Dunnet's multiple comparison test 

and two-way ANOVA for group comparison) were performed using GraphPad Prism® 

software (GraphPad Software, Inc., USA). Results represent mean ± S.E.M. and p values 

<0.05 were considered statistically significant. 
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3. Results 

3.1. Effect of A1 adenosine receptor activation on TG2-mediatedbiotin-

cadaverine  incorporation and protein cross-linking activity 

Initial experiments investigated the effect of the selective A1 adenosine receptor agonist 

CPA and the endogenous agonist adenosine on TG2 activity in H9c2 cardiomyoblasts. 

TGs can catalyse two types of cross-linking, namely (i) intra-, and/or inter-molecular 

covalent cross-links between protein-bound glutamine and protein-bound lysine residues, 

and (ii) cross-links between primary amines and protein-bound glutamine (both protein 

and polyamines links are transamidation).H9c2 cells were treated with CPA (1 µM) or 

adenosine (100 µM) for varying time periods and cell lysates subjected to the biotin-

cadaverine amine-incorporation assay [25]. Both CPA and adenosine produced transient 

increases in TG2 catalysed biotin-cadaverine incorporation activity peaking at 10 min 

(Figure 1). Furthermore, CPA (p[EC50] = 8.87  0.17; n=6) and adenosine (p[EC50] = 

6.90  0.11; n=7) stimulated concentration-dependent increases in amine incorporation 

activity (Figure 1).  

 

The effect of A1 adenosine receptor activation on TG2-mediated protein cross-linking 

activity in H9c2 cells was also determined using the biotin-labeled peptide (biotin-

TVQQEL) cross-linking assay [28]. CPA and adenosine triggered time-dependent 

increases in TG2-mediated protein cross-linking activity peaking at 10 min (Figure 2). 

CPA (p[EC50] =  8.61  0.20; n=6) and adenosine (p[EC50] = 7.01  0.14; n=6) also 

stimulated concentration-dependent increases in protein cross-linking activity (Figure 2). 

The A1 adenosine receptor antagonist DPCPX (1 µM) blocked CPA and adenosine-induced 

stimulation of TG2-mediated biotin amine incorporation activity and protein cross-linking 

activity (Figure 3). It is important to note that CPA, adenosine and DPCPX had no 

significant effect on purified guinea pig liver TG2 activity (data not shown). 

 

3.2. The effect of TG2 inhibitors on A1 adenosine receptor induced TG2 activity 

 

To confirm that TG2 is the isoform linked to A1 adenosine receptor transglutaminase 

activity in H9c2 cardiomyocytes, two structurally different cell permeable TG2 specific 

inhibitors were tested; R283 (a small molecule; [34]) and Z-DON (peptide-based; [35]). 

H9c2 cells were pre-treated for 1 h with Z-DON (150 µM) or R283 (200 µM) prior to 

stimulation with CPA for 10 min. As shown in Figure 3, Z-DON and R283 completely 

blocked CPA-induced TG2 activity, confirming the involvement of TG2 in these cell 

signaling responses. Comparable results were obtained in experiments using adenosine 

(Figure 3). Although there was variation in the effects of TG2 inhibitors on basal TG2 
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activity similar inhibitory trends were observed but these were not always statistically 

significant.  However, the A1 adenosine receptor antagonist DPCPX caused no noticeable 

effect on basal TG2 activity. In contrast, agonist activated levels of TG2 activity were 

consistently inhibited by either receptor antagonist or TG2 inhibitors. It is interesting to 

note that the levels of TG2 activity in the presence of CPA and R283 in particular are 

consistently lower than basal TG2 activity in the presence R283 alone. This is consistent 

with the possibility that CPA-activated TG2 is more amenable to inhibition by R283. 

 

3.3. The effect of pertussis toxin and protein kinase inhibitors on A1 adenosine 

receptor-induced TG2 activity 

Pre-treatment with pertussis toxin (Gi/o-protein blocker; 100 ng/ml for 16 h) completely 

abolished CPA and adenosine induced transglutaminase amine incorporation activity and 

protein cross-linking activity, confirming the involvement of Gi/o-proteins (Figure 4). As 

shown in Figure 4, PD 98950 (50 µM; MEK1/2 inhibitor) and Ro 31-8220 (10 µM; PKC 

inhibitor) completely blocked CPA and adenosine-induced TG2 activity suggesting the 

involvement of ERK1/2 and PKC. Since the A1 adenosine receptor activates other protein 

kinases including PKB [12,15], p38 MAPK [13] and JNK1/2 [36], we explored their role in 

A1 adenosine receptor-induced TG2 activation. Modulation of protein kinase activity 

following A1 adenosine receptor activation was assessed by Western blotting using 

phospho-specific antibodies that recognise phosphorylated motifs within activated ERK1/2 

(pTEpY), p38 MAPK (pTGpY), JNK1/2 (pTPpY) and PKB (S473). As shown in Figure 5, CPA 

(100 nM for 10 min) stimulated significant increases in ERK1/2, p38 MAPK and JNK1/2 

phosphorylation in H9c2 cells. However, no activation of PKB by CPA was observed (data 

not shown). Pre-treatment with SB 203580 (20 µM; p38 MAPK inhibitor) or SP 600125 

(20 µM; JNK1/2 inhibitor) blocked CPA-induced activation of p38 MAPK and JNK1/2, 

respectively (Figure 5) and CPA-mediated TG2 activity (Figure 6). It is important to note 

that Ro 31-8220, PD 98059, SB 203580 and SP 600125 had no significant effect on 

purified guinea pig liver TG2 activity (data not shown). Overall these data suggest that 

TG2 activity is modulated in H9c2 cells by the A1 adenosine receptor via a multi protein 

kinase dependent signalling pathway. 

 

3.4. Phosphorylation of TG2 following A1 adenosine receptor activation 

The effect of A1 adenosine receptor activation on the phosphorylation status of TG2 was 

monitored via immunoprecipitation of TG2 followed by SDS-PAGE and Western blot 

analysis using anti-phosphoserine and anti-phosphothreonine antibodies. CPA (100 nM) 

triggered a robust increase in the levels of TG2-associated phosphoserine and 

phosphothreonine (Figure 7 and 8). Pre-treatment with Ro 318220 (10 µM), PD 98059 
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(50 µM) and SP 600125 (20 µM) blocked CPA-induced TG2 phosphorylation, whereas SB 

203580 (20 µM) had no significant effect (Figure 7 and 8). 

 

3.5. Visualisation of in situ TG2 activity following CPA and adenosine treatment 

Biotin-X-cadaverine, a cell penetrating primary amine, acts as the acyl-acceptor in 

intracellular TG2-mediated transamidating reactions and becomes incorporated into 

endogenous protein substrates of TG2, which can subsequently be visualised by 

reporters such FITC- and HRP- ExtrAvidin® [37]. H9c2 cells were pre-incubated with 1 

mM biotin-X-cadaverine for 6 h at 37°C prior to treatment with CPA or adenosine for 1, 5, 

10, 20, 30 and 40 min. After fixation and permeabilisation, intracellular proteins with 

covalently attached biotin-X-cadaverine were visualized using ExtrAvidin®-FITC. As 

shown in Figure 9, CPA (1 µM) and adenosine (100 µM) induced time dependent 

increases in the incorporation of biotin-X-cadaverine into endogenous protein substrates 

of TG2. These data are comparable to the transient time-dependent increases in TG2 

activity observed in vitro (see Figure 1). Surprisingly, given the covalent nature of 

biotin-X-cadaverine incorporation, fluorescence staining returned to control levels after 

30 min incubation with CPA or 40 min incubation with adenosine. CPA and adenosine-

mediated biotin-X-cadaverine incorporation was also concentration dependent (Figure 

10).  To confirm the involvement of TG2 activation, cells were treated with the TG2 

inhibitors Z-DON (150 µM) and R283 (200 µM) for 1 h prior to incubation with CPA (100 

nM for 10 min). Pre-treatment of cells with Z-DON, R283, DPCPX and pertussis toxin 

resulted in the complete inhibition of CPA-mediated biotin-X-cadaverine incorporation 

into protein substrates (Figure 11). Finally, the in situ responses to CPA were attenuated 

by the protein kinase inhibitors Ro 318220, PD 98059, SB 203580 and SP 600125 

(Figure 12). Data comparable to those displayed in Figures 11 and 12 were also obtained 

for adenosine (data not shown).  

 

3.6. The role of Ca2+ in A1 adenosine receptor induced TG2 activity 

CPA (100 nM) triggered intracellular Ca2+ oscillations that were dependent upon 

extracellular Ca2+ (Figure 13). Furthermore, pertussis toxin (100 ng/ml for 16 h) and the 

A1 adenosine receptor antagonist DPCPX (1 µM) blocked CPA-induced Ca2+ signalling 

(Figure 13). Since TG2 is a Ca2+-dependent enzyme we examined the role of Ca2+ in A1 

adenosine receptor-induced TG2 activation. The role of extracellular Ca2+ was assessed 

by measuring TG2 responses in the absence of extracellular Ca2+ using nominally Ca2+-

free Hanks/HEPES buffer containing 0.1 mM EGTA. Removal of extracellular Ca2+ 

abolished CPA- and adenosine-induced TG2 activity (Figure 14). The in situ responses to 

CPA and adenosine were also attenuated by removal of extracellular Ca2+ (data not 
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shown). These observations suggest that A1 adenosine receptor-induced TG2 activation 

is dependent upon the influx of extracellular Ca2+.  

 

3.7. Identification of biotin-cadaverine labelled protein substrates 

To detect the protein substrates from CPA-and adenosine-treated cells, substrates in 

whole cell extracts were enriched using CaptAvidin™-agarose sedimentation beads, 

resolved by 4-15% SDS-PAGE, and visualised using Coomassie blue stain. Figure 15 

shows that treatment for 10 min with CPA (100 nM) or adenosine (100 µM) increased 

the incorporation of biotin-X-cadaverine into several proteins of different molecular 

masses in H9c2 cells. As expected, the incorporation of biotin-X-cadaverine into TG2 

protein substrates was inhibited by pre-treatment with Z-DON and R283 (Figure 15). In 

order to identify the protein substrates for TG2–mediated amine incorporation, proteins 

captured and eluted from CaptAvidin™-agarose sedimentation beads were analysed by 

SWATH-MS (Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass 

Spectra; [32]). This recently developed technique enables quantification of mass 

spectrometry data and hence the data presented are shown as CPA-induced fold-

changes in proteins eluted from CaptAvidin™-agarose compared to control unstimulated 

cells. SWATH analysis revealed increases in 21 novel TG2 protein substrates and two 

previously identified substrates (e.g. histone H4 and voltage-dependent anion-selective 

channel protein 1) in response to A1 adenosine receptor activation in H9c2 cells (Table 1). 

 

 

3.8. The role of TG2 in A1 adenosine receptor-induced cell survival 

Our previous studies have shown that TG2 is involved in cytoprotection triggered by PKA 

and PKC-dependent signalling pathways in H9c2 cells [27]. In the current study the role 

of TG2 in A1 adenosine receptor-induced cell survival was assessed in H9c2 cells 

following exposure of cells to 8 h hypoxia (1% O2) in glucose-free and serum-free 

medium. In agreement with Fretwell and Dickenson [17], pre-treatment with CPA (100 

nM) significantly attenuated hypoxia-induced decrease in MTT reduction and elevated 

release of LDH (Figure 16). Treatment with DPCPX (1 µM) reversed CPA-induced 

protection, confirming the involvement of the A1 adenosine receptor (data not shown). 

The TG2 inhibitors R283 (200 µM) and Z-DON (150 µM) reversed CPA-induced 

cytoprotection, suggesting a role for TG2 in A1 adenosine receptor-induced cell survival 

(Figure 16). 
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4. Discussion  

 

4.1. In vitro modulation of TG2 by the A1 adenosine receptor 

The A1 adenosine receptor agonist CPA and the endogenous agonist adenosine triggered 

a time- and concentration-dependent increase in TG2 activity in H9c2 cells. Adenosine-

mediated increases in TG2 activity were completely blocked by the A1 adenosine receptor 

antagonist DPCPX, suggesting involvement of the A1 adenosine receptor.   

As previously indicated, very little is known regarding the regulation of TG2 enzymatic 

activity by GPCRs. Examples in the literature include muscarinic receptor-mediated 

increases in TG2 activity in SH-SY5Y cells [38] and 5-HT2A receptor mediated 

transamidation (TG-catalyzed) of the small G-protein Rac1 in the rat A1A1v cells [39]. 

Zhang et al., [38] measured in situ TG2 activity (polyamine incorporation) triggered by 

the muscarinic agonist carbachol, whereas Dai et al., [39] reported TG2 catalysed 

incorporation of 5-hydroxytryptamine into Rac1. 5-HT2A receptor-mediated incorporation 

of 5-HT into the small GTPases RhoA and Rab4 was also observed in platelets [40]. It 

was suggested that 5-HT2A and muscarinic receptor-mediated release of Ca2+ from 

intracellular Ca2+ stores may be responsible for triggering TG transamidating activity 

[38,40]. Hence, to our knowledge, the current study is the first demonstration of GPCR-

mediated stimulation of the protein cross-linking activity of TG2. Furthermore, since the 

A1 adenosine receptor couples to Gi/o-proteins it would be of interest to establish if other 

Gi/o-protein coupled receptors stimulate TG2 activity in H9c2 cells. Since we have 

previously shown that H9c2 express functional Gi/o-coupled kappa-opioid receptors it will 

be of interest to determine whether this member of the opioid receptor family modulates 

TG2 activity [41]. 

 

 

4.2. Role of Ca2+ in A1 adenosine receptor-mediated TG2 activation 

Although coupled to Gi/o-proteins, the A1 adenosine receptor directly stimulates inositol 

phospholipid hydrolysis through G-protein β subunit-mediated activation of 

phospholipase C in DDT1MF-2 cells [42,43]. In this study, CPA triggered an increase in 

intracellular Ca2+ which was characterized by pronounced Ca2+ oscillations. Responses to 

CPA were abolished following removal of extracellular Ca2+, suggesting that A1 adenosine 

receptor-induced TG2 activation is dependent upon extracellular Ca2+ influx. Previous 

studies have shown that the A1 adenosine receptor promotes the release of intracellular 

Ca2+ stores in basal forebrain cholinergic neurons, human bronchial smooth muscle cells 

and the smooth muscle cell line DDT1MF-2 [44-46]. However, it is notable that in H9c2 

cells the observed A1 adenosine receptor-induced intracellular Ca2+ oscillations are 

dependent upon extracellular Ca2+ suggesting the involvement of Ca2+ influx. At present 
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the mechanism(s) associated with A1 adenosine receptor-induced Ca2+ influx in H9c2 

cells are not established, however, it is unlikely that voltage-gated Ca2+ channels are 

involved since activation of the Gi/o-protein coupled A1 adenosine receptor is generally 

associated with the inhibition of  P/Q- and N-type voltage-dependent Ca2+ channels [47]. 

An alternative mechanism for A1 adenosine receptor-induced Ca2+ influx is via store-

operated Ca2+ channels. Interestingly, the A1 adenosine receptor promotes receptor-

operated Ca2+ entry in cardiomyocytes via a phospholipase C and PKC-dependent 

pathway [48]. Although beyond the scope of the present study, it would be of interest to 

investigate the mechanism(s) underlying A1 adenosine receptor-induced Ca2+ influx in 

H9c2 cells.  

 

4.3. Role of protein kinases in A1 adenosine receptor-mediated TG2 activation 

Although TG2 activity can be regulated by changes in intracellular [Ca2+] there is 

growing evidence that TG activity can also be modulated by phosphorylation [7,8]. The 

broad spectrum PKC inhibitor Ro 31-8220 and the MEK1/2 inhibitor PD 98059 completely 

blocked CPA and adenosine-induced TG2 activity, suggesting prominent roles for PKC and 

ERK1/2. Although ERK1/2 has been implicated in modulating the cross-linking activity of 

TG1 [8] there are no reports suggesting a role for this protein kinase in TG2 regulation. 

It is interesting to note that ERK1/2 activation by the A1 adenosine receptor is sensitive 

to PKC inhibition in both neonatal rat cardiomyocytes [14] and H9c2 cells (data not 

shown) and, therefore, the role of PKC in TG2 activation maybe up-stream of ERK1/2. In 

view of the possible role of ERK1/2, we also determined whether A1 adenosine receptor-

induced TG2 activity involves PKB, p38 MAPK and JNK1/2. Although we detected A1 

adenosine receptor-induced stimulation of p38 MAPK and JNK1/2, we did not observe 

PKB activation by CPA in H9c2 cells. The kinase inhibitors SB203580 and SP600125 

attenuated CPA-induced TG2 activity in H9c2 cells, suggesting a role for p38 MAPK and 

JNK1/2, respectively in A1 adenosine receptor-induced TG2 activation.  

Although beyond the scope of the present study, it is relevant to consider the possible 

signalling pathways associated with A1 adenosine receptor-induced PKC, JNK1/2 and 

ERK1/2 activation. Previous studies have shown that the A1 adenosine receptor 

activation promotes the selective translocation of PKC- and PKC- to the plasma 

membrane in cardiac myocytes [16,49]. Furthermore of the five PKC isozymes expressed 

in H9c2 cells (PKC-, PKC-β1, PKC-, PKC-, and PKC-ζ) adenosine stimulates the nuclear 

translation of PKC- [50]. Since DAG activates PKC- and PKC-, it is conceivable that the 

Gi/o-protein coupled A1 adenosine receptor promotes PKC-/ activation via G-protein β 

subunit-mediated stimulation of phospholipase C [42,43,46]. It would be of interest in 

future studies to determine the PKC isozyme(s) involved in A1 adenosine receptor-

induced TG2 activation.  At present, the signalling pathway(s) associated with A1 
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adenosine receptor-induced ERK1/2 and JNK1/2 activation are not fully understood. The 

activation of ERK1/2 and JNK1/2 via Gi/o-PCRs is complex, involving both G protein i and 

β subunit-dependent pathways (for a comprehensive review see [51]). Stimulation of 

JNK1/2 involves monomeric G-protein (e.g. Rac/Rho/Cdc42) mediated activation of 

MKK4/7, upstream kinases associated with JNK1/2 stimulation [51]. In contrast, Gi/o-

PCR-mediated ERK1/2 activation involves PI-3K-dependent activation of Ras [51]. 

Indeed, our previous studies have shown that A1 adenosine receptor-induced ERK1/2 

activation in DDT1MF-2 smooth muscle cells is dependent upon PI-3K activation [13]. 

Whether, some of the upstream kinases associated with the A1 adenosine receptor-

induced activation of JNK1/2 and ERK1/2 are also involved in modulating TG2 activity 

remains to be determined. Overall, it would seem that the A1 adenosine receptor 

regulates TG2 activity in H9c2 cells via a multi-protein kinase dependent pathway. 

Although protein kinase inhibition and removal of extracellular Ca2+ both inhibit CPA-

induced TG2 activity, the relationship between the two is not yet known. 

 

4.4. A1 adenosine receptor-induced phosphorylation of TG2 

Given the apparent role of multiple serine/threonine kinases in the regulation of TG2 we 

investigated whether activation of the A1 adenosine receptor results in the 

phosphorylation of TG2. The data presented demonstrate that TG2 is phosphorylated in 

response to A1 adenosine receptor activation. To our knowledge, this represents the first 

report of enhanced TG2 phosphorylation in response to an exogenous stimulus. Previous 

studies have shown that TG2 is phosphorylated by PKA at Ser215 and Ser216 [52] and at 

an unknown site(s) by PTEN-induced putative kinase 1 (PINK1; [53]). Phosphoproteomic 

based studies have identified numerous phosphorylation sites on Ser, Thr and Tyr 

residues in human and rat TG2 [54-60]. It would therefore be of value to identify the 

specific site(s) of TG2-associated serine and threonine phosphorylation triggered by the 

A1 adenosine receptor. It is interesting to note that PKA-mediated phosphorylation of 

TG2 has several consequences, including enhancement of protein-protein interactions 

and TG2 kinase activity [7,52], whereas PINK1-mediated phosphorylation of TG2 blocks 

its proteasomal degradation [53]. Thus, further studies are warranted in order to 

determine the functional consequence(s) of A1 adenosine receptor-induced TG2 

phosphorylation. In view of the multiple protein kinases implicated in A1 adenosine 

receptor-induced TG2 activation, we investigated the influence of protein kinase 

inhibitors on TG2 phosphorylation. Although TG2 phosphorylation following A1 adenosine 

receptor activation was attenuated by PKC, ERK1/2 and JNK1/2 inhibitors, further 

studies are needed to confirm if these protein kinases directly catalyse the 

phosphorylation of TG2. It is notable that the p38 MAPK inhibitor SB203580 did not 



18 
 

attenuate TG2 phosphorylation despite this kinase inhibitor blocking CPA-induced TG2 

activity, suggesting that p38 MAPK modulates other targets involved in TG2 activation. 

 

4.5. In situ modulation of TG2 activity and detection of TG2 protein substrates 

Measurements of in situ TG2 activity following A1 adenosine receptor stimulation were 

comparable to CPA- and adenosine-induced amine incorporation activity observed in 

vitro. However, given the covalent nature of biotin-X-cadaverine incorporation into 

protein substrates, it was surprising to observe that in situ TG2 activity returned to basal 

levels after 40 min. Possible explanations for this include reversal of amine incorporation 

catalysed by TG [61], that biotin-cadaverine labelled proteins were targeted for 

degradation or they were rapidly expelled from the cell. As we have previously reported 

the rapid expulsion of biotin-cadaverine labelled proteins from PMA- or forskolin-

stimulated H9c2 cells [27], a similar mechanism may be responsible for the loss of 

biotinylated proteins following A1 adenosine receptor activation. 

SWATH™-MS analysis identified 21 novel TG2 protein substrates and two previously 

identified substrates (Table 1). Several of these proteins are associated with regulation 

of the cytoskeleton, transcription/translation, cell signaling and apoptosis, which 

supports the cytoprotective role for TG2 (see below). For example, hexokinase 1 (HK1) 

and acidic leucine-rich nuclear phosphoprotein 32 family member A (ANP32A) both 

exhibited in excess of 5-fold increases compared to the control. The former is a 

recognised as a mediator of cardioprotection via its interaction with mitochondrial 

voltage-dependent anion-selective channel protein 1 (VDAC1), which increased by over 

2-fold in stimulated cells [62,63]. Interestingly, VDAC1 was previously identified as a 

TG2 substrate in PMA-stimulated H9c2 cells [27]. It may be that TG2-mediated amine 

incorporation into HK1 and VDAC interferes with the ability of these proteins to interact 

with each other and modulate cardioprotection and/or cell survival [64]. It is also 

notable that ANP32A functions as an inhibitor of protein phosphatase 2A and thus may 

regulate ERK1/2 and PKC; therefore it is conceivable that its modification by TG2 

interferes with signalling events associated with cell survival [65,66]. As very  little is 

currently known about the functional effects of TG2-mediated amine incorporation, 

further work to study the role of this phenomenon in  TG2-induced cell survival would be 

warranted. 

4.6. Role of TG2 in A1 adenosine receptor-induced cytoprotection 

The A1 adenosine receptor mediates cell survival in several cell types including 

cardiomyocytes and neuronal cells [67,68]. The current study shows for the first time 

that TG2 is involved cytoprotection triggered by the A1 adenosine receptor. TG2 is known 

to interact with or modulate a number of signalling pathways associated with cell 

survival against hypoxia and glucose deprivation-induced cell death, including hypoxia 



19 
 

inducible factor 1β, NF-кB and PKB [69,70]. It is also notable that several of the 

identified TG2 protein substrates are associated with cell survival/apoptosis. Further 

studies are required to determine the mechanism(s) associated with the role of TG2 in A1 

adenosine receptor-induced cell survival. 

In conclusion, our data has shown for the first time that TG2 activity is regulated by the 

A1 adenosine receptor in H9c2 cells. Furthermore, inhibitors of PKC, ERK1/2, p38 MAPK 

and JNK1/2 attenuated CPA-induced TG2 activation, suggesting a role for these kinases.  

We have also shown that activation of the A1 adenosine receptor promotes TG2 

phosphorylation via the aforementioned protein kinases and that TG2 plays a role in 

cytoprotection induced by CPA. Work to understand further the molecular mechanism(s) 

underlying the activation of TG2 by the A1 adenosine receptor is currently underway.  

Acknowledgements 

We would like to thank Gordon Arnott for help with confocal imaging, Dr Carl Nelson for 

assistance with the Ca2+ imaging experiments and Dr Amanda Miles for help with 

proteomic analysis. 

 

Conflict of Interest 

The authors state no conflict of interest. 



20 
 

Figure legends 

Figure 1.Effect of the A1 adenosine receptor agonists CPA and adenosine on TG2-

mediated biotin cadaverine amine incorporation activity in H9c2 cells. Time course 

profiles for (A) CPA (1 µM) and (B) adenosine (100 µM). Concentration-response curves 

for (C) CPA and (D) adenosine in cells treated with agonist for 10 min. Following 

stimulation, cells were lysed with 0.1 M Tris buffer pH 8.0 containing protease and 

phosphatase inhibitors. Cell lysates were then subjected to the biotin-cadaverine amine 

incorporation assay. Data points represent the mean ± S.E.M for TG2 specific activity 

from four to seven independent experiments. *P0.05, **P<0.01, ***P<0.001, and 

****P<0.0001 versus control response. 

 

Figure 2.Effect of the A1 adenosine receptor agonists CPA and adenosine on TG2-

mediated peptide cross-linking activity in H9c2 cells. Time course profiles for (A) CPA (1 

µM) and (B) adenosine (100 µM). Concentration-response curves for (C) CPA and (D) 

adenosine in cells treated with agonist for 10 min. Following stimulation, cells were lysed 

with 0.1 M Tris buffer pH 8.0 containing protease and phosphatase inhibitors. Cell lysates 

were then subjected to the peptide cross-linking assay. Data points represent the mean 

± S.E.M for TG2 specific activity from four to six independent experiments. *P0.05, 

**P<0.01, and ***P<0.001 versus control response. 

 

Figure 3.Effect of the A1 adenosine receptor antagonist DPCPX and TG2 inhibitors on 

CPA and adenosine-induced TG2 activity. H9c2 cells were pretreated for 30 min with the 

selective A1 adenosine receptor antagonist DPCPX (1 µM) or for 1 h with the TG2 

inhibitors Z-DON (150 µM) and R283 (200 µM) prior to 10 min stimulation with CPA (100 

nM) or adenosine (100 µM). Cells were subsequently lysed with 0.1 M Tris buffer pH 8.0 

containing protease and phosphatase inhibitors and cell lysates subjected to biotin 

cadaverine amine incorporation assay (panels A and B) or peptide cross-linking assay 

(panels C and D). Data points represent the mean ± S.E.M for TG2 specific activity from 

four independent experiments. *P0.05, **P0.01, ***P0.001, and ****P0.0001, (a) 

versus control and (b) versus 100 nM CPA or 100 µM adenosine alone. 

 

Figure 4.Effect of the pertussis toxin and protein kinase inhibitors (for ERK1/2 and PKC) 

on A1 adenosine receptor-induced TG2 activity. H9c2 cells were pretreated for 16 h with 

pertussis toxin (100 ng/ml) or for 30 min with PD98059 (50 µM) or Ro 31-8220 (10 µM) 
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prior to 10 min stimulation with CPA (100 nM) or adenosine (100 µM). Cells were 

subsequently lysed with 0.1 M Tris buffer pH 8.0 containing protease and phosphatase 

inhibitors and cell lysates subjected to biotin-cadaverine amine incorporation assay 

(panels A and B) or peptide cross-linking assay (panels C and D). Data points represent 

the mean ± S.E.M for TG2 specific activity from four independent experiments. *P<0.05, 

**P0.01, ***P0.001 and ****P0.0001, (a) versus control and (b) versus 100 nM CPA 

or 100 µm adenosine alone. 

 

Figure 5. Effect of the A1 adenosine receptor agonist CPA on ERK1/2, p38 MAPK and 

JNK phosphorylation in H9c2 cells. Where indicated, H9c2 cells were pre-treated for 30 

min with PD 98059 (50 µM), SB 203580 (20 µM) or SP 600125 (20 µM) prior to 

stimulation with CPA (100 nM) for 10 min. Cell lysates were analysed by Western 

blotting for activation of (A) ERK1/2, (B) p38 MAPK and (C) JNK using phospho-specific 

antibodies. Samples were subsequently analysed on separate blots using antibodies that 

recognize total ERK1/2, p38 MAPK and JNK. Data are expressed as the percentage of 

control cells (=100%) in the absence of protein kinase inhibitor and represent the mean 

 S.E.M of four independent experiments. ***P<0.001, and ****P<0.0001, (a) versus 

control and (b) versus 100 nM CPA alone. 

 

Figure 6.Effect of p38 MAPK and JNK1/2 inhibition on A1 adenosine receptor-induced 

TG2 activity. H9c2 cells were pretreated for 30 min with SB 203580 (20 µM) or SP 

600125 (20 µM) prior to 10 min stimulation with CPA (100 nM). Cells were subsequently 

lysed with 0.1 M Tris buffer pH 8.0 containing protease and phosphatase inhibitors and 

cell lysates subjected to biotin-cadaverine amine incorporation assay (panels A and B) or 

peptide cross-linking assay (panels C and D). Data points represent the mean ± S.E.M 

for TG specific activity from four independent experiments. *P<0.05, **P0.01, 

***P0.001 and ****P0.0001, (a) versus control and (b) versus 100 nM CPA alone. 

 

Figure 7.Effect of PKC and ERK1/2 inhibitors on CPA-induced phosphorylation of TG2. 

Where indicated, H9c2 cells were pre-treated for 30 min with Ro 318220 (10 µM) or PD 

98059 (50 µM) prior to stimulation with CPA (100 nM) for 10 min. Following stimulation 

with CPA, cell lysates were subjected immunoprecipitation using anti-TG2 monoclonal 

antibody as described in Materials and Methods. The resultant immunoprecipitated 

protein(s) were subjected to SDS-PAGE and analysed via Western blotting using  (A) 
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anti-phosphoserine and (B) and anti-phosphothreonine antibodies. Samples were also 

analysed for TG2 levels. One tenth of the input was added to the first lane to show the 

presence of phosphorylated proteins prior to immunoprecipitation and negative controls 

with the immunoprecipitation performed only with beads or IgG were included to 

demonstrate the specificity of the bands shown. Quantified data for CPA-induced 

increases in TG2-associated serine and threonine phosphorylation are expressed as a 

percentage of that observed in control cells (100%). Data points represent the mean  

S.E.M from three independent experiments.*P0.05, **P0.01, and ***P0.001, (a) 

versus control and (b) versus 100 nM CPA alone.   

 

Figure 8.The effect of p38 MAPK and JNK1/2 inhibitors on CPA-induced phosphorylation 

of TG2. Where indicated, H9c2 cells were pre-treated for 30 min with SB 203580 (20 µM) 

or SP 600125 (20 µM) prior to stimulation with CPA (100 nM) for 10 min. Following 

stimulation with CPA, cell lysates were subjected immunoprecipitation using anti-TG2 

monoclonal antibody as described in Materials and Methods. The resultant 

immunoprecipitated protein(s) were subjected to SDS-PAGE and analysed via Western 

blotting using (A) anti-phosphoserine and (B) anti-phosphothreonine antibodies. 

Samples were also analysed for TG2 levels. One tenth of the input was added to the first 

lane to show the presence of phosphorylated proteins prior to immunoprecipitation and 

negative controls with the immunoprecipitation performed only with beads or IgG were 

included to demonstrate the specificity of the bands shown. Quantified data for CPA-

induced increases in TG2-associated serine and threonine phosphorylation are expressed 

as a percentage of that observed in control cells (100%). Data points represent the 

mean  S.E.M from three independent experiments.  *P0.05, and **P0.01, (a) versus 

control and (b) versus 100 nM CPA alone.   

 

Figure 9.Time-dependent increases in in situTG2 activity in H9c2 cells following 

stimulation with CPA and adenosine. Cells were incubated with 1 mM biotin-X-cadaverine 

(BTC) for 6 h after which they were treated with (A) 1 µM CPA or (B)100 µM 

adenosinefor 1, 5, 10, 20, 30 or 40 min. TG2-mediated biotin-X-cadaverine incorporation 

into intracellular proteins was visualized using FITC-conjugated ExtrAvidin® (green). 

Nuclei were stained with DAPI (blue) and viewed using a Leica TCS SP5 II confocal 

microscope (20x objective lens). Images presented are from one experiment and 

representative of three. Quantified data points for CPA (C) and adenosine (D) represent 

the mean ± S.E.M of fluorescence intensity per cell for five fields of view each from three 
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independent experiments. *P<0.05, **P0.01, ***P0.001 and ****P0.0001 versus 

control response. 

 

Figure 10. Concentration-dependent increases in in situ TG2 activity in H9c2 cells 

following stimulation with CPA and adenosine. Cells were incubated with 1 mM biotin-X-

cadaverine (BTC) for 6 h after which they were treated with the indicated concentrations 

of (A) CPA or (B) adenosine for 10 min. TG2-mediated biotin-X-cadaverine incorporation 

into intracellular proteins was visualized using FITC-conjugated ExtrAvidin® (green). 

Nuclei were stained with DAPI (blue) and viewed using a Leica TCS SP5 II confocal 

microscope (20x objective lens). Images presented are from one experiment and 

representative of three. Quantified data points for CPA (C) and adenosine (D) represent 

the mean ± S.E.M of fluorescence intensity per cell for five fields of view each from four 

and three independent experiments, respectively. *P<0.05, **P0.01, ***P0.001 and 

****P0.0001 versus control response. 

 

Figure 11.Effect of TG2 inhibitors, pertussis toxin and DPCPX  on in situ TG2 activity in 

H9c2 cells following stimulation with CPA.(A) Cells were incubated with 1 mM biotin-X-

cadaverine (BTC) for 6 h and then either treated for 1 h with the TG2 inhibitors Z-DON 

(150 µM) and R283 (200 µM), 16 h with pertussis toxin (100 ng/ml) or 30 min with 

DPCPX (1 µM) prior to 10 min stimulation with CPA (100 nM). TG2-mediated biotin-X-

cadaverine incorporation into intracellular proteins was visualized using FITC-conjugated 

ExtrAvidin® (green). Nuclei were stained with DAPI (blue) and viewed using a Leica TCS 

SP5 II confocal microscope (20x objective lens). Images presented are from one 

experiment and representative of three. (B) Quantified data points represent the mean ± 

S.E.M of fluorescence intensity per nuclei for five fields of view each from three 

independent experiments. ***P0.001 and ****P0.0001, (a) versus control and (b) 

versus 100 nM CPA alone.  

 

Figure 12.Effect of protein kinase inhibitors on in situ TG2 activity in H9c2 cells 

following stimulation with CPA.(A) Cells were incubated with 1 mM biotin-X-cadaverine 

(BTC) for 6 h and then treated for 30 min with Ro 31-8220 (10 µM), PD98059 (50 µM), 

SB 203580 (20 µM)  or SP 600 125 (20 µM) prior to 10 min stimulation with CPA (100 

nM). TG2-mediated biotin-X-cadaverine incorporation into intracellular proteins was 

visualized using FITC-conjugated ExtrAvidin® (green). Nuclei were stained with DAPI 
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(blue) and viewed using a Leica TCS SP5 II confocal microscope (20x objective 

lens).Images presented are from one experiment and representative of three. (B) 

Quantified data points represent the mean ± S.E.M of fluorescence intensity per cell for 

five fields of view each from three independent experiments.***P0.001 and 

****P0.0001, (a) versus control and (b) versus 100 nM CPA alone. 

 

Figure 13.Effect of the A1 adenosine receptor agonist CPA on [Ca2+]i in H9c2 cells. A) 

Confocal imaging snapshots of CPA (100 nM)-induced  Ca2+ oscillations in the presence 

of extracellular Ca2+ (1.3 mM). The panel letters (a-g) correspond to the time points 

shown in trace B. B) The A1 adenosine receptor agonist CPA triggered pronounced Ca2+ 

oscillations in the presence of extracellular Ca2+ (1.3 mM). C) Oscillations induced by 

CPA were absent during experiments performed in nominally Ca2+-free buffer and 0.1 

mM EGTA. In these experiments, depletion of intracellular Ca2+ stores with thapsigargin 

(5 µM) was still evident. D) Responses to CPA in the presence of extracellular Ca2+ were 

abolished by the A1 adenosine receptor antagonist DPCPX (1 µM) and (E) following 

treatment with pertussis toxin (100 ng/ml for 16 h). ATP (10 µM) was added where 

indicated as a positive control. Similar were results were obtained in three other 

experiments. 

 

Figure 14.The role of extracellular Ca2+ in CPA- and adenosine-induced TG2 activation. 

H9c2 cells were  stimulated for 10 min with CPA (100 nM) or adenosine (100 µM) either 

in the presence of extracellular Ca2+ (1.8 mM) or in its absence using nominally Ca2+-

free Hanks/HEPES buffer containing 0.1 mM EGTA. Cells were subsequently lysed with 

0.1 M Tris buffer containing protease and phosphatase inhibitors and cell lysates 

subjected to biotin-cadaverine amine incorporation (panel A) or peptide cross-linking 

assays (panel B). Data points represent the mean ± S.E.M for TG specific activity from 

four independent experiments. **P0.01, ***P0.001 and ****P0.0001, (a) versus 

control in presence of extracellular Ca2+ , (b) versus 100 nM CPA in the presence of 

extracellular Ca2+
,(c) versus 100 µM adenosine in the presence of extracellular Ca2+. 

 

Figure 15. Detection of in situ TG2 activity and protein substrates in CPA- and 

adenosine-treated H9c2 cells. Cells were incubated with 1 mM biotin-X-cadaverine for 6 

h, after which they were treated for 1 h with the TG2 inhibitors Z-DON (150 µM) or R283 

(200 µM) before stimulation with CPA (100 nM) or adenosine (100 µM) for 10 min. 
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Biotin-cadaverine labelled proteins were enriched using CaptAvidin™ agarose 

sedimentation beads and eluted proteins subjected to SDS-PAGE on a 4-15% 

polyacrylamide gradient. (A) Coomassie blue staining of enriched biotin-cadaverine 

labelled proteins following SDS-PAGE. (B) Quantification of protein substrates detected 

using Coomassie blue staining. Densitometry of each lane (total protein) was carried out 

using Advanced Image Data Analyser software (Fuji; version 3.52) and  data are 

expressed as a percentage of basal TG2 protein substrate levels. Values are means  

S.E.M. from three independent experiments. *P<0.05 and**P0.01, (a) versus control 

response, (b) versus CPA alone and (c) versus adenosine alone. 

 

Figure 16. The effects of the TG2 inhibitors Z-DON and R283 on CPA-induced cell 

survival. H9c2 cells were pre-treated for 1 h with the TG2 inhibitors Z-DON (150 µM) or 

R283 (200 µM) before the addition of the A1 adenosine receptor agonist CPA (100 nM) 

for 10 min prior to 8 h hypoxia (1% O2) or 8 h normoxia. Cell viability was assessed by 

measuring (A) the metabolic reduction of MTT by cellular dehydrogenases and (B) 

release of LDH into the culture medium. Data are expressed as a percentage of normoxia 

control cell values (100%) and represent the mean  S.E.M. from four independent 

experiments each performed in (A) quadruplicate and (B) sextuplicate. *P<0.05, 

**P0.01 and ****P0.0001, (a) versus normoxia control, (b) versus hypoxia control (c) 

versus 100 nM CPA in the presence of hypoxia. 
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Table 1. Identification of TG2 protein substrates.  

Protein Name Uniprot 
Accession 

Uniprot Name Absolute 
Fold 

Change* 
aAcidic leucine-rich nuclear phosphoprotein 32 

family member A 

P49911 AN32A_RAT 5.38 

bHexokinase-1 P05708 HXK1_RAT 5.16 
aNischarin Q4G017 NISCH_RAT 4.50 
cTropomyosin alpha-3 chain Q63610 TPM3_RAT 4.34 
dActivated RNA polymerase II transcriptional co-

activator p15 

Q63396 TCP4_RAT 3.34 

d60S ribosomal protein L13 P41123 RL13_RAT 3.10 
dHistone H4 P62804 H4_RAT 2.76 
eCalcineurin B homologous protein 1 P61023 CHP1_RAT 2.71 
fMyeloid-associated differentiation marker Q6VBQ5 MYADM_RAT 2.66 
cNestin P21263 NEST_RAT 2.61 
d60S ribosomal protein L30 P62890 RL30_RAT 2.57 
fTransmembrane protein 33 Q9Z142 TMM33_RAT 2.49 
cTubulin alpha-3 chain Q68FR8 TBA3_RAT 2.14 
fHomer protein homolog 3 Q9Z2X5 HOME3_RAT 2.13 
gVoltage-dependent anion-selective channel 

protein 1 

Q9Z2L0 VDAC1_RAT 2.11 

dMIF4G domain-containing protein Q6AXU7 MI4GD_RAT 2.09 
fSerine/threonine-protein phosphatase 2A 65 kDa 

regulatory subunit A beta isoform 

Q4QQT4 2AAB_RAT 2.08 

aPhosphatidylinositol 4-kinase type 2-alpha Q99M64 P4K2A_RAT 2.02 
hExtended synaptotagmin-1 Q9Z1X1 ESYT1_RAT 1.89 
iDolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit 2 

P25235 RPN2_RAT 1.85 

dTranslation initiation factor eIF-2B subunit delta Q63186 EI2BD_RAT 1.78 
hCoatomer subunit delta Q66H80 COPD_RAT 1.74 
dY-box-binding protein 3 Q62764 YBOX3_RAT 1.66 

 

H9c2 cells were pre-incubated with biotin-X-cadaverine prior to treatment with CPA (100 

nM) and biotin-cadaverine labelled proteins were captured and analysed by SWATH MS. 

*Absolute fold change in CPA-treated samples versus control (n=4) were calculated using 

SCIEX OneOmics with parameters MLR weight > 0.15, confidence >60%  algorithms 

used described by Lambert et al., [33]. Proposed novel TG2 targets not appearing in the 

TG2 substrate database [71] or identified by Yu et al. [72] are indicated in italics. Protein 

substrates are grouped according to their functions and/or cellular function as follows: 

acell signalling; bmetabolism; ccytoskeletal; dtransciption/translation; evesicular 

trafficking; fstructural/scaffolding protein; gapoptosis; hlipid/protein transport; iprotein 

glycosylation. 
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