
The Remote Monad Design Pattern

Andy Gill Neil Sculthorpe ∗ Justin Dawson Aleksander Eskilson
Andrew Farmer Mark Grebe Jeffrey Rosenbluth † Ryan Scott James Stanton

Information and Telecommunication Technology Center, University of Kansas, USA
first.last@ittc.ku.edu

Abstract
Remote Procedure Calls are expensive. This paper demonstrates
how to reduce the cost of calling remote procedures from Haskell
by using the remote monad design pattern, which amortizes the
cost of remote calls. This gives the Haskell community access to
remote capabilities that are not directly supported, at a surprisingly
inexpensive cost.

We explore the remote monad design pattern through six models
of remote execution patterns, using a simulated Internet of Things
toaster as a running example. We consider the expressiveness and
optimizations enabled by each remote execution model, and assess
the feasibility of our approach. We then present a full-scale case
study: a Haskell library that provides a Foreign Function Interface
to the JavaScript Canvas API. Finally, we discuss existing instances
of the remote monad design pattern found in Haskell libraries.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages

Keywords Monads, Remote Procedure Call, FFI, Design Pattern.

1. Introduction
Remote Procedure Calls (RPCs) are expensive. This paper presents
a way to make them considerably cheaper: the remote monad
design pattern. Monads [34, 42] provide a general way of struc-
turing composite computations. These monadic computations are
first class: they can be passed to functions as arguments, returned
from functions as results, and stored in data structures. But monadic
computations are not typically executed remotely.

This paper investigates the ways that monadic computations can
be serialized for the purposes of being sent to remote locations
for external execution. The idea is that, rather than directly call
a remote procedure, we instead give the remote procedure call a
service-specific monadic type, and invoke the remote procedure
call using a monadic “send” function.

∗Now at the Department of Computer Science, Swansea University, UK,
n.a.sculthorpe@swansea.ac.uk
†Unaffiliated

Definition. A remote monad is a monad that has its evaluation
function in a remote location, outside the local runtime system.

By factoring the RPC into sending invocation and service name,
we can group together procedure calls, and amortize the cost of
the remote call. To give an example, Blank Canvas, our library
for remotely accessing the JavaScript HTML5 Canvas, has a send
function, lineWidth and strokeStyle services, and our remote
monad is called Canvas:

send :: Device -> Canvas a -> IO a
lineWidth :: Double -> Canvas ()
strokeStyle :: Text -> Canvas ()

If we wanted to change the (remote) line width, the lineWidth
RPC can be invoked by combining send and lineWidth:

send device (lineWidth 10)

Likewise, if we wanted to change the (remote) stroke color,
the strokeStyle RPC can be invoked by combining send and
strokeStyle:

send device (strokeStyle "red")

The key idea of this paper is that remote monadic commands can
be locally combined before sending them to a remote server. For
example:

send device (lineWidth 10 >> strokeStyle "red")

The complication is that, in general, monadic commands can return
a result, which may be used by subsequent commands. For exam-
ple, if we add a monadic command that returns a Boolean,

isPointInPath :: (Double,Double) -> Canvas Bool

we could use the result as follows:

send device $ do
inside <- isPointInPath (0,0)
lineWidth (if inside then 10 else 2)
...

The invocation of send can also return a value:

do res <- send device (isPointInPath (0,0))
...

Thus, while the monadic commands inside send are executed in
a remote location, the results of those executions need to be made
available for use locally.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

Haskell’15, September 3-4, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3808-0/15/09...
http://dx.doi.org/10.1145/2804302.2804311

59

2. Haskell Calling the Real World
When Haskell users want an established graphics library, such as
OpenGL, or a web-client library, such as cURL, they typically use
a Haskell library that uses the Foreign Function Interface (FFI)
capability to link Haskell code with the native capabilities of the
desired external library. Rather than reimplement existing code,
the rich FFI capability is used to tunnel to C, and onwards to
established libraries, such as the C or C++ implementations of
OpenGL and cURL. The FFI is well-supported, but there are three
conceptual problems to be solved in crossing to native C libraries:

1. Control flow needs to transfer to the correct C function. Given
the lowest level of the GHC runtime system is written in C,
control-flow transfer is straightforward.

2. The data structures that are arguments and results of calls to C
need to be marshalled into the correct format. For example, C
strings are not the same as Haskell strings.

3. The abstractions of the target C library may not be idiomatic
Haskell abstractions. For example, many C++ APIs assume
OO-style class inheritance. Foreign abstractions can be simu-
lated in Haskell, but this raises an obfuscation barrier.

Any time control flow leaves the Haskell eco-system, all three of
these concerns need to be addressed. All three are supported by
the Haskell FFI for C: There is a way of directly promoting a C
function into Haskell-land; there is good support for marshalling
Haskell data structures into C structures, as well as automatic
memory-management support; and Haskell abstraction capabilities
are used to build more Haskell-centric APIs on top of the FFI
capability. However, what about functions that cannot be called
directly, but must be invoked using a remote procedure call? All
three identified FFI issues come into play:

1. The control flow needs to use an RPC mechanism to establish
foreign control-flow transfer. This can add considerable costs. A
typical mechanism would be to establish a TCP/IP connection
with a published remote service.

2. The procedure arguments are sent to the remote location, typi-
cally over a TCP/IP channel, the remote command is executed,
and the result is communicated back.

3. The remote nature of the call raises issues with presenting
remoteness to the API user. What does this remote function
look like to a Haskell programmer? Are the costs reflected in
the API design?

In this paper we investigate a generalization of the remote procedure
call, using monads as a descriptor of remote execution. Specifically,
we make the following contributions:

• We document a DSL pattern for bundling RPCs: the remote
monad design pattern. This pattern cuts the cost of RPCs in
many cases by amortizing the remote aspect, and is a design
point between classical monadic APIs, and using deeply em-
bedded DSLs for offline remote execution.

• Toward understanding the remote monad, we give four com-
plete models of remote execution (§3.1, §3.2, §4, §5) and sketch
two useful variations of the strongest model (§6, §7). We give a
set of remote monad laws (§8), and observe that the pattern has
been used in a weak form several times before (§11).

• We explore the design pattern in a real-world large-scale
example, called Blank Canvas (§9). We quantify our experi-
ences, and measure performance on some benchmarks, com-
paring native JavaScript and Blank Canvas, over two operating
systems, and two web browsers (§10).

3. Modeling Remote Communication
For illustration purposes, we will remotely control an Internet of
Things toaster, which includes a thermometer and a voice syn-
thesis circuit. We can ask the toaster to say things, measure the
temperature, or make toast for a given number of seconds. Us-
ing a monad called Remote, we have:

say :: String -> Remote ()
temperature :: Remote Int
toast :: Int -> Remote ()

In the remote monad design pattern, we have a way of running our
monad remotely, which we call send:

send :: Device -> Remote a -> IO a

The key step in an efficient implementation of the remote monad is
the choice of packaging of commands. Ideally, the entire monadic
computation argument of send would be transmitted in a single
packet; but in general this is not possible.

Towards understanding the choices, we are going to build sev-
eral ways of interacting with our toaster:

• As a preamble, in §3.1 we build a basic asynchronous RPC, and
in §3.2 we build a basic synchronous RPC.
• In §4 we build the simple version of a remote monad, called

a weak remote monad, where a monadic API is utilized to
conceptually bundle commands for remote execution.
• In §5 we build another remote monad, called a strong remote

monad, where a monadic API is utilized to actually bundle
commands for more efficient remote execution. This is our
principal model of the key idea of this paper.
• In §6 we build a remote applicative functor, which exploits the

restrictions of the applicative functor operations (relative to the
more expressive monadic bind) to allow for better bundling.
• Finally, in §7 we use a deep-embedding technique to add sup-

port for remote binding of non-local values, again improving
the bundling of remote primitives.

In each case, we implement the local behavior of the send function,
as well as give a minimal implementation of remote behavior. In
general, in the remote monad design pattern, the remote execution
may be in any language. Here, for simplicity, we simulate remote
execution from within Haskell, and use the built-in Show and Read
classes to simulate serialization and deserialization. We highlight
the dual execution nature of the remote monad by using distinct
data structures locally and remotely. Using distinct data structures
also allows us to side-step the orthogonal challenge of GADT
deserialization.

3.1 An Asynchronous Remote Command Call
This first model will be able to send single commands asyn-
chronously to a remote device. This model is also known as the
Command design pattern [19].

Definition. A remote command is a request to perform an action
for remote effect, where there is no result value or temporal conse-
quence.

We use a deep embedding of the commands that we want to
send asynchronously. For this simple example, we only consider a
single command:

data Command = Say String
deriving Show

We derive a Show instance so that we can serialize Command, in
preparation for transmitting it to a remote interpreter.

60

Local
Network

Remote

GHCi send Command device

send

Say

"Say \"Do you want some toast?\""

()

Figure 1: Example of an Asynchronous Remote Command Call

We represent a remote device as a function from String to
IO (), wrapped in a data structure called Device, which models
the communication channel between local and remote execution.

data Device = Device { async :: String -> IO () }

We call the internal function async because it represents asyn-
chronous communication. For asynchronous commands, there is no
need for a back-channel on which to return values.

We can now define send, which serializes a Command and then
transmits it to a remote device:

send :: Device -> Command -> IO ()
send d m = async d (show m)

Our Haskell simulation of the remote device requires a repre-
sentation of commands on the remote device, an execution function
for those commands, and a deserialization function that reads those
commands. As a convenience, we use the same constructor name
for the remote command data type, so that deserialization can be
handled by a derived Read instance.1

data RCommand = Say String
deriving Read

execRCommand :: RCommand -> IO ()
execRCommand (Say str) = putStrLn ("Remote: " ++ str)

Our device, which simulates the remote interpreter handle, can
then be defined as:

device :: Device
device = Device (execRCommand . read)

This completes our model. Now we can test it by sending a Say
command, which prints remotely:

GHCi> send device (Say "Do you want some toast?")
Remote: Do you want some toast?

In summary, this model is a direct implementation of asyn-
chronous remote calls. Figure 1 shows the interactions in this ex-
ample invocation using a sequence diagram. We take the liberty of
expressing our construction of Command as a sequence process, and
we give the serialized text sent to the remote device, using green
for an asynchronous call.

3.2 A Synchronous Remote Call
In this subsection we build a synchronous remote call: a version of
send that can receive a reply to a remotely transmitted procedure.
That is, we will define a model of a remote procedure call.

Definition. A remote procedure is a request to perform an action
for its remote effects, where there is a result value or temporal
consequence.

1 This code must be placed in a separate module to avoid a name clash.

When we execute a remote procedure, we either want to get a
result back (e.g. the measured temperature), or know that a specific
remote action has been completed (e.g. the toast is made). In this
model, because we are interested in getting a reply, we represent
remoteness using a function from String to IO String.

data Device = Device { sync :: String -> IO String }

As with commands, we use a deep embedding of the procedures
that we want to send. However, as we now expect to receive a result
in reply, we use a GADT with a phantom type index denoting the
expected result type:

data Procedure :: * -> * where
Temperature :: Procedure Int
Toast :: Int -> Procedure ()

As with commands, we provide serialization using the Show class:

deriving instance Show (Procedure a)

For deserialization, we provide an auxiliary function that uses the
phantom type index of Procedure to determine which Read in-
stance should be used to parse the reply from the remote device:

readProcedureReply :: Procedure a -> String -> a
readProcedureReply (Temperature {}) i = read i
readProcedureReply (Toast {}) i = read i

The two read functions are each reading different types, as con-
strained by the specific Procedure constructor.

Now we can write our send command:

send :: Device -> Procedure a -> IO a
send d m = do

r <- sync d (show m)
return (readProcedureReply m r)

That is, send serializes the Procedure, sends it over a syn-
chronous channel, and interprets the reply in terms of the type
of the same Procedure. This time, send is polymorphic in the
type parameter of Procedure and IO.

Our simulated remote Device is straightforward to construct.
For conciseness we have merged serialization of the result value
into the execution function, but these steps could be separated.

data RProcedure = Temperature
| Toast Int

deriving Read

execRProcedure :: RProcedure -> IO String
execRProcedure Temperature = do

t <- randomRIO (50, 100 :: Int)
return (show t)

execRProcedure (Toast n) = do
putStrLn ("Remote: Toasting...")
threadDelay (1000 * 1000 * n)
putStrLn ("Remote: Done!")
return (show ())

device :: Device
device = Device (execRProcedure . read)

This completes our model. Now we can test it by sending a
Temperature procedure, which returns the temperature locally:

GHCi> send device Temperature
56

We have taken a procedure, transmitted it to a remote interpreter,
executed it remotely, and returned with the result — thus we have
a basic model of a typical Remote Procedure Call. Figure 2 shows
the sequence diagram for this interaction. We use red to highlight
the synchronous communication call.

61

Local
Network

Remote

GHCi send Procedure device

send

Temperature

"Temperature"

"56"

56

56

Figure 2: Example of a Synchronous Remote Procedure Call

4. The Weak Remote Monad
Thus far, our arguments to send have not been instances of Monad.
We will now address this. Here we join the asynchronous and
synchronous models into a monad called Remote. In this section,
we implement an initial version of the remote monad that does not
amortize the cost of communication. We call this a weak remote
monad.

Definition. A weak remote monad is a remote monad that sends
each of its remote calls individually to a remote interpreter.

In this example, the Remote monad is implemented using the
reader monad, where the environment is our Device, nested around
the IO monad, using monad transformers [22, 27].

newtype Remote a = Remote (ReaderT Device IO a)

deriving instance Monad Remote

This gives us access to the specific Device, which will allow us to
send individual commands to the remote interpreter on the fly. We
use deriving instance Monad to allow the monadic operators
to be used, while hiding the transformer-based operations inside the
Remote abstraction.

Device now needs to support both sync and async. In a real
implementation, it would be expected that there would be two
entry points into the same communication channel, where the usage
specifics depend on if we want to receive a reply.

data Device = Device
{ sync :: String -> IO String
, async :: String -> IO ()
}

A send-style function, customized for our weak Remote monad,
provides remote execution for Command. Observe that each com-
mand invokes the remote procedure call immediately.

sendCommand :: Command -> Remote ()
sendCommand m = Remote $ do

d <- ask
liftIO (async d (show m))
return ()

say :: String -> Remote ()
say txt = sendCommand (Say txt)

For procedures, we also provide a send-style function, again cus-
tomized for our weak Remote monad. Again, each procedure in-
vokes the remote procedure call immediately.

Local
Network

Remote

GHCi send Remote device

send

say

"Say \"Do you want some toast?\""()

temperature

"Temperature"

"56"

56

say

"Say \"56F\""()

56

send

toast

"Toast 120"

"()"

()

()

Figure 3: Example of a Weak Remote Monad

sendProcedure :: Procedure a -> Remote a
sendProcedure m = Remote $ do

d <- ask
r <- liftIO (sync d (show m))
return (readProcedureReply m r)

temperature :: Remote Int
temperature = sendProcedure Temperature

toast :: Int -> Remote ()
toast n = sendProcedure (Toast n)

Our main send function is now used to run the Remote monad,
unboxing the reader function, and applying it to the Device:

send :: Device -> Remote a -> IO a
send d (Remote m) = runReaderT m d

Finally, the virtual remote Device is a combination of the syn-
chronous and asynchronous Devices:

device :: Device
device = Device (execRProcedure . read)

(execRCommand . read)

Now we can call send with a monadic argument, and chains of
primitives, connected using the monad, will be executed. We have
achieved our original goal: a (weak) remote monad where the prim-
itive commands and procedures are executed in a remote location.

GHCi> t <- send device $ do
say "Do you want some toast?"
t <- temperature
say (show t ++ "F")
return t

Remote: Do you want some toast?
Remote: 56F
GHCi> when (t < 70) (send device (toast 120))
Remote: Toasting...
...sleeping for 120 seconds...
Remote: Done!

Figure 3 shows the sequence diagram for this example of the weak
remote monad. For every primitive call invoked, there is a remote
call to the device. Furthermore, the GHCi computation does not
terminate until the toast is complete.

62

5. The Strong Remote Monad
We want to bundle monadic remote calls, and send them as pack-
ets of computations to be remotely executed. The strong remote
monad does this. We have two classes of primitive remote calls:
commands that do not require any specific result to be observed,
and procedures that require a reply from the remote site.

• For commands, which are asynchronous and do not send a
reply, we can queue up the command and commit to sending
it later.
• For procedures, which are synchronous, we need to transmit

them immediately. Thus we first send all outstanding queued
commands, then send the procedure, and then await the proce-
dure’s result.

At the end of executing a send, we flush the queue of any outstand-
ing commands.

This is the key idea behind a strong remote monad: package
the sequence of monadic actions into a list of commands, which
are (in all but the final case) terminated by procedures. This design
assumes that the only primitive remote calls in our remote monad
are commands and procedures, and thus there is no way of locally
pausing or stalling the pipeline of commands. The queuing of com-
mands is simply a bundling strategy for commands and procedures
that would be executed immediately after each other anyway.

Definition. A strong remote monad is a remote monad that bun-
dles all of its remote calls into packets of commands, punctuated by
procedures, for remote execution.

In the strong remote monad, as well as knowing what Device to
talk to, we need to queue up the list of to-be-transmitted Commands.
We use a reader monad for the Device (as with the weak remote
monad), and a state monad for the command queue. Thus, our
(strong) remote monad can be defined as:

newtype Remote a =
Remote (ReaderT Device (StateT [Command] IO) a)

We want to send a packet of Commands, terminated by a Procedure,
and also to have a way of sending a packet of Commands with-
out a terminating Procedure. For the latter case, we simply send
[Command]. For the former case, we introduce a dedicated data
type:

data Packet a = Packet [Command] (Procedure a)
deriving Show

Now we can start providing monadic primitives. A utility func-
tion, sendCommand, appends Commands to our “to-be-sent” queue,
and say supports the remote monad interface:

sendCommand :: Command -> Remote ()
sendCommand cmd = Remote (modify (++ [cmd]))

say :: String -> Remote ()
say txt = sendCommand (Say txt)

Supporting procedures is more involved. We need to flush the queue
of outstanding Commands, as well as to actually send a packet
containing the Commands and procedure to the remote site:

Local
Network

Remote

GHCi send Remote device

send

say

()

temperature
"Packet [Say \"Do you want some toast?\"]

Temperature"

"56"

56

say

()

"[Say \"56F\"]"

56

send

toast

"Packet [] (Toast 120)"

"()"

()

()

Figure 4: Example of a Strong Remote Monad

sendProcedure :: Procedure a -> Remote a
sendProcedure p = Remote $ do

d <- ask
cs <- get
r <- liftIO (sync d (show (Packet cs p)))
put []
return (readProcedureReply p r)

temperature :: Remote Int
temperature = sendProcedure Temperature

toast :: Int -> Remote ()
toast n = sendProcedure (Toast n)

Next, we provide our send function, which runs our inner monad,
and flushes any remaining Commands to the remote interpreter:

send :: Device -> Remote a -> IO a
send d (Remote m) = do

(r,cs) <- runStateT (runReaderT m d) []
when (not (null cs)) (async d (show cs))
return r

Finally, we define our simulated remote device, now extended with
an execution function for packets:

device :: Device
device = Device (execRPacket . read)

(mapM_ execRCommand . read)

data RPacket = Packet [RCommand] RProcedure
deriving Read

execRPacket :: RPacket -> IO String
execRPacket (Packet cs p) = do

mapM_ execRCommand cs
execRProcedure p

Figure 4 shows the sequence diagram for the strong remote
monad, on the same example as used for the weak remote monad.
As can been seen, Packet combines Commands, punctuated by
Procedures.

63

6. The Remote Applicative Functor
There is also a remote applicative functor.

Definition. A remote applicative functor is an applicative functor
that has its evaluation function in a remote location, outside the
local runtime system.

As with monads, there are two classes: the weak remote applica-
tive functor, and the strong remote applicative functor. Without a
bind operator, applicative functors [30] are fundamentally better
suited to remoteness than monads are: subsequent applicative com-
putations cannot depend on the results of prior computations, which
in our context allows for bundling of procedures. In fact (using our
terminology) a strong remote applicative functor is currently used
by Facebook to bundle database requests [29].

Any weak remote monad is, by definition, (at least) a weak
remote applicative functor, with primitive calls transmitting indi-
vidually. More interesting is the strong remote applicative func-
tor, which we consider here. Exploiting the independence of subse-
quent calls from the results of prior calls, we are going to bundle all
the Commands and Procedures together in a single packet, which
we represent by a list of Prims (primitive remote calls).

data Prim :: * where
Command :: Command -> Prim
Procedure :: Show a => Procedure a -> Prim

deriving instance Show Prim

Our applicative functor is a wrapper around a monad transformer:

newtype Remote a =
Remote (WriterT [Prim] (State [String]) a)

This monad transformer is a combination of the writer monad,
for accumulating queued primitive calls, and the state monad, for
simultaneously parsing results. We will use lazy evaluation to “tie-
the-knot” [2] between these two effects in send. We explicitly
provide the instances for Applicative and Functor, but not
Monad.

We handle Commands using the underlying writer monad:

sendCommand :: Command -> Remote ()
sendCommand cmd = Remote (tell [Command cmd])

Handling Procedures is a bit more involved. We use the writer
monad to remember the Procedure, then read the result from the
state, lazily pulling it off a list. Crucially, there are not any external
effects inside our inner monad.

sendProcedure :: Show a => Procedure a -> Remote a
sendProcedure p = Remote $ do

tell [Procedure p]
~(r:rs) <- get
put rs
return (readProcedureReply p r)

We build send using recursive do notation [16, 17]. If our list of
Prims contains only Commands, then we send it asynchronously to
our remote device. Otherwise, we send it synchronously, and await
the list of results from the remote device. We then recursively feed
this result list back into the invocation of the applicative functor.
Whether synchronous or asynchronous, we bundle the complete list
of Prims as a single packet.

send :: Device -> Remote a -> IO a
send d (Remote m) = do

rec let ((a,ps),_) = runState (runWriterT m) r
r <- if all isCommand ps

then do async d (show ps)
return []

else do str <- sync d (show ps)
return (read str)

return a

Local
Network

Remote

Applicative Functor used to extract primitives.

(56∗, ()∗, and 99∗ are unevaluated thunks at return time.)

GHCi send Remote device

send

say

()

temperature

56∗

toast

()∗

temperature

99∗ "[Command (Say \"Good Morning\"),

Procedure Temperature,

Procedure (Toast 120),

Procedure Temperature]"

"[\"56\",\"()\",\"99\"]"

(56,99)

(Returned value used to tie the knot)

Figure 5: Example of a Strong Remote Applicative Functor

We are able to transmit Procedures as a bundle because we
cannot examine the result on individual Procedures until we have
the entire applicative functor computation result — a key property
of applicative functors.

Our simulated remote device now needs to handle lists of inter-
mingled commands and procedures:

data RPrim = Command RCommand
| Procedure RProcedure

deriving Read

execRPrims :: [RPrim] -> IO [String]
execRPrims [] = return []
execRPrims (Command c : ps) = do

execRCommand c
execRPrims ps

execRPrims (Procedure p : ps) = do
r <- execRProcedure p
rs <- execRPrims ps
return (r:rs)

The device implementation uses execRPrims for both syn-
chronous and asynchronous requests:

device :: Device
device = Device (liftM show . execRPrims . read)

(void . execRPrims . read)

We can now transmit bundles containing both commands and pro-
cedures. For example, we can measure the temperature before and
after toasting in one request:

GHCi> (t1,t2) <- send device $
liftA2 (,)

(say "Good Morning" *> temperature)
(toast 120 *> temperature)

Remote: Good Morning
Remote: Toasting...
...sleeping for 120 seconds...
Remote: Done!
GHCi> print (t1,t2)
(56,99)

Figure 5 shows the sequence diagram for this example. Notice how
all three Procedures (and the Command) are sent to the toaster in a
single packet.

64

7. Remote Binding
An alternative to combining procedures into one super-procedure
with restrictions, would be to have the remote interpreter directly
use the result of a procedure. We achieve this by introducing a re-
mote binding mechanism, which locally acts like a remote proce-
dure, but remotely acts like a command. To do so, we use some
tricks for deeply embedded DSLs. To recap deep embeddings:

• We capture expressions by building data-structures that repre-
sent the operations inside the expression.
• We capture functions by extending our embedding with vari-

ables [12], and applying the function to a fresh variable.

As an example, towards building our remote monad model, con-
sider appending the string “F” to a string:

f :: StringExpr -> StringExpr
f t = t <> "F"

We can capture f by using a small data structure for StringExpr
that includes unique variables.

type Id = Int

data StringExpr = Var Id
| Lit String
| Append StringExpr StringExpr

With suitable IsString and Monoid instances for StringExpr,
we can reify the function:

GHCi> f (Var 0)
Append (Var 0) (Lit "F")

Our remote monad will use the function-capture technique, by
generating a new Id locally for each binding done remotely.

Definition. A remote binding is the combination of a request to
perform an action for its remote effects, where there is an interest-
ing result value, and the remote interpreter binding this result value
to a name remotely. The remote action is called a remote bindee.

The result of a remote binding can be used immediately, without
needing local interaction, because the result value resides remotely.
Locally, we generate a new and unique Id, allowing the bindee to
be bundled with commands. This is the trick — remote binders are
a form of remote procedure calls, but because they return handles
with known identifiers, we can transmit them to the remote site as
remote commands.

We want our Temperature procedure to now be a Bindee, so
that we can directly use the result remotely. We constrain the type
of an Bindee in the same way we constrained the return type of a
procedure: by using a GADT.

data Bindee :: * -> * where
Temperature :: Bindee StringExpr

We now define the Command data type such that Say takes a
StringExpr argument, and with a Bind command that will re-
motely bind an Id to a Bindee:

data Command where
Say :: StringExpr -> Command
Bind :: Id -> Bindee StringExpr -> Command

We have our utility functions say and temperature, and a func-
tion bindBindee that locally generates a name for the remotely
bound value, before utilizing sendCommand.

say :: StringExpr -> Remote ()
say txt = sendCommand (Say txt)

Local
Network

Remote

GHCi send Remote device

send

temperature

(Var 0)

say

()

reply

"Packet
[Bind 0 Temperature

, Say (Append (Lit \"The temperature is \")

(Append (Var 0) (Lit \"F\")))

] (Reply (Var 0))"

"\"56\""

"56"

"56"

Figure 6: Example of Remote Binding in a Strong Remote Monad

bindBindee :: Bindee StringExpr -> Remote Id
bindBindee e = do

i <- newId
sendCommand (Bind i e)
return i

temperature :: Remote StringExpr
temperature = do

i <- bindBindee Temperature
return (Var i)

For returning the results of remote expressions, we provide a
Procedure that takes a StringExpr, remotely executes it, and
returns the result:

data Procedure :: * -> * where
Reply :: StringExpr -> Procedure String

reply :: StringExpr -> Remote String
reply e = sendProcedure (Reply e)

This completes our set of transmittable primitives. The remaining
definitions are almost identical to the strong remote monad model,
except that the Remote monad now contains a numeric state that is
used for fresh name generation, and the remote interpreter has an
environment that can be updated. Using the above new machinery,
and a suitable remote device, we can now run an example:

GHCi> send device $ do
t <- temperature
say ("The temperature is " <> t <> "F")
reply t

Remote: The temperature is 56F
"56"

Figure 6 shows the sequence diagram for this example. Observe
that the local monadic bind has been transported to the device for
remote binding.

Remote bindings provide an extension of traditional serializa-
tion. While procedures can return anything serializable, remote
bindings can return handles to remote things that cannot be real-
istically transmitted back to Haskell. For example, some languages
support objects that, when serialized, lose their identity. With a re-
mote binding, we have a handle to the original object.

newtype Object = Object Int

Haskell can pass around the abstract but serializable Object, and
the remote interpreter has an array of objects, indexed by an integer.
However, a caveat with remotely bound objects is that, by creating
a handle to a remote object, there is no (easy) way to know when
you can garbage collect it.

65

8. The Remote Monad Laws
A remote monad is a monad that has its evaluation function in a
remote location, outside the local runtime system. In the remote
monad design pattern, this achieved by providing:

• a remote monad — a set of primitive commands and procedures
that form a monad; and
• a send function that facilitates remote execution of the primi-

tive commands and procedures.

Towards a more systematic understanding of the remote monad, we
propose the remote monad laws. Consider a send specialized to a
specific destination or device d, with a remote monad Remote , and
local monad Local . The send function is a natural transformation
between Remote and Local :

sendd :: ∀ a . Remote a→ Local a

As part of a design pattern, the send function itself says nothing
about how the individual commands and procedures within the
Remote monad are bundled into packets. Instead, as we have seen,
send functions can implement different bundling algorithms.

We propose using the monad-transformer lift laws [22, 27],
also known as the monad homomorphism laws, as our remote
monad laws, because we are lifting the Remote computation to
the remote site, by Local effect.

sendd (return a) = return a (1)
sendd (m >>= k) = sendd m >>= (sendd . k) (2)

Assuming these laws, the monad laws, and the laws relating func-
tors and applicative functors to monads, the following morphism
laws can be derived:

sendd (pure a) = pure a (3)
sendd (m1 <*> m2) = sendd m1 <*> sendd m2 (4)
sendd (fmap f m) = fmap f (sendd m) (5)

Laws (1) and (3) state that a send has no effect for pure computa-
tions. Laws (2) and (4) state that packets of remote commands and
procedures preserve the ordering of their effects, and can be split
and joined into different sized packets without side effects. Law (5)
is a reflection of the fact that send captures a natural transforma-
tion.

8.1 Infinite Remote Monads
From observation of the laws, it is straightforward to split any finite
sequence of total Remote primitives into arbitrarily sized packets.
It should be possible to lift the finiteness pre-condition as follows:

• In the weak remote monad, each primitive invokes an individual
RPC. Therefore, it is completely reasonable to have an infinite
stream of primitives in the Remote monad, in the same way that
we can have infinite monadic computations in the IO monad.
The hArduino library, discussed in §11.4, is an example of this.
• In the strong remote monad, it would be possible to have an

infinite stream of primitives in the Remote monad, provided
the packets are themselves finite. If necessary, this could be
artificially manufactured by putting an upper bound on the
number of consecutive commands before sending a packet.

We leave lifting the finiteness requirement of the remote applicative
functor to future work, observing that an applicative functor will
likely require Alternative, or something similar, to achieve an
interesting infinite denotation.

8.2 Networking
Making networks robust is a hard problem. For example, UDP
packets are not guaranteed to arrive, or arrive in order, so are unsuit-
able, without additional infrastructure, for use in a remote monad.
The remote monad laws assume the network works. However, hav-
ing all remote calls wrapped in a send allows for send to enforce
a specific policy; for example, time-out after 3 seconds and raise
an exception in the Local monad. Also, the Remote monad could
have control structures for exception handling built in. The advan-
tage is that by having a structured way of calling remote services,
this gives hooks to include systematic recovery services as part of
the remote service API.

8.3 Threading
We have assumed a single-threaded local user and a single-threaded
remote service, and the remote monad laws reflect this assumption.
We could lift the local single-threaded assumption trivially, by us-
ing a lock on invocations of send, keeping the remote interactions
single threaded. Alternatively, we could allow the local actions to
be threaded, and have the thread usage reflect into the remote site.
The interleaving semantics will certainly depend on the specific re-
mote monad, and, as when running any side-effecting command on
any multi-threaded system, interference patterns need to be consid-
ered and accounted for.

9. Extended Example: Blank Canvas
In our toaster models, the remote interpreter was also written in
Haskell. This will not be the case in general. Blank Canvas is our
Haskell library that provides the complete HTML5 Canvas API,
using a strong remote monad. In this section, we describe how we
used the remote monad design pattern to build this full scale API
that remotely calls JavaScript.

The HTML5 standard, implemented by all modern web brow-
sers, supports a rich canvas element. This canvas element provides
a low-level 2-dimensional interface to the in-browser widget. The
API provides approximately 30 methods, most of which are void
methods called for their effect, and almost 20 settable attributes.
Table 1 gives a complete list of the base API.

We name our remote monad Canvas, because it represents
methods on the JavaScript Canvas. From examining Figure 1,
all methods and all settable attributes can be transliterated into
monadic Haskell functions in our remote monad. All methods and
attributes are serializable values; there are no callbacks in this API.

Classifying the API as remote commands, bindings and proce-
dures is all about deciding if a specific data structure is local or
remote:

• isPointInPath, toDataURL, and measureText, are pro-
cedures, which return values to the Haskell runtime sys-
tem, returning Bool, Text and TextMetrics respectively.
(TextMetrics is simply a wrapper around a Double.)
• createLinearGradient, createRadialGradient, and
createPattern, are bindings, because CanvasGradient and
CanvasPattern are subtypes of an image class, which can
only be used remotely.
• ImageData is a type that is local to Haskell. This is a de-

sign choice. ImageData is an array of RGB byte values, in-
tended for pixel-level manipulations of images before calling
putImageData to render to a canvas. Instead of reflecting an
entire deep embedding of arithmetic and array operations, we
make ImageData a wrapper around a Haskell byte vector, to be
constructed Haskell-side, and provided as a serializable argu-
ment to putImageData. Thus, getImageData is a procedure.
• Everything else, including setting attributes, are commands.

66

Table 1: JavaScript API for HTML5 Canvas

TRANSFORMATION
void save()
void restore()
void scale(float x,float y)
void rotate(float angle)
void translate(float x,float y)
void transform(float m11,float m12,float m21,float m22,float dx,float dy)
void setTransform(float m11,float m12,float m21,float m22,float dx,float dy)

TEXT
void fillText(string text,float x,float y,[Optional] float maxWidth)
void strokeText(string text,float x,float y,[Optional] float maxWidth)

TextMetrics measureText(string text)

PATHS
void beginPath()
void fill()
void stroke()
void clip()
void moveTo(float x,float y)
void lineTo(float x,float y)
void quadraticCurveTo(float cpx,float cpy,float x,float y)
void bezierCurveTo(float cp1x,float cp1y,float cp2x,float cp2y,float x,float y)
void arcTo(float x1,float y1,float x2,float y2,float radius)
void arc(float x,float y,float radius,float startAngle,float endAngle,boolean d)
void rect(float x,float y,float w,float h)

boolean isPointInPath(float x,float y)

FONTS, COLORS, STYLES AND SHADOWS (ATTRIBUTES)
globalAlpha float globalCompositeOperation string
lineWidth float lineCap string
lineJoin string miterLimit float
strokeStyle any fillStyle any
shadowOffsetX float shadowOffsetY float
shadowBlur float shadowColor string
strokeStyle any fillStyle any
font string textAlign string
textBaseline string

DRAWING
void drawImage(Object image,float dx,float dy, [Optional] . . .)
void clearRect(float x,float y,float w,float h)
void fillRect(float x,float y,float w,float h)
void strokeRect(float x,float y,float w,float h)

STYLE ATTRIBUTES
CanvasGradient createLinearGradient(float x0,float y0,float x1,float y1)
CanvasGradient createRadialGradient(float x0,float y0,float r0,float x1,float y1,float r1)

CanvasPattern createPattern(Object image,string repetition)

IMAGES
string toDataURL([Optional] string type, [Variadic] any args)

ImageData createImageData(float sw, float sh)
ImageData getImageData(float sx, float sy, float sw, float sh)

void putImageData(ImageData imagedata, float dx, float dy, [Optional] . . .)

The taxonomy of remote primitives allowed the design choice to
be an informed choice. We maximize the size of our packets go-
ing to the JavaScript interpreter, though we flush the commands
at the end of every send. We also add two meta-primitives to our
API: sync :: Canvas (), an empty procedure that ensures the
pipeline is flushed; and async :: Canvas (), an empty com-
mand that asynchronously flushes the pending commands.

We used a deep embedding of the Canvas monad in Blank
Canvas. This is more of a historical accident: at the time we wrote
Blank Canvas we thought the strong remote monad required such
an embedding. However, as we can see from our models, it is
possible to build a remote monad with a shallow embedding. The
send function interprets the embedding of the Canvas GADT.

To give an example, consider drawing a line using Blank Can-
vas. All the required primitives are commands. So send bundles
them up as a single packet, and transmits the following JavaScript
(without the whitespace) to the browser, for evaluation:

Haskell JavaScript
send context $ do

moveTo(50,50)
lineTo(200,100)
lineWidth 10
strokeStyle "red"
stroke()

try{
c.moveTo(50,50);
c.lineTo(200,100);
c.lineWidth = 10;
c.strokeStyle = "red";
c.stroke();

} catch(e) {
alert(’...’);

}

For each Blank Canvas procedure primitive, we have a small wrap-
per, written in JavaScript, that uses currying to accept a unique
“transaction” id, in this example the number 9, and the graphics
context, c.

Haskell JavaScript
send context $ do

isPointInPath(10,20)
try{
IsPointInPath(10,20)(9,c);

} catch(e) {
alert(’...’);

}

The function $.kc.reply, from the package kansas-comet [21],
sends a JavaScript value back to the Haskell program. The first
argument is the transaction id, and the second argument is the

returned (JavaScript) value. We then embed JavaScript’s
isPointInPath inside a Blank Canvas supporting function.

function IsPointInPath(x,y) {
return function (u,c) {

$.kc.reply(u,c.isPointInPath(x,y));
}

}

For bindings, we allocate a global variable, and remember the
unique number inside the proxy object.

Haskell JavaScript
send context $ do

grd <- 〈〈 BINDEE 〉〉
...

try{
var v_42 = 〈〈 BINDEE 〉〉
...

}catch(e){
alert(’...’);

}

In summary, the JavaScript generated is a direct transliteration of
the function calls made in Haskell, using the remote monad as the
guiding design pattern.

10. Blank Canvas in Practice
Out of the box, Blank Canvas is pac-man complete — it is a
platform for simple graphics, classic video games, and building
more powerful abstractions that use graphics. The key question is
how well does Blank Canvas perform in practice. In this section,
we give both empirical and anecdotal evidence.

10.1 Empirical Evidence
An important question is the cost of using the remote monad de-
sign pattern, albeit over a machine-local network. At first glance
the cost of using the remote monad to implement Blank Canvas
seem prohibitive. Blank Canvas transliterates each packet to a Text
string, and then sends the packet over a network, where it is parsed
by the JavaScript virtual machine. Normally, in a JavaScript appli-
cation, the JavaScript program is parsed and compiled once, and
the inner loops are run many times. But a loop in Blank Canvas
will repeatedly transmit the contents of the loop body, requiring
re-parsing and re-compilation each time. Even with the use of the
remote monad design pattern, we expect to take a significant per-
formance hit, above and beyond the cost of networking.

67

In order to quantify our ideas, we have measured the perfor-
mance of Blank Canvas on several benchmark programs and com-
pared them to native JavaScript. We have two classes of bench-
marks: command benchmarks, which simply render to the canvas;
and procedure benchmarks, where the inner loop of the benchmark
invokes some form of query that requires a round-trip from server,
to client, and back to the server. The JavaScript versions of the
benchmarks were written in idiomatic JavaScript. The Blank Can-
vas tests were run using criterion [36], and the JavaScript tests
used the criterion mechanism to estimate confidence.

We ran our benchmarks on both Chrome and Firefox, and on
both Linux and OSX. The relative performance of our command
benchmarks varied widely, depending on browser and benchmark,
but on average, the cost of using Haskell and the Blank Canvas API
was between a factor of 2 and 10 relative to native JavaScript. This
is surprising and encouraging! However, the performance cost of
our procedure benchmarks was significantly higher, up to a factor
of 600 relative to native JavaScript. We expect that adding a strong
remote applicative functor capability would significantly reduce the
cost of the procedure benchmarks, because it would also allow
Blank Canvas to bundle procedures. We plan to perform a more
systematic study of the costs of the remote monad, and the benefits
of the remote applicative functor, in the future.

10.2 Anecdotal Evidence
Blank Canvas has now been used by the students in four separate
instances of our functional programming class. Students find it easy
to understand, given the analog between the IO monad and the
remote Canvas monad, with students often choosing to use Blank
Canvas for their end-of-semester project. To give two examples,
one end-of-semester project was Omar Bari and Dain Vermaak’s
Isometric Tile Game, that can be rotated in 3D in real-time; another
project was Blankeroids, a playable asteroids clone, written by
Mark Grebe, on top of Yampa [9] and yampa-canvas [39]. Both
are shown here with the students’ permission.

In summary, Blank Canvas, using the remote monad, is a viable
way for students to draw pictures and write games in Haskell.
Rendering graphics uses many more commands than procedures, so
it (retrospectively) turns out to be an ideal candidate for the remote
monad. Given that we have access to whole new capabilities, we
consider the overheads of using the remote monad reasonable.

11. Related Work
Once the remote monad design pattern is understood, many in-
stances of its use, or of related patterns, can be observed in the
wild. In this section we discuss some of the existing instances, and
present the type of the send analog, with the natural transformation
highlighted in red. This list is not intended to be comprehensive, but
rather to give a flavor of existing uses, or close uses, of the remote
monad and related ideas.

11.1 Terminal Interaction
• The ncurses [33] package provides two levels of weak remote

monads, in order to provide an API for moving the cursor
around a terminal, and other terminal-specific services. The
outer send has the type

runCurses :: Curses a -> IO a

and the inner send has the type
updateWindow :: Window -> Update a -> Curses a

This package compiles commands into ANSI-style command
sequences to be execute directly on the terminal.

11.2 Database Access
• In the Haxl DSL, Marlow [29] uses the properties of applicative

functors to issue database queries in parallel. The send function
has the type:

runHaxl :: Env u -> GenHaxl u a -> IO a

Haxl is a DSL with a weak remote monad, with a strong remote
applicative functor.
• mongoDB [23] is an API into the popular MongoDB NoSQL

database that uses a weak remote monad. The send function
has the type:

access :: MonadIO m => Pipe
-> AccessMode
-> Database
-> Action m a -> m a

11.3 Browser / Server
• The rather ingenious Haste.App library [10, 11] is an instance

of the remote monad design pattern. The Haste.App uses two
Haskell compilers, a Haskell to JavaScript compiler for the lo-
cal monad, and GHC for the remote monad evaluator, with the
glue code between the two generated artifacts being automati-
cally generated. The send function has the type:

onServer :: Binary a => Remote (Server a) -> Client a

The Remote is a wrapper to help stage the difference between
the client and server compilations. The Server monad is the
remote monad. The remoteness here is running on the server;
the main program runs on the client browser.
• Sunroof is a compiler for a monadic JavaScript DSL [4, 20],

developed by the University of Kansas. The compiler, which is
considerably more involved than Blank Canvas, could be used
stand-alone, as a part of a strong remote monad. There are three
separate send commands:

asyncJS :: SunroofEngine -> JS t () -> IO ()
syncJS :: (...) => SunroofEngine -> JS t a

-> IO (ResultOf a)
rsyncJS :: (...) => SunroofEngine -> JS t a -> IO a

Using what we have learned from studying the remote monad
design pattern, these three send functions could be combined
into a single send.

11.4 Embedded Systems
• Levent Erkök’s hArduino package [14] uses the weak remote

monad design pattern. The send-command withArduino is
a one-shot operation, and does not have the ability to return
values. Instead, the monad represents the whole computation to
be executed.

withArduino :: Bool -> FilePath -> Arduino () -> IO ()

68

• Ben Gamari’s bus-pirate package [18] allows access to the
I2C or SPI embedded device protocols via a serial port, us-
ing monadic primitives. The send command implements the
remote monad directly.

runBusPirate :: FilePath -> BusPirateM a
-> IO (Either String a)

• The University of Kansas used an (as yet unpublished) strong
remote applicative functor in the design of λ-bridge, an inter-
face between Haskell and an FPGA, built on top of the open
Wishbone [35] bus protocol.

send :: Board -> BusCmd a -> IO (Maybe a)

The applicative functor structure allows multiple reads and
writes to be combined into a bus transaction, and executed on
an FPGA.

11.5 GUIs
• Heinrich Apfelmus’ threepenny-gui [1] uses a user-interface

element monad UI as a weak remote monad.

runUI :: Window -> UI a -> IO a

11.6 GPGPUs
• The popular accelerate package [7] uses a remote array

design pattern to program a GPGPU. The send function takes
an Acc, and returns a pure result.

runIn :: Arrays a => Context -> Acc a -> a

This version of send does not use a local monad, but it can
be considered to use the Identity monad. The send function
can be purely functional specifically because the computations
that are performed remotely are purely functional. Like other
uses of the remote design pattern, Acc encodes the computation
to be performed, in this case on the GPGPU. Acc is a DSL
which provides array-based operators; such as zipWith and
map. There is no applicative apply, or monadic bind, for Acc.

11.7 SMT solvers
• Levent Erkök’s sbv package [15] provides access to SMT

solvers, and uses a weak remote monad as its lowest level API.
runSymbolic’ :: SBVRunMode -> Symbolic a -> IO (a, Result)

11.8 Games
• Douglas Burke’s mcpi package [5] uses a weak remote monad

to allow Haskell users to interact with a Minecraft server.
runMCPI :: MCPI a -> IO a

11.9 Other Related Works
This work is the marriage of Domain Specific Languages and
Remote Procedure Calls. Both have a long and rich history.

Sun Microsystems implemented the first widely-distributed
RPC implementation [31, 32]. The ideas were based on Birrell
and Nelson’s seminal work in this area [3]. All modern operating
systems include RPC capabilities, building on these initial imple-
mentations. There is now an array of high-level libraries and frame-
works for almost any modern language, offering RPC services such
as D-Bus [28], which operates within a single machine, and Java’s
Jini, now called Apache River (http://river.apache.org/).
The Haskell cloud-computing effort [13] includes support for
RPCs, and can be considered such a middleware solution. There
are also many low-level protocols for executing RPCs, such as
JSON-RPC (http://www.jsonrpc.org/).

Domain Specific Languages are Haskell’s forte. There are shal-
lowly embedded DSLs [25, 26], with direct execution, and deeply
embedded DSLs [12], with a generated structure representing the
computation and a paired evaluator. There are also tagless-final
DSLs [6], where there is no early commitment to a specific embed-
ding, but instead class overloading in used to specify the API. Sev-
eral Haskell DSLs, including Feldspar [37] and Obsidian [8], reify
the structure of monadic code [40, 41] to generate external impera-
tive code. Other DSLs, including CoPilot [38] and Ivory [24], use a
shallow embedding of statements to capture the monadic structure.
All of these DSLs could leverage the remote monad design pattern.

12. Conclusion and Future Work
This work was inspired by the question of what would an online
evaluator of a deeply embedded DSL outside the Haskell heap
look like. However, as we have seen, other DSL technologies can
be used to generate the remote packets; the remote monad ideas
are orthogonal to specific DSL implementation technologies. We
thought we were writing a paper about deeply embedded DSLs
and interesting GADT encodings. Instead, we discovered a design
pattern and a small language for RPC APIs.

We have built a number of remote monads and remote applica-
tive functors. Aside from the examples already documented above,
we have also reimplemented the Minecraft API found in mcpi, but
with a strong remote monad, and a general JSON-RPC framework
in Haskell. In particular, the JSON-RPC protocol supports multi-
ple batched calls, as well as individual calls. Currently, the user
needs to choose between the monadic and applicative functor API.
We will use this prototype as a test-bench to explore the combina-
tion of simultaneously being a strong remote monad and a strong
remote applicative functor. The recent push to add applicative func-
tor do-notation as a GHC-extension is something that we can take
advantage of here.

Our simulated remote interpreters used regular data structures,
rather than sharing the GADT used by send. This was for clarity,
but also to avoid the complications of reifying GADTs. This is not
a fundamental limitation: we have also implemented all our models
using GADTs for the remote procedures, using a wrapper GADT
called Transport to enable deserialization.

data Transport (m :: * -> *)
= forall a . (Show a) => Transport (m a)

By providing a Read instance for Transport, we can hide the
phantom type index from the Read instance, while ensuring that
we have a Show instance for the phantom type. We expect that any
full-scale implementation would use similar techniques when the
remote interpreter uses Haskell.

A remote monad is a sweet spot between an RPC and a deeply
embedded DSL, offering the possibility of rich FFIs for little effort
and runtime cost. The remote monad design pattern allows a pro-
gression from weak, to strong, to deep embedding, giving a gentler
pathway to implement deeply embedded DSLs. We have used the
remote monad design pattern many times, and hope others will find
the pattern as useful as we have.

Acknowledgments
We would like to thank Heinrich Apfelmus, Conal Elliott, and Lev-
ent Erkök for their useful discussions and insights, and the anony-
mous reviewers for their useful and constructive comments. This
material is based upon work supported by the National Science
Foundation under Grant No. 1117569 and Grant No. 1350901.
Aleksander Eskilson, Ryan Scott and James Stanton were sup-
ported by the NSF REU initiative. The icons in the sequence di-
agrams were created by Tomoyuki Miyano, and made available on-
line, at http:/iconarchive.com/.

69

http://river.apache.org/
http://www.jsonrpc.org/
http:/iconarchive.com/

References
[1] H. Apfelmus. Hackage package threepenny-gui-0.6.0.2, 2015.
[2] R. Bird. Using circular programs to eliminate multiple traversals of

data. Acta Informatica, 21(3):239–250, 1984.
[3] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls.

Transactions on Computer Systems, 2(1):39–59, 1984.
[4] J. Bracker and A. Gill. Sunroof: A monadic DSL for generat-

ing JavaScript. In International Symposium on Practical Aspects
of Declarative Languages, volume 8324 of LNCS, pages 65–80.
Springer, 2014.

[5] D. Burke. Hackage package mcpi-0.0.1.2, 2014.
[6] J. Carette, O. Kiselyov, and C. Shan. Finally tagless, partially evalu-

ated: Tagless staged interpreters for simpler typed languages. Journal
of Functional Programming, 19(05):509–543, 2009.

[7] M. M. T. Chakravarty, R. Clifton-Everest, G. Keller, S. Lee, B. Lever,
T. L. McDonell, R. Newtown, and S. Seefried. Hackage package
accelerate-0.15.1.0, 2015.

[8] K. Claessen, M. Sheeran, and B. J. Svensson. Expressive array con-
structs in an embedded GPU kernel programming language. In Work-
shop on Declarative Aspects and Applications of Multicore Program-
ming, pages 21–30. ACM, 2012.

[9] A. Courtney, H. Nilsson, and J. Peterson. The Yampa arcade. In
Haskell Workshop, pages 7–18. ACM, 2003.

[10] A. Ekblad. Hackage package haste-compiler-0.4.4.4, 2015.
[11] A. Ekblad and K. Claessen. A seamless, client-centric programming

model for type safe web applications. In Haskell Symposium, pages
79–89. ACM, 2014.

[12] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.
Journal of Functional Programming, 13(3):455–481, 2003.

[13] J. Epstein, A. P. Black, and S. Peyton Jones. Towards Haskell in the
cloud. In Haskell Symposium, pages 118–129, 2011.

[14] L. Erkok. Hackage package hArduino-0.9, 2014.
[15] L. Erkok. Hackage package sbv-4.4, 2015.
[16] L. Erkök and J. Launchbury. Recursive monadic bindings. In In-

ternational Conference on Functional Programming, pages 174–185.
ACM, 2000.

[17] L. Erkök and J. Launchbury. A recursive do for Haskell. In Haskell
Workshop, pages 29–37. ACM, 2002.

[18] B. Gamari. Hackage package bus-pirate-0.6.2, 2015.
[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley,
1994.

[20] A. Gill and J. Bracker. Hackage package sunroof-server-0.2.1,
2014.

[21] A. Gill and A. Farmer. Hackage package kansas-comet-0.3.1,
2014.

[22] A. Gill and R. Paterson. Hackage package transformers-0.4.3.0,
2015.

[23] T. Hannan. Hackage package mongoDB-2.0.5, 2015.

[24] P. C. Hickey, L. Pike, T. Elliott, J. Bielman, and J. Launchbury. Build-
ing embedded systems with embedded DSLs. In International Con-
ference on Functional Programming, pages 3–9. ACM, 2014.

[25] P. Hudak. Modular domain specific languages and tools. In Inter-
national Conference on Software Reuse, pages 134–142. IEEE Press,
1998.

[26] D. Leijen and E. Meijer. Domain specific embedded compilers. In
Conference on Domain-Specific Languages, pages 109–122. ACM,
1999.

[27] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In Symposium on Principles of Programming Languages,
pages 333–343. ACM, 1995.

[28] R. Love. Get on the D-BUS. Linux Journal, 2005(130):3, 2005.

[29] S. Marlow, L. Brandy, J. Coens, and J. Purdy. There is no fork:
An abstraction for efficient, concurrent, and concise data access. In
International Conference on Functional Programming, pages 325–
337. ACM, 2014.

[30] C. McBride and R. Paterson. Applicative programming with effects.
Journal of Functional Programming, 18:1–13, 2008.

[31] S. Microsystems. RPC: Remote procedure call protocol specification.
Technical report, RFC 1050, Apr. 1988.

[32] S. Microsystems. RPC: Remote procedure call protocol specification:
Version 2. Technical report, RFC 1057, June 1988.

[33] J. Millikin. Hackage package ncurses-0.2.11, 2014.

[34] E. Moggi. Computational lambda-calculus and monads. In Symposium
on Logic in Computer Science, pages 14–23. IEEE Press, 1989.

[35] OpenCores Organization. Wishbone B4: WISHBONE System-on-Chip
(SoC) Interconnection Architecture for Portable IP Cores, 2010. URL
http://opencores.org/opencores,wishbone.

[36] B. O’Sullivan. Hackage package criterion-1.1.0.0, 2015.

[37] A. Persson, E. Axelsson, and J. Svenningsson. Generic monadic
constructs for embedded languages. In Symposium on Implementation
and Application of Functional Languages, volume 7257 of LNCS,
pages 85–99. Springer, 2012.

[38] L. Pike, N. Wegmann, S. Niller, and A. Goodloe. A do-it-yourself
high-assurance compiler. In International Conference on Functional
Programming, pages 335–340. ACM, 2012.

[39] N. Sculthorpe. Hackage package yampa-canvas-0.2, 2014.

[40] N. Sculthorpe, J. Bracker, G. Giorgidze, and A. Gill. The constrained-
monad problem. In International Conference on Functional Program-
ming, pages 287–298. ACM, 2013.

[41] J. Svenningsson and B. J. Svensson. Simple and compositional reifi-
cation of monadic embedded languages. In International Conference
on Functional Programming, pages 299–304. ACM, 2013.

[42] P. Wadler. Comprehending monads. In Conference on LISP and
Functional Programming, pages 61–78. ACM, 1990.

70

http://opencores.org/opencores,wishbone

	Introduction
	Haskell Calling the Real World
	Modeling Remote Communication
	An Asynchronous Remote Command Call
	A Synchronous Remote Call

	The Weak Remote Monad
	The Strong Remote Monad
	The Remote Applicative Functor
	Remote Binding
	The Remote Monad Laws
	Infinite Remote Monads
	Networking
	Threading

	Extended Example: Blank Canvas
	Blank Canvas in Practice
	Empirical Evidence
	Anecdotal Evidence

	Related Work
	Terminal Interaction
	Database Access
	Browser / Server
	Embedded Systems
	GUIs
	GPGPUs
	SMT solvers
	Games
	Other Related Works

	Conclusion and Future Work

