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ABSTRACT  

The Cronobacter sakazakii clonal complex 4 (CC4) represents a dominant lineage of the 

genus Cronobacter in Cronobacter PubMLST. A strong association of C. sakazakii CC4 with 

neonatal infections especially neonatal meningitis has been established. The composition 

of C. sakazakii CC4 isolates in Cronobacter PubMLST indicates that at least 70% of these 

isolates were obtained either from clinical sources or infant formula. The dominant 

association of the C. sakazakii CC4 with neonatal infections especially meningitis and its 

predominant isolation from the infant formula and environment was intriguing which drove 

the rationale for the in-depth genomic analysis presented in the current PhD study. The 

whole genome phylogeny revealed that despite their geographical and temporal spread, 

the CC4 isolates cluster tightly with each other representing a clonal and a stable lineage 

within the Cronobacter genus. An exhaustive search of the sequenced genomes to identify 

virulence or environmental fitness associated traits indicated no significant difference 

between the virulence potential of C. sakazakii CC4 and C. sakazakii non-CC4. The 

interesting observation was the presence of two hypothetical proteins predominant in CC4 

isolates, one of which was the homologue of an inner membrane protein. In addition, an 

hypothetical protein was noted to be largely absent from the C. sakazakii CC4 genomes. The 

O:2 was found to be the dominant serotype of CC4, however not exclusive to CC4. A giant 

adhesion associated gene was also noted predominantly in the C. sakazakii CC4 genomes. 

Single nucleotide polymorphism indicated low degree of sequence diversity within CC4 with 

average distance of 300-400 SNPs against the reference isolate. The subdivision of the low 

invasive CC4 isolates was intriguing, however no unique invasion associated traits were 

determined in a highly invasive CC4 isolate whereas one low invasive isolate indicated the 

presence of heavy metal resistance associated traits. The metal resistance assays could not 

differentiate the high and low invasive CC4 isolates. The case study of the 1994 French 

outbreak using genome sequenced data suggested powdered infant formula (PIF) to be the 

dominant, yet not the exclusive source of outbreak for the C. sakazakii isolates. The current 

PhD study was the first to explore the genomes of C. sakazakii CC4 revealing some 

interesting variations. Future studies are warranted to characterise hypothetical proteins 

predominant in CC4 to elucidate their significance in this clonal lineage. Furthermore, 

transcriptomics studies are warranted to find out any unique genes differentially expressed 

in the CC4 genomes under different stressful conditions. 
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 INTRODUCTION 

This section will cover the literature review of the genus Cronobacter. The topics covered 

include physiology, taxonomic reviews, reservoirs, infections caused in adults and neonates, 

potential virulence and environmental fitness associated traits, genome studies and 

significance of Cronobacter sakazakii Clonal Complex 4 (CC4).  

1.1.1 PHYSIOLOGY 

The members of genus Cronobacter consist of Gram negative, motile, peritrichous, non-

spore forming, oxidase negative, catalase positive, methyl red negative, able to reduce 

nitrate to nitrite, facultative anaerobic rods belonging to the family Enterobacteriaceae and 

related closely to Citrobacter and Enterobacter genera (Iversen et al. 2008). They can grow 

over a wide temperature range of 4oC to 44-47oC (Iversen et al. 2004).  

A number of physiological characteristics of Cronobacter spp. are of importance due to their 

association with infant formula and neonatal infections. The ability of organism to resist dry 

heat is of significance. Cronobacter are well known for their desiccation tolerance (Osaili 

and Forsythe, 2009). The organism can tolerate desiccation for more than 2 years and on 

re-constitution grow rapidly (Caubilla-Barron et al. 2007).The ability of Cronobacter to resist  

osmotic stress and therefore to survive the dried and desiccated conditions of PIF, is 

considered to be better than other pathogens such as E. coli, Citrobacter and Salmonella 

(Breeuwer et al. 2003). Several studies have tried to explain the osmotic tolerance of 

Cronobacter. A proteomic based study identified at least 53 proteins associated with 

osmotic stress in Cronobacter (Riedel and Lehner, 2007). Trehalose synthesis by 

Cronobacter  has also been associated with osmotic stress response; trehalose is a 

molecular chaperon which can protect proteins and membranes from denaturation, as in 

case of E. coli  (Breeuwer et al. 2003; Horlacher and Boos 1997). Several osmotolerance 

genes have been identified in Cronobacter and other Enterobacteriaceae, for example 

Feeney and colleagues (2014) described seven homologues of the Prop osmolyte uptake 

system; ESA_02131, ESA_01706, ESA_04214, ESA_pESA3p05450, ESA_01226, ESA_00673 

and ESA_03328 in C. sakazakii BAA-894 genome (Feeney et al. 2014). Another study 

identified homologues of E. coli genes TrkH, trkG, trkA, trkE, kdpA, kdpB, kdpC, kdpD, kdpE, 

phoP, phoQ, ompC, ompF, envZ and ompR associated with uptake of K+ which act as 
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osmoprotectants as a primary response to osmotic stress, in Cronobacter (Feeney et al. 

2011) . 

Yellow pigment production is an important characteristic of Cronobacter, since 

approximately 80% of the strains have shown the production of non-diffusible yellow 

pigment on Trypticase Soy Agar (TSA) at 25oC (Iversen and Forsyth, 2004). The production 

of this yellow carotenoid based pigment may help protect the organism against the free 

oxygen radicals generated by sunlight, if it is colonizing the plant materials (Osaili and 

Forsythe, 2009). The yellow pigment production may explain the frequent isolation of 

Cronobacter from plant ingredients and products (Osaili and Forsythe, 2009). 

Cronobacter are able to produce copious capsule on milk agar plates (Caubilla-Barron et al. 

2007). The production of capsular material may help the organism to form biofilms on 

different surfaces which can be resistant to disinfectants (Beuchat et al. 2009). The 

production of capsule may help to protect the organism against desiccation as indicated by 

Caubilla-Barron and Forsythe (2007). Their study using 27 Enterobacteriaceae strains 

showed that capsulated Cronobacter strains were recoverable from the dehydrated infant 

formula after 2.5 years. The capsulation of Cronobacter is likely to be associated with biofilm 

formation as the organism has been found as part of the mixed flora in enteral feeding tubes 

obtained from the NICU of neonates who were not getting infant formula as their feed; this 

colonization of the enteral feeding tubes may lead to the contamination of the subsequent 

feeds (Hurrell et al. 2009a, b). Moreover, Cronobacter are able to colonise equipment which 

is used to manufacture feed preparation including silicon, stainless steel, polyvinyl chloride, 

glass, latex and polycarbonate (Iversen et al. 2004; Lehner et al. 2005).  

The properties of pigment production, desiccation resistance and polysaccharide 

production has been considered as the indicators of the plants are the natural habitats of 

Cronobacter (Iversen and Forsythe, 2003). The capsular polysaccharide may help in the 

attachment of the organism to the plant surfaces, desiccation resistance help the organism 

to survive severe environmental conditions while yellow pigment help protect the organism 

from the sunlight produced free radicals (Iversen and Forsythe, 2003).  

Another important trait of Cronobacter is thermotolerance which has been studied in detail. 

Although isolates differ in their ability to tolerate heat, however all the strains were 

inactivated at the pasteurization temperature of 72oC (Nazarowec-White and Farber 1997; 
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Breeuwer et al. 2003). These observations were used to review the guide lines for re-

constitution of powdered infant formula (PIF) in order to reduce the risk of neonatal 

infections by Cronobacter (FAO-WHO 2004, 2006). Cronobacter are able to survive the 

reconstituted PIF in a temperature range of 6 to 47oC (Iversen et al. 2004). In laboratory, 

the strains can grow at 37oC in 16 to 18 hours on media such as TSA and MacConkey’s agar. 

A study by Gajdosova et al. (2011) proposed an 18 kb long genetic region consisting of 22 

open reading frames (orf) associated with thermotolerance in C. sakazakii. Their study 

showed that orfHIJK were experimentally linked with thermotolerance since cloning of 

these orfs into E. coli caused a two fold increase in its D58 values (Gajdosova et al. 2011). 

Cronobacter isolates have shown moderate resistance to the acidic conditions of up to pH 

3.0; the resistance increases if the strains are pre-exposed to sub-lethal acidic conditions 

(Edelson-Mammel et al. 2005). The ompR gene has been proposed as crucial in response of 

C. sakazakii against highly acidic conditions (Alvarez-Ordonez et al. 2014). Acids are 

important in food preservation and recently studies have aimed to exploit the bacteriostatic 

properties of acids to protect them against the Cronobacter contamination of baby foods 

and PIF. For example, a combination of lactic acid and copper at sub-lethal concentrations 

have shown inhibitory effects on Cronobacter spp. In infant formula (Holy et al. 2011).  

1.1.2 TAXONOMIC REVIEWS 

The genus Cronobacter has undergone numerous taxonomic reviews over the last 3 decades. 

Initially, the genus was identified as yellow pigmented Enterobacter cloacae.  In 1980, Famer 

performed DNA-DNA hybridization (DDH) and phenotypic studies for the definition of 

“Enterobacter sakazakii”. The results of the DDH indicated that the organism had 41% 

genetic relatedness with Citrobacter freundii and 54% to Enterobacter cloacae. Since, 

phenotypically the organism was more closely related to E. cloacae, therefore it was 

included in the genus Enterobacter as a new species known as Enterobacter sakazakii, 

named after the Japanese biologist Riichi Sakazaki (Farmer et al. 1980). 

Nearly 2 decades later, Iversen and colleagues (2004) using 16S rDNA and hsp60 gene 

sequences analysed the phylogenetic relationship of E. sakazakii and Citrobacter. Their 

study identified at least 4 distinct clusters within E. sakazakii, each cluster representing a 

potential novel species (Iversen et al. 2004); the relationship between this genotypic 

clustering and the biogroups identified by Farmer et al. (1980) was determined by Iversen 
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et al. (2006) in their further analysis. Follow up studies by Iversen et al. (2007 & 2008) using 

Amplified Fragment Length Polymorphisms (f-AFLP), 16S rDNA sequence analysis, DDH, 

ribotyping and phenotypic characterization resulted in taxonomic revision of E. sakazakii 

into the genus Cronobacter which belongs to the family Enterobacteriaceae (Iversen et al. 

2007; Iversen et al. 2008). At that stage the genus Cronobacter consisted of 6 species, C. 

sakazakii, C. malonaticus, C. turicensis, C. muytjensii, C. dublinensis and C. genomospecies 1 

(Iversen et al. 2008). Further studies using optical mapping and genome sequencing data 

validated the re-classification scheme by Iversen et al. (2007 & 2008; Kotewicz & Tall 2009; 

Kucerova et al. 2010). Due to high genetic similarity and clonal nature of the members of 

genus Cronobacter, it was difficult to distinguish between C. sakazakii and C. malonaticus 

based on the 16S sequence analysis. Baldwin et al. (2009) described a Multilocus Sequence 

Typing (MLST) scheme using 7 housekeeping genes (concatenated sequence length of 3036 

bp) which include ATP synthase b chain (atpD), elongation factor G (fusA), glutaminyl tRNA 

synthetase (glnS), glutamate synthase large subunit (gltB), DNA gyrase subunit B (gyrB), 

translation initiation factor IF-2 (infB) and phosphoenolpyruvate synthase A (ppsA) to 

discriminate the species within Cronobacter genus (Baldwin et al, 2009; 

http://pubmlst.org/cronobacter/). The scheme is more discriminatory and robust than 16S 

sequence analysis and showed the separation of C. sakazakii and C. malonaticus (Baldwin 

et al. 2009; Yan et al. 2012). It has revealed a stable clonal nature of the virulent C. sakazakii 

strains and was also used in the description of the 2 new Cronobacter species C. universalis 

and C. condimenti (Joseph et al. 2012a). Joseph and colleagues (2012) applied the MLST 

scheme to 350 strains. The scheme has indicated certain associations of Cronobacter 

Sequence Types (STs); the ST1 has been associated with infant formula and isolated from 

clinical sources, the ST8 strains with clinical sources while ST4 or Clonal Complex 4 (CC4) 

associated dominantly with neonatal meningitis. On the other hand C. malonaticus ST7 has 

been associated with adult infections (Joseph et al. 2012a; Hariri et al. 2013). The MLST 

scheme has to date identified more than 300 STs in the Cronobacter genus. The scheme is 

hosted by University of Oxford and curated by Professor Stephen Forsythe of NTU, it is 

available online at (http://pubmlst.org/cronobacter/; Forsythe et al. 2014).  

Brady et al. (2013) proposed that three non-pathogenic Enterobacter spp. (Enterobacter 

pulveris, Enterobacter helveticus and Enterobacter turicensis), which were originally 

excluded by Iversen et al. (2008) should be included into Cronobacter as 3 new species as C. 

http://pubmlst.org/cronobacter/
http://pubmlst.org/cronobacter/
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pulveris, C. helveticus and C. zurichensis (Brady et al. 2013). However, there were 

ambiguities as no virulence associated traits were attributed to these species. Stephan et al. 

(2014) proposed that these 3 species should constitute 2 new genera namely 

Franconibacter and Siccibacter (Stephan et al. 2014). Furthermore, recent 7 loci MLSA 

analysis by Forsythe and colleagues indicated that the 3 species do not cluster with other 7 

Cronobacter species (Forsythe et al. 2014).  

To date, Cronobacter consists of 7 species which include C. sakazakii, C. malonaticus, C. 

turicensis, C. muytjensii, C. dublinensis and C. condimenti. Amongst Enterobacteriaceae, the 

close relatives of the genus Cronobacter include Citrobacter, Enterobacter, Franconibacter 

and Siccibacter (Baldwin et al, 2009, Forsythe et al. 2014, Stephan et al. 2014).  

1.1.3 RESERVOIRS  

Cronobacter are ubiquitous in the environment. They have been isolated from a wide range 

of sources including food, environment, animals and humans (Holy & Forsythe, 2014). 

Cronobacter have been isolated from herbs, spices, salads, cereals, ready to eat food, 

vegetables, meat and confectionary (Iversen & Forsythe, 2004; Friedemann 2007; 

Baumgartner et al. 2009).  

A wide variety of environmental sources seem to host Cronobacter, these include, soil, grass, 

silage and hot mineral water springs (Neelam et al. 1987; Mosso et al. 1994; Van Os et al. 

1996). One of the earliest isolates which has been included in the present study was isolated 

from dried milk in 1950, the genome of which has now been sequenced (Masood et al. 

2013a). Cronobacter have been isolated frequently from the processing and non-processing 

environments within the powdered infant formula (PIF) manufacturing factories which 

include floors, bays, roller dryers, tankers and air filters (Hein et al. 2009; Craven et al. 2010; 

Jacobs et al. 2011). The organism has also been isolated from house dust (Kandhai et al. 

2004). Additionally, the organism was isolated from the marine environment (Agogue et al. 

2006). Cronobacter strains also have the ability to colonise and grow on the enteral feeding 

tubes (Hurrell et al. 2009a, b).  

The organism has also been isolated from animal sources, an example is the isolation of a 

Cronobacter strain from the nostrils of a horse (Holy et al. 2011). Similarly, flies can also be 

the potential vector for Cronobacter as a number of different isolates have been obtained 
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from different species of flies which include Mexican fruit flies and wild house flies (Kuzina 

et al. 2001; Mramba et al. 2006; Butler et al. 2010; Pava-Ripoll et al. 2012).  

Among the human and clinical sources of the organism include cerebrospinal fluid (CSF), 

blood, sputum, wound infection, bone marrow, urine and faeces (Farmer et al. 1980; 

Muytjens et al. 1983; Gallagher & Ball, 1991; Iversen et al. 2006; Caubilla-Barron et al. 2007).  

One of the most noteworthy sources of isolation for Cronobacter which has caught much 

attention around the world is the powdered infant formula (PIF) which is often used as a 

substitute for the breast milk to feed neonates and infants. It is important to mention that 

as a product PIF is not sterile and has been the source of isolation for Cronobacter and other 

bacterial isolates of Enterobacteriaceae family (Kucerova et al. 2011). Worldwide surveys 

between 1988 and 2004 have shown the frequent isolation of Cronobacter strains from PIF 

(Muytjens et al. 1988; Nazarowec-White & Farber, 1997; Iversen & Forsythe, 2004). A study 

by Muytjens et al. (1988) showed that Cronobacter, then known as Enterobacter sakazakii 

were the third most frequent coloniser of PIF after E. agglomerans and E. cloacae and was 

detected in 20 of 141 samples of infant formula tested (Muytjens et al. 1988). In another 

survey amongst 120 samples of Canadian infant formula tested, at least 6.7% were found 

to be contaminated with Cronobacter spp. (Nazarowec-White & Farber, 1997). However, it 

must be considered that the bacterial contamination of PIF may not be exclusively intrinsic 

as extrinsic factors such as contamination during the manufacturing and packaging as well 

as during the reconstitution by using contaminated water, utensils and hands is also 

possible. Temperature abuse is another factor which may contribute towards the 

contamination of prepared formula (Kucerova et al. 2011). Not only do Cronobacter 

infections due to consumption of contaminated PIF risk neonatal health, but they have 

economic consequences as well, since the product recalls had occurred as in the case of the 

Tennessee outbreak in 2001 (Himelright et al. 2002) and the December 2011 which claimed 

the life of a baby in Missouri, USA after which the supermarket chain Walmart recalled a 

particular batch of PIF and the manufacturers suffered a significant economic loss (CDC, 

2012).  

1.1.4 INFECTIONS CAUSED BY CRONOBACTER 

Almost all Cronobacter species have been associated with infections, an exception being C. 

condimenti (Cruz-Cordova et al. 2012). Mainly the members of Cronobacter have been 
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associated with neonatal infections which include meningitis, necrotising enterocolitis 

(NEC), bacteraemia and sepsis (Healy et al. 2010). The species of Cronobacter which are 

most often associated with infantile infections are C. sakazakii, C. turicensis and C. 

malonaticus (Joseph et al. 2012a, b). Cronobacter are often regarded as opportunistic 

pathogens predominantly associated with life threatening infections in new-born babies 

generally less than 4 weeks old (Bar-Oz et al. 2001; Mullane et al. 2008), however there 

have been reports of infections in older infants (Bowen & Braden, 2006). Cronobacter spp. 

not only cause infections in neonates but have also been associated with adult infections 

especially in elderly or immunocompromised individuals (Caubilla-Barron et al. 2007; See et 

al. 2007). Although infections caused by Cronobacter are rare, the mortality rate in infants 

is as high as up to 80% (Bowen & Braden, 2006; Friedemann, 2007).  

The joint United Nations, World Health Organisation (WHO) and Food and Agriculture 

Organisation (FAO) joint meetings in 2004 and 2006 reported the annual incidence of 

invasive “E. sakazakii” (i.e. Cronobacter) in infants (children below 12 months of age) and 

neonates; the survey was originally conducted by the United States FoodNEt in 2002 in its 

nine surveillance sites. According to the survey the annual incidence of the invasive 

Cronobacter strains (isolated from sterile sites only) in infants was 1 per 100, 000 infants, 

whereas it was 8.7 per100, 000 low-birthweight neonates (FAO/WHO, 2006).  

To date, no global tracking system is in place for Cronobacter however the expert panel of 

the WHO tracked 120 cases of Cronobacter infection from 1961 to 2008 in infants and 

children under 3 years of age. Cronobacter infections are rarer than other epidemic 

outbreaks. However it is not the number of cases, but the mortality rate of up to 80%, which 

is of real concern (about Cronobacter infections). Furthermore, the majority of the infected 

neonates who do recover from the central nervous system (CNS) infections are likely to 

develop lifelong chronic mental disabilities (Lai, 2001).  

1.1.5 INFECTIONS IN NEONATES  

1.1.5.1 NECROTISING ENTEROCOLITIS  

The general route of entry for Cronobacter into the human body is thought to be the gastro 

intestinal tract (GIT) where they may induce necrotising enterocolitis (NEC) (Liu et al. 2012). 

Several factors are thought to contribute towards the onset of NEC such as a susceptible 

neonate with an immature immune system, hypoxia, hypothermia, ingestion of the enteral 
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formula feed instead of breast milk which contains beneficial natural protective 

components, and increased bacterial colonisation (Grishin et al. 2013). All of these 

conditions collectively induce inflammation which in turn cause the production of host 

inflammatory components such as nitric oxide, cytokines and platelet activating factor 

thereby damaging the apical GIT (Grishen et al. 2013). It is also believed that the virulence 

of Cronobacter is dose as well as host dependent, they may just remain asymptomatic in 

term infants, yet causing infections in preterm infants (Hamby et al. 2011; Cetinkaya et al. 

2013).  

1.1.5.2 THE CNS INFECTIONS 

Cronobacter has a tropism towards the central nervous system (CNS), once it enters the 

systemic circulation it can cause meningitis in low birth-weight babies whereas sepsis and 

bacteraemia in babies with higher birth-weight (Yan et al. 2012). Once the pathogen crosses 

the blood brain barrier (BBB), it may induce ventriculitis and form brain abscesses or cysts. 

The formation of the brain abscesses may in turn develop into a condition called 

hydrocephalus which is a condition in which cerebrospinal fluid excessively accumulates in 

the brain (Bowen & Braden, 2006; Chenu & Cox, 2009). The abnormal accumulation of CSF 

in turn induce enlargement of the brain spaces called ventricles. As a result of the formation 

of enlarged CSF filled ventricles the balance between the CSF absorption and production is 

disturbed which subsequently cause intracranial pressure on the brain tissues (Jaradat et al. 

2014).  

1.1.5.3 ADULT INFECTIONS  

Cronobacter infections have also been detected in adults especially in the elderly patients 

and other immunocompromised individuals (Lai, 2001; See et al. 2007). Members of the 

Cronobacter have been associated with urinary tract (UTI) infections, aspiration pneumonia 

in stroke patients, diarrhoea, conjunctivitis, osteomyelitis and wound infections (Gosney et 

al. 2006; Friedemann, 2009; Flores et al. 2011; Yan et al. 2012; Tsai et al. 2013). It is reported 

that almost 50% of the adults who develop Cronobacter infections have underlying 

malignancy of some sort (Lai, 2001; See et al. 2007).  

The nosocomial infections in adults such as UTI and conjunctivitis can be associated with 

environmental sources such as water, surfaces of medical equipment and person to person 

contacts as alternative routes of transmission (Friedemann, 2009; Flores et al. 2011).  
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1.1.6 OUTBREAKS OF CRONOBACTER 

There have been several outbreaks across different parts of the world, some of the major 

Cronobacter outbreaks are listed here. Muytjens and colleagues (1983) reported outbreak 

of Cronobacter in Netherlands in which at least 8 infants were reported to have been 

infected. Of these 8 infants, 5 were from the same hospital. All of the infants developed 

meningitis and 6 of them died. It was the first report that linked Cronobacter outbreak with 

the contamination of the infant formula (Muytjens et al. 1983).  

In 1994, a neonatal intensive care unit (NICU) in France, an outbreak of Cronobacter spp. 

occured in which 3 babies died, 1 due to meningitis and other from NEC; the outbreak was 

analysed by Caubilla-Barron et al. (2007). The Pulsed Field Gel Electrophoresis (PFGE) 

analysis by Caubilla-Barron et al. (2007) divided the isolates into 4 clusters. It was of high 

significance that all 3 deaths were associated with the isolates from cluster 2 which formed 

the largest cluster (Caubilla-Barron et al. 2007). More importantly, all of the cluster 2 

isolates belonged to Clonal Complex 4 (CC4) which is at the heart of the present PhD study. 

Therefore, most of the isolates from this outbreak were sequenced using Illumina MiSeq 

and analysed further as part of the present study. The genomic analysis of these sequenced 

strains is presented in chapter 8.  

In 2001, van Acker and colleagues reported another outbreak of Cronobacter in an NICU in 

Belgium, however this time Cronobacter were associated with NEC in neonates. All the 

infants infected by Cronobacter were low birth weight, preterm and were fed infant formula. 

Two of the infected babies suffering from NEC eventually died. This was the first report 

linking Cronobacter with NEC (van Acker et al. 2001). Two of the C. sakazakii isolates from 

this outbreak, C. sakazakii 2106 (ST21) and 2107 (ST12) have now been sequenced by our 

group and are being analysed by Emily Jackson as part of her PhD project.  

In the same year, 2001, another outbreak of Cronobacter spp. occurred in a hospital in 

Tennessee in which an infant died of meningitis. The outbreak was reported by Himelright 

and colleagues in 2002. Due to the death of the neonate, 49 more babies were tested of 

which at least 8 were found to be positive for Cronobacter. Of these 8 babies, 6 remained 

asymptomatic while 2 had respiratory illnesses. Further investigations linked the outbreak 

with a formula milk product as a result of which a product recall was announced by the 

manufacturing company. Nonetheless, it must be noted that in this outbreak the formula 
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fed to infants was not manufactured by the company with an intention to be consumed by 

neonates which raised further questions about infants’ care in the hospitals (Himelright et 

al. 2002).  

Another outbreak of Cronobacter was reported by Block et al. (2002) in a hospital in 

Jerusalem. They isolated Cronobacter strains from 5 infants, 3 of which suffered from 

bacteraemia and meningitis while 2 remained asymptomatic. The meningitic isolate C. 

sakazakii 8399 (C. sakazakii 1587) was obtained by our group, its genome sequenced and 

announced; the genome revealed several virulence associated traits such as an iron 

acquisition system and some toxic metal resistance associated genes (Masood et al. 2013b). 

An important observation in this outbreak was that one of the isolate was obtained from 

the blender which was used to prepare infant formula, more interestingly the pulsetypes of 

this isolate matched with the pulsetypes of the infants when analysed using PFGE. The 

organism had established the blender as an environmental niche as it was persistently 

isolated from the blender for nearly 5 months even after repeated de-contamination of the 

blender (Block et al. 2002).  

1.1.7 POTENTIAL VIRULENCE ASSOCIATED TRAITS 

The last decade has seen an increased growth in Cronobacter research due to infections 

associated with the organism. However, as yet the mechanism by which it causes infections 

is not clearly understood (Jaradat et al. 2014). Cronobacter isolates demonstrate a variable 

virulence phenotype as showed by epidemiological as well as in vitro tissue culture studies 

(Caubilla-Barron et al. 2007; Townsend et al. 2007, 2008). Neonatal infections have mainly 

been associated with C. sakazakii, C. malonaticus and C. turicensis (Healy et al. 2010, 

Kucerova et al. 2010). Although the mechanism of Cronobacter infections is not clear, 

several potential virulence associated markers have been determined (Kucerova et al. 2010; 

Stephan et al. 2011). 

Enterotoxin like compounds were the first to be described as putative virulence factors in 

Cronobacter (Pagotto et al. 2003). At least 4 of the 18 Cronobacter isolates were able to 

show enterotoxin production when they were tested using a suckling mice assay (Pagotto 

et al. 2003). The authors also showed that Cronobacter isolates, in addition to the 

production of enterotoxin, were also able to produce proteolytic enzymes that cause tissue 

damage to the infection site in mice (Pagotto et al. 2003). A zinc metalloprotease has been 
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reported by Kothary et al. (2007) which induced the rounding of the Chinese hamster ovary 

(CHO) cells thereby causing cell damage (Kothary et al. 2007). An enhancement in 

translocation of C. sakazakii has been observed to the blood brain barrier (BBB) from the 

rat gut when infant formula is supplemented both with C. sakazakii and endotoxin 

(Townsend et al. 2007). One possible mechanism is thought to be the tight junction 

disruption by lipopolysaccharides (LPS) which may increase the permeability of the BBB to 

the organism (Kim & Loessner, 2008). Additionally, enterocyte migration and epithelial 

restitution was also found to be impaired by the endotoxin thereby enhancing the 

permeability of the BBB to the bacteria (Cetin et al. 2004). Since the endotoxin was found 

to be heat stable at 100oC, its presence in infant formula may enhance its pathogenicity for 

neonates (Townsend et al. 2007).  

Adhesion is the first and essential step towards bacterial pathogenesis as it facilitates the 

colonisation and subsequent infection of host cells (Soto & Hultgren, 1999). Fimbriae are 

the appendages which help bacteria to adhere to the host cell surface thereby helping them 

with colonisation and successive infection process (Soto & Hultgren, 1999). At least ten 

putative fimbrial clusters have been described in Cronobacter (Joseph et al. 2012b). An 

important observation was the absence of the curli fimbriae in all of the C. sakazakii 

genomes analysed which indicates that curli fimbriae are not essential for the virulence of 

C. sakazakii unlike E. coli (Joseph et al. 2012b).   

Mittal and colleagues (2009) have described the role of ompA and ompX proteins in 

bacterial penetration through the BBB (Mittal et al. 2009). The role of ompA in 

Cronobacter’s invasion of human brain microvascular epithelial cells (HBMEC) in vitro has 

also been described (Mohan & Venkitanarayanan, 2006; Singamsetty et al. 2008). However 

since genes for both ompA and ompX are present in all of the Cronobacter genomes, their 

role regarding the variability in pathogenicity of Cronobacter is not clear (Joseph et al. 

2012b). In the present study, an attempt was made to study the variation in the sequence 

both at nucleotide and amino acid level to check for variability amongst C. sakazakii 

sequenced strains with special emphasis on C. sakazakii CC4. The analysis is presented in 

chapter 3.  

Kucerova et al. (2010) showed that the genome of C. sakazakii BAA-894 encode a cation 

efflux system (cusA, cusB, cusC and cusF) along with a regulatory gene cusR; according to 
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their analysis these genes were found only in the isolates associated with infections in 

neonates while missing in other isolates which may in part explain the variation in the 

pathogenic ability of Cronobacter (Kucerova et al. 2010). Two of the iron acquisition systems 

have been found encoded on the Cronobacter plasmids pESA3 and pCTU1; an ATP binding 

cassette transport-mediated iron uptake (eitCBAD) and another iron acquisition system 

which is mediated through siderophore (iucABCD/iutA) (Kucerova et al. 2010; Franco et al. 

2011a; Joseph et al. 2012b). Since iron acquisition systems have been detected in all 

Cronobacter, their role towards the variability in pathogenicity of Cronobacter is not 

understood (Joseph et al. 2012b).  

Secretion systems are important towards the pathogenicity of bacteria as they are able to 

translocate proteins and nucleoprotein complexes and may contribute towards the 

virulence of Cronobacter as a plasmid borne type IV secretion system has been identified in 

C. sakazakii and C. turicensis encoded on the plasmids pESA2 and pCTU2 respectively 

(Kucerova et al. 2010; Franco et al. 2011a; Joseph et al. 2012b).  A newly described type six 

secretion system (T6SS) which has been associated with invasion of the BBB in E. coli K1 

(Zhou et al. 2012) was found encoded on the large plasmid pESA3 of C. sakazakii BAA-894, 

which was found to be variably present in other Cronobacter isolates (Kucerova et al. 2010; 

Joseph et al. 2012b).  

Other potential virulence associated traits include a plasmid encoded plasminogen activator 

called cpa (ESA_ pESA3p05434) that helps in the activation of plasminogen and provides 

resistance to C. sakazakii against the bactericidal activity of the serum (Franco et al. 2011b) 

and a superoxide dismutase (sodA) for macrophage survival both of which were detected 

uniformly in all Cronobacter genomes (Joseph et al. 2012b).  

1.1.8 OTHER VIRULENCE ASSOCIATED TRAITS  

1.1.8.1 SIALIC ACID UTILISATION 

The human brain is rich in sialic acid which could be utilised by C. sakazakii as an alternative 

source of carbon and nitrogen thereby allowing them to survive and persist in brain, 

inflicting brain damage. Recent genome analysis (Joseph et al. 2012b; Joseph et al. 2013) 

has shown that sialic acid catabolism genes required for the utilisation of exogenous sialic 

acid are found only in C. sakazakii species. No evidence of the de novo synthesis of sialic 

acid exists in C. sakazakii. The nanAEKTR, nagA and nagB genes, essential for the transport 
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and catabolism of sialic acid have been found in all the C. sakazakii strains. The gene 

encoding the outer membrane porin protein nanC had not been annotated in C. sakazakii 

BAA894, however pBLAST homology searches reveal ESA_03302 as the probable nanC. The 

nanAET genes are usually found clustered in bacteria (Vimr et al. 2004) as per Edwardsiella 

tarda but in C. sakazakii the proposed nanE gene, ESA_00529 is located at a different loci. 

The C. sakazakii strains have shown the ability to grow on sialic acid (Joseph et al. 2013). 

Certain bacteria have shown the ability to cleave sialic acid from sialoglycoconjugates using 

the enzyme sialidase (Corfield et al. 1992), however the presence of sialidases is not 

frequent in bacteria. Bacterial species lacking sialidases but still catabolising sialic acid either 

use sialic acid cleaved by other pathogens colonising the same niche (Shakhnovich et al. 

2002) or by the host sialidases (Sohanpal et al. 2004). Extensive homology searches were 

carried out in order to find a homologue of a sialidase however the gene was not found in 

C. sakazakii. This study has now been published and our group was the first to show that 

sialic acid can be an alternative carbon and energy source for C. sakazakii (Joseph et al. 

2013).  

1.1.8.2 INOSITOL FERMENTATION 

Based on the presence of the inositol monophosphate gene (suhB), inositol fermentation 

was proposed as the marker for pathogenicity in Cronobacter (Hamby et al. 2011), however 

the presence of the GR29 operon associated with inositol fermentation in the 

environmental isolates of Cronobacter and its absence in the pathogenic isolates seems to 

contradict its association with pathogenicity in Cronobacter, therefore the role of inositol 

fermentation in virulence of Cronobacter is not clear (Grim et al. 2013).  

1.1.8.3 BIOFILM FORMATION  

Cronobacter are able to form biofilms on different surfaces such as latex, silicon, polyvinyl 

chloride, stainless steel and polycarbonate (Iversen et al. 2004; Lehner et al. 2005). The 

ability of Cronobacter to form biofilms on these surfaces convey resistance against various 

environmental stresses and in turn makes them resilient to cleaning by sensitisers and other 

anti-microbial agents (Ravishankar et al. 2003; FAO/WHO, 2006; Kim et al. 2007). The ability 

of bacteria to form biofilms is of special concern in the food industry as these biofilms can 

act as reservoirs for contamination and spoilage of the food products which are being 

processed (Lehner et al. 2005; Hartmann et al. 2010). All Cronobacter spp. studied by Joseph 
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et al. (2012) possessed capsular polysaccharides genes wzABCKM (ESA_01155-01175) 

which may be important towards the biofilm formation in Cronobacter (Joseph et al. 2012b). 

A study has shown the role of flagella in biofilm formation by C. sakazakii, the authors also 

indicated 2 hypothetical proteins (ESA_00281-2) which may contribute towards the biofilm 

formation in C. sakazakii (Cruz-Cordova et al. 2012).  

1.1.8.4 ANTIBIOTIC RESISTANCE AND SUSCEPTABILITY  

There have been contradictory reports regarding the antimicrobial susceptibility and 

resistance of Cronobacter. Cronobacter were found to be the most susceptible amongst the 

Enterobacteriaceae when tested for susceptibility to 29 antimicrobial agents (Muytjens & 

van der Ros-van de Repe, 1986). This was validated by another study showing that 

Cronobacter isolates did not show expression of β-lactamase and were constantly 

susceptible to β-lactams (Stock & Widemann 2002). However, Pitout et al. (1997) reported 

a low level production of β-lactamase while Caubilla-Barron et al. (2007) reported 2 of the 

Cronobacter isolates showing β-lactamase activity (Pitout et al. 1997; Caubilla-Barron et al. 

2007). Similarly, another report suggested that isolates differ in their ability to resist β-

lactam antibiotics, the same study reported a PIF isolate for its β-lactamase activity (Zhou 

et al. 2011).  

Before 1985, Cronobacter infections were treated mainly with ampicillin, gentamicin and/or 

chloramphenicol. However, in 1988, to treat meningitis caused by Cronobacter, Willis and 

Robinson recommended a combination of ampicillin and gentamicin (Willis & Robinson, 

1988). Another study reported that all Cronobacter isolates used in their study were 

susceptible to aminoglycosides and trimethoprim/sulfamethoxazole and were able to resist 

extended-spectrum penicillins, cefazolin and ampicillin (Lai, 2001). A recent study has 

shown that antibiotics such as streptomycin, ciprofloxacin, kanamycin and gentamicin 

might be appropriate choices for treating the infections as all of these were effective against 

C. sakazakii in both its unstressed and stressed states (Al-Nabulsi et al. 2011).  

The overall antibiotic resistance of Cronobacter was found to be low compared with other 

food-borne pathogens, even though Cronobacter isolates were found to harbour multiple 

antibiotic resistance operon (mar). The overuse of antibiotics could be a cause of the 

antibiotic resistance in Cronobacter (Lee et al. 2012).  
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1.1.9 ENVIRONMENTAL RESISTANCE  

The frequent isolation of Cronobacter from PIF and from human hosts show the ability of 

this organism to withstand stresses during the processing of PIF or inside the human body. 

The ability to resist environmental stresses is crucial for the survival, persistence and the 

ability of Cronobacter to induce infections in susceptible host.  

1.1.9.1 HEAT RESISTANCE 

Like antibiotic resistance and susceptibility, there are contradictory reports about the heat 

tolerance of Cronobacter. Some of the studies suggest that Cronobacter isolates are 

thermotolerant while other studies report no heat tolerance (Nazarowec-White & Farber, 

1997; Breeuwer et al. 2003; Osaili & Forsythe, 2009). The contradiction in these studies 

could be explained by several factors which could influence the heat resistance ability of 

Cronobacter such as the source of isolation, growth conditions and variations between the 

isolates (Arroyo et al. 2009; Walsh et al. 2011; Jaradat et al. 2014). Different food properties 

such as high fat content and low water activity can also influence the ability of Cronobacter 

to resist heat (Osaili & Forsythe, 2009). A study by Gajdosova et al. (2011) reported an 18kbp 

region containing 22 open reading frames (ORFs) which were up-regulated when the 

isolates were subjected to heat adaptation conditions. According to the authors, genes 

within this cluster indicated homologies against known bacterial proteins which are 

involved in stress response such as heat, acid stress and oxidation (Gajdosova et al. 2011; 

Jaradat et al. 2014).  

1.1.9.2 DESICCATION RESISTANCE 

The ability of Cronobacter to resist drying and osmotic stresses is considered to be higher 

than for other members of the Enterobacteriaceae (Feeney & Sleator, 2011). A study has 

shown that Cronobacter strains were recoverable from PIF after 2.5 years (Barron & 

Forsythe, 2007). The ability of Cronobacter to resist desiccant conditions could be due to 

the accumulation of an osmoprotectant called trehalose inside the cells where it protects 

the cells from dying due to low moisture content (Breeuwer et al. 2003). A number of genes 

have been associated with osmoprotection in Cronobacter such as trehalose and betaine 

encoding genes which were detected in all Cronobacter strains analysed (Joseph et al. 

2012b). It was assumed that the products of these genes help Cronobacter to survive in the 

food ingredients which are used in dry food preparations. Using bioinformatics analysis, 
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Feeney and Sleator (2011) showed that ProP and OpuC which are the homologues of the 

osmoprotectants are present in C. sakazakii genomes and the osmotolerance response is 

regulated at the transcriptional, translational and post-translational levels. They further 

showed that RpoS is probably the global transcriptional regulator (Feeney & Sleator, 2011). 

Additionally several other genes were also identified whose synergistic expression might 

provide resistance against dry and desiccant conditions such as colanic acid 

exopolysaccharide and cellulose biosynthesis genes (Grim et al. 2013).  

1.1.9.3 ACID RESISTANCE 

In order to cause infections in neonates and other immuno-compromised individuals, 

Cronobacter strains should have the ability to survive very high acidic conditions of the 

stomach. Studies have shown the ability of Cronobacter to survive and grow under high 

acidic conditions. In one study it was reported that at least 79.2% of the tested Cronobacter 

strains were able to grow at a pH as low as 3.9 (Dancer et al. 2009). Another study showed 

that out of 12 Cronobacter tested strains at least 10 strains showed only <1 log decline in 

their growth at pH 3.5 as compared to acid sensitive strains which showed a ~3.5 log decline, 

over a 5 hours incubation at 37oC (Edelson-Mammel et al. 2005). Similarly another study 

has reported the ability of Cronobacter not only to survive but to grow at a low pH 4.5 (Johler 

et al. 2009).  

1.1.10 O-ANTIGEN TYPING OF CRONOBACTER 

In Gram negative bacteria the outer surface of the lipopolysaccharide (LPS) contains O-

antigen which is responsible for serological diversity of bacteria. Like other Gram negative 

bacteria, the LPS covers the outer membrane of Cronobacter along with lipid A core. The 

lipid A is the toxic moiety covering at least 8% of the total LPS weight (MacLean et al. 2009).  

Like other Gram negative bacteria, O-antigen has also been used to characterise 

Cronobacter spp. based on their O-antigen structure (Mullane et al. 2008; Jarvis et al. 2011, 

2013). In Gram negative bacteria, the rfb gene locus constitutes a highly variable region of 

the O-antigen and is located between galF and gnd; the first O-antigen serotyping method 

for Cronobacter spp. was developed by Mullane et al. (2008) based on the amplification of 

rfb locus followed by digestion using MboII. A PCR-RFLP profile can be generated with this 

method which can then be used to compare different Cronobacter isolates. The O-antigen 

serotypes, O:1 and O:2 of Cronobacter were characterised using this approach (Mullane et 
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al. 2008). Five more serotypes were added to Cronobacter serotypes by Sun et al. (2011). 

The original O-antigen serotyping scheme was further extended and 8 new serotypes were 

described by Jarvis et al. (2011). Of these 8 new serotypes at least 2 were found in more 

than 1 Cronobacter species including C. sakazakii, C. muytjensii, C. turicensis and C. 

malonaticus (Jarvis et al. 2011, 2013). To date there are 17 recognized serotypes in 

Cronobacter covering 7 species.  

Most of the virulence associated attributes discussed above including the environmental 

adaption of Cronobacter, have been analysed in sequenced C. sakazakii genomes and the 

analysis is presented in chapter 3, in order to observe if there is any association of these 

traits to a particular lineage with special emphasis on C. sakazakii clonal complex 4 (CC4), a 

stable clonal lineage with sequence type 4 (ST4) as the dominant ST with single or double 

locus variants associated frequently with neonatal meningitis, which is the main focus of 

this PhD thesis.  

1.1.11 PUBLISHED GENOMES  

The first annotated genome of C. sakazakii BAA-894 was published by an NTU research 

group (Kucerova et al. 2010). The whole genome sequence of C. sakazakii  BAA-894 (isolated 

from an NICU outbreak) revealed one chromosome (4.36837 Mb) and three plasmids of 

which only two have been sequenced and released; pESA2 (31 Kb) and pESA3 (131 Kb). To 

date, 8 genomes of C. sakazakii have been released in Genbank, of which 6 genomes have 

been sequenced and released by our group in collaboration with the University of Exeter, 

UK and Life Technology Inc. USA. In 2012, Shin and colleagues announced the finished 

genome of C. sakazakii strain ES15 isolated from ground whole grains consisting of a single 

chromosome (4.27 Mb). The first draft genome of a C. sakazakii CC4 (ST4) strain (701) was 

sequenced by our group in collaboration with Life technologies and has been made available 

via Genbank (Joseph et al, 2012b). Power and colleagues (2013) announced the genome of 

the first finished C. sakazakii CC4 (ST4) strain SP291 which had been isolated from a 

powdered infant formula (PIF) production site, consisting of 1 chromosome (4.3 Mb) and 3 

plasmids (118kb, 52kb and 4.4kb). Recently our group has released the earliest C. sakazakii 

CC4 (ST4) strain NCIMB 8272 (NTU ID; 377) in international culture collection (accession: 

AWFW00000000). This genome was sequenced in collaboration with the University of 

Exeter (UK).  



  Chapter 1 

18 
 

1.1.12 GENOME STUDIES  

The association of Cronobacter with neonatal infections has caught the attention of 

researchers worldwide especially in the last 2 decades, and several genome analysis studies 

have been undertaken, some of the relevant studies are highlighted here. The first genome 

of Cronobacter genus C. sakazakii BAA-894 was published by Kucerova et al. (2010) who 

used a whole genome microarray to analyse the genus diversity of the genus Cronobacter 

(Kucerova et al. 2010). The genome consisted of 1 chromosome (4.4 Mb) and 3 plasmids (2 

sequenced) pESA2 (31 kb) and pESA3 (131 kb) and can be accessed from Genbank 

(accession: NC_009778-80). The authors used the genome sequence of C. sakazakii BAA-

894 to construct 384, 030 probe oligonucleotides to tile the DNA microarray. They used 10 

of the isolates as query strains which belonged to 5 different members of Cronobacter genus, 

namely C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii and C. dublinensis. Their 

analysis indicated that greater diversity within Cronobacter is attributed to the presence of 

mobile genetic elements and prophage regions. Furthermore a number of different 

virulence associated traits such as type 6 secretion system (T6SS), iron acquisition genes 

and fimbrial gene clusters were also identified (Kucerova et al. 2010), these have been 

discussed and analysed in chapter 3.  

In 2011, Stephan and co-workers announced the genome of C. turicensis z3032 which was 

obtained from a fatal case in a children’s hospital in Zurich, Switzerland (Stephan et al. 2011). 

The genome of C. turicensis z3032 (Accession No. NC_013282-85) consisted of a 

chromosome (4.38 Mb) and 3 plasmids of sizes 138kb, 53kb and 22kb respectively.  

A comparative genomic study was conducted by Franco et al. (2011) in which they 

compared the large plasmid pESA3 (131 kb) of C. sakazakii BAA-894 with the large plasmid 

pCTU3 of C. turicensis z3032 (138 kb). Their study showed that both of these plasmids have 

homologous gene contents. They designated these plasmids as virulence plasmids sharing 

the same backbone since they harbour virulence associated genes such as T6SS, iron 

acquisition, filamentous haemagglutinin (fha locus) and plasminogen activator (cpa) 

(Franco et al. 2011a, b).   

A comprehensive comparative genomics study of Cronobacter was undertaken by Joseph et 

al. (2012) in which a total of 14 Cronobacter genomes covering 7 species were analysed 

(Joseph et al. 2012b). The genomic analysis indicated a larger pangenome comprising over 
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6000 genes with a small core genome of Cronobacter comprised 2000 genes. A considerable 

degree of variation was observed for the presence of virulence associated traits such as 

adhesins, T6SS, heavy metal resistance genes associated with resistance to tellurite, copper 

and silver. The authors showed that C. sakazakii genomes were unique as compared to 

other members of the genus as they harboured genes essential for the utilisation of 

exogenous sialic acid. The comparative study also included 2 C. sakazakii CC4 genomes, 701 

and E899, however no unique traits were observed in the CC4 genomes which could be 

linked with neonatal meningitis. In addition, several prophage fragments were also 

detected which contribute towards the genomic diversity in Cronobacter (Joseph et al. 

2012b). The comparative genome analysis by Joseph et al. (2012b) provided the foundation 

for further genomic analysis and will be referred to in other sections of this thesis.  

In another study, Grim et al. (2013) analysed 6 strains representing 6 of the 7 species, their 

genomic analysis was based on average nucleotide identity (ANI), whole genome alignment 

and phylogenetic re-construction. The authors suggested that the species within 

Cronobacter diverged in a bidirectional manner and this divergence is influenced by niche 

adaptation. According to the study, 2 of the species: C. dublinensis and C. muytjensii, have 

acquired genomic traits such as maltose operon, Xylose utilization genes, galactouronate, 

phyto-toxin and β-carotene associated genes which make them more suitable for the 

environmental and plants associated habitats. On the other hand, genomes of other 4 

species C. sakazakii, C. malonaticus, C. universalis and C. turicensis have acquired more 

virulence associated traits such as  T6SS, iron acquisition and serum resistance associated 

genes, which make them more suitable for the host environment. Their genomic study also 

revealed a larger core genome consisting of 3160 coding sequences (CDS) which was much 

larger than previously reported i.e. 1899 and 2000 genes, by Kucerova et al. (2010) and 

Joseph et al . (2012b) respectively. Their study also listed 84 genomic regions which were 

present in 2 or more Cronobacter genomes and 45 genomic regions which were unique in a 

subset of the genomes, the notable traits were the same which were previously described 

by Kucerova et al. (2010) and Joseph et al. (2012b) including T6SS, heavy metal resistance 

such as tellurium, copper/silver and prophage elements (Grim et al. 2013). Since their study 

only analysed 6 genomes representing 6 of 7 species of Cronobacter, only further genomic 

analysis comprising larger number of genomes representing each species in the genus can 

validate the hypothesis of species level bidirectional divergence within Cronobacter.  
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1.1.13 CRONOBACTER SAKAZAKII ST4/CC4 AND NEONATAL MENINGITIS 

The Cronobacter MLST scheme has identified over 300 STs for Cronobacter (Forsythe et al. 

2014). The C. sakazakii ST4 is found to be the predominant ST within CC4 associated with 

neonatal meningitis and frequently isolated from CSF (Joseph & Forsythe,  2011). A previous 

study by Joseph and Forsythe (2011) suggested a strong association of C. sakazakii ST4 with 

neonatal meningitis. In their study they analysed 41 Cronobacter strains of which almost 

half (20/41) were C. sakazakii ST4 (Table 1.1) (Joseph & Forsythe, 2011). Furthermore 9 of 

12 meningitic isolates were C. sakazakii ST4, thus the study indicated a strong association 

of C. sakazakii ST4 and neonatal meningitis, moreover it also indicated C. sakazakii ST4 as a 

clonal lineage as the isolates were obtained from 7 different countries over 50 years period 

of time as shown in Table 1.1 from Joseph and Forsythe (2011). 
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Table 1. 1 Cronobacter sakazakii strains, their clinical origin and Cronobacter MLST sequence type 
(Source; Joseph & Forsythe, 2011*) 

Strain Patient type/age 
(EGA)† 

Clinical 
signs/outcome 

Isolation site Year Country ST 

1218 Neonate/<1 mo (30 
wk) 

Fatal meningitis CSF 2001 USA 1 

1241 Infant/7 mo Sudden infant 
 

 

Blood 2008 USA 1 
12 Adult/74 y UNK Feces 2004 Czech Rep 1 

HPB 3290 Neonate (33 wk) Meningitis CSF 2001 USA 1 
984 Neonate/3–4 wk UNK Enteral 

 
 

2007 UK 3 
978           Neonate/<1 wk UNK Enteral 

 
 

2007 UK 3 
553           Neonate/1 d UNK UNK 1977 Netherlands 4 
557           Neonate/5 d UNK UNK 1979 Netherlands 4 

1242              Infant/7 wk Fatal meningitis Brain 2008 USA 4 

1222              Infant/8 mo Fever, recovered Blood 2003 USA 4 
1224              Infant/10 mo Fever, severe 

 
 

Blood 2004 USA 4 
558 UNK UNK UNK 1983 Netherlands 4 
20 Child/6 y UNK Feces 2004 Czech Rep 4 

695 Neonate/15 d (32 wk) Fatal NEC II Trachea 1994 France 4 
701 Neonate/28 d (28 wk) Fatal NEC III Peritoneal 

 
1994 France 4 

709 Neonate/18 d (29 wk) Septicemia Trachea 1994 France 4 
767 Neonate/19 d (31 wk) Fatal meningitis Trachea 1994 France 4 
721 Neonate/2 wk Meningitis       CSF 2003 USA 4 

1219 Neonate/<1 mo (36 wk) Fatal meningitis CSF 2002 USA 4 
1221 Neonate/<1 mo Meningitis CSF 2003 USA 4 

1225 Neonate/<1 mo (35 wk) Fatal meningitis Blood 2007 USA 4 

1231 Neonate (33 wk) Fatal neurologic 
 

Feces 2004 New Zealand 4 
1220 Infant/6 wk (37 wk) Brain abscess,noFatal CSF 2003 USA 4 
1223 Infant/6 wk (31 wk) UNK, in ICU Blood 2004 USA 4 
1240 Infant/7 wk Fatal meningitis CSF 2008 USA 4 

HPB 2853                  UNK                 UNK UNK 1990 Canada 4 
HPB 2852                  UNK                 UNK UNK 1990 Canada 8 

CDC 407–77 UNK UNK    
 

1977 USA 8 
CDC 996–77 UNK UNK Spinal 

 
1977 USA 8 

511 UNK UNK UNK 1983 Czech Rep 8 
513 UNK UNK UNK 1983 Czech Rep 8 
526 UNK UNK UNK 1983 Czech Rep 8 

ATCC 29544 Child UNK Throat 1980 USA 8 
696 Neonate/17 d (32 wk) NEC II Feces 1994 France 12 
690 Neonate/27 d (31 wk) Asymptomatic Feces 1994 France 12 
520 UNK UNK UNK 1983 Czech Rep 12 
693 Neonate/13 d (41 wk) Asymptomatic Feces 1994 France 13 

HPB 2856 Child/6 y UNK UNK 2002 Canada 15 
NCTC 9238 UNK UNK Abdomen pus 1953 UK 18 

1249 Neonate Fatal infection UNK 2009 UK 31 
CDC 0743–75 UNK Foot wound Wound 1975 USA 41 

*No copyright permission needed (http://wwwnc.cdc.gov/eid/page/copyright-and-disclaimers), d; day, 
wk; week, mo; month, y; year, UNK; unknown, CSF; cerebrospinal fluid, NEC; necrotising enterocolitis, 
the table was re-ordered according to sequence type.  
 

These findings were strengthened by further studies in our group by Hariri et al. (2013). The 

authors analysed 15 Cronobacter isolates from the Centers for Disease Control (CDC) which 

showed an unequal distribution pattern for C. sakazakii isolates (Hariri et al. 2013). 

According to the authors, all 5 CSF isolates were either ST4 or within the ST4 complex (one 

http://wwwnc.cdc.gov/eid/page/copyright-and-disclaimers
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or two loci variants) thereby forming ST4 complex called Clonal Complex 4 (CC4). Further to 

Joseph and Forsythe (2011), Hariri and colleagues (2013) introduced the concept of C. 

sakazakii CC4, a clonal lineage consisting predominantly of ST4 strains and strains which 

differ in only 1 or 2 MLST loci and associated frequently with neonatal infections especially 

neonatal meningitis (Joseph & Forsythe, 2011; Hariri et al. 2013). Another study by Joseph 

and Forsythe (2012) also showed the frequent isolation of C. sakazakii CC4 from food, 

clinical sources as well as from powder milk as shown in figure 1.1 of the geoBURST analysis 

by Joseph and Forsythe, 2012.  

 

Figure 1. 1 The geoBURST image of the C. sakazakii clonal complexes (Source; Joseph & Forsythe, 
2012*).  

This cropped section of the figure from Joseph & Forsythe (2012) shows the association of C. sakazakii 
clonal complexes with different sources as published by Joseph & Forsythe (2012). The yellow highlighted 
region indicates the C. sakazakii CC4 i.e. C. sakazakii ST4 and its single/double loci variants. Each colour 
indicates a different source of origin for the isolates. The image is cropped to show C. sakazakii clonal 
complexes only. *No permission needed for the figure reuse under Frontiers Creative Commons 
Attribution License (CC BY).  
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Furthermore, it was not only the association of C. sakazakii CC4 with neonatal meningitis 

which was of significance, it was the occurrence of C. sakazakii CC4 in milk powder and its 

manufacturing environment which is of great concern. In another study by our group, 

Sonbol et al. (2013) described the association of Cronobacter STs in global surveys. Sonbol 

et al. (2013) analysed 85 Cronobacter isolates by MLST, collected between 1988 and 2009 

from 14 different countries. The findings indicated that at least 24% of these isolates were 

C. sakazakii CC4 which were isolated from milk powder and dairy manufacturing 

environment including roller-dryers, tanker bays, evaporators, roofs and spray drying areas 

(Sonbol et al. 2013). These findings were further strengthened by Muller et al. (2013); the 

MLST analysis of the selected Cronobacter isolates from a Swiss infant formula production 

facility indicated that most of these isolates were C. sakazakii ST4 (Muller et al. 2013).  

It is now well understood that C. sakazakii ST4 is a complex of STs forming a clonal complex 

4 or CC4 which is dominated by C. sakazakii ST4 isolates. A clear link has been established 

between C. sakazakii CC4 and neonatal infections especially meningitis. Furthermore it has 

also been well established that this is a stable and a clonal lineage which has the ability to 

persist in PIF and its manufacturing environment. The mortality rate of up to 80% in 

neonates presses the need to study this neonatal health associated lineage at the genomic 

level. Therefore the present study was aimed mainly at the genomic interrogation of the 

sequenced C. sakazakii genomes with the target to identify any unique virulence associated 

determinants in C. sakazakii CC4 which help them induce meningitis in newborns or any 

environmental fitness associated traits which support them to persist in the environment 

ultimately increasing the risk of exposure to neonates. The identification of these virulence 

associated genes would be key to combat infections caused by this pathogenic lineage 

thereby helping save the precious lives of newborn babies.   

1.1.14 POWDERED INFANT FORMULA  

As described above, the  frequent association of Cronobacter with PIF, particularly C. 

sakazakii CC4 is alarming. It is therefore of important to discuss the powdered infant 

formula manufacturing process and critical points of contamination.  

Human breast milk is considered to be the best form of nutrition for the new-born babies 

(Vandenplas, 2002). However, there are instances when breast feeding is not possible. In 

these circumstances human breast milk substitutes are made available in the form of either 
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powdered infant formula or liquid formula, in order to maintain the normal growth of the 

neonate (Kent et al. 2015). However, due to their immature immune system and permeable 

gastro-intestinal tract, neonates are more susceptible to food borne pathogens such as 

Cronobacter and Salmonella which are able to survive in PIF (Iversen and Forsythe, 2003; 

Lonnerdal, 2012). The consumption of PIF contaminated with food borne pathogens such 

as Cronobacter therefore can cause serious illnesses in neonates (Iversen and Forsythe, 

2003; Caubilla-Barron et al. 2007; Joseph and Forsythe, 2011). Cronobacter spp. has ability 

to survive the desiccated conditions of PIF for over two years and upon reconstitution grow 

rapidly (Caubilla-Barron et al. 2007; Osaili and Forsythe, 2009). Contamination of PIF with 

Cronobacter over the last two to three decades is of great concern as it has claimed the lives 

of number of neonates (Caubilla-Barron et al. 2007). The manufacture process of PIF and 

critical points of contamination are discussed briefly.  

The United states department of Food and Drug Administration regulates the nutrients of 

PIF. Although components may vary depending upon the formula type, nevertheless all the 

formulae contain the source of proteins, fats and carbohydrates, diluents, minerals such as 

iron, copper, zinc, calcium, phosphate, potassium, chloride, magnesium, sulphur, sodium 

and iodine. Iron is considered to be one of the most important components of PIF since all 

babies need iron for their normal growth. Vitamins added in PIF include vitamin A, B12, C, 

D, E, riboflavin, thiamine, pyridoxine, pantothenate, niacin and folacin. A variety of 

emulsifiers or stabilizers are added so that formula remains homogenous.   

An important component of bovine milk based PIF is lactoferrin (Masson and Heremans, 

1971). Lactoferrin is a glycoprotein of the transferrin family of proteins found in mucosal 

surfaces and a variety of external secretions, its main source being milk (Sanchez et al. 1992; 

Harouna et al. 2015). An important characteristic of lactoferrin is that it can bind to two 

atoms of iron and therefore can help bacteria in iron acquisition milk (Sanchez et al. 1992; 

Harouna et al. 2015). Iron is an important component of PIF, however its presence along 

with lactoferrin may enhance the bacterial growth, in cases where contamination of PIF 

occurs. It has been shown that if lactoferrin is devoid of iron, it can prevent iron utilisation 

by some bacteria such as Legionella pneumophila (Orsi, 2004).   
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1.1.14.1 MANUFACTURE OF THE POWDERED INFANT FORMULA  

Most of the infant formulae are based on bovine milk, however it contains higher level of 

proteins, fats and minerals, therefore it is diluted and skimmed so that it closely resemble 

the composition of human milk (Koletzko et al. 2005; CAC, 2007). Infant formulae based on 

soy are also available, however due the potential harmful effects on neonates due to the 

presence phytoestrogens, it is recommended that their use should be limited (Bhatia and 

Greer, 2008; Badger et al. 2009). 

According to the industrial experts form Europe and USA, manufacturing of the powdered 

infant formulae involves mixing of the ingredients, processing and packaging (FAO/WHO, 

2004). Each of the step is discussed briefly below.  

1. MIXING.  

The process of mixing PIF ingredients is divided into three categories.  

a. Wet Mix process: In this process all the ingredients of the PIF are handled in the 

liquid state. After mixing, the mixture is heat treated through pasteurization or 

sterilization followed by drying.  

b. Dry-mix process: In this process the individual ingredients of PIF are prepared 

followed by heat treatments, drying and dry-blending.  

c. Combined process: Part of the ingredients are prepared using the wet mix process 

to make the base powder. The remaining ingredients are prepared using the dry-mix 

process and then added to the base powder.  

2. PROCESSING 

Ingredients which include milk, derivatives of milk vitamins, amino acids, fatty acids, 

carbohydrates, soy proteins, minerals and food additives make up PIF. These ingredients, 

either in the powdered or liquid form are usually mixed with water to make a liquid mix. 

This liquid is heat treated (pasteurized for 15 seconds at 72oC or for 25 seconds at 74.4oC). 

Following pasteurization, the liquid mix is dried to powdered form (aw≤0.3) by spray drying. 

Vitamins and heat sensitive ingredients are added prior to dying. During the drying process, 

the liquid mix is heated to 82oC and then pumped through the spray nozzles under high 
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pressures. The hot air causes instantaneous drying of the liquid mix. The resultant powder 

falls to the bottom of the drying chamber from where it is collected.  

3. PACKAGING  

The final product, after completion of the drying and blending steps, is transferred from the 

storage to the filling machinery. The final powdered product is then filled in flexible 

containers which are filled with inert gas, sealed, coded and labelled. The finished product 

is not released until it undergoes final testing for microbiological analysis, nutrient contents 

and uniformity.  

1.1.14.2 CRITICAL POINTS OF CONTAMINATION  

The primary microorganisms associated with contamination of PIF, identified by the joint 

FAO/WHO meetings (2004, 2006) included Cronobacter spp., Salmonella enteritidis, 

Enterobacter agglomerans, Hafnia alvei, Klebsiella pneumoniae, Citrobacter koseri, 

Citrobacter freundii, Klebsiella oxytoca, Enterobacter cloacae, Escherichia coli, Serratia sp., 

Acinetobacter sp., Bacillus cereus, Clostridium difficile, Clostridium perfringens, Clostridium 

botulinum, Listeria monocytogenes and Staphylococcus sp. Any of these organisms if survive 

in PIF or extrinsically contaminates the product, have great chances of growth and 

multiplication upon reconstitution, as milk feeds act as an excellent media (Agostoni et al. 

2004).  

According to the joint FAO/WHO meetings (2004), critical points of contamination of PIF 

with above mentioned organisms are: 

Contamination through the addition of heat sensitive ingredients such as amino acids, 

vitamins and fatty acids, during the dry-mixing and combined-mixing processes of PIF 

manufacturing. In dry-mixing process, there is no heat treatment process to kill the bacteria 

in the finished project. Therefore if one or more ingredients are contaminated with even a 

low level of bacteria then their presence in the finished product is likely.  

In wet-mixing process, the spray drying method is used which requires the processing 

equipment including spray dryer itself and the fluidized bed to be regularly wet cleaned. 

This frequent wet cleaning may provide the moisture contents for bacterial growth. If the 

bacterial growth is not controlled, it can ultimately lead to the product contamination.  
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In all three processes of manufacturing, the environmental contamination of PIF may occur 

especially after thermal processing i.e. during drying or packing of the PIF.  

It should be noted that the dry-mix ingredients added to PIF are not raw as they have to be 

processed by the suppliers and therefore contamination of PIF could to be the result of post-

heat treatment.  

The likelihood of contamination of the ingredients added to PIF vary and depends on the 

ingredient type, for example starches have higher risk of contamination with PIF than oil.  

 

Figure 1. 2 Critical points of contamination of PIF manufacturing process (adapted from FAO/WHO, 
2004).  

The figure is the schematic representation of the process of PIF manufacturing highlighting critical points 
of contamination. The text in red font indicates potential critical points of contamination.  

 

 

 

 



  Chapter 1 

28 
 

1.1.15 NEXT GENERATION SEQUENCING  

Next generation sequencing (NGS) or massively parallel sequencing has revolutionised 

genetics and genomics. The availability of the high throughput instruments and the rapid 

development in the analysis programs has a huge impact on research in the field of genetics. 

The development of the NGS technology has contributed a wealth of information in recent 

years and continues to bring enormous changes in our understanding of the basic biological 

knowledge, genetics and biological research (Mardis, 2008, 2011). The constant and rapid 

development of the NGS has significantly dropped the cost of genome sequencing and 

laboratories with a moderate research budgets can afford to sequence small to large size 

genomes. However, although the low cost of genome sequencing has resulted in 

accumulation of sequencing data, it is the analysis of this sequencing data which is still 

challenging to the scientific community. Currently, there are 3 platforms which are in 

widespread use for the genome sequencing, illumina/Solexa genome analyser (Bentley, 

2006) (http://www.illumina.com/), (Roche/454 FLX  (Margulies et al. 2005) 

(http://www.454.com/)) and the Applied Biosystems SOLiDTM System 

(http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-

next-generation-sequencing.html). All of these 3 genome sequencing systems are based on 

the principal of massively parallel sequencing but differ in their methodology. Since all of 

the genomes in the current study were sequenced using the Illumina sequence by synthesis 

process, it is discussed briefly below.   

1.1.15.1 ILLUMINA SEQUENCE BY SYNTHESIS, AN OVERVIEW 

The Illumina sequencing technology is based on the cluster generation of the DNA to 

generate large sequencing data in a rapid and accurate manner.  This technology has a wide 

range of applications not only in genomics but also in transcriptomics and epigenetics. 

Figure 1. 2 (adapted from Mardis, 2008) shows the schematic representation of the Illumina 

sequence by synthesis workflow. The genomic DNA is fragmented and the fragments are 

ligated with adapters to each single stranded DNA which is immobilised on the surface of 

the flow cell channels. Addition of the unlabelled nucleotides and DNA polymerase initiates 

the solid phase bridge amplification. The enzyme converts the single stranded nucleotide 

bridges to double stranded bridges by incorporating the unlabelled nucleotides. The 

denaturation of the double stranded nucleotide bridges leaves single stranded nucleotide 

http://www.illumina.com/
http://www.454.com/
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing.html
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing.html
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templates which are anchored on the solid substrate. The amplification of the single 

stranded templates generates millions of double stranded DNA fragments in each channel 

of the flow cell. The sequencing cycle begins when a labelled deoxynucleoside (dNTP) is 

added, the label acts as the reversible terminator therefore after the incorporation of each 

nucleotide, the florescent dye is imaged to identify the base and cleaved enzymatically 

which allows the incorporation of the next dNTP. The base calls are made directly from the 

signal light intensity for each single base in each sequencing cycle, therefore yielding a high 

quality base by base sequencing. In paired end sequencing, the sequence by synthesis cycle 

is repeated for both forward and reverse strands of the DNA. The forward and reverse reads 

are paired to create a contiguous sequence. This contiguous sequence can then be aligned 

against the reference genome for variant identification or can be used for any other 

genomic analysis based on the individual needs and the research question being answered 

(Mardis, 2008).  

 

Figure 1. 3 Schematic representation of the steps involved in Illumina sequence by synthesis. 

Genomic DNA is fragmented and ligated to adapters. Single stranded fragments are bound to the inside 
surface of the flow cell. The addition of unlabelled nucleotides and enzyme initiates the solid phase 
bridge amplification. The double stranded DNA are denatured to leave the single stranded fragments 
attached to the flow cell. First sequencing cycle begins when all 4 labelled dNTPs, primers and DNA 
polymerase are added. When laser light is bombarded the dye emits fluorescence which is captured for 
each cluster. Half way through all the cycles, the ends are switched. Paired end sequencing generates 
reads for both forward and reverse strand. The forward and reverse reads are paired to generate a 
contiguous sequence, which can then be aligned with a reference isolate for variant identification.  
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To date Illumina is dominating the genome sequencing industry and the technology is 

adapted by the institutions across the world. The sequencing technology is continually 

improving and different platforms are available according to individual sequencing needs 

including (GAIIx), Illumina MiSeq, Illumina HiSeq (1000, 2000, 2500) and Next Seq 500. The 

Illumina GAIIx systems is largely replaced by the recent systems like MiSeq and HiSeq.  

 AIMS AND OBJECTIVES OF THE STUDY 

The Cronobacter spp. is an emerging food borne pathogen which has been associated with 

neonatal infections and has caught the attention of researchers especially over the last 2 

decades. Although not all the members of Cronobacter are pathogenic, one particular 

lineage known as C. sakazakii CC4 which consists predominantly of C. sakazakii ST4 has been 

associated frequently with neonatal meningitis. The association of C. sakazakii CC4 with 

neonatal meningitis and its persistence in the environment especially PIF has been 

established by previous studies in our group. There have been several outbreaks of 

Cronobacter which have claimed the lives of a number of new born babies, the largest 

outbreak was in France in 1994 in a NICU which claimed the lives of 3 babies; all of the 

babies who died were infected with C. sakazakii CC4. Therefore it was of importance to 

identify any unique genes within this lineage. To achieve this, several C. sakazakii isolates 

including a number of C. sakazakii CC4 strains have been sequenced in collaboration with 

the University of Exeter UK; these isolates have been sequenced during different phases of 

the project. The study was divided into three parts, the first part was to identify unique 

genes in C. sakazakii CC4 using different comparative genomic approaches. The second part 

was to study the diversity within C. sakazakii CC4 and the third part was aimed at the 

genomic dissection of the 1994 French outbreak where majority of the isolates were C. 

sakazakii CC4, in order to precisely determine the source of outbreak.    

The present study had 3 main aims: 

1. COMPARATIVE GENOMICS OF CRONOBACTER SAKAZAKII CC4 AND CRONOBACTER 

SAKAZAKII NON-CC4 GENOMES   

The comparative genomics had the following objectives  

 Whole genome alignment. 

 Whole genome phylogeny determination. 
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 Genome screening of C. sakazakii CC4 and C. sakazakii non-CC4 genomes for 

the presence or absence of virulence and environmental fitness associated 

traits which have been described by previous studies in order to observe any 

CC4 specific pattern. 

 Core genome extraction. 

 Identification of the genes specific to the C. sakazakii CC4 core genome.  

 Identification of the unique genes in the pan C. sakazakii CC4 genome based 

on the comparative genomics of the oldest C. sakazakii CC4 strain 377 

against C. sakazakii non-CC4 strain ES15 using a gene by gene search 

approach.  

 Fragmented genomic analysis of the C. sakazakii CC4 and C. sakazakii non-

CC4 genomes using Gegenees to identify CC4 specific and CC4 missing traits.  

The results of the above genomic analyses have been presented in chapters 3, 4, 5 and 6.  

2. DIVERSITY WITHIN C. SAKAZAKII CC4  

The analysis was divided into following main objectives 

 Study the diversity of sequenced C. sakazakii CC4 isolates using Single 

Nucleotide Polymorphism. 

 Genome comparison of high and low C. sakazakii CC4 genomes.  

 The comparative analysis of the C. sakazakii CC4 isolates using Cronobacter 
BIGsDB. 

The results of the above genomic analysis have been presented in chapter 7.  

3. GENOMIC ANALYSIS OF CRONOBACTER SAKAZAKII STRAINS ISOLATED DURING 

OUTBREAK IN A NEONATAL INTENSIVE CARE UNIT IN FRANCE, 1994  

The analysis was divided into following objectives  

 Whole genome phylogeny determination to observe overall strains 

relatedness of all sequenced C. sakazakii isolates.  

 SNP analysis of each cluster using the earliest isolate to observe strain 

relatedness in each cluster in order to identify potential source of origin. 
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The results of the above analysis is presented in chapter 8.  

NOTE: This project was undertaken in parallel with two other laboratory based PhD projects; 

1) Sumyya Hariri whose main objective was to identify virulence associated traits in C. 

sakazakii with special emphasis on C. sakazakii CC4 using laboratory experiments.  

2) Hana Sonbol whose project was aimed at physiological profiling of C. sakazakii with 

special emphasis on C. sakazakii CC4 using laboratory experiments.  

Therefore where appropriate references will be made for these parallel laboratory studies. 

In addition, references to the previous laboratory based PhD studies (Nasreddin Rhouma 

2012; Faisal Almajed 2014) will also be made where needed.  

Secondly, the sequence in which the results are presented in this thesis may not represent 

the chronological order in which the analysis was conducted due to the nature of the study.   
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 MATERIALS AND METHODS 

The current study was mainly aimed at the genomic analysis of the sequenced Cronobacter 

sakazakii isolates and there was only a minimal amount of laboratory work involved. Most 

of the analysis was undertaken using available online genomic tools and by following their 

manuals. The Material and Methods sections is divided into laboratory based methods and 

computer based methods.  

 LABORATORY BASED METHODS 

2.1.1 MEDIA PREPERATION 

2.1.2 TRYPTICASE SOY AGAR (TSA) 

The TSA (casein soya bean digest agar) is a general purpose media that supports the growth 

of wide variety of organisms, both aerobic and anaerobic. The components of TSA include 

agar, pancreatic digest of casein, enzymatic (papain) digest of soya bean and sodium 

chloride. The TSA media in its powdered state was purchased from Oxoid Thermo Scientific 

UK. To prepare the media, 20g of the powdered media was dissolved in 500ml of sterile 

distilled water. The media was sterilised by autoclaving it for 15min at 121oC. The sterile 

prepared media was allowed to cool to 50oC and approximately 20ml was poured into each 

sterile petri dishes. The TSA media plates were stored at 4oC for up-to 3 weeks. The TSA 

plates were always dried before culturing the bacterial strains on them.  

2.1.3 TRYPTICASE SOY BROTH (TSB) 

The TSB media was purchased from Oxoid Thermo Scientific UK. To prepare the TSB, 30g of 

the base was dissolved in 1L of the sterile distilled water and autoclaved for 15min at 121oC. 

The prepared broth was stored at 4oC.   

2.1.4 STOCK SOLUTION PREPARATION FOR METAL RESISTANCE ASSAY 

The 1M stock solution of copper (II) sulphate (Sigma-Aldrich®, UK), sodium arsenate (Sigma-

Aldrich®, UK), nickel chloride (Fisher Scientific, UK), cobalt (II) nitrate (Sigma-Aldrich®, UK) 

silver nitrate (Alfa Aesar®, UK), zinc sulphate (BDH chemicals England), sodium tellurite 

(Sigma-Aldrich®, UK) and cadmium carbonate was prepared by dissolving 159.60g, 180.03g, 

129.60g, 182.94g, 169.87g, 161.47g, 221.58g and 172.42g respectively into 1L of distilled 

water (molecular weight equivalent of the substance into 1L of distilled water). Further 
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dilutions of 0.1M (100mm), 0.01M (10mm) and 0.001M (1 mm) were prepared from 1M 

(1000mm)  stock solution.  

2.1.5 BACTERIAL CULTURING AND STORAGE 

All Cronobacter sakazakii strains used in this study were maintained on TSA and stored at -

20oC for short term storage and -80oC for long term storage. When needed the cultures 

were recovered from the frozen stock by subculturing them on TSA at 37oC for 24h.  

2.1.6 METAL RESISTANCE ASSAY 

Selected C. sakazakii isolates were tested for their ability to tolerate metals (toxic to 

bacteria at high concentrations). Isolates were tested against 8 different metals  which 

included copper (II) sulphate (Sigma-Aldrich®, UK), sodium arsenate (Sigma-Aldrich®, UK), 

nickel chloride (Fisher Scientific, UK), cobalt (II) nitrate (Sigma-Aldrich®, UK), silver nitrate 

(Alfa Aesar®, UK), zinc sulphate (BDH chemicals England), sodium tellurite (Sigma-Aldrich®, 

UK) and cadmium carbonate (Harrington, USA). Each isolate was tested for 4 different 

concentrations; 1M (1000 mm), 0.1M (100mm) , 0.01M (10mm) and 0.001M (1mm) of each 

heavy metal.  

Each isolate was streaked onto TSA and incubated for overnight at 37oC. At least 5 colonies 

were picked from the TSA for each isolate and grown in TSB at 37oC for overnight in a 

shaking incubator. A sterile cotton swab was soaked in the TSB culture of each isolate and 

streaked all over the TSA. Four paper discs were placed equidistant on the TSA plate and 

pressed gently with the flame sterilised forceps so that each disc is in proper contact with 

the culture on the media. Using a pipette, 7µl of each dilution was added onto the centre 

of each paper disc. The inoculated TSA plates were grown for overnight at 37oC and the 

zone of inhibition was measured. Each experiment was conducted in triplicate.  

2.1.7 EXTENDED SPECTRUM BETA LACTAMASES (ESβL) SUSCEPTIBILITY TESTING 

Bacterial resistance against the β-lactam antibiotics including penicillin and extended 

spectrum cephalosporin is mediated through the production of extended spectrum beta 

lactamases (ESβL) (Beceiro et al. 2004). The ESβL are the enzymes produced by members of 

Enterobacteriaceae family particularly E. coli and Klebsiella pneumoniae as well as 

Acinetobacter baumannii and Pseudomonas aeruginosa. The enzymes act by hydrolysing 

the β-lactam rings of penicillin and extended spectrum cephalosporin, before they can 
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access the penicillin binding sites at the cytoplasmic membrane. Commonly expressed ESβL 

include TEM, S CTX-M  and SHV, which in most cases are plasmid borne and confer 

resistance against 3rd generation cephalosporin such as cefpodexime, cefoxitin and 

cefotetan (Beceiro et al. 2004). The infections caused by ESβL producing organisms are 

usually treated by carbapenem antibiotics. Clavalunic acid is the inhibitor of ESβL (Beceiro 

et al. 2004).  

The AmpC beta-lactamases are bacterial enzymes which confer resistance to 3rd generation 

extended spectrum cephamycins and cephalosporins (Perez-Perez et al. 2002). The 

production of these enzymes is generally the result of hyper-production or de-repression of 

the chromosomally encoded AmpC when a plasmid-mediated ampC gene is acquired 

(Perez-Perez et al. 2002; Nasim et al. 2004). Like ESβL, infections caused by AmpC producing 

bacteria are also treated by carbapenem antibiotics. AmpC are inhibited by class C inhibitors 

such as cloxacillin and boronic acid (Perez-Perez et al. 2002; Nasim et al. 2004).  

Additionally, bacterial resistance against carbapenem and other β-lactam antibiotics is also 

mediated through the production of carbapenemases (Babini et al. 2000; Coudron et al. 

2000). Carbapenemases are the enzymes which hydrolyse antibiotics such as carbapenems, 

cephamycins and oxyiminocephalosporins. Metallo-β-lactamases (MBL) belong to class B 

carbapenemases which can efficiently hydrolyse carbapenems antibiotics. The MBLs need 

zinc as a co-factor for their catalytic activity. Besides Enterobacteriaceae, the MBLs have 

been detected in A. baumannii and P. aeruginosa. Chelating agents such as EDTA are the 

inhibitors of MBLs (Babini et al. 2000; Coudron et al. 2000) 

In the present study, screening of C. sakazakii isolates for ESβL and/or AmpC was 

undertaken using D68C1 test of Mast discs detection system. The D68C1 is used to detect 

the ESβL positive strains, de-repressed or hyper-produced AmpC positive strains as well as 

the co-production of ESβL and AmpC. The presence of ESβL and/or AmpC can easily be 

determined through zone size comparsions using antibiotic (cefpodoxime) plus antibiotic 

inhibitor. The antibiotic inhibitors were not specified in the flier supplied by manufacturer 

since it was a proprietary information. However, as stated earlier, clavulanic acid is the 

general inhibitor of ESβL while AmpC is inhibited by cloxacillin and boronic acid.  

The assay was performed following the guidance of British Society for Antimicrobial 

Chemotherapy (BSAC, version 12, May 2013, http://bsac.org.uk/wp-

http://bsac.org.uk/wp-content/uploads/2012/02/Version-12-Apr-2013_final.pdf/
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content/uploads/2012/02/Version-12-Apr-2013_final.pdf/). The C. sakazakii isolates were 

streaked onto the TSA and incubated overnight at 37oC. At least 5 colonies were picked up 

from the TSA and transferred to 5ml of sterile saline and mixed thoroughly using a vortex 

mixer. The optical density (OD) of the suspension was then adjusted to 0.5 McFarland 

standard. After adjusting the OD, a cotton swab was soaked in the suspension and gently 

streaked over the TSA. The TSA plates were allowed to dry for approximately 5 min. The 

ESβL and AmpC discs which were purchased from the MAST Group limited (UK) were placed 

equidistant on the TSA plates and pressed gently with  flame sterilised forceps to ensure 

complete contact with the TSA media. The TSA plates with ESβL and AmpC discs were 

incubated at 37oC for 24h.  For each disc the diameter of the zone was measured and 

compared with guidance image (D68C1, Figure 2.1) provided by the Mast group.  

 

Figure 2. 1 Guide to ESβL and AmpC resistance and sensitivity (source; http://www.mastgrp.com/).  

The image above is a cropped section showing guidance for the ESβL and AmpC resistance and guidance. 
After performing the disc diffusion assay, the guide was consulted to decide the ESβL and AmpC 
resistance and sensitivity characteristic of the isolate.   

http://bsac.org.uk/wp-content/uploads/2012/02/Version-12-Apr-2013_final.pdf/
http://www.mastgrp.com/
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2.1.8 GENOMIC DNA EXTRACTION 

To prepare the genomic DNA, bacterial cultures were grown in 1.5ml of TSB for overnight 

at 37oC in the shaking incubator. Genomic DNA extraction of the overnight grown cultures 

was undertaken using GenElute™ Bacterial Genomic DNA Kit (Sigma Aldrich®, UK) following 

the manufacturer’s guide. Using a Nanodrop 2000 (Thermo Scientific, UK) the purity and 

concentration of the genomic DNA was checked to ensure each DNA sample has a minimum 

260/280nm values of 1.8 and 260/230nm values of 2.0 before sending them for sequencing.  

2.1.9 GENOME SEQUENCING 

Bacterial DNA was extracted from 1-day old cultures using GenElute™ bacterial genome kit 

(Sigma Aldrich®, USA) using the manufacturer’s protocol. A total of 50 C. sakazakii genomes 

were sequenced during this project using different versions of illumina (GAIIx, HiSeq and 

MiSeq) sequencing technology (Table 2.1). All of the strains were sequenced by 

Exeter Sequencing Service, Wellcome Trust Biomedical Informatics Hub, University of 

Exeter, UK. All of the isolates were paired end sequenced. Paired end sequencing involves 

sequencing both ends of a fragment thus generating high quality alignable data. Paired end 

sequencing facilitates the detection of repetitive sequences, gene fusions, genetic 

rearrangements as well as novel transcripts. Paired end sequences are more likely to align 

with the reference thereby enhancing the quality of the entire data set. Sequencing both 

ends of a fragments allows long range positional information to achieve high quality 

alignment of reads. The superior alignment across repetitive DNA regions helps generate 

longer contigs in de novo assemblies by filling the gaps in consensus sequences. Longer and 

less number of contigs mean fewer scaffolds with less gaps thus improving the overall 

quality of a draft bacterial genome (http://www.illumina.com/technology/next-generation-

sequencing/paired-end-sequencing_assay.html).   

 

 

 

 

http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.html
http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.html


  Chapter  2 

39 
 

 Computer based methods  

The genome analysis workflow is given in figure 2.1.  

 

 

Figure 2. 2 The schematic representation of the genome analysis workflow.  

The genome sequencing was undertaken in 3 phases during the course of this PhD study. Genome  assembly was mainly undertaken using Velvet and improved using 
PAGIT for selected isolates. The genome annotation for all isolates was undertaken using Prokka.
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2.2.1 SELECTION OF THE ISOLATES AND SEQUENCING PLATFORM 

Due to the nature of study different genomes were sequenced at different stages. In total 

there were three sequencing phases. Genome sequences in phase 1 and 2 have been 

analysed and presented in chapters 3-7 while phase 3 genomes have mainly been used in 

the 1994 French outbreak analysis presented in chapter 8. Phase 1 consisted of 23 C. 

sakazakii strains (No. 1-14, 19-21, 23-26, 28; Table 2.1) which were sequenced at the 

beginning of this project using Illumina GAIIx (RTA version: 2.8) generating 36 bp, paired 

end reads.  

In phase 2, C. sakazakii CC4 isolates 377 and 1587 were genome sequenced (No. 15, 16; 

Table 2.1) on Illumina HiSeq 2500 (CASAVA 1.8.2, RTA 1.13) generating paired end reads of 

150 bp. 

In phase 3 the genome sequences of 25 C. sakazakii strains were generated on Illumina 

MiSeq using v3 chemistry and 300bp paired end reads using dual indexed Nextera XT 

libraries. The mean insert size was around 250-300bp (No. 30-54; Table 2.1).  

Additional genomes which included C. sakazakii BAA-894 (NC_009778-80), C. sakazakii 

SP291 (NC_020260-63), C. sakazakii ES15 (NC_017933.1), C. sakazakii 696 

(NZ_CALF00000000.1) and C. sakazakii 680 (NZ_CALG00000000.1) were accessed from 

NCBI for comparative purposes.  

Please note that C. sakazakii CC4 isolates 701 and non-CC4 isolate 696 (No. 30 and 45; Table 

2.1) were initially accessed from Genbank for the analysis presented in chapters 3-7; 

however these were re-sequenced as part of the French outbreak 1994 analysis (phase 3) 

to obtain their raw files (FASTQ) for SNP analysis (chapter 8). Similarly, C. sakazakii CC4 

isolate 767 was sequenced in phase 1 and was also included in the analysis presented in 

chapter 8 since it was originally isolated from 1994 French outbreak (No. 5; Table 2.1).  

2.2.2 ACCESSION NUMBERS  

The whole gnome shotgun projects for all 50 C. sakazakii genomes have been submitted in 

Genbank by following the instructions given by NCBI 

(http://www.ncbi.nlm.nih.gov/genbank/genomesubmit/) and the accession numbers are 

given in table 2.1. 

http://www.ncbi.nlm.nih.gov/genbank/genomesubmit/
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Table 2. 1 Sequenced strains used in this PhD study 

No 
C. sakazakii 
isolate ST CC 

Sequencing 
phase Country Genbank accession Date Source Extra information 

 
Coverage 

 
N50 

1 20 4 4 Phase 1 
Czech 
Republic JNBH00000000 2003 

Clinical; 
Faeces Adult, 74 years old 

13 54736 

2 553 4 4 Phase 1 Netherlands JNBJ00000000 1977 Clinical 1 day infant 16 70973 

3 557 4 4 Phase 1 Netherlands JNBK00000000 1979 Clinical 4 day old infant 9 16011 

4 558 4 4 Phase 1 Netherlands JNBL00000000 1983 Clinical  46 217574 

5 767 4 4 Phase 1 France JNCX00000000 1994 Trachea Fatal meningitis 16 130723 

6 1219 4 4 Phase 1 USA JNCY00000000 2009 Clinical Fatal meningitis 12 264907 

7 1220 4 4 Phase 1 USA JNDH00000000 2003 Clinical; CSF  14 305405 

8 1221 4 4 Phase 1 USA JNDI00000000 2003 Clinical; CSF  14 126619 

9 1225 4 4 Phase 1 USA JNDF00000000 2007 
Clinical; 
Blood Fatal meningitis 

11 54922 

10 1240 4 4 Phase 1 USA JNDD00000000 2009 Clinical; CSF  16 228799 

11 721 4 4 Phase 1 USA JNDA00000000 2003 Clinical; CSF  13 26058 

12 1231 4 4 Phase 1 New Zealand JNDG00000000 2005 
Clinical; 
Faeces 

Infant with 
meningitis 

15 143701 

13 6 4 4 Phase 1 Canada JNBG00000000 1990 Clinical  68 42403 

14 4 15 4 Phase 1 Canada JMSR00000000 1990 Clinical  18 32494 

15 377 4 4 Phase 2  AWFW00000000 1950 Milk powder  103 339411 

16 1587 
10
9 4 Phase 2 Israel AWSP00000000 2000 CSF isolate Fatal infant isolate  

91 632792 

17 SP291 4 4 Genbank Ireland CP004091-4 
Unkn
own PIF manufacturing plant 

  

18 BAA-894 1 1 Genbank USA NC_009778-80 2001 
Non-infant 
formula Fatal meningitis 

  

19 1218 1 1 Phase 1 USA JNDC00000000 2001 CSF Fatal meningitis 

 
 
13 

 
 
241193 

21 5 8 8 Phase 1 Canada JNBF00000000 1990 Clinical  17 63514 

22 680 8 8 Genbank USA CALG01000001-201 1977 CSF    
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Table 2.1 continued  

No 
C. sakazakii 
isolate ST CC 

Sequencing 
phase Country Genbank accession Date Source Extra information 

 
Coverage 

 
N50 

23 140 40 45 Phase 1 India JMSS00000000 2005 Spice Ajwan cumin seed 22 85643 

24 150 16 16 Phase 1 South Korea JNDB00000000 2005 Spice Yoojeon food spices 14 50208 

25 978 3 3 Phase 1 UK JNCZ00000000 2007 Clinical 
Enteral feeding 
tubes 

12 232916 

26 520 12  Phase 1 
Czech 
Republic JNBI00000000 1983 Clinical  

16 67964 

27 1249 31  Phase 1 UK JNDE00000000 2010 Clinical Fatal infant isolate 18 179201 

28 ES15 
12
5 100 Genbank South Korea PRJNA81953 

Unkn
own 

Ground 
whole grain  

  

29 730 4 4 Phase 3 France JOLT00000000 1994 Trachea Meningitis (DIED) 12 105211 

30 701* 4 4 
Genbank/ 
Phase 3 France NZ_CALE00000000 1994 stools NEC I 

14 131008 

31 691 4 4 Phase 3 France JOLQ00000000 1994 Sputum No-details 13 210466 

32 692 4 4 Phase 3 France JOLV00000000 1994 stools NEC II  17 164025 

33 694 4 4 Phase 3 France JOLM00000000 1994 Conjunctivae NEC II 26 257787 

34 695 4 4 Phase 3 France JOLG00000000 1994 Trachea NEC II (DIED) 14 127060 

35 698 4 4 Phase 3 France JOLR00000000 1994 Trachea No-details 15 164033 

36 702 4 4 Phase 3 France JOLF00000000 1994 Trachea NECII 13 74465 

37 705 4 4 Phase 3 France JOLI00000000 1994 Stools NEC II 15 161660 

38 706 4 4 Phase 3 France JOLH00000000 1994 Skin NEC II 10 75457 
39 707 4 4 Phase 3 France JOLD00000000 1994 Trachea No-symptoms 17 178992 
40 709 4 4 Phase 3 France JOLJ00000000 1994 stools No-symptoms 14 137377 

41 711 4 4 Phase 3 France JOLC00000000 1994 
Prepared 
formula 

 
NEC II 

 
17 

 
210291 

43 690 12  Phase 3 France JOLN00000000 1994 stools No-symptoms 12 54751 

44 696* 12  
Genbank 
/Phase 3 France JOLW00000000 1994 stools NECII 

15 127060 

45 699 12  Phase 3 France JOLK00000000 1994 stools Digestive problems 14 223653 

46 703 12  Phase 3 France JOLY00000000 1994 Trachea NEC II 
12 198512 
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Table 2.1 continued  

No 
C. sakazakii 
isolate ST CC 

Sequencing 
phase Country Genbank accession Date Source Extra information 

 
Coverage 

 
N50 

47 708 12  Phase 3 France JOLZ00000000 1994 Trachea Septicaemia 14 225681 

48 693 13 13 Phase 3 France JOLO00000000 1994 stools No-symptoms 15 134695 

49 713 13 13 Phase 3 France JOLX00000000 1994 Bottle  17 166211 

50 714 13 13 Phase 3 France JOLU00000000 1994 
Prepared 
formula  

15 187343 

51 715 13 13 Phase 3 France JOLP00000000 1994 
Infant 
formula No-symptoms 

13 116348 

52 700 86 13 Phase 3 France JOLL00000000 1994 
Peritoneal 
fluid NEC III (DIED) 

16 161684 

53 716 14 1 Phase 3 France JOLS00000000 1994 stools NEC I  15 195858 
 
ST; Sequence Type 4, CC; Clonal Complex, Isolates No 1 to 30 were used in the analysis presented in chapters 3, 4, 5, 6 and 7; Isolates No 30 to 54 were used in the 
analysis presented in chapter 7. Date; refers to isolation date, Isolate No 5 was sequenced in phase 1 but was used in the analysis presented in chapters 3-7 as well 
as chapter 8, since it was isolated from French outbreak 1994; *Initially isolates 701 and 696 were accessed from Genbank and used in analysis of chapters 3-7. 
These were re-sequenced for chapter 8. 
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2.2.3 GENOME ASSEMBLY  

The initial de novo genome assembly was performed using Velvet (versions 1.2.02 and 

1.2.09) (Zerbino & Birney, 2008) by Exeter Sequencing Services, UK and the assembled 

genome contigs for all of the strains were provided.  

2.2.4 CONTIG RE-ORDERING OF THE SELECTED GENOMES USING PAGIT 

The genome assembly of the strains which were used as index for Single Nucleotide 

Polymorphism (SNP) analysis (chapter 8) was improved using Post Assembly Genome 

Improvement (PAGIT) (Swain et al. 2012). The finished genome of C. sakazakii SP291 

(Genbank accessions CP004091-4) was used as reference for contig reordering.  

2.2.4.1 PRINCIPLE OF PAGIT 

PAGIT aims to improve the assembly from the draft to a high quality which can then be used 

either for comparative genomics or for precise variant determinants in a genome. PAGIT 

consists of 4 open source programs (Figure 2.2) which can be used either individually or 

together; in this case all 4 programs were set to run automatically. These 4 programs are: 

1. ABACAS (Algorithm-Based Automatic Contiguation of the Assembled Sequences); 

It is an orientation tool that re-orders the contigs by aligning them against a 

reference genome. The reference genome should be of high quality. In the present 

study, the finished C. sakazakii SP291 was used as reference for contig re-ordering 

of the selected draft C. sakazakii genomes.  

2. IMAGE (Iterative Mapping and Assembly for Gap Elimination) is a tool that tends 

to close the gaps between the contigs by extending the contig ends using the paired 

end sequencing information.  

3. ICORN (Iterative Correction of Reference Nucleotides) is a tool that corrects the 

error in the base calls within the consensus sequence including single base pairs as 

well as small insertions and deletions by iterative mapping of the reads to the 

sequence.  

4. RATT (Rapid Annotation Transfer Tool) is a synteny based algorithm which transfers 

the annotation to the draft genome from the reference genome. 
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Figure 2. 3 The schematic representation of the workflow of PAGIT.  

PAGIT is a combination of 4 open source computer programs; ABACAS re-orders the contigs of the draft 
genome by aligning them against the reference genome, IMAGE iteratively closes the gaps by extending 
the contig ends using information from the paired end sequences, ICORN corrects the error is base calls, 
insertions and deletions by iteratively mapping of the draft assemblies and finally RATT transfers the 
annotation from the reference onto the daft genome.  

 

2.2.4.2 PAGIT METHODOLOGY  

The program in its bundled form was downloaded from Sanger Institute website 

(https://www.sanger.ac.uk/resources/software/pagit/#Download/) with all the supporting 

scripts on a HP EliteBook (Linux X64bit) on a Unix 10.04 operating system. Once installed 

the program was executed from the relevant directory when running a genome assembly 

improvement following the instructions (Swain et al. 2012). The PAGIT yielded output data 

for each of the 4 components of the program in an individual folder in the sourced directory. 

In this case, the output was the EMBL file which was located within the RUNRATT folder. 

https://www.sanger.ac.uk/resources/software/pagit/%23Download/
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The EMBL file was opened in Artemis (Rutherford et al. 2000) to visualise the improved 

genome assembly.  

2.2.5 PROKKA GENOME ANNOTATION  

2.2.5.1 PRINCIPLE OF PROKKA   

The genome annotation refers to the identification and labelling of all the features on a 

sequenced genome (Richardson & Watson, 2013). There are several valuable annotation 

tools available such as RAST and Xbase2, however the genome annotation by Prokka has 

been found to be more accurate than the former 2 tools (Seemann, 2014). In addition it is 

faster and the output files can be easily analysed using web-based genome analysis tools 

like Artemis. In the present study, the genome annotation of the sequenced C. sakazakii 

isolates was undertaken using Prokka; a command line software tool which takes 

preassembled genomes as input and requires the BLAST+ to be preinstalled on the Unix 

system (Seemann, 2014). Prokka depends on the external tools for feature prediction which 

include Prodigal for predicting Coding sequence (CDS) (Hyatt et al. 2010), RNAmmer for 

Ribosomal RNA genes (rRNA) (Lagesen et al. 2007), Aragorn to predict Transfer RNA genes 

(Laslett & Canback, 2004), SignalP to predict Signal leader peptides (Petersen et al. 2011) 

and Infernal for non-coding RNA (Kolbe & Eddy, 2011).  

2.2.5.2 PROKKA METHODOLOGY  

The program was installed and executed using the instructions available on the Victorian 

Bioinformatics Consortium website (http://bioinformatics.net.au/prokka-manual.html/). 

The Prokka yielded outputs in FASTA (.fna, .fsa) and the annotation files (.gbk, .gff)  

Both FASTA and annotation files were analysed and viewed using the online web-based 

tools such as Artemis and Artemis Comparison Tool (ACT).   

 

2.2.6 ARTEMIS 

2.2.6.1 PRINCIPLE OF ARTEMIS 

One of the frequently used genomic tool throughout this study was Artemis, hosted at the 

Sanger Institute (http://www.sanger.ac.uk/resources/software/artemis/#download). 

Artemis is a genomic tool that can be used for the visualisation and annotation of the 

compact bacterial, archaeal or other lower eukaryotic genomes (Rutherford et al. 2000; 

http://bioinformatics.net.au/prokka-manual.html/
http://www.sanger.ac.uk/resources/software/artemis/%23download
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Carver et al. 2008, 2012). Artemis can read the annotated genome files either in EMBL, 

Genbank or FASTA format. The Artemis manual containing the guidelines for using the 

program was used (ftp://ftp.sanger.ac.uk/pub/resources/software/artemis/artemis.pdf).  

2.2.6.2 ARTEMIS METHODOLOGY 

In this study, Artemis was frequently used to visualise C. sakazakii genomes at particular 

regions of interest, to observe G+C and to save the sequence of any gene of interest in the 

FASTA format. BLAST searches under “Run” option were used to perform homology 

searches for any trait of interest. The “DNA plotter” feature within Artemis was used to 

mark any feature on the genome and to represent it on a circular genomic map, for example 

in marking of SNPs. Artemis was also used to visualise the BAM (Binary alignment/Map) in 

conjunction with the VCF (Variant Call Format) files to manually curate the SNP calls (section 

2.2.9).  

2.2.7 ACT and WebACT 

2.2.7.1 PRINCIPLE OF ACT and WebACT  

Another important tool which has been used frequently in analysis of the sequenced 

genomes in the current study was Artemis Comparison Tool (ACT) developed by the 

researchers at Sanger institute (Carver et al. 2005, 2008) and hosted at their website 

(https://www.sanger.ac.uk/resources/software/act/). A web version of the ACT called 

WebACT has been developed and is hosted at the Imperial College London 

(http://www.webact.org/WebACT/home).  

2.2.7.2 METHODOLOGY OF ACT and WebACT  

To compare genomes in ACT, a comparison file was needed for the two genomes which are 

being compared; the comparison file was created using WebACT simply by right clicking the 

alignment and saving the comparison file of the given two genomes to be compared. Both 

ACT and WebACT are essentially the same programs, the difference is that the former can 

be installed on a computer and does not need an active internet connection while the latter 

is only available online and requires an active connection to the internet. Once the genome 

files were chosen and submitted, the files were then uploaded to the server allowing 

comparison to be launched via ACT (Figure 2.3).  

ftp://ftp.sanger.ac.uk/pub/resources/software/artemis/artemis.pdf
https://www.sanger.ac.uk/resources/software/act/
http://www.webact.org/WebACT/home
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Figure 2. 4 Example screenshot of the ACT genome alignment.  

The screenshot above is an example of the two genomes A and B  viewed in ACT for comparative analysis. 
The image clearly show a genomic region absent in A.  

 

The program can be used for several different genomic tasks such as viewing, annotation, 

BLAST searching for genes of interest, depending on the user requirement. However in the 

present study these programs were primarily used for the comparative genomic purposes 

which mainly involved a manual gene by gene search to identify the genes present in a 

particular genome compared to another genome and has been used throughout this study. 

Any gene of interest was searched for homology using the BLAST search feature from the 

“Run” menu. Any additional information about using the program was accessed online 

(ftp://ftp.sanger.ac.uk/pub/resources/software/act/act.pdf). 

2.2.8 DETERMINATION OF STATISTICAL SIGNIFICANCE  

The statistical significance for the presence/absence of selected genes within two sub-sets 

of C. sakazakii isolates i.e. CC4 and non-CC4, was determined by Fisher's exact test (one 

tailed chi-square analysis) using the software called IBM SPSS Statistics 22.  

2.2.9 PHYLOGENETIC ANALYSIS  

The phylogenetic analysis of 30 C. sakazakii genomes presented in chapter 3 and 26 French 

outbreak isolates presented in chapter 8 was undertaken in 3 steps 

1. Whole genome alignment using Mugsy 

2. Core genome extraction 

ftp://ftp.sanger.ac.uk/pub/resources/software/act/act.pdf
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3. Construction of maximum likelihood phylogeny using RaxML 

Each of the above steps is described below.  

2.2.9.1 PRINCIPLE OF WHOLE GENOME ALIGNMENT USING MUGSY 

The whole genome alignments are important in studying bacterial diversity. The present 

study was aimed to describe the genetic diversity of different Sequence Types (ST) of C. 

sakazakii strains. In the present study, a computationally efficient, fast and accurate tool 

called Mugsy was used for the whole genome alignment of C. sakazakii genomes (Angiuoli 

& Salzberg, 2011). Mugsy uses Nucmer which is a whole genome pairwise aligner to identify 

homology amongst genomes. Mugsy accepts a set of multiple FASTA files as input and 

invokes through a single command line. It produces the output as a multiple alignment file 

(MAF). The program was used for the whole genome alignment of multiple C. sakazakii 

genomes; 30 C. sakazakii genomes (chapter 3) and 26 C. sakazakii genomes (chapter 8).  

2.2.9.2 METHODOLOGY 

The program was downloaded from the website (http://mugsy.sf.net) on HP EliteBook 

(Linux X64bit) using UNIX (version 10.04) operating system. The whole genome phylogeny 

was estimated using 3 steps as described below.  

2.2.9.2.1 WHOLE GENOME ALIGNMENT 
 

The genome sequences of the isolates to be aligned were copied to the appropriate folder 

and the alignment was executed using the command line (Appendix text 1.1). The alignment 

output in the MAF format was used for the core genome extraction.  

2.2.9.2.2 CORE GENOME EXTRACTION 
 

Once the multiple alignment (MAF) of C. sakazakii genomes was obtained, the core genome 

was extracted using mothur (Schloss et al. 2009) through a pipeline of scripts written in 

Python by Jason Sahl and adapted by Alan McNally (Sahl et al. 2011; McNally et al. 2013). 

The algorithms used to extract the core genome are given in the Appendix text 1.1. The core 

genome alignment was produced as a double filtered concatenated file, 

“concat_alignment.fas” which was then viewed using SeaView 

(http://doua.prabi.fr/software/seaview), an example is shown in Figure 2.4. The alignment 

was saved in the Phylip (Phylogeny Inference Package) format which was then used for 

phylogeny estimation using RaxML (Stamtakis et al. 2005).   

http://mugsy.sf.net/
http://doua.prabi.fr/software/seaview
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Figure 2. 5 Example image of the whole genome alignment visualisation in SeaView.  

The image is an example of the screenshot showing the core genome alignment contained in 
concatenated alignment file “concat_alignment.fas”. SeaView allows the conversion of 
concat_alignment.fas to Phylip (Phy) format which can then be fed to RaxML for phylogeny estimation.  

2.2.9.2.3 PHYLOGENY ESTIMATION  
 

The final alignment file in the Phylip format was then used to determine the maximum 

likelihood phylogeny by RaxML (Stamtakis et al. 2005) using general time reversible (GTR) 

model of GAMMA correction and a rapid bootstrap function performing 100 bootstraps. 

The resultant best tree was visualised and annotated using FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/).   

 

2.2.10 MAPPING OF THE SEQUENCED GENOMES FOR SINGLE NUCLEOTIDE 

POLYMORPHISM ANALYSIS 

The selected sequenced genomes were mapped against the reference genomes (depending 

upon the analysis performed) for the identification of the variants in the form of Single 

Nucleotide Polymorphisms (SNPs). The analysis has been presented in chapters 7 and 8. To 

observe the diversity within C. sakazakii CC4 genomes, the index genome used was C. 

sakazakii SP291 (chapter 7), however when the target was to observe strain relatedness 

within each cluster, the earliest isolate of each cluster was used as the reference strain 

(chapter 8). The SNP analysis was performed on sequenced C. sakazakii isolates using a 

http://tree.bio.ed.ac.uk/software/figtree/
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program called SMALT (https://www.sanger.ac.uk/resources/software/smalt/) in 

combination with SAMtools and BCFtools utilities (http://samtools.sourceforge.net/) (Li et 

al. 2009). The mapping was executed in a stream of scripts (Appendix text 1.2). The input 

files for the query genome were in the FASTQ format (FASTQ format is the text based format 

used to store both nucleotide sequence and its corresponding quality scores by bundling 

both the FASTA and its quality data). The FASTA file of the reference was used to create the 

index file which was then mapped against the query genomes using a stream of scripts in 

the Linux operating system (Appendix text 1.2). The final output was the list of SNPs for the 

query genome in the form of VCF (Variant Call Format) text file containing information 

about the reference base, its position in the genome, quality and its variant in the query 

genome. The SNPs were then filtered in Artemis with the following parameters; minimum 

combined depth (DP) of 8.0, minimum quality (QUAL) score of 30.0 and minimum allele 

frequency (AFI) of 0.75 (0.90 when investigating the outbreak).   

The remaining SNPs were further subjected to manual curation (only when there was 

working number of SNPs) using the BAM file in Artemis to exclude any SNPs which are not 

in the reliable areas of high coverage.  

 

Figure 2. 6 Manual curation of the SNPs in Artemis.  

The image above is an example of the manual curation of SNPs in Artemis. The reference genome was 
opened in Artemis and the VCF and BAM files of the query genomes were loaded on it. Using the BAM 
view only those SNPs which were in high coverage were selected (panel A) while the SNPs in low coverage 
area were omitted (panel B).  

https://www.sanger.ac.uk/resources/software/smalt/
http://samtools.sourceforge.net/
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After manual curation of the SNPs, to visualise the position of these SNPs in the genome 

“create features from variants” option was used in Artemis and then using DNA plotter 

feature of the Artemis these SNPs were marked on the circular DNA map (Figure 2.6). The 

filtered VCF file was saved which showed the number of filtered SNPs in the query genome.  

 

Figure 2. 7 Example image of the SNP marking on DNA plotter. 

The image is an example DNA plotter image which indicates the location of SNPs on the reference 
genome. The SNPs were marked using the DNA plotter feature of Artemis. The outer most black circle 
with tick marks show the genome size and positions on the reference isolate. The inner red markings 
indicate the position of SNPs in the bacterial isolate. The inner most spiked circle indicates the GC 
contents (green = above average; purple = below average).  

2.2.11 FRAGMENTED GENOMIC ANALYSIS USING GEGENEES 

2.2.11.1 PRINCIPLE OF GEGENEES 

Agren and colleagues (2012) recently developed a program called Gegenees which is a 

stand-alone computer program with a graphical user interface, the program can take 

hundreds of genomes to perform comparative genome analysis. The principal of Gegenees 

is based on the fragmentation of all the genomes to perform all against all comparison 

controlled by multi-threaded BLAST control engine. The most useful aspect of the Gegenees 

which was exploited in the current study was that the program allows the selection of a 

particular group of genomes called “target group” and to identify any unique genomic traits 

which differentiates the target group from the background group (genomes in the 
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comparison other than the target group genomes). Depending upon the uniqueness score 

within the target group, the program gives a score to the unique region called biomarker 

score; the biomarker score of 1.0 represents a genomic region uniquely conserved in the 

target group while missing uniformly from the background group. The program is written in 

java and was download from the website (http://www.gegenees.org/). The input files could 

be in either FASTA or Genbank format. Although the program can be used for several 

different tasks, since the present study was mainly targeted in identifying the unique 

regions within C. sakazakii CC4 genomes, Gegenees was used to identify genes unique in 

CC4 genomes which represented our target group.  

2.2.11.2 GENERAL PARAMETERS OF GEGENEES USED IN THIS STUDY 

Fragmented all against all comparison was performed using Gegenees (v2.0.3-LNX64) on an 

HP EliteBook (UNIX 10.04). The C. sakazakii genomes (FASTA format) were imported from 

the saved directory. Settings were manipulated by keeping the fragment size to 500bp and 

search method to BLASTN (Figure 2.7).  

 

Figure 2. 8 Example image showing target group and background group settings.  

The image above is a screenshot showing the settings of Gegenees, the genomes in green font colour 
indicate the target group while red font colour indicates the background group genomes. The black font 
colour shows the target group genome used as reference. The tabs on the top can be used to view and 
edit the included genomes, the Heat plot tab is used to view and export the heat plot generated after 
specifying the target and background group, Score overview tab is used to view the biomarker regions 
and Score table shows the biomarker score for each fragment which can then be exported and further 
analysed in Artemis.  

http://www.gegenees.org/


  Chapter 2 

54 
 

After specifying the settings, the alignment was executed. The program performed the 

fragmentation of each genome according to the specified fragment size (in this case 500bp), 

BLASTed each fragment in each genome against all the fragments in other genomes. Once 

the fragmented alignment was completed, the program then allowed to select the target 

and background group (Figure 2.7).The target group was then selected and a reference 

genome within target group was assigned. Biomarker score settings were set to max/min 

and only the biomarker traits with the maximum score i.e. 1.0 were selected. Once the 

target and background group settings were specified, the program generated a heat plot 

showing the relatedness of the all the genomes which can be exported in the form an image. 

The biomarker score table was then exported and the coordinates were used to identify the 

genomic regions using the annotated Genbank file of the reference isolate in Artemis.  

2.2.12 BLAST RING IMAGE GENERATOR  

2.2.12.1 PRINCIPLE OF BRIG 

Alikhan et al. (2012) developed a tool called BLAST ring image generator (BRIG) which can 

generate comparative genome images of the prokaryotic genomes. These comparative 

genome images are of great value as they are a quick way of visualising several genomes to 

observe genomic homologies and differences across certain genomes based on a single 

central reference genome. The program is written in Java 1.6 and uses CGView to render 

the images (Stothard et al. 2004) and BLAST to perform genomic comparisons.  

2.2.12.2 PARAMETERS OF BRIG USED  

The program was downloaded from http://brig.sourceforge.net/). The comparative 

genomic images were created using the BRIG tutorial (http://brig.sourceforge.net/brig-

tutorial-1-whole-genome-comparisons/). The BLAST type used was BLASTn and minimum 

identity threshold was kept to 50% (Figure 2.8). It must be noted that in the present analysis, 

when performing the comparative genome analysis, the results of the BRIG analysis were 

validated through manual analysis using ACT. 

 

 

http://brig.sourceforge.net/
http://brig.sourceforge.net/brig-tutorial-1-whole-genome-comparisons/
http://brig.sourceforge.net/brig-tutorial-1-whole-genome-comparisons/
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Figure 2. 9 An example comparative genome image constructed using BRIG.  

The central back line indicates the reference genome. The black rings with spikes indicate the G+C 
content while the coloured circular rings indicate different C. sakazakii genomes. The white regions on 
the coloured rings show the genomic regions which are missing in the query genome while unique to the 
reference genome.  

Once a comparative genomic image was created, it indicated the unique regions (white 

regions in example Figure 2.8) specific to the reference genome. This was further manually 

investigated by ACT and Artemis using the annotated genome files of the reference genome.  

All of the above described genomic tools have been used in analysis throughout this study 

and the reference will be made to these sections when referring to any of these methods.   
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 BACKGROUND  

A multilocus sequence type (MLST) scheme has been adopted for the Cronobacter genus 

and is being extensively used for the identification of Cronobacter sequence types (ST) 

across the world (http://pubmlst.org/cronobacter/) (Baldwin et al. 2007).  

The clonal complex 4 (CC4) refers to C. sakazakii ST4 and its single or double loci variants 

and constitutes a dominant clonal complex in the Cronobacter PubMLST. The association of 

C. sakazakii CC4 with neonatal meningitis has been well documented (Joseph & Forsythe, 

2011; Hariri et al. 2013). Comparative analysis by Joseph & Forsythe (2011) using 41 clinical 

strains obtained from 7 different countries isolated during 1953-2008 indicated that almost 

half (20/41) of these isolates were ST4. More importantly, their study indicated the clinical 

significance of ST4 since amongst a total of 12 isolates from meningitis, at least 9 were C. 

sakazakii ST4 which were isolated from cerebrospinal fluid (CSF), blood and trachea. These 

ST4 strains analysed by Joseph and Forsythe were isolated between 1977 and 2008 from 6 

different countries (the Netherlands, France, United States, New Zealand, Czech Republic, 

Canada); therefore suggesting that ST4 is a virulent and stable clone strongly associated 

with neonatal meningitis (Joseph & Forsythe, 2011).  

Another study by our group reinforced the association of C. sakazakii CC4 with neonatal 

meningitis (Hariri et al. 2013). Hariri and colleagues analysed 15 Cronobacter strains which 

were provided by the Centers for Disease Control (CDC). The study showed that all of the 5 

CSF isolates were either C. sakazakii ST4 or its one loci or two variants together forming a 

clonal complex known as clonal complex 4 or CC4 (Hariri et al. 2013).  

The above mentioned observations are further strengthened by that fact that in the 

Cronobacter outbreak of the French neonatal intensive care unit (NICH) 1994, amongst 30 

of C. sakazakii isolates, 16 isolates were C. sakazakii CC4; more importantly all of the 3 

babies who died were infected by C. sakazakii CC4 strain (Caubilla-Barron et al. 2007). These 

studies suggested a close relationship of C. sakazakii CC4 with neonatal infections especially 

neonatal meningitic cases.  

Not only the predominant association of C. sakazakii CC4 with neonatal meningitis is of 

serious concern, another alarming fact is its frequent isolation from PIF and its 

manufacturing environment such as include floors, bays, roller dryers, tankers and air fillers 

factories (Neelam et al. 1987; Mosso et al. 1994; Van Os et al. 1996; Hein et al. 2009; Craven 

http://pubmlst.org/cronobacter/
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et al. 2010; Jacobs et al. 2011). The frequent isolation of C. sakazakii CC4 from PIF and its 

manufacturing factories poses a significant threat to the lives of newborn babies.  

To date, CC4 is the dominant clonal complex reported in Cronobacter and represents 

approximately 20% of the total Cronobacter isolates  deposited in the Cronobacter PubMLST 

at the time of writing current section in this thesis 

(http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates/, as of 22nd 

November 2014, BST; 16:02). 

 

Figure 3. 1 Distribution of clonal complexes in Cronobacter PubMLST.  

The pie-chart represents the distribution of 604 (of total 1007) Cronobacter isolates in clonal complexes 
defined to date. Please note the dominance of CC4 (red coloured area) amongst different clonal 
complexes. The information was true as of 22nd November 2014.  

More significantly, it is not just the association of C. sakazakii CC4 with clinical or neonatal 

meningitic cases, an increasingly disturbing fact is its strong association with powdered 

infant formula (PIF) or infant formula (IF) which is making this clonal lineage of Cronobacter 

a high concern for neonatal health. Our group has previously reported that 24% of the 

Cronobacter strains isolated from the environment of 6 milk powder manufacturing plants 

in Australia and Germany (Sonbol et al. 2013), as well re-identified strains from an 

international survey in 1988 of Cronobacter in PIF were C. sakazakii CC4 (Muytjens et al. 

1988). It is interesting to note that amongst 195 C. sakazakii CC4 strains (as of date, 22nd 

http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates/
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November 2014) listed in Cronobacter PubMLST, at least 44% were clinical isolates, nearly 

24% were infant formula isolates, about 8% were isolated from food and ingredients while 

approximately 16% represented environmental and about 0.5% were water isolates (Figure 

3.2). Taken together clinical and IF isolates represented approximately 70% of the total C. 

sakazakii CC4 isolates signifying a threat to the neonatal health.  

 

Figure 3. 2 Composition of C. sakazakii CC4 in Cronobacter PubMLST.  

The pie-chart represents the distribution of 195 C. sakazakii CC4 isolates deposited in Cronobacter 
PubMLST. Please note the dominance of CC4 in clinical (dark red coloured area) and in infant formula 
(navy blue coloured area). The information was true on 22nd November 2014.  

 

Furthermore, the relative abundance of the environmental CC4 isolates and its occurrence 

in PIF and PIF manufacturing plants is indicative of its ability to survive under stressful 

environmental conditions. The finished genome sequence of a C. sakazakii ST4 strain (SP291) 

has been published which was notable for its persistence in a PIF production facility in 

Ireland (Power et al. 2013).  

The prevailing association of C. sakazakii CC4 with neonatal meningitis and its relatively 

increased persistence in PIF and its manufacturing environment warranted further 

investigation at the genomic level. As part of this genomic analysis 30 C. sakazakii 

sequenced genomes were included in this study consisting of 18 C. sakazakii CC4 and 12 C. 

sakazakii non-CC4 isolates (Table 3.1). The genomic analysis presented in this chapter aimed 

to screen these 30 C. sakazakii genomes for the virulence and environmental associated 

factors which have already been described in previous studies, in order to identify if any of 

these traits are specific to C. sakazakii CC4.  

Composition of CC4 in PubMLST

Clinical IF Food & ingredients Environment Water
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 HYPOTHESIS  

C. sakazakii CC4 isolates have unique virulence or environmental fitness associated traits.  

 AIMS OF THE CHAPTER 

• Whole genome phylogeny determination of 30 C. sakazakii isolates. 

• Screen C. sakazakii genomes for virulence associated traits previously described in 

Cronobacter. 

• To screen C. sakazakii genomes for the presence of environmental fitness associated 

traits previously described in Cronobacter. 

• In silico serotyping of C. sakazakii genomes against the known serotypes described 

previously in C. sakazakii. 

• In silico plasmid analysis of C. sakazakii genomes by aligning them against previously 
described virulence associated plasmid pESA3 of C. sakazakii.  
  

• To screen C. sakazakii genomes for the presence of neonatal meningitic associated 
traits previously described in E. coli K1. 
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 METHODS 

3.4.1 BACTERIAL STRAINS USED IN THE ANALYSIS  

A total of 30 C. sakazakii genomes were used in the study presented in this chapter (Table 

3.1); 18 C. sakazakii CC4 and 12 C. sakazakii non-CC4. These strains were primarily clinical 

isolates which had been isolated between 1950 and 2010 from 11 different countries. The 

finished genomes were already available for three strains; C. sakazakii BAA-894 (Genbank 

accessions CP000783-5) (Kucerova et al. 2010), C. sakazakii SP291 (Genbank accessions 

CP004091-4) (Power et al. 2013) and a ground whole grain isolate C. sakazakii ES15 

(Genbank accessions CP003312) (Shin et al. 2012). Draft genomes were already available 

for five genomes; C. sakazakii 701 (Genbank accessions CALE01000001-768), C. sakazakii 

696 (Genbank accessions CALF01000001-569), C. sakazakii 680 (Genbank accessions 

CALG01000001-201) (Joseph et al. 2012b), C. sakazakii 377 (AWFW00000000) (Masood et 

al. 2013a), C. sakazakii 1587 (AWSP00000000) (Masood et al. 2013b). An additional 22 

genomes were sequenced as part of this study (Table 3.1). The whole genome shotgun 

projects for these isolates were deposited at Genbank and their accession numbers are 

given in Table 3.1.  
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Table 3. 1 Genomes sequenced C. sakazakii isolates analysed in chapters 3-7  

C. sakazakii 
strain  ST CC Country  Date* Source Extra information 

Genbank 
accession 

C. sakazakii CC4 strains   
377 (NCIMB 
8272) 4 4 UK 1950 Milk powder 

PIF manufacturing 
plant AWFW00000000 

SP291 4 4 Ireland Unkn   CP004091-4 

20 4 4 
Czech 
Republic 2003 Clinical; Faeces Adult, 74 years old JNBH00000000 

553 4 4 Neth 1977 Clinical 1 day infant JNBJ00000000 

557 4 4 Neth 1979 Clinical 4 day old infant JNBK00000000 

558 4 4 Neth 1983 Clinical  JNBL00000000 

701 4 4 France 1994 
Clinical; 
Peritoneal fluid Fatal NECIII 

CALE01000001-
768 

767 4 4 France 1994 
Clinical; 
Trachea Fatal meningitis JNCX00000000 

1219 4 4 USA 2009 Clinical Fatal meningitis JNCY00000000 

1220 4 4 USA 2003 Clinical; CSF  JNDH00000000 

1221 4 4 USA 2003 Clinical; CSF  JNDI00000000 

1225 4 4 USA 2007 Clinical; Blood Fatal meningitis JNDF00000000 

1240 4 4 USA 2009 Clinical; CSF  JNDD00000000 

721 4 4 USA 2003 Clinical; CSF  JNDA00000000 

1231 4 4 
New 
Zealand 2005 Clinical; Faeces Infant with meningitis JNDG00000000 

6 4 4 Canada 1990 Clinical  JNBG00000000 

4 15 4 Canada 1990 Clinical  JMSR00000000 

1587 
10
9 4 Israel 2000 Clinical; CSF 

Severe anatomical 
damage to brain AWSP00000000 

C. sakazakii non-CC4 strains   

BAA-894 1 1 USA 2001 
Non-infant 
formula Fatal meningitis NC_009778-80 

1218 1 1 USA 2001 Clinical; CSF Fatal meningitis JNDC00000000 

ES15 
12
5 100 

South 
Korea  

Ground whole 
grain  PRJNA81953 

1 8 8 USA 1980 Clinical; Throat  JMRI00000000 

5 8 8 Canada 1990 Clinical  JNBF00000000 

680 8 8 USA 1977 Clinical; CSF  
CALG01000001-
201 

140 40 45 India 2005 Spice Ajwan cumin seed JMSS00000000 

150 16 16 
South 
Korea 2005 Spice Yoojeon food spices JNDB00000000 

978 3 3 UK 2007 Clinical Enteral feeding tubes JNCZ00000000 

696 12  France 1994 Clinical; Faeces NECII infant 
CALF01000001-
569 

520 12  
Czech 
Republic 1983 Clinical  JNBI00000000 

1249 31 31 UK 2010 Clinical Fatal infant isolate JNDE00000000 
*; Date of isolation, ST; Sequence Type, CC; Clonal Complex, Neth; Netherlands, PIF; Powdered infant 
formula, NEC; Necrotising enterocolitis, CSF; Cerebrospinal fluid, Unkn; Unknown 
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3.4.2 GENOME SEQUENCING ASSEMBLY AND ANNOTATION  

Genome sequencing of C. sakazakii strains was carried out by the Exeter sequencing service, 

University of Exeter (UK). The genome sequences were generated on different versions of 

Illumina sequencing platforms (section 2.2.1). The genome assembly was performed using 

Velvet (section 2.2.1). The genomes were annotated using prokaryotic genome annotation 

system (PROKKA) (Seemann et al. 2014) as described in section 2.2.5.   

3.4.3 PHYLOGENETIC ANALYSIS 

The genome sequences of 30 C. sakazakii genomes (Table 3.1) were aligned using Mugsy 

(Angiuoli et al. 2011) and the core genome extracted as described previously (Sahl et al. 

2011; Clark et al. 2012; McNally et al. 2013) (section 2.2.8). Maximum likelihood phylogeny 

was then reconstructed using RaxML with the GTR-gamma model (Stamatakis et al. 2005) 

and the resulting trees visualised and annotated using Figtree 

(http://tree.bio.ed.ac.uk/software/figtree/). The method is described in more detail in 

section 2.2.8.  

3.4.4 GENOME COMPARISONS AND GENOME SCREENING FOR THE TRAITS OF 

INTEREST 

The genome comparison was undertaken using Artemis Comparison Tool (ACT) (Carver et 

al. 2005) described in detail in section 2.2.7. The genome sequences of 30 C. sakazakii 

strains analysed in the present study are now available at Cronobacter BIGsDB 

(http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates/). In addition 

to ACT, the BLAST feature of Cronobacter BLAST was also used to search for traits of interest, 

where appropriate. The nucleotide sequence of any gene of interest was BLASTed against 

30 C. sakazakii genomes to determine its presence in the sequenced genomes 

(http://pubmlst.org/perl/bigsdb/bigsdb.pl?page=plugin&name=BLAST&db=pubmlst_cron

obacter_isolates/). A gene was designated as present when it had ~50% nucleotide 

alignment with any sequenced genome i.e. when approximately half the length of a gene 

sequence was present.  

 

http://tree.bio.ed.ac.uk/software/figtree/
http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates/
http://pubmlst.org/perl/bigsdb/bigsdb.pl?page=plugin&name=BLAST&db=pubmlst_cronobacter_isolates/
http://pubmlst.org/perl/bigsdb/bigsdb.pl?page=plugin&name=BLAST&db=pubmlst_cronobacter_isolates/
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 RESULTS AND DISCUSSION  

A number of virulence associated traits and environmental fitness associated traits 

previously described in Cronobacter were investigated. The aim was to find if any of these 

traits show specificity or predominance in C. sakazakii CC4. 

Note. For the purpose of clarity and continuity, a brief background for each of the trait 

investigated is given in the result and discussion section of this chapter.  

3.5.1 WHOLE GENOME PHYLOGENY 

The core genome phylogeny of 30 C. sakazakii genomes was determined (Figure 3.3). These 

strains had been collected over 6 decades from 11 different countries (Table 3.1). The 

resulting core genome phylogeny showed a close clustering of all 18 CC4 strains despite 

their temporal and geographic spread. This confirms that CC4 is a genetically distinct cluster 

of C. sakazakii. The observation is suggestive of a clade with very low levels of diversity. 
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Figure 3. 3 The whole genome based maximum likelihood tree of 30 C. sakazakii strains.  

The genomes of 30 C. sakazakii (n=30) strains approximately 4.5 million bp were aligned using Mugsy, core genome extracted  and maximum likelihood phylogeny 
generated using RAxML. Phylogeny was viewed and annotated using FigTree. All 18 C. sakazakii isolates (red tip labels, orange encircled) clustered tightly with 
each other. The tip labels in purple represent non-CC4 isolates (n=12). The scale bar at the bottom shows the number of nucleotide substitutions per base.
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3.5.2 GENOME SCREENING OF SEQUENCED C. SAKAZAKII STRAINS FOR VIRULENCE 

ASSOCIATED TRAITS  

Generally a bacterium has to cross several barriers before it can successfully establish an 

infection in its host (Wilson, 2002); this would need an underlying genetic machinery. A 

number of virulence associated genes were investigated in sequenced C. sakazakii isolates 

and are described below.  

3.5.2.1 ADHESION ASSOCIATED TRAITS  

Adhesion is the first and essential step towards bacterial pathogenesis as it facilitates the 

colonisation and subsequent infection of host cells (Soto & Hultgren, 1999). Fimbriae are 

the appendages which help bacteria to adhere to the host cell surface thereby helping them 

with colonisation and successive infection process (Soto & Hultgren, 1999). At least ten 

putative fimbrial gene clusters have been described in Cronobacter (Joseph et al. 2012b). 

The C. sakazakii genomes were interrogated for any plausible association of these fimbrial 

clusters with C. sakazakii CC4 genomes. The genomes were screened using ACT and 

Cronobacter BLAST (Table S1). The results are presented here as percentage of CC4 (n=18) 

and non-CC4 strains (n=12) positive for a gene under investigation (Figure 3.4). Although no 

C. sakazakii CC4 specific pattern of fimbrial gene clusters was observed, some interesting 

variation was noted, for example fimbrial region 1 (ESA_01970-6) was absent in most C. 

sakazakii strains but was detected in both C. sakazakii ST1 strains; 1 and 1218, therefore 

absence of this region in clinically significant strains indicate that it may not be essential 

towards virulence of C. sakazakii (Table S1). Curli fimbriae have been associated with 

adhesion to the host cell in E. coli (Doran et al. 1993; Olsen et al. 1993). A curli fimbrial gene 

cluster (ctu_16160-230) has been reported in the genome of C. turicensis z3032 (Joseph et 

al. 2012b); however none of the curli fimbriae homologues was noted in any of the C. 

sakazakii genome analysed in this study. Type 1 fimbriae have also been associated with 

adhesion and virulence of the E. coli (Connel et al. 1996). The type 1 fimbrial operon 

(fimABCDEFGHI) located on genome of E. coli str. K-12 substr. MG1655 (accession: 

NC_000913.3) was used in this study to detect any of its homologue in C. sakazakii genomes, 

however none was detected in any of the C. sakazakii genome (data not shown).  
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Figure 3. 4 Fimbrial regions variation in C. sakazakii genomes.   

Genomes of 30 C. sakazakii were screened for the presence of 10 different fimbrial region previously described in the genomes of C. sakazakii BAA-894 and C. 
turicensis z3032. The data is presented in the graph as a percentage of C. sakazakii CC4 (n=18) and non-CC4 (n=12) genomes positive for a gene under investigation. 
Red bars indicate the percentage of CC4 genomes positive for a given gene while purple bars indicate the non-CC4 genomes positive for any given gene within the 
fimbrial regions.
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3.5.2.2 INVASION ASSOCIATED TRAITS  

Like adhesion, invasion is a crucial mechanism of bacterial pathogenicity. The role of outer 

membrane protein A (ompA) towards brain microvascular endothelial cell (HBMEC) has 

been studied in E. coli K1 (Badger et al. 2000). It has also been proposed that ompA and 

ompX proteins in C. sakazakii are important and act synergistically towards the invasion of 

Caco-2 and IN-407 cell lines (Kim et al. 2010). Similarly, another study by Kim et al. (2010) 

suggested that ompA along with ompX protein is involved in the basolateral invasion of C. 

sakazakii; their study showed that the mutants lacking ompA and ompX genes were 

significantly reduced in their ability to invade the human enterocyte-like epithelial Caco-2 

and human intestinal epithelial INT-407 (Kim et al. 2010). A recent study has shown that in 

C. sakazakii 29544, a putative Inv (invasion protein) encoded by Inv gene is essential for the 

basolateral invasion of Caco-2 cells and acts synergistically with ompA (Chandrapala et al. 

2014). Genome interrogation of 30 C. sakazakii strains revealed that the ompA and ompX 

genes were noted in 100% of the CC4 and non-CC4 isolates. However, Inv gene was absent 

in 6 CC4 while 7 non-CC4 isolates (Figure 3.5, Table S1). The absence of the Inv gene in 

clinically important CC4 and non-CC4 strains such as isolates 721 and 696 (CSF isolates) 

indicate that this gene may not be essential for the invasion of C. sakazakii in general and 

CC4 in particular.  

 

Figure 3. 5 Invasion associated genes in C. sakazakii genomes.   

Genomes of 30 C. sakazakii strains were screened for the presence of invasion associated genes ompA, 
ompX and Inv. The data is presented in the graph as a percentage of C. sakazakii CC4 (n=18) and non-CC4 
(n=12) genomes positive for a gene under investigation. Red bars indicate the percentage of CC4 
genomes positive for a given gene while purple bars indicate the non-CC4 genomes positive for the 
invasion associated gene.  
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3.5.2.3 OUTER MEMBRANE PROTEIN A (ompA) 

Several studies have established the role of the ompA protein towards the invasion of the 

neonatal meningitic E. coli K1 as well as C. sakazakii (Mohan et al. 2009; Kim et al. 2010). A 

study by Kim and Wang (2002) indicated  that a mutant of E. coli K1 strain RS218 (018:K1:H7) 

in which the ompA gene was deleted, showed less invasion of Brain Microvascular 

Endothelial Cells (BMEC) when using in vitro invasion assays (Wang & Kim, 2002). Similarly 

Nair et al. (2009) showed that ompA is a major fibronectin binding protein in C. sakazakii 

and is essential for the invasion of the BMEC. Their study showed that the C. sakazakii 

mutants in which the ompA gene was knocked out exhibited significantly reduced invasion 

of the BMEC in vitro, hence indicating that ompA is required for the invasion and therefore 

the pathogenicity of C. sakazakii (Mohan et al. 2009). Another study by Koebnik (1999) 

showed that in E. coli,  all the loops of the ompA protein were essential for its functioning 

(Koebnik, 1999). Since the role of ompA has been well established towards the invasion and 

therefore virulence of C. sakazakii, it was of high significance to further analyse this 

important virulence associated trait in sequenced C. sakazakii isolates in order to observe 

if there is any variation in the sequence of ompA which could give advantage to C. sakazakii 

CC4 isolates as compared to non-CC4. The ompA gene was detected uniformly across all the 

sequenced strains in this study (Figure 3.5, Table S1). The results were validated by the PCR 

amplification using the primers and reaction conditions previously defined by Nair and 

Venkitanarayanan (2006) (Figure S1). The aim of the present analysis was to align the ompA 

gene sequence of C. sakazakii CC4 and non-CC4 isolates used in this study to observe any 

variations at the nucleotide level such as SNPs, insertions or deletions and whether these 

genetic changes are translated to the protein level which could ultimately change the 

binding ability to the host tissues (Weissman et al. 2003). The ompA gene sequence of 30 C. 

sakazakii isolates was extracted from their genomes and aligned using phylogeny.fr 

(http://phylogeny.lirmm.fr/phylo_cgi/index.cgi/). Initial alignment indicated an incomplete 

gene sequence of C. sakazakii strain 150 which could be due to low sequence coverage at 

that area of the genome; therefore this strain was omitted from ompA analysis. The full 

length ompA gene sequence of C. sakazakii was 1077 bp. The gene sequences of 29 C. 

sakazakii isolates was aligned using online genomic tool phyolgeny.fr. The resulting tree 

was viewed and annotated using FigTree (http://tree.bio.ed.ac.uk/software/figtree/). The 

ompA phylogeny indicated close clustering of C. sakazakii CC4 isolates except for the two 

http://phylogeny.lirmm.fr/phylo_cgi/index.cgi/
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CC4 isolates; 4 and 1219 which branched distantly and with non-CC4 strains (Figure 3.6). 

Similarly C. sakazakii CC4 isolates 553 and 557 showed longer branch length, although on 

the same branch as other CC4 isolates. Another interesting observation was the clustering 

of one C. sakazakii non-CC4 isolate 140 within the C. sakazakii CC4. Additionally, 2 C. 

sakazakii non-CC4 isolates were located on the same branch as C. sakazakii CC4, however 

with a longer branch length (Figure 3.6). 

 

Figure 3. 6 The phylogeny of 29 C. sakazakii isolates based on ompA gene sequences.  

The figure shows the midpoint rooted phylogenetic tree for the 29 C. sakazakii isolates based on the 
ompA gene sequence (1077 bp). The alignment was constructed using phylogeny.fr and the tree 
annotated using FigTree. The red font colour indicates C. sakazakii CC4 (n=18) while black font colour 
indicates C. sakazakii non-CC4 isolates (n=11). The scale bar indicates the number of nucleotide 
substitutions per base.  
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These observations were further investigated by manually analysing the gene alignment 

using Jalview which was integrated within phylogeny.fr (Figure 3.7).  

 

Figure 3. 7 Manual curation of the ompA gene sequence alignment.  

The figure above represents the cropped segments of the screen shots combined as one image showing 
only the sections where variations in the ompA gene sequence was observed. The black arrows point 
towards the Single Nucleotide Variations (SNP) changes in C. sakazakii isolates. 

 

The manual curation of the ompA gene sequence alignment indicated an overall great 

degree of sequence consensus across both C. sakazakii CC4 and non-CC4 with nucleotide 

variations at only 12 positions. The gene sequence was found to be highly conserved across 

most CC4 isolates while non-CC4 isolates showed some Single Nucleotide Polymorphism 

(SNP) changes at only fewer positions across the length of the alignment (Table 3.2). Two of 

the CC4 isolates; 4 and 1219 which branched with non-CC4 isolates also had fewer SNPs 

some of which were shared with non-CC4 isolates (Table 3.2). The SNPs can cause variation 

in the resulting structure of the protein which may alter their functional characteristics. In 

bacteria, for example these altered functional properties of a protein may enhance their 

virulence potential. Since, ompA is a protein which is associated with adhesion and invasion 

of E. coli K1 and C. sakazakii, it was therefore important to investigate whether these 

changes in the nucleotide sequence are translated into the amino acid sequence (i.e. non-

synonymous changes). To investigate this the amino acid structure for the ompA gene 

sequences of all 29 C. sakazakii isolates was deduced using an online nucleotide to amino 
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acid translation tool available at (http://in-silico.net/tools/biology/sequence_conversion/). 

However, the deduced amino acid sequence for all C. sakazakii isolates showed no variation 

as 100% sequence conservation was observed across all the C. sakazakii isolates. Hence all 

the nucleotide substitutions shown in Table 3.2 were synonymous. Therefore, the present 

analysis of the ompA gene and amino acid sequence analysis suggested that although ompA 

might be essential in the virulence of C. sakazakii, it does not form the basis of 

differentiation between C. sakazakii CC4 and non-CC4 and hence it contributes equally 

towards the virulence potential of both subsets of C. sakazakii.  

Table 3. 2 Nucleotide variations observed in ompA gene sequence alignment  

No SNP Position  C. sakazakii Isolates Nucleotide substitution 

(with reference to general 

consensus)  

Type of SNP 

1 150 696, 520, 680, 1, 5, 4  C              T Synonymous 

2 162 658, 1218, ES15 C              T Synonymous 

3 168 658, 1218, ES15 C              T Synonymous 

4 234 5, 4 C              T Synonymous 

5 414 553 C              T Synonymous 

6 447 978 C              T Synonymous 

7 537 680, 1, 5, 4, 978, 1219, 1249, 658, 1218, ES15 C              T Synonymous 

8 576 680, 1, 5, 4 C              T Synonymous 

9 588 ES15 A              T Synonymous 

10 870 658, 1218,  T              A Synonymous 

11 876 680, 1, 5, 4, 978, 1219, 1249, ES15 C              T Synonymous 

12 1014 557 G             A  Synonymous 

Green font colour shows the nucleotide in general consensus; Red font colour shows the substituted 
nucleotide  

 

3.5.2.4 THE FILAMENTOUS HAEMAGGLUTININ, THE FHA LOCUS  

Filamentous haemagglutinin (FHA) is the large, rod shaped protein (>200 kDa) which is 

expressed by bacteria such as Bordetella pertussis (Makhov et al. 1994). The FHA facilitates 

bacterial adhesion to epithelial cells and macrophages in vitro and is involved in colonisation 

of trachea in vivo (Julio & Cotter, 2005). Franco and colleagues, showed the presence of a 

27 kb region known as FHA locus (ctu_1p01140 to Ctu_1p01210) on the pCTU1 plasmid 

(accession; NC_013283) of C. turicensis z3032 encoding a filamentous haemagglutinin gene 

(fhaB), its specific transporter gene (fhaC) and 5 allied putative adhesins (Franco et al. 

2011a). The entire FHA locus as a whole was not detected in any of the C. sakazakii CC4 or 

http://in-silico.net/tools/biology/sequence_conversion/
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non-CC4 strains (Figure 3. 8, Table S1), hence indicating that it may not be essential for the 

virulence of C. sakazakii in general or CC4 in particular. Five of the hypothetical proteins 

(ctu_1p01170-01210) within FHA locus were noted in genomes of C. sakazakii CC4 strains 

553 and 557 and in non-CC4 strains 658 and 978. Moreover, the fhaB and its specific 

transporter gene (fhaC) was noted in 3 C. sakazakii non-CC4 isolates 1, 5 and 680 all of which 

were of clinical origin and belong to Cronobacter  sequence type 8 (ST8). Whether the 

presence of an incomplete FHA locus is important in these isolates remains unclear (Table 

S1).  

 

Figure 3. 8 The FHA locus genes screening in C. sakazakii.  

The FHA locus genes were screened in 30 C. sakazakii strains. The figure is a graphical representation 
indicating the difference in the percentage of strains positive for the tested virulence associated traits. 
Overall the whole FHA locus was not detected in any of the CC4 (n=18) or non-CC4 strains (n=12).  

3.5.2.5 MACROPHAGE SURVIVAL AND PROTEASE ACTVITY ASSOCIATED TRAITS  

Like adhesion and invasion, macrophage survival is also crucial for bacterial pathogenicity; 

homologue of pagC gene (STM1246) required for in vitro macrophage survival of Salmonella 

Typhimurium (Pulkkinen & Miller, 1991) was not detected in any of the C. sakazakii genome 

while homologues of the sodA gene encoding for superoxide dismutase which has also been 

associated with macrophage survival was detected in all C. sakazakii genomes irrespective 

of their sequence type or clonal complex (Table S1).   

Other putative virulence associated factors included zinc-containing metalloprotease (zpx) 

which has been reported to induce rounding of the Chinese Hamster Ovary (CHO) cells in 

tissue culture (Kothary et al. 2007). However homologues of a zinc metalloprotease gene 
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(CSSP291_03690) was noted in all C. sakazakii genomes (Table S1) except one CC4 isolate 

721; hence not differentiating C. sakazakii CC4 from non-CC4. This observation correlates 

with the parallel PhD study by Hana Sonbol, in her study she performed protease activity 

assays by studying the expression of protease on milk agar at 20OC for 72 hours. Her 

experiments included 23 sequenced C. sakazakii isolates, 15 CC4 and 8 non-CC4 (CC4 

isolates; 553, 767, 6, 20, 1240, 721, 1219, 1220, 1221, 1225, 1231, 558, 557, 701 and 4. Non-

CC4 isolates; 1, 5, 680, 658, 1218, 520, 696 and 1249) analysed in the present study. Her 

results indicated that all of the tested C. sakazakii isolates showed protease activity 

irrespective of their sequence type (Hana Sonbol, personal communications). In her assays, 

the CC4 isolate 721 lacking zinc metalloprotease encoded by  CSSP291_03690 also showed 

protease activity. It must, however be noted that the bacterial genomes can have several 

homologues of proteases, hence whether this protease activity was caused by 

CSSP291_03690 or other protease encoding genes is unclear.   

3.5.2.6 SERUM RESISTANCE ASSOCIATED TRAITS  

Another important mechanism associated with bacterial pathogenicity is the evasion of the 

host bactericidal activity of serum, for instance in Salmonella enterica (serovar typhimurium) 

LT2, the rck gene was located on the plasmid pSLT and has been associated with serum 

resistance (Heffernan et al. 1992), however its homologue was not detected in any of the C. 

sakazakii genome (Figure 3.9; Table S1).     

A plasmid encoded plasminogen activator called cpa (ESA_ pESA3p05434) helps in the 

activation of plasminogen and provides resistance to C. sakazakii against the bactericidal 

activity of the serum (Franco et al. 2011b). Genomic investigation indicated that like other 

virulence associated traits, cpa was also detected in most C. sakazakii strains (Figure 3.9; 

Table S1) except for C. sakazakii CC4 strain 6 and non CC4 strains 1, 520, 680 and ES15; all 

of which do not carry “full length” pESA3-like plasmid (section 3.4.5).  

The serum resistance activity in C. sakazakii is likely to be regulated by the cpa gene as the 

present genomic analysis was validated by the serum resistance assays performed in a 

parallel PhD study by Sumyya Hariri. Her experiment included 22 sequenced C. sakazakii 

isolates, 16 CC4 and 6 non-CC4 (CC4 isolates; 377, 553, 767, 6, 20, 1240, 721, 1219, 1220, 

1221, 1225, 1231, 558, 557 and 701, 4. Non-CC4 isolates; 5, 658, 1218, 520, 696 and 1249) 

analysed in the present study. Her results indicated that all of the tested isolates were able 
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to resist serum activity apart from the CC4 isolate 6 and non-CC4 isolate 520 which lack the 

plasmid pESA3 and hence cpa. Other isolates lacking plasmid pESA3, 1, 680 and ES15 were 

not part of her study (Sumyya Hariri personal communications). Hence serum resistance is 

not a CC4 specific phenomenon rather it is a plasmid borne characteristic in C. sakazakii.  

3.5.2.7 HAEMOLYSIN ASSOCIATED TRAITS 

Certain bacteria such as E. coli O157:H7 str. Sakai are able to induce haemolysis of red blood 

cells which is crucial towards the onset of severe illnesses like Haemolytic Uremic 

Syndrome (Wong et al. 2012). Six different putative haemolysin associated genes in 

Cronobacter have been listed; these include ESA_00102, ESA_00432, ESA_00643, 

ESA_02810, ESA_02937 and ESA_03540 encoding for haemolysin activator protein 

precursor, predicted membrane protein haemolysin III homologue, haemolysins and 

related proteins containing CBS domains, haemolysin expression modulating protein, 

putative haemolysin and a haemolysin precursor respectively (Joseph et al. 2012b). All of 

these genes were noted uniformly across CC4 and non-CC4 genomes (Figure 3.9, Table S1).  

 
Figure 3. 9 Haemolysin associated genes screening in C. sakazakii.  

The haemolysin associated genes were screened in 30 C. sakazakii strains. The figure is the graphical 
representation indicating the difference in the percentage of strains positive for the tested virulence 
associated traits. Overall the whole FHA locus was not detected in any of the CC4 (n=18) or non-CC4 
strains (n=12).  
 

Moreover, haemolysin associated genes hlyABCD located on the plasmid pO157 (accession: 

NC_002128) of E. coli O157:H7 str. Sakai were also searched for the presence of their 

homologues in 30 C. sakazakii genomes. The interrogation of C. sakazakii genomes for the 
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presence hlyABCD did not reveal any homologue in C. sakazakii genomes (Figure 3.9, Table 

S1).   

These genetic features did not differentiate CC4 from non-CC4 isolates. Furthermore, 4 of 

the sequenced C. sakazakii isolates including 1 CC4 isolate 701 and 3 non-CC4 isolates 680, 

696 and 658 were assayed by Hana Sonbol for the haemolysis activity on horse and sheep 

blood cells at 37oC for 48 hours. Her study indicated that all of these 4 isolates were able to 

induce haemolysis on both horse (β haemolysis) and sheep blood (α haemolysis) (Hana 

Sonbol, personal communications).  

 

3.5.2.8 TYPE 6 SECRETION SYSTEM  

Type 6 secretion system (T6SS) is a newly described secretion system which has previously 

been associated with invasion of blood brain barrier in E. coli K1 (Zhou et al. 2012). Several 

T6SS associated genes have been noted on the genome of C. sakazakii BAA 894 (Kucerova 

et al. 2010; Joseph et al. 2012b). In this study, five different T6SS associated genes clusters 

were screened in C. sakazakii genomes, however all of these T6SS regions indicated a 

variable pattern of presence or absence and none of the clusters were found specific to C. 

sakazakii CC4 genomes (Figure 3.10, Table S1).  
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Figure 3. 10 Type 6 Secretion System associated gene clusters in C. sakazakii.  

Five different T6SS associated gene clusters were screened in 30 C. sakazakii sequenced genomes. The figure is a graphical representation indicating the difference 
in the percentage of strains positive for any gene. A mosaic pattern for the presence of these T6SS associated genes clusters was noticed across CC4 (n=18) and 
non-CC4 (n=12).  
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3.5.2.9 COPPER AND SILVER RESISTANCE ASSOCIATED GENES  

Metals such as copper and silver may be important for the bacterial survival and fitness, 

however, their accumulation in the bacterial cells can be toxic at higher concentrations. 

Copper is an important micronutrient which is required for the survival of the bacteria as it 

participates in the redox reactions by acting as a co-factor for the enzymes. However, due 

to its high chemical reactivity, the accumulation of copper can be a hazard for the bacteria. 

Therefore, bacteria have evolved mechanisms to control the copper traffic in and out of the 

cell to maintain the homoeostasis for copper synthesis and to avoid its potential toxic 

effects (Arguello et al. 2013). Two copper and silver resistance associated regions; 

ESA_04236-45 (cusESRCFBA/silEP) and ESA_04248–55 (pcoABCERS) have been reported in 

C. sakazakii (Kucerova et al. 2010; Joseph et al. 2012b). The annotation of these genes was 

verified using BLASTx analysis as well by aligning the genome of C. sakazakii 658 against  

pRJ1004 (accession no. X83541.1; Brown et al. 1995; Hao et al. 2015). 

The genomes of 30 C. sakazakii isolates were screened which indicated that both of these 

clusters were present variably across two subsets of the genomes, indicating no CC4 specific 

pattern exists for the presence of these genes (Figure 3.11, Table S1).  

 

 
 

 Figure 3. 11 Copper/silver resistance associated genes in C. sakazakii.  

Two closely located copper and silver associated gene clusters; ESA_04236-45 (cusESRCFBA/silEP) and 
ESA_04248–55 (pcoABCERS) were screened in the 30 C. sakazakii genomes. The figure is a graphical 
representation indicating the difference in the percentage of strains positive for any gene. A mosaic 
pattern for the presence of these genes clusters was noticed across CC4 (n=18) and non-CC4 (n=12).  
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It was interesting to note that two high invasive C. sakazakii CC4 strains 767 and 701 lacked 

ESA_04248–55 (pcoABCDR). Additionally, both of these regions were absent in three C. 

sakazakii CC4 strains 20, 721 and 1221, the latter two being CSF isolates. Both of these 

regions were also missing in six of the non-CC4 strains 520, 1249, 140, 150, ES15 and 978; 

of these non-CC4 strains, 1249 was a fatal meningitic isolate (Table 3.1). The absence of the 

copper/silver resistance regions from the significant strains of clinical origin suggest that 

these regions may not be essential for the virulence of C. sakazakii in general or CC4 clade 

in particular.   

 

 

3.5.2.10 IRON UPTAKE GENES  

Iron is an essential nutrient for virtually all forms of life, its significance is based on its role 

in cellular processes such as energy generation, oxygen transport, DNA replication and 

oxidative stress response (Skaar, 2010). Bacterial pathogens have no exemption from iron 

as they require iron for their survival and growth, especially within the vertebrate host 

where they encountered iron limiting conditions. Amongst the first line of defences utilized 

by vertebrate hosts against bacterial infections is the process called “nutritional immunity” 

which refers to the withholding of nutrients from bacterial pathogens to prevent their 

outgrowth. The most important form of nutritional immunity is the sequestration of iron 

(Kehl-Fie and Skaar, 2009). In vertebrates, the vast majority of iron is intracellular, contained 

either in iron storage proteins called ferritin or complexed with heme (a cofactor of 

haemoglobin). Moreover, the neutral pH and the aerobic environment makes the 

extracellular iron insoluble. The strong binding of iron with vertebrate proteins 

transferrin/lactoferrin further enhances the vertebrate iron sequestration (Bullen and 

Griffiths, 1999). All of these factors significantly reduce the amount of freely available iron 

needed by bacterial pathogens to grow inside the vertebrate host and cause infection (Skaar, 

2010).  

To combat host iron sequestration, bacterial pathogens have evolved mechanism  to survive 

and grow within limiting iron conditions. Sensing iron depletion, has evolved in bacterial 

pathogens as a marker for the vertebrate environment. This sensing controls the 

transcriptional regulation of an iron- dependent repressor called Fur (ferric uptake regulator) 

(Hantke, 1981). Fur operon controls the expression of iron-regulated genes, in the presence 
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of iron the genes are repressed while this repression is lifted in the absence of iron (Masse 

et al. 2007). The Fur iron regulation has been identified in bacterial pathogens such as E. 

coli, Bacillus subtilis, Vibrio sp., Shigella flexneri, and Pseudomonas aeruginosa (Masse et al. 

2007).  

Most bacterial pathogens, in order to compete with the host iron sequestration have 

generally evolved three iron uptake mechanisms; siderophore based iron uptake, heme 

acquisition system and lactoferrin/transferrin receptors (Figure 3.12). 

Siderophores are low molecular weight, small chelating compounds secreted by bacterial 

pathogens which can scavenge iron from the host proteins such as transferrin and 

lactoferrin (Kehl-Fie and Skaar, 2009).  Once removed from the host proteins, iron bound 

siderophores interact with cognate receptors on the bacterial surface and are internalized 

where iron is released (Kehl-Fie and Skaar, 2009).   

Heme based iron acquisition system in bacterial pathogens usually involve surface receptors 

either recognizing heme or hemoproteins bound to heme such as hemoglobin. Heme is 

removed from the hemoproteins and is transferred to the bacterial cytoplasm where iron 

is removed and released through the action of heme oxygenases (Wilks, 2002).  

In addition to iron acquisition from transferrin and lactoferrin through siderophore, some 

bacterial pathogens such as members of Neisseriaceae and Pasteurellaceae can directly 

recognise these proteins through specialised receptors (Ratledge and Dover, 2000). These 

proteins recognise human transferrins and subsequently transfer them to bacterial 

cytoplasm where iron is released and utilised as a nutrient (Skaar, 2010).  
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Figure 3. 12 Schematic representation of iron acquisition mechanisms in Gram negative bacteria 
(Krewulak and Vogel, 2007). 

The figure shows the transferrin, siderophore and heme based iron acquisition systems. All of these iron 
uptake systems need an outer membrane receptor, a PBP, and an inner-membrane ABC transporter. 
Transport through the outer membrane receptors is mediated by the action of TonB system (TonB, ExbB, 
ExbD). All three systems are not present in all bacteria, however some pathogens have more than one 
iron acquisition system.  

In Cronobacter, Several gene clusters associated with iron acquisition have been reported 

which include an enterobactin synthesis (entABCDEFS, ESA_00791-800) and transport 

(fepABCDEG; ESA_02727-31), a plasmid-borne operon for aerobactin synthesis (iucABCD) 

and its receptor iutA (ESA_pESA3p05547-51) and a hydroxamate type siderophore 

synthesis associated gene cluster (fhuABCDE, ESA_03187-90 & ESA_02242) (Kucerova et al. 

2010; Joseph et al. 2012b). The present comparative genomic analysis did not reveal any 

particular association of C. sakazakii CC4 genomes with the above mentioned iron 

acquisition and transport associated genes as these genes were noted on most of the C. 

sakazakii strains analysed. The plasmid borne iron acquisition region iutA-iucABCD was 

found in all except for plasmid-less C. sakazakii CC4 strain 6 and two C. sakazakii non-CC4 

strains 520 and ES15 (section 3.4.5). Hence, none of the iron acquisition genes showed any 

particular association with C. sakazakii CC4 genomes (Figure 3.13, Table S1).  
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Figure 3. 13 Iron acquisition associated genes in C. sakazakii  

Three different iron acquisition associated gene clusters; enterobactin, siderophore and aerobactin were 
screened in C. sakazakii sequenced genomes (n=30). The figure is a graphical representation indicating 
the difference in the percentage of CC4 strains (n=18) and non-CC4 strains (n=12) positive for any gene.  
All of these genes were detected predominantly across both subsets of C. sakazakii.  

 

3.5.2.11 SIALIC ACID UTILISATION GENES 

Another important virulence associated attribute in Gram negative bacteria is the utilisation 

of sialic acid, for example sialic acid utilisation by neonatal meningitic E. coli K1 has been 

reported (Vimr et al. 2004; Severi et al. 2007). Sialic acid is present in breast milk intestinal 

mucin, human milk and gangliosides in brain (Wang, 2009). Additionally, sialic acid is also a 

supplement in some infant formula (Joseph et al. 2013). More recently, our group has 

shown the ability of C. sakazakii to utilise sialic acid (Joseph et al. 2013). Previous studies by 

our group have described the presence of yhcH encoding a putative sugar isomerase and 

sialic acid utilisation genes nanAKTR (encoding N-acetylneuraminate and N-

acetylmannosamine degradation), nanC (outer membrane porin) and nanE (ManNAc-6-P 

epimerase) uniquely in the genomes of C. sakazakii (Joseph et al. 2012b). The nanE gene is 

usually found clustered with nanAKTR, however in C. sakazakii this gene is located distantly 

as in case of Citrobacter freundii and Edwardsiella tarda (Joseph et al. 2013). Additionally  

nagA (encoding for GlcNAc-6-P deacetylase) and nagB (encoding for glucosamine-6-P 
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deaminase) which contributes to the synthesis of fructose-6-phosphate were also noted in 

C. sakazakii genomes which support the role of sialic acid as carbon source in C. sakazakii 

(Joseph et al. 2013). In brief, nanC encodes for the outer membrane porin protein. The nanT 

gene encodes a major facilitator superfamily (MFS) protein which transports the sialic acid 

into the bacterial cell. After the transport of the sialic acid into the cell, Neu5Ac lyase 

encoded by nanA converts it into N-acetylmannosamine (ManNAc) and 

phosphoenolpyruvate (PEP). The NanK enocodes for ATP-dependant kinase which is specific 

for generating N-acetylmannosamine-6-phosphate (ManNAc-6-P) from ManNAc. The nanE 

encodes for ManNAc-6-P epimerase which then converts ManNAc-6-P into N-

acetylglucosamine-6-phosphate (GlcNAc-6-P). The products of nagA and nagB then catalyse 

the conversion of GlcNAc-6-P into fructose-6-phosphate which is a substrate for the 

glycolytic pathway. The nanR is the repressor involved in the regulation of the sialic acid 

genes activity.  

The ability of C. sakazakii to grow on sialic acid and on ganglioside GM1 media has been 

demonstrated in a parallel laboratory based study by Sumyya Hariri (Joseph et al. 2013). An 

additional TRAP transporter siaPQM was also noted on all Cronobacter genomes, however 

since only C. sakazakii showed the growth on sialic acid, therefore it indicates that nanT is 

the only active transporter in C. sakazakii (Joseph et al. 2013). Presence of the sialic acid 

utilisation genes could be a crucial factor for the predominance of C. sakazakii in neonatal 

infections and in infant formula. Since amongst C. sakazakii, the clonal lineage C. sakazakii 

CC4 is the most dominant in neonatal infections and in infant formula, it was important to 

investigate whether it is linked with sialic acid utilisation. As previous study (Joseph et al. 

2013) only investigated 5 of the sequenced C. sakazakii genomes, therefore in the present 

study the genomic investigation was expanded to include 30 C. sakazakii sequenced isolates 

in order to observe if there is any variation for the presence of sialic acid genes in C. 

sakazakii CC4 and non-CC4. The nanAKTR, nanC, nanE, nagA, nagB and siaPQM were all 

screened for their presence in 30 C. sakazakii genomes analysed in this study. In agreement 

with previous study by our group, all of these genes were noted in 100% of the C. sakazakii 

CC4 and non-CC4 genomes and hence not indicating a variation between CC4 and non-CC4 

(Table S1). It also emphasises the fact all C. sakazakii are able to utilise exogenous sialic acid 

as a carbon source.  
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3.5.3 ENVIRONMENTAL FITNESS ASSOCIATED TRAITS  

3.5.3.1 STRESS RESPONSE GENES  

Members of Cronobacter, especially C. sakazakii are known to be better able to resist 

environmental stresses such as heat, acidic conditions and osmotic shock compared with 

other Enterobacteriaceae (Nazarowec-White & Farber, 1997; Breeuwer et al. 

2003; Edelson-Mammel et al. 2005; Dancer et al. 2009). The interrogation of the sequenced 

C. sakazakii CC4 and non-CC4 isolates indicated that all of these isolates harboured a 

number of genes annotated as stress response associated genes.  

3.5.3.2 POLYMORPHISM IN rpoS GENE IN SEQUENCED C. SAKAZAKII ISOLATES  

The alternative sigma factor rpoS is well recognised in modulating the general stress 

response in Gram-negative bacteria (Dodd and Aldsworth, 2002). A recent study by Ordonez 

et al. (2012) indicated that the rpoS gene encoding for the alternative sigma factor σ 

contributes to stress resistance in C. sakazakii since according to their study a positive 

correlation between the rpoS activity and resistance against acid, alkaline and osmotic 

stresses was observed (Ordonez et al. 2012). Their study suggested that variability in the 

gene sequence is associated with the stress response and the full length rpoS gene sequence 

is important for the rpoS functionality as large disruptions in the gene sequence can hamper 

its activity thereby altering the response of bacterial isolate against stress (Ordonez et al. 

2012). Therefore, the rpoS gene sequence was analysed in detail in the sequenced C. 

sakazakii isolates in the present study to investigate if there are any CC4 specific variations 

within the rpoS gene. The homologue of the rpoS gene (CSSP291_02780) was detected 

uniformly across CC4 and non-CC4 genomes analysed in the present study, which was 

expected as the gene is distributed widely across the Gram negative bacteria. The rpoS gene 

sequence of the each isolate was extracted by aligning it against the rpoS gene 

(CSSP291_02780) of C. sakazakii SP291. In order to check the variation in the gene sequence, 

the rpoS gene sequences of 18 CC4 and 12 non-CC4 were aligned using phylogeny.fr 

(http://phylogeny.lirmm.fr/phylo_cgi/index.cgi/) and phylogeny determined (Figure 3.14). 

As seen in the figure 3.14, variations were observed within CC4 and non-CC4 C. sakazakii 

isolates. Apart from the CC4 isolate 6, the remaining 17 CC4 isolates were located on the 

same branch; however variations were noted within the CC4 cluster as 7 of the CC4 isolates; 

4, 721, 1219, 1220, 1221, 1225 and 1240 were located on a sub-branch within CC4. Similarly 

http://jmm.sgmjournals.org/content/63/Pt_8/1023.full%23ref-102
http://jmm.sgmjournals.org/content/63/Pt_8/1023.full%23ref-14
http://jmm.sgmjournals.org/content/63/Pt_8/1023.full%23ref-14
http://jmm.sgmjournals.org/content/63/Pt_8/1023.full%23ref-26
http://jmm.sgmjournals.org/content/63/Pt_8/1023.full%23ref-25
http://phylogeny.lirmm.fr/phylo_cgi/index.cgi/
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CC4 isolate 1231 showed a slightly longer branch length. The C. sakazakii CC4 isolate 6 was 

located on a different branch with a non-CC4 isolate 5 (ST8). Variations can also be seen 

within 3 of the ST8 isolates; 1, 5 and 680 (Figure 3.14). A closer look at the sequence 

alignment indicated an overall high degree of sequence consensus across CC4 and non-CC4 

isolates used in the analysis; the only exception was a non-CC4 isolate 978 which had a 

deletion of 87 nucleotides at the beginning of the gene sequence which could be due to 

sequencing or assembly error (Figure 3.15, Table 3.3). The variations on the phylogenetic 

tree were attributed only to 17 SNPs observed between 30 isolates. The major difference 

between CC4 (except C. sakazakii 6) and non-CC4 isolates on the phylogenetic tree was only 

due to two SNPs at positions 372 and 558 (Figure 3.15, Table 3.3). The C. sakazakii CC4 

isolate 6 which did not cluster with other CC4 strains had 6 SNPs shared with non-CC4 

isolates (Figure 3.15, Table 3.3).  

Further analysis was undertaken to study the type of these SNPs. In silico conversion  of 

rpoS nucleotide sequence to amino acids (http://web.expasy.org/translate/) and their 

alignment using “phylogeny.fr” indicated 99% of amino acid sequence conservation. Only 

two of the 17 SNPs were found to be non-synonymous. In isolate 680, corresponding to the 

nucleotide position 209 (amino acid position 70), a Leucine (L) was replaced by (P) Proline. 

In isolates 5 and 6, corresponding to the nucleotide position 544 (amino acid position 182), 

a Threonine (T) was replaced by Serine (S). In addition, a deletion mutation was also noted; 

in isolates 1218 and 658, both belonging to ST1, had a deletion of Glutamine at nucleotide 

position 601 (amino acid position 201). Whether these non-synonymous SNPs affect the 

stress response of these isolates warrants further investigation.  

Due to very high sequence conservation of rpoS, both at nucleotide and amino acid level in 

CC4 and non-CC4 isolates, it seems unlikely that it can may any unique stress tolerance 

ability to C. sakazakii CC4. As explained in the following sections, the stress response assays 

such as heat tolerance, osmotolerance and acid resistance assays in a parallel PhD study did 

not form the basis of differentiation between CC4 and non-CC4 isolates (Hana Sonbol, 

personal communications).  

http://web.expasy.org/translate/
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Figure 3. 14 The phylogeny of 30 C. sakazakii isolates based on rpoS gene sequence.  

The figure shows the midpoint rooted phylogenetic tree for the 30 C. sakazakii isolates based on the rpoS 
gene sequence (993 bp). The alignment was constructed using phylogeny.fr and the tree annotated using 
FigTree. The red font colour indicates C. sakazakii CC4 (n=18) while black font colour indicates C. 
sakazakii non-CC4 isolates (n=12).  
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Figure 3. 15 Manual curation of the rpoS gene sequence alignment.  

The figure above represents the cropped segments of the screen shots combined as one image showing only the sections where variations in the rpoS gene 
sequence was observed. The black arrows point towards the Single Nucleotide Variations (SNP) changes in C. sakazakii isolates. The black encircled areas represent 
areas of CC4 and non-CC4 variation. 
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Table 3. 3 Nucleotide variations observed in rpoS gene sequence alignment  

No SNP 
Position  

C. sakazakii Isolates Nucleotide 
substitution 
(with reference to 
general consensus)  

Type of SNP 

1 192 1231  G          A Synonymous  
2 209 680 T           C Non-synonymous  

L           P 
Leucine to Proline 

3 285, 327 696, 520 C           T Synonymous  
4 372 1249, ES15, 520, 696, 5, 6*, 

680, 1, 140, 150, 978 
C           T Synonymous  

5 402 150 T           C Synonymous  
6 544 5, 6* G           T Synonymous  

T           S 
Threonine to Serine  

7 558 1249, ES15, 520, 696, 5, 6*, 
680, 1, 140, 150, 978 

C          G Synonymous  

8 587 520, 696 A          G Synonymous  
9 601 1218, 658 C          T Deletion  

deletion at amino acid 
position 201, in isolates 
1218 and 658 
Q            - 
Glutamine deleted  
 

10 615, 621 140, 1, 680, 6*, 5 A           G Synonymous  
11 621 140, 1, 680, 6*, 5 C           T Synonymous  
12 621 978 C           T Synonymous  
13 684 140, 1, 680, 6*, 5, ES15, 1249 C           T Synonymous  
14 712 1249 C           T Synonymous  
15 774 ES15 C           T Synonymous  
16 825 1249 C           T Synonymous  
17 861 978 G          A Synonymous  

Green font colour shows the nucleotide in general consensus, Red font colour shows the substituted 
nucleotide, *; CC4 isolate 
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3.5.3.3 GENETIC REGION ASSOCIATED WITH THERMOTOLERANCE IN C. SAKAZAKII  

The increased stress tolerance of Cronobacter such as thermotolerance and desiccation can 

enhance its survival in the environment of PIF manufacturing factories which can increase 

its chances of contaminating the PIF thereby growing the risk of exposure to neonate. A 

number of studies have been conducted on thermoresistance of Cronobacter; although 

variations in the D-values have been observed between different studies, yet most of these 

studies suggest the thermotolerance of Cronobacter is either equivalent or higher than 

other Enterobacteriaceae (Nazarowec-White & Farber, 1997; Breeuwer et al. 2003; Iversen 

et al. 2004). A positive correlation between thermotolerance and desiccation has also been 

proposed for Cronobacter (Dancer et al. 2009). Gajdosova and colleagues (2011) identified 

an 18 kb long region in C. sakazakii ATCC 29544 associated with its thermotolerance at 58oC.  

The region consisted of 22 open reading frames (orf) having homologies with stress 

response proteins such as heat, oxidation, stress response and acid resistance (Gajdosova 

et al. 2011). The region contained transposases at both ends. Gajdosova and colleagues 

propose its acquisition from plants, since plant pathogens such as Burkholderia and 

Ralstonia species also contain an homologous genetic region (Forsythe, 2004; Friedmann 

2007; Gajdosova et al. 2011). Furthermore, the authors experimentally confirmed the 

association of orfHIJK with thermotolerance as the cloning of these orfs into E. coli resulted 

in two fold increase in its D58 value (Gajdosova et al. 2011). Additionally, the orfI was found 

to be a homologue of the hypothetical protein (Mfla_1165) in thermotolerant 

Methylobacillus flagellatus KT; the authors found a positive correlation with the presence 

of orfI and elevated thermotolerance in C. sakazakii and C. malonaticus at 58oC (Gajdosova 

et al. 2011).  

As discussed earlier, the predominant association of C. sakazakii CC4 with neonatal 

meningitis and its occurrence in the environment especially in the PIF manufacturing 

environment is of high concern as it can increase its exposure to neonate, therefore it was 

of great significance to investigate the genomic region identified by Gajdosova et al. (2011) 

in the sequenced C. sakazakii genomes in order to observe its variation across C. sakazakii 

CC4 and non-CC4 genomes. To investigate this, the whole 18 kb region was accessed from 

Genbank (accession; FR714908). Each of the 22 orfs including the transposases were 

screened for their presence in sequenced C. sakazakii genomes using Cronobacter BLAST 

and ACT. The findings of this analysis were quite interesting as the entire region (except for 



  Chapter 3 

90 
 

transposases orfT5 and orfT1) varied greatly between C. sakazakii CC4 and C. sakazakii non-

CC4 (Figure 3.16, Table 3.4). Most interestingly, the region orfHIJK which had been 

experimentally confirmed by Gajdosova et al. (2011) to be associated with high 

thermotolerance (after cloning in E. coli), was detected in C. sakazakii CC4 genomes 

significantly more (P < 0.05) in CC4 isolates (50% of CC4 isolates) than C. sakazakii non-CC4 

isolates (less than 10% of non-CC4 isolates).  

Some interesting observations were also noted. The C. sakazakii CC4 genomes 701 and 767 

both of which were fatal isolates from the French outbreak of 1994 and isolated only 26 

days apart varied for the presence orfHIJK. The orfHIJK was detected in the C. sakazakii 767 

while absent from the C. sakazakii CC4 isolate 701.  

An important observation was that the C. sakazakii CC4 isolate SP291 which was originally 

isolated from the PIF manufacturing factory lacked the orfHIJK region (Power et al. 2013). 

The CC4 isolate C. sakazakii SP291 has been regarded as the “persistent thermotolerant 

isolate” by Power and colleague (Power et al. 2013). The absence of the orfHIJK from C. 

sakazakii SP291 questions the association of this thermotolerant region with 

thermotolerance.  

Furthermore the genomic analysis did not correlate with the laboratory based dry heat 

tolerance assays performed by Hana Sonbol. In her study, Hana Sonbol, after desiccation 

treatment subjected 7 CC4 strains (1221, 701, 721, 1587, 1542, 1537, 1533) and 6 non-CC4 

strains (658, 1536, 520, 696, 680 and 1) to determine the effect of dry heat on the survival 

of these isolates at 60oC, 80oC and 100oC. The results of Hana Sonbol suggested that CC4 

strains were more heat tolerant than non-CC4 strains at 100oC while at 60oC, 80oC no 

significant difference in the viability was observed (Hana Sonbol, personal communications). 

It must be noted that the CC4 isolates used by Hana Sonbol included isolates 1221, 701, 

1587 and 721, all of which lack the orfHIJK which have been proposed as key thermotolerant 

genes in C. sakazakii by Gajdosova et al. (2011). Hence, the laboratory experiments did not 

correlate with the genomic analysis presented here.  

The analysis of the genes indicated a significant variation for their presence across CC4 and 

non-CC4 genomes. However the absence of the key thermotolerant genes proposed by 

Gajdosova et al. (2011) in a thermotolerant CC4 isolate SP291 and its absence in the fatal 

meningitic CC4 isolates 701 and 1587 and CSF isolates 721 and 1221 weakens the likelihood 
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that these are the key genes in regulating the thermotolerance of C. sakazakii.  Furthermore, 

these observations did not correlate with the laboratory studies performed in a parallel PhD 

study by Hana Sonbol as discussed above.  Hence, although the association of these 

thermotolerant genes with thermotolerance cannot be negated, the observations in the 

present study suggest that these may not be the only genes responsible for 

thermotolerance in C. sakazakii. 
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Figure 3. 16 Thermotolerance associated genetic region in C. sakazakii genomes.  

The genomes of 30 C. sakazakii isolates (n=30) were screened for the presence of homologues of 22 orfs of thermotolerance region of C. sakazakii ATTCC 29544. 
The data is presented in the graph as a percentage of C. sakazakii CC4 (n=18) and non-CC4 genomes (n=12) positive for an orf under investigation. Red bars indicate 
the percentage of CC4 genomes positive for an orf while purple bars indicate the non-CC4 genomes positive for an orf. The green shaded area indicate the genes 
orfHIJK experimentally linked with thermotolerance.  
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Table 3. 4 Genome screening of C. sakazakii genomes for the presence of thermotolerance region homologue of C. sakazakii ATCC 29544 

 

Strain ST/CC 
orfT
5 

orfT
4 

orf
A orfB orfC orfD orfE orfF orfG orfH orfI orfJ orfK orfL 

orf
M orfN orfO orfP orfQ 

orfT
3 

orfT
2 

orfT
1 

  

Put. transposase  

Put. transposase  

Hypothetical protein  

Put. phage transcriptional 
regulator/Put. excisionase,  

Put. sm
all heat shock protein Hsp-20  

Put. ATPase w
ith chaperone activity, 

clpB  

Hypothetical protein  

ypothetical protein 

Hypothetical protein  

Put. sm
all heat shock protein Hsp-20  

Put. YfdX fam
ily  

 Put. YfdX fam
ily 

Put. conservative transm
em

brane 
protein, H

deD  

Conserved Hypothetical protein  

Put. thioredoxin  

Put. sodium
/hydrogen exchanger 

Put. conserved hypotetical protein 

Put. peptidase M
48  

Put. DegP2 peptidase  

Put. transposase  

Put. transposase IS4 fam
ily 

Put. transposase fragm
ent 

1221 4/4 + - - - - - - - - - - - - - - - - - - + + - 

721 4/4 + - - - - - - - - - - - - - - - - - - + - - 

701 4/4 + - + + + + + - - - - - - - - - + + - - - + 

767 4/4 + - + + + + + - - - - - - - - - + + - - - - 

377 4/4 + + + + + + + - - - - - - - - - + + - - - - 

1587 109/4 + + + + + + + - - - - - - - - - + + - - - - 

SP291 4/4 + + + + + + + - - - - - - - - - + + - - - - 

553 4/4 + - + + + + + - - - - - - - - - + + - - - - 

1231 4/4 + - + + + + + - - - - - - - - - + + - - - - 

4 4/4 + + + + + + + + + + + + + + + + + + - + + + 

6 4/4 + + + + + + + + + + + + + + + + + + - + + + 

20 4/4 + + + + + + + + + + + + + + + + + + + + + + 

557 4/4 + + + + + + + + + + + + + + + + + + + + + + 

558 4/4 + + + + + + + + + + + + + + + + + + + + + + 

1219 4/4 + + + + + + + + + + + + + + + + + + - + + + 

1220 4/4 + + + + + + + + + + + + + + + + + + - + + + 
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Table 3. 4 continued 

Strain ST/CC 
orfT
5 

orfT
4 

orf
A orfB orfC orfD orfE orfF orfG orfH orfI orfJ orfK orfL 

orf
M orfN orfO orfP orfQ 

orfT
3 

orfT
2 

orfT
1 

  

Put. transposase  

Put. transposase  

Hypothetical protein  

Put. phage transcriptional 
regulator/Put. excisionase,  

Put. sm
all heat shock protein Hsp-20  

Put. ATPase w
ith chaperone activity, 

clpB  

Hypothetical protein  

Hypothetical protein 

Hypothetical protein  

Put. sm
all heat shock protein Hsp-20  

Put. YfdX fam
ily  

Put. YfdX fam
ily 

Put. conservative transm
em

brane 
protein, H

deD  

 Conserved Hypothetical protein  

Put. thioredoxin  

Put. sodium
/hydrogen exchanger 

Put. conserved hypotetical protein 

Put. peptidase M
48  

Put. DegP2 peptidase  

Put. transposase  

Put. transposase IS4 fam
ily 

Put. transposase fragm
ent 

1225 4/4 + + + + + + + + + + + + + + + + + + - + + + 

1240 4/4 + + + + + + + + + + + + + + + + + + - + + + 

1 8/8 + + + + + + + + + + + + + + + + + + + + + + 

696 12 + - + + + + + - - - - - - - - - + + - - - + 

5 8/8 + - - - - - - - - - - - - - - - - - - - - - 

680 8/8 + - - - - - - - - - - - - - - - - - - - - + 

140 
40/14
0 + - - - - - - - - - - - - - - - - - - - - - 

150 16/16 + - - - - - - - - - - - - - - - - - - - - - 

520 12 + - - - - - - - - - - - - - - - - - - - - - 

658 1/1 + - - - - - - - - - - - - - - - - - - - - + 

1218 1/1 + - - - - - - - - - - - - - - - - - - - - + 

1249 31 + - - - - - - - - - - - - - - - - - - - - - 

ES15 
125/1
00 + - - - - - - - - - - - - - - - - - - - - - 

978 3/3 + - - - - - - - - - - - - - - - - - - - - - 
orf = open reading frame, + = isolate containing an orf, - = isolate not containing an orf, % = refers to the percentage of CC4 or non-CC4 isolates positive for an orf , 
nd = not defined, put. = putative, the green shadowed are indicates orfhijk experimentally confirmed to be linked with thermotolerance after cloning in E. coli by 
(Gajdosova et al. 2011).  
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3.5.3.4 ACID RESISTANCE GENE  

In order to cause infection in neonates, bacterial cells should have the ability to grow in the 

acidified environment of the neonate’s gut. The extremely acidic environment of human 

stomach (pH 1-3) not only facilitates digestion of food but also act as a strong barrier against 

food borne-pathogens (Smith, 2003). Certain food borne-pathogens such as E. coli and 

Helicobacter pylori have the ability to survive this strong host defence and cause infection 

(Gordon and Small, 1993).  

A recent study by Alvarez-Ordonez et al. (2014) identified the ompR gene as a key player in 

response of C. sakazakii against highly acidic conditions (Alvarez-Ordonez et al. 2014). The 

ompR gene is a homologue of the gene ESA_04334 encoding for osmolarity response 

regulator (ompR). In this study, the genomes of 30 C. sakazakii strains were screened for 

the presence of ompR. The genomic analysis revealed that ompR was present in all C. 

sakazakii strain. The presence of ompR in all CC4 and non-CC4 strains suggested that it is 

not specific to CC4 (Table S1). In a parallel PhD study by Hana Sonbol, 7 CC4 strains (1221, 

701, 721, 1587, 1542, 1537, 1533) and 6 non-CC4 strains (658, 1536, 520, 696, 680 and 1) 

were assayed for their ability to resist exposure to pH3.5 for 2 hours. No significant 

difference between CC4 and non-CC4 isolates was observed as most of the isolates showed 

only a 2 log reduction after 2 hours exposure to pH 3.5 (Hana Sonbol, personal 

communications).  

3.5.3.5 BIOFILM AND CAPSULE FORMATION  

Biofilm formation together with stress response is crucial for bacteria to survive under 

stressful conditions. The present genome analysis detected a biofilm associated operon 

bcsBEFZ (encoding for cellulose biosynthesis) in C. sakazakii 377 genome (Masood et al. 

2013a), however no specific association of biofilm forming genes was attributed to C. 

sakazakii CC4 since bcsBEFZ homologues were noted in all C. sakazakii CC4 and non-CC4 

genomes. Similarly, Hartmann et al. (2010) showed that two hypothetical proteins 

(ESA_00281 and ESA_00282) and at least three flagellar genes flhE (ESA_01356), fliD 

(ESA_01287) and flgJ (ESA_02266) contribute to adhesion of C. sakazakii ES5; but present 

genomic analysis could not detect the association of these genes with any particular group 

of C. sakazakii as all of these genes were detected uniformly in both C. sakazakii CC4 and 

non-CC4 genomes (Table S1). A previous PhD study in our group showed  that both tested 
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C. sakazakii CC4 (4, 721, 1219, 1220, 1221, 1225, 1231, 1240, 767, 557, 558) and C. sakazakii 

non-CC4 isolates (1, 5, 658, 520, 1249) irrespective of their sequence type were able to form 

biofilms on soya based, casein and whey based formula, although variation in the degree of 

biofilm was observed at different temperatures and different milk formula (Nassrudin 

Rhouma 2012, unpublished data).  

The capsular polysaccharides on the surface of the bacterial cells can be important for their 

pathogenicity as well as for their interaction with environment (Joseph et al. 2012b; 

Caubilla-Barron et al. 2007). The capsule production and biofilm formation has been linked 

in Cronobacter (Caubilla-Barron et al. 2007). Approximately 25 kb long cluster of genes 

(ESA_01155-01175; wzABCKM) has been reported in Cronobacter encoding for colanic acid 

(Joseph et al. 2012b). The genomic interrogation in the present study revealed that this 

region as a whole was detected in majority of the CC4 and non-CC4 isolates; the exceptions 

were C. sakazakii CC4 isolates 1240 and 557 and non-CC4 isolates 140 and 696 where the 

region was partially present (Table S1). Moreover, in a previous PhD study, Nassrudin 

Rhouma tested 18 C. sakazakii CC4 isolates (767, 557, 558, 6, 4, 20, 1225, 721, 1220, 1222, 

1223, 1231, 1224, 1219, 553, 1221, 1240, 1242) and 11 C. sakazakii non-CC4 isolates (658, 

680, 5, 1, 520, 580, 1249, 1241, 1019, 555, 12) for capsule production on the milk agar. Of 

these strains, only 4 CC4 isolates (20, 1219, 1220, 1225) while 5 non-CC4 isolates (1, 5, 680, 

520, 1249) were negative for capsule production on milk agar; all of the remaining CC4 and 

non-CC4 isolates were able to produce capsule on the milk agar (Nassrudin Rhouma 2012, 

unpublished data). Hence, biofilm formation and capsule production cannot be regarded as 

a C. sakazakii CC4 specific phenomenon.   
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3.5.3.6 OSMOTOLERANCE ASSOCIATED TRAITS  

The predominance of C. sakazakii CC4 in PIF and PIF manufacturing environment suggests 

that this clonal lineage of C. sakazakii may have unique stress tolerance genes which favour 

its growth in PIF (aw of ~0.2) and the surrounding desiccated environment. A number of 

different osmotolerance genes have been described previously in Cronobacter and other 

Enterobacteriaceae, for example Feeney and colleagues (2014) described seven 

homologues of the Prop osmolyte uptake system; ESA_02131, ESA_01706, ESA_04214, 

ESA_pESA3p05450, ESA_01226, ESA_00673 and ESA_03328 in C. sakazakii BAA-894 

genome (Feeney et al. 2014). Another study by the same group identified homologues of E. 

coli genes TrkH, trkG, trkA, trkE, kdpA, kdpB, kdpC, kdpD, kdpE, phoP, phoQ, ompC, ompF, 

envZ and ompR associated with uptake of K+ which act as osmoprotectants as a primary 

response to osmotic stress (Feeney et al. 2011) . The present genomic analysis showed that 

most of these genes were uniformly present in C. sakazakii genomes proposing that 

osmotolerance may not be unique to CC4 but it is a common stress survival mechanism 

adapted by C. sakazakii (Figure 3.19; Table S1). 
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Figure 3. 17 Osmotolerance associated genes screening in C. sakazakii.  

The osmotolerance associated genes previously described in E. coli and C. sakazakii were screened in 30 C. sakazakii strains for the presence of their homologues. 
The figure is a graphical representation indicating the difference in the percentage of CC4 (n=18) and non-CC4 (n=12) strains positive for the tested genes. Most of 
the genes were predominantly present across both sus-sets of C. sakazakii. 
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3.5.4 IN SILICO SEROTYPING OF C. SAKAZAKII STRAINS  

In Gram-negative bacteria, the O-antigen is a highly divergent part of the lipopolysaccharide 

(LPS). The sugar residues present within the O-antigen region vary in their number and order 

which constitute a characteristic serotype (Mullane et al. 2008; Jarvis et al. 2011; Sun et al. 

2012). The O-antigen region in Cronobacter consists of two conserved genes UTP glucose-

1-phosphate uridylyltransferase subunit (galF) and dTDP-D-glucose-4, 6-dehydratase (rfbB) 

while the rest of the genes are divergent in this genus (Kucerova et al. 2010; Joseph et al. 

2012b). To date at least 17 different serotypes have described in Cronobacter of which 

seven O-antigen types (O:1-O:7) have been described in C. sakazakii (Mullane et al. 2008; 

Jarvis et al. 2011, 2013; Sun et al. 2012) (Table 3.5).  

Table 3. 5 Defined serotypes in Cronobacter sakazakii 

No O-antigen  Isolate Accession  Length (bp)  Reference 

1 O:1 C. sakazakii strains NCTC 8155 EU076545 12875  Mullane et al. 2008 

2 O:2 C. sakazakii strains NCTC 11468 EU076546 12868  Mullane et al. 2008 

3 O:3 C. sakazakii 2156 HQ646168 13701  Jarvis et al. 2011 

4 O:4 C. sakazakii strain G2594  JQ674747 11887  Sun et al. 2012 

5 O:5  C. sakazakii strain G2706  JQ674748 12303  Sun et al. 2012 

6 O:6 C. sakazakii strain G2704  JQ674749 7388  Sun et al. 2012 

7 O:7 C. sakazakii strain G2592  JQ674750 8932  Sun et al. 2012 

 

Given the high clinical significance of neonatal meningitis, it was of interest whether the O-

antigen region could provide a unique clonal signature for C. sakazakii CC4 strains. In order 

to compare the O-antigen region of C. sakazakii strains used in this study, the genomic 

regions corresponding to 7 defined serotypes were obtained from Genbank (Table 3.5) and 

compared against all 30 C. sakazakii genomes used in this study using Cronobacter BLAST 

and ACT. The results of the genomic comparison indicated that 30 C. sakazakii isolates 

belonged only to 4 serotypes i.e. O:1-O:4. The most significant observation in this analysis 

was that except for one CC4 isolate 1240, all of the remaining 17 CC4 isolates were found 

to be O:2 serotype. The CC4 isolate 1240 showed complete alignment with O:4. 

Nevertheless, the O:2 serotype was not unique to CC4 as two of the non-CC4 isolates 978 

(ST3) and 1249 (ST31) were also O:2. Hence, although O:2 was found to be the dominant 

serotype in CC4, yet it was not exclusive to CC4. Moreover, the O:2 cannot be termed as 
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unique signature for neonatal meningitis, as two of the fatal meningitic non-CC4 isolates 

658 and 1218 belonged to O:1 serotype (Table 3.5). Furthermore, the data analysis by an 

independent genomic data analysis of 107 Cronobacter isolates in Cronobacter PubMLST 

has indicated that the O:2  is the dominant serotype in C. sakazakii  isolates  belonging to at 

least 19 different sequence types (STs; 4, 15 ,109, 218, 64, 268, 261, 267, 22, 282, 31, 287, 

12,17, 50, 262, 13, 86, 3) (Khaled Ibrahim, personal communications; unpublished data). 
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Table 3. 6 Serotypes designation to C. sakazakii CC4 strains based on the genomic comparison  

Isolate 
% 

identity 
Alignment 

length Reference 
Reference Length 

(bp) 
Designated 

serotype ST CC 
 

1 100* 12875 EU076545 12875 O:1 8 8  

5 100* 12875 EU076545 12875 O:1 8 8  

680 100* 12875 EU076545 12875 O:1 8 8  

150 100* 12875 EU076545 12875 O:1 16 16  

1218 97.54 13018 EU076545 12875 O:1 1 1  

658 99.05 12876 EU076545 12875 O:1 1 1  

ES15 99.05 12876 EU076545 12875 O:1 125 100  

1220 98.65 12956 EU076546 12868 O:2 4 4  

767 99.33 12914 EU076546 12868 O:2 4 4  

377 100 12868 EU076546 12868 O:2 4 4  

558 99.99 12868 EU076546 12868 O:2 4 4  

1587 99.98 12868 EU076546 12868 O:2 109 4  

553 100* 12868 EU076546 12868 O:2 4 4  

SP291 100 12868 EU076546 12868 O:2 4 4  

1219 100* 12868 EU076546 12868 O:2 4 4  

1220 100* 12868 EU076546 12868 O:2 4 4  

1221 100* 12868 EU076546 12868 O:2 4 4  

1225 100* 12868 EU076546 12868 O:2 4 4  

1231 100* 12868 EU076546 12868 O:2 4 4  

6 100* 12868 EU076546 12868 O:2 4 4  

20 100* 12868 EU076546 12868 O:2 4 4  

4 100* 12868 EU076546 12868 O:2 15 4  

701 100* 12868 EU076546 12868 O:2 4 4  

721 100* 12868 EU076546 12868 O:2 4 4  

978 100* 12868 EU076546 12868 O:2 3 3  

1249 100* 12868 EU076546 12868 O:2 31 31  

520 100* 13701 HQ646168 13701* O:3 12   

696 99.85 11886 JQ674747 11887 O:4 12   

1240 99.02 11979 JQ674747 11887 O:4 4 4  

140 99.76 11900 JQ674747 11887 O:4 40 45  

ST; Sequence type, CC; Clonal complex, bp; base pair, *; Based on ACT comparison 

 

 

 

 

 



  Chapter 3 

102 
 

3.5.5 IN SILICO PLASMID PROFILING  

Whole genome sequencing of C. sakazakii BAA-894 and C. turicensis revealed that their 

genomes possess repFIB like plasmids, pESA3 (131 kb) and pCTU1 (138 kb) which are almost 

similar in size. These plasmids have been regarded as virulence plasmids (Kucerova et al. 

2010; Franco et al. 2011a). Both of these plasmid share a common backbone and differ only 

in a few traits. Both plasmids possess a repFIB replication origin gene (repA), iron acquisition 

system eitCBAD and iucABCDE/iutA (section 3.4.2.10) and a Cronobacter plasminogen 

activator (cpa) (section 3.4.2.6). In addition pESA3 contains a 17 kb T6SS (section 3.4.2.8) 

while pCTU1 contains a 24 kb FHA locus (section 3.4.2.4) (Franco et al. 2011a). These traits 

have already been investigated independently in this chapter. No antibiotic resistance 

associated traits were found on these plasmids. It was important to screen C. sakazakii 

genomes analysed in this study for the presence of full length plasmids and to observe if 

there is any variation between C. sakazakii CC4 and non-CC4 genomes regarding the 

presence of full length plasmid.  

3.5.5.1 ALIGNMENT OF pESA3 PLASMID WITH C. SAKAZAKII GENOMES  

The 131 kb plasmid pESA3 was aligned against 18 C. sakazakii CC4 and 11 C. sakazakii non-

CC4 genomes (please note that the C. sakazakii BAA-894 was excluded since the reference 

plasmid belongs to this strain) using Blast Ring Image Generator (BRIG) (Figure 3.20). The 

BRIG alignment indicated that the plasmid was completely absent only in one C. sakazakii 

CC4 strain 6 while it was completely absent from two of the C. sakazakii non-CC4 isolates; 

ES15 and 520. This finding is consistent with the laboratory based plasmid profiling in a 

parallel PhD study by Sumyya Hariri. The plasmid profiling experiment performed by 

Sumyya Hariri included 23 sequenced isolates (analysed in the present study) of which only 

strains 6 and 520 appear to lack plasmid, (please note that isolate ES15 was accessed from 

Genbank and is not present in our culture collection) (Sumyya Hariri; personal 

communications, unpublished data). In addition one C. sakazakii CC4 isolate 557 while two 

non-CC4 isolates 1 and 680 contained only partial length pESA3 plasmid; the CC4  isolate 

557 showed homology with only ~90 kb while non-CC4 isolates 1 and 680 showed homology 

with only ~70 kb region of pESA3 plasmid. The C. sakazakii non-CC4 isolate 696 showed 

interspersed homology across the length of the pESA3 plasmid which is likely to be the 

sequencing or genome assembly artefact; please note this genome was accessed from the 
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Genbank and was not sequenced as part of the present study (Table 3.1). Approximately 10 

kb region consisting of 10 hypothetical proteins (ESA_pESA3p05493 to ESA_pESA3p05504) 

was found to be largely missing in a majority of the C. sakazakii CC4 and non-CC4 isolates. 

This region has also been investigated previously as one of the T6SS system clusters in 

section (section 3.4.2.8). It remains unclear as to why this region has been lost from most 

of the C. sakazakii plasmids. An important finding in this analysis was that C. sakazakii CC4 

strain 6 completely lacked the plasmid pESA3; interestingly this strain has been found to be 

low invasive on BMEC using in vitro tissue culture studies by Faisal Almajed as part of his 

PhD study (personal communications; unpublished data). The detailed comparative 

genomic analysis of high and low invasive C. sakazakii genomes is presented in chapter 7. 

In addition, a starvation sensing protein encoded by the rspA gene (ESA_pESA3p05434) was 

absent only in the isolates which either completely or partially lack the pESA3 plasmid i.e. 

6, 557, 520, 680, 1 and ES15 (Table S1).  

In brief, the pESA3 plasmid showed variable presence across CC4 and non-CC4 isolates; the 

plasmid was missing completely in one CC4 isolate 6 and two non-CC4 isolates 520 and ES15. 

The CC4 isolate 557 and non-CC4 isolates 1 and 680 only contained partial length pESA3 

plasmid.  
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Figure 3. 18 BRIG alignment of the pESA3 plasmid with C. sakazakii isolates. 

 The image above represents the alignment of the pESA3 plasmid (131 kb) with 18 C. sakazakii CC4 (red 
rings) and 11 C. sakazakii non-CC4 (purple rings). The legend on the left hand side of the figure indicates 
ring for each isolate. The central solid black circle represent the reference plasmid backbone, the second 
and third rings from inside out represent the GC contents and GC skew respectively. The red coloured 
rings No. 4-21 from inside out represent the CC4 isolates 1219, 1220, 1221, 1225, 1231, 1240, 1587, 20, 
377, 4, 553, 557, 558, 6, 721, 767, 701 and SP21 respectively. A large T6SS associated region can be seen 
missing in most C. sakazakii CC4 (except isolate 553).The purple coloured rings No. 22-32 from inside out 
represent isolates 1249, 1, 1218, 140, 520, 978, 150, 680, 696, ES15 and 5 respectively.  

The BRIG alignment with plasmid pCTUI (138 kb) also revealed a similar pattern as with 

pESA3 (Figure S2), reassuring that both of these plasmids share a similar backbone. 

Additional 27 kb FHA region encoded on the plasmid pCTU1 has been investigated in section 

3.4.2.4.
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3.5.6 SCREENING OF THE NEONATAL MENINGITIC ESCHERICHIA COLI (NMEC) 

VIRULENCE DETERMINANTS IN C. SAKAZAKII 

Amongst the bacterial pathogens causing neonatal meningitis, E. coli remains the second 

most common cause after group B streptococci (GBS) (Bonacorsi & Bingen, 2005; May, 

2005). Majority of the NMEC strains belong to the E. coli phylogenetic group B2 and are 

distributed in a few clones (Bonacorsi & Bingen, 2005). Amongst the NMEC E. coli, strains 

having K1 capsule are predominant and represent approximately 80% of the NMEC 

associated cases (Glode et al. 1977; Kim et al. 1992). The O18:K1:H7 is considered to be the 

most common clone of NMEC and is distributed worldwide while other clones such as 

O83:K1 and O45:K1 are restricted to only specific parts of the world (Bonacorsi & Bingen, 

2005). Over the years, considerable progress has been made to understand the pathogenic 

mechanism of E. coli K1, but the virulence associated determinants described in E. coli K1 

are not sufficient to understand their virulence potential in the global context. The E. coli 

K1 is associated predominantly with neonatal meningitis which is induced by a complicated 

multistage process (Kim, 2001, 2002). This involves the colonisation of the gastrointestinal 

tract (GIT), mucous membrane translocation, intravascular space invasion, survival and 

multiplication. Once a threshold level for bacteraemia is reached then the bacteria 

penetrates the blood brain barrier (BBB) and invades the central nervous system (CNS) 

(Dietzman, 1974; Kim, 2001). The entry of the bacteria into CNS causes an increased 

movement of the white blood cells across BBB (pleocytosis) as well as release of toxic and 

pro-inflammatory compounds ultimately leading to meningitis; a swelling of meninges 

which provides protective covering to brain and spinal cord (Dietzman, 1974; Kim, 2001, 

2002). A number of virulence associated determinates have been described in E. coli K1 of 

which ompA and ibe proteins, Asla, TraJ and cnf1 genes are considered essential for its 

virulence mechanism which include transversal of BBB and in vitro invasion of HMBEC 

(Bonacorsi & Bingen, 2005). In addition, more recently, the plasmid of E. coli K1 S88 strain 

has been associated with high level of bacteraemia in neonatal meningitic rat model (Peigne 

et al. 2009). Since the present study was focused on screening the virulence associated traits 

in neonatal meningitic C. sakazakii CC4, it was therefore important to analyse whether 

these virulence associated traits which have been described in E. coli K1, are also present in 

the genomes of C. sakazakii and to determine if any of these traits are specific to C. sakazakii 

CC4.  
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The variation of C. sakazakii CC4 for ompA at the nucleotide and amino acid level has been 

covered in section 3.4.2.3. The E. coli K1 traits including aslA gene, the ibe proteins, TraJ and 

cnf1 were screened in C. sakazakii genomes and have been discussed here.  

3.5.6.1 The aslA gene 

A study by Hoffman et al. (2000) elucidated the role of aslA (encoding for the arylsulfatase 

enzymes which contain highly conserved sulfatase motifs). The mutants of the aslA gene 

constructed in their study by targeted gene disruption and gene deletion showed reduced 

invasion of the HBMEC in vitro and in vivo. The genomes of 30 C. sakazakii genomes in this 

study were screened for the presence of this gene, however the gene was detected in none 

of the C. sakazakii isolates (Table 3.7, Figure 3.21).  

3.5.6.2 The ibes proteins  

A number of studies based on the transposon mutagenesis, gene deletion and 

complementation have revealed the ibe proteins which include ibeA, ibeB and ibeC are 

involved in the invasion of HMBMEC in E. coli K1, of these ibeA gene was reported specific 

to E. coli K1 while ibeB and ibeC have homologues p77211, yijP in E. coli K12 (Huang et al. 

1999; Wang et al. 1999; Huang et al 2001, Wang & Kim, 2002). The ibeA, ibeB and ibeC gene 

screening in C. sakazakii genomes revealed that ibeA and ibeC were not detected in any of 

the C. sakazakii isolates while ibeB was detected in 83% and 50% of C. sakazakii CC4 and 

non-CC4 isolates respectively (Figure 3.21).  However, the BLASTx analysis of the ibeB gene 

against Cronobacter revealed homology against the copper/silver efflux system outer 

membrane protein CusC (ESA_04239) in C. sakazakii 658, and has already been covered in 

section 3.4.2.9. This could be due to the sequence similarities between these two genes. 

Furthermore, the absence of the ibeB homologue in C. sakazakii i.e. CusC in clinically 

significant C. sakazakii CC4 and non-CC4 isolates such as strains 20, 721 and 1249 indicates 

that it may not be essential towards the virulence of C. sakazakii in general and C. sakazakii 

CC4 in particular.   

3.5.6.3 The TraJ gene 

A study by Hill and colleagues (2003) demonstrated the role of Traj in the E. coli K1 virulence. 

Their study indicated that the TraJ mutants were less virulent than the wild type and 

showed reduced ability to disseminate from the mesenteric lymph nodes tissue to the 
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deeper tissue of the spleen and liver. Moreover, their study also indicated that TraJ 

contributes  towards the macrophage survival and therefore to the intracellular nature of 

the E. coli K1 as TraJ mutants were less frequently internalized by macrophages as 

compared to the wild type (Hill et al. 2003). The TraJ of E. coli K1 was screened in C. sakazakii 

genomes for the presence of its homologue, however it was not detected in any of the C. 

sakazakii genomes (Table 3.7, Figure 3.21).  

3.5.6.4 The cytotoxic necrotising factor 1 

The cytotoxic necrotising factor 1 (cnf1) has been reported to play a role towards the 

invasion of BMECs in E. coli K1. A study by Khan et al. (2002) has shown that cnf1 contributed 

towards the invasion of BMECs in vitro through modulation of the cytoskeletal 

rearrangements by activating RhoA and penetration of the central nervous system in vivo 

(Khan et al. 2002). The gene sequence of cnf1 was screened in C. sakazakii genomes using 

Cronobacter BLAST for the presence of its homologue, however none of the isolates 

indicated its presence (Table 3.7, Figure 3.21).  

 

Figure 3. 19 The E. coli K1 virulence associated gene screening in C. sakazakii strains.  

The homologues of the aslA, IbeA, IbeB, IbeC, TraJ and cnf1. The chart represents the percentage of the 
CC4 (n=18) and non-CC4 (n=12) positive C. sakazakii isolates for the presence of the genes. Except for 
IbeB, none of the homologue was not detected in any of the C. sakazakii genomes.  
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Table 3. 7 E. coli K1 virulence associated genes screening in C. sakazakii. 

  E. coli K1 
gene 

aslA IbeA IbeB* IbeC TraJ cnf1 

  Access. AAG10151 AAF98391 AAD30205 AAD28716 AAA92657 CAA50007 

  Putative  
Function 

Invasion Invasion Invasion Invasion Macrophage 
survival 

Invasion 

  Ref. Hoffman et al. 
2000 

Huang et 
al. 2001 

Huang et 
al. 2001 

Wang et al. 
1999 

Hill et al. 
2003 

Falbo et al. 
1993, Khan 
et al. 2002 

C. 
sakazakii 
isolate  

ST CC       

6 4 4 - - + - - - 

20 4 4 - - - - - - 

377 4 4 - - + - - - 

553 4 4 - - + - - - 

557 4 4 - - + - - - 

558 4 4 - - + - - - 

701 4 4 - - + - - - 

721 4 4 - - - - - - 

767 4 4 - - + - - - 

1219 4 4 - - + - - - 

1220 4 4 - - + - - - 

1221 4 4 - - - - - - 

1225 4 4 - - + - - - 

1231 4 4 - - + - - - 

1240 4 4 - - + - - - 

1587 109 4 - - + - - - 

SP291 4 4 - - + - - - 

4 15 4 - - + - - - 

1 8 8 - - + - - - 

5 8 8 - - + - - - 

680 8 8 - - + - - - 

140 40 45 - - - - - - 

150 16 16 - - - - - - 

658 1 1 - - + - - - 

1218 1 1 - - + - - - 

520 12  - - - - - - 

696 12  - - + - - - 

978 3 3 - - - - - - 

1249 31 nd - - - - - - 

ES15 125 100 - - - - - - 

ST; Sequence Type, CC; Clonal Complex; * CusC homologue in C. sakazakii, Access.; Accession,  
Ref.; Reference 
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3.5.6.5 NEONATAL MENINGITIC E. COLI K1 PLASMID PECOS88 IN C. SAKAZAKII 

GENOMES  

Similarly, the plasmid PECOS88 (accession. CU928146), a homologue of the pAPEC-O2-R 

plasmid in Escherichia coli strain S88 which according to Peigne and colleagues (2009) was 

linked with high level of bacteraemia in a neonatal meningitic rat model was also aligned 

against all C. sakazakii genomes, however the whole length homologue was not detected 

in any of the isolate (Figure 3.22). The putative virulence genes located on the PECOS88 

included three different iron uptake systems; salmochelin (iroBCDEN), aerobactin (iucABCD 

and iutA) and the sitABCD genes (Johnson et al. 2006; Sabri et al. 2006). Additional virulence 

associated traits included an iss gene involved in compliment resistance by providing 

increased serum survival (Chuba et al. 1989). Type 1 secretion system (T1SS) genes etsABC 

(Johnson et al. 2006), an outer membrane protease ompT (Stumpe et al. 1998) and a 

haemolysin encoding gene hlyF (Morales et al. 2004). However, the BRIG alignment (Figure 

3.22) showed that the whole length homologue of the plasmid PECOS88 was not present in 

any of the C. sakazakii genome being analysed in this study. Further investigation by 

WebACT and Cronobacter indicated that except for the homologues of iron uptake 

aerobactin (iucABCD and iutA) which was detected in most of the C. sakazakii genomes; iron 

uptake system associated genes have been analysed in more detail (section 3.4.2.1), none 

of the homologue of the above mentioned virulence associated trait was detected in C. 

sakazakii genomes. Additionally a partial homologue of the IroN, salmochelin siderophore 

receptor and several homologues of transposes were noted in most of the C. sakazakii 

genomes (Figure 3.22).
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Figure 3. 20 BRIG alignment of the PECOS88 plasmid with C. sakazakii isolates.  

The image above represents the alignment of the PECOS88 plasmid with 18 C. sakazakii CC4 (red rings) 
and 12 C. sakazakii non-CC4 (purple rings). The legend on the left hand side of the figure indicates ring 
for each isolate. The central solid black circle represent the reference plasmid backbone, the second and 
third rings from inside out represent the GC contents and GC skew respectively.  

In brief, majority of the E. coli K1 virulence associated traits investigated here were not 

detected in most of the C. sakazakii CC4 and non-CC4 genomes.  
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 GENERAL DISCUSSION AND CONCLUSION 

The predominant association of C. sakazakii CC4 with neonatal meningitis has been 

established strongly. In addition to its association with neonatal meningitis, this clone has 

been frequently isolated from powdered infant formula (Joseph & Forsythe, 2011; Hariri et 

al. 2013; Sonbol et al. 2013). An attempt was made in the study presented in chapter 3 to 

exhaustively screen previously described virulence and environmental fitness associated 

traits in the sequenced C. sakazakii isolates.  

The whole genome alignment and phylogeny of 30 C. sakazakii genomes (Table 3.1) 

revealed a close clustering of 18 C. sakazakii CC4 genomes (Figure 3.3). This indicated a 

strong clonal nature of this lineage, as 18 CC4 genomes were isolated from 9 different 

countries over 6 decades. This observation fabricated a strong base for the investigation at 

the genomic level to reveal the traits responsible for the uniqueness of this lineage.  

In order to cause infection such as meningitis in neonates and infants, it is a prerequisite for 

a bacterial strain to cross a number of barriers before reaching the brain. After ingestion, it 

would need to colonise the neonate’s stomach and grow in highly acidic environment (~pH 

3.5). To enter blood circulation, the bacteria needs to attack the intestinal epithelial linings 

and therefore it must contain the necessary genetic information to encode invasion 

proteins. In order to reach to the brain, the organism would need to enter the systemic 

blood circulation where again it has to overcome the host defences such as the ability to 

survive within macrophages. Finally to get access to the brain it needs to cross the blood 

brain barrier (BBB) and once in the brain it should have the ability to acquire limited 

nutrients such as sialic acid in order to survive and grow (Wilson, 2002). Similarly, the 

frequent isolation of this important lineage and its increased isolation from powdered infant 

formula and its manufacturing environment warranted the investigation of the 

environmental fitness associated traits such as environmental stress resistance, 

thermotolerance, acid resistance, osmotolerance and biofilm formation. 

All of the above factors were taken into consideration and an exhaustive genome screening 

of the virulence associated genes previously identified in Cronobacter and neonatal 

meningitic E. coli K1 as well as environmental fitness associated traits, was undertaken in 

the sequenced C. sakazakii genomes. The aim was to identify unique CC4 specific trait. 

However none of traits investigated was found to be strictly CC4 specific. Two of the traits 
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which showed significant variation between CC4 and non-CC4 isolates was the dominant 

O:2 antigen serotype of C. sakazakii CC4 and the predominance of thermotolerance 

associated genes cluster (Gajdosova et al. 2011) in C. sakazakii CC4 genomes, however 

these traits could not be termed as “unique” to CC4 as non-CC4 isolates also have O:2 

serotype and no significant difference in the heat tolerance was observed between CC4 and 

non-CC4 in the laboratory assays performed in an independent study by Hana Sonbol.  

The analysis presented in this chapter on the virulence and environmental fitness associated 

traits suggested nearly equal spread of these traits across both groups. With few exceptions, 

the analysis at this stage suggests that both C. sakazakii CC4 and non-CC4 may have equal 

virulence potential as many of the traits were noted in both groups in almost equal 

proportion. Further genomic analysis using different approaches was undertaken to identify 

strictly C. sakazakii CC4 specific traits and is presented in chapters 4, 5 and 6.  
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 BACKGROUND 

As discussed earlier, the predominant association of C. sakazakii CC4 with neonatal 

meningitis and its prevalence in PIF and manufacturing environment is of great concern to 

neonatal health (Joseph & Forsythe, 2011; Hariri et al. 2013; Muller et al. 2013; Power et al. 

2013; Sonbol et al. 2013; Forsythe et al. 2014). This warranted investigation at the genomic 

level which forms the basis for the current PhD thesis. The whole genome phylogeny 

indicated that despite the geographical and temporal spread, C. sakazakii CC4 constitute a 

strong clonal group (Figure 3.3). Although some interesting variations were noted, yet the 

genome screening of 30 C. sakazakii isolates including C. sakazakii 18 CC4 and 12 C. 

sakazakii non-CC4 genomes for the virulence and environmental fitness associated traits 

which have been mentioned in previous studies, could not identify traits which could 

directly be linked specifically with virulence of C. sakazakii CC4 (chapter 3). The clonal 

nature of C. sakazakii CC4 and their dominance with neonatal infections warranted that 

there might be some traits unique to this lineage. Therefore, in order to take the 

investigation further, different comparative genome approaches were used in order to 

determine the genomic features responsible for the uniqueness of C. sakazakii CC4. The 

genomic analysis presented in this chapter was aimed primarily to identify the unique traits 

within C. sakazakii CC4 core genome. This involved construction of C. sakazakii CC4 and C. 

sakazakii non-CC4 core genomes and comparative genomics using online comparative 

genomic tool called Artemis Comparison Tool (ACT) (Carver et al. 2005).   
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 HYPOTHESIS  

C. sakazakii CC4 isolates have unique virulence or environmental fitness associated traits. 

 AIMS OF THE CHAPTER 

The main aim of the study presented in this chapter was to find out unique traits in C. 

sakazakii CC4 core genome; the analysis had following objectives.   

• Construction of C. sakazakii CC4 core genome based on 18 C. sakazakii CC4 genomes. 

• Construction of C. sakazakii non-CC4 core genome based on 12 C. sakazakii non-CC4 

genomes.  

• Compare the genome of C. sakazakii CC4 isolate 557 against non-CC4 isolate 658 

using a gene by gene search approach to list unique traits in CC4 isolate 557. 

• Using a three way ACT, align C. sakazakii CC4 genome 557 with C. sakazakii CC4 core 

genome and C. sakazakii non-CC4 core genome. 

• Check the presence or absence of the genes identified unique to C. sakazakii CC4 

isolate 557 in CC4 core genome and non-CC4 core genome. 

• List unique genes in C. sakazakii CC4 core genome.  

• Check the variation of the genes identified unique to C. sakazakii core genome in C. 

sakazakii pangenome.  

• Screen only the traits of interest in Cronobacter BLAST to observe their variation in 

107 Cronobacter genomes representing 7 Cronobacter species. 
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 METHODOLOGY 

4.4.1 CORE GENOME CONSTRUCTION 

The core genome construction involved aligning the genomes using Mugsy (Angiuoli & 

Salzberg, 2011). The aligned genomes were subjected to series of algorithms written in 

Python to extract the core genome (section 2.2.8.1, Appendix text 1.1). For C. sakazakii CC4 

core genome construction, the genomes of 18 C. sakazakii CC4 isolates were used while for 

non-CC4 core genome construction, the genomes of 12 C. sakazakii non-CC4 isolates were 

used (Table 3.1). The core genomes were annotated using Prokka (section 2.2.5).  

4.4.2 COMPARATIVE GENOME ANALYSIS  

The comparative genome analysis presented in this chapter was undertaken in 3 steps. 

1. Initially, the genome of C. sakazakii CC4 isolate 557 was chosen to compare against 

a C. sakazakii non-CC4 isolate 658. The rational for choosing C. sakazakii CC4 isolate 

557 amongst other CC4 isolates was that it was the earliest clinical isolate (1979) at 

the time this study was initiated. The C. sakazakii non-CC4 658 was chosen as 

representative C. sakazakii non-CC4 genome since it was the first finished C. 

sakazakii genome available publically (Kucerova et al. 2010). The comparison of 

isolate 557 against 658 was undertaken using ACT using a gene by gene search 

approach. The unique genes in C. sakazakii CC4 isolate 557 were listed.   

 

2. Once the unique genes in C. sakazakii CC4 isolate 557 were identified. Then using a 

three way ACT comparison, the genome of C. sakazakii CC4 isolate 557 was aligned 

against C. sakazakii CC4 core genome and C. sakazakii non-CC4 core genome, any 

trait present only in C. sakazakii CC4 isolate 557 and C. sakazakii core genome while 

absent from C. sakazakii non-CC4 core genome was designated as “unique in C. 

sakazakii CC4 core genome”. 

 
3. Once the traits were determined as unique to “C. sakazakii CC4 core genome”; these 

traits were then checked for their variation in pangenome of C. sakazakii isolates 

(n=30). For this purpose, the genome of each C. sakazakii isolate (Table 3.1) was 

checked manually using ACT for the presence or absence of these genes.  
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 RESULTS AND DISCUSSION 

4.5.1 THE C. SAKAZAKII CC4 CORE GENOME  

The C. sakazakii CC4 core genome was constructed using 18 C. sakazakii CC4 genomes 

(section 2.2.8.1). The core C. sakazakii CC4 genome consisted of 4497 coding sequences 

(CDS) or genes and was ~3.22 Mb in length (data not shown), representing a very large core 

genome size as compared to the average genome size of a CC4 genome (~4.5Mbp). The 

larger core genome is indicative of very low sequence diversity within this lineage. At least 

17% of the core CC4 genome consisted of hypothetical proteins of unknown function. Other 

genes encoded diverse range of functions which included but are not limited to starvation 

sensing proteins, multiple drug resistance proteins, penicillin binding proteins, fimbrial and 

flagellar proteins, general stress response proteins, glycine betaine/L-proline transport 

proteins, heat shock proteins, haemolysins and heme transport proteins, iron, zinc, nickel 

transport, ABC transporters, magnesium transport, methyl accepting chemotaxis proteins, 

transcriptional regulators and a large number of other housekeeping traits.  

4.5.2 THE C. SAKAZAKII NON-CC4 CORE GENOME  

The C. sakazakii non-CC4 core genome was constructed using 12 non-CC4 genomes (Table 

3.1) using Mugsy whole genome alignment followed by the series of scripts to extract the 

core genome (section 2.2.8.1, Appendix text 1.1). The C. sakazakii non-CC4 core genome 

was much smaller in size compared to C. sakazakii CC4 core genome consisting of ~1.59 Mb 

and 1807 CDS or genes (data not shown). The smaller core genome size is indicative of 

greater sequence diversity within C. sakazakii non-CC4 genomes, it was expected since 12 

non-CC4 genomes represented 8 different sequence types and at least 6 different clonal 

complexes in contrast to CC4 core genome which represented only 3 different sequence 

types and only one clonal complex (Table 3.1). The composition of the C. sakazakii non-CC4 

core genome indicated at least 50% of hypothetical proteins of unknown function. The 

remaining traits included a large number of housekeeping traits in addition to other traits 

belonging to diverse functional categories such as transcriptional regulators, multi drug 

resistance proteins, methyl accepting chemotaxis proteins, iron transport, fimbrial proteins, 

general stress proteins, nitrate reductases and ABC transporters, majority of which were 

also part of the C. sakazakii CC4 core genome.   
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Since the core genome analysis was based on the comparison of two genomes, It should be 

noted however that there are likely to be genes which are present in both of these isolates 

i.e. 557 and 658, however absent from the non-CC4 core genome.  

 

 

 

 

 

 

Figure 4. 1 Size comparison of C. sakazakii CC4 and C. sakazakii non-CC4 core genomes.  

C. sakazakii core CC4 and C. sakazakii non-CC4 genomes were constructed by Mugsy and post Mugsy 
scripts using 18 and 12 genomes respectively. The Y axis represents the genome sizes in base pairs (bp) 
for CC4 core genome (3224000 bp) and non-CC4 core genome (1597600 bp).   
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4.5.3 COMPARATIVE GENOME ANALYSIS  

The comparative genome analysis was undertaken as explained above (section 4.3.2). The 

initial genomic comparison of C. sakazakii CC4 isolate 557 against C. sakazakii non-CC4 

isolate 658 identified a total of 442 genes unique to C. sakazakii CC4 isolate 557; the large 

number of these traits included hypothetical proteins (234/442) of unknown function and 

phage associated traits (22/442) (Table S2). All of these 442 genes were screened using 

three way ACT comparison to shortlist only those genes which are present only in C. 

sakazakii CC4 isolate 557 and C. sakazakii CC4 core genome while absent from C. sakazakii 

non-CC4 core genome; hence designated as unique CC4 core genes (Figure 4.2).  

 

 

Figure 4. 2 Three way ACT comparison. 

The figure is an example showing the selection of genes unique to CC4 core genome. Only those traits 
were considered as unique to CC4 core genome which were present only in CC4 isolate 557 (top) and 
core CC4 genome (middle) while absent from non-CC4 core genome (bottom). 

Three way ACT genomic comparison indicated that out of 442 genes which were unique to 

C. sakazakii CC4 isolate 557 in comparison with C. sakazakii non-CC4 isolate 658, only 39 

genes were unique to C. sakazakii CC4 core genome (present in  C. sakazakii CC4 isolate 557 

and CC4 core genome but absent in C. sakazakii non-CC4 isolate 658) (Table 4.2). These 39 

genes included 12 hypothetical proteins. The BLASTx analysis for most hypothetical proteins 
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could not identify any functional relevance as hits with significant degree of homology also 

represented hypothetical proteins.  

In order to validate the above results, each of the 39 genes was checked manually in 30 C. 

sakazakii genomes to check their variation in the pan C. sakazakii genome (n=30; Table 3.1). 

Apart from their conservation in C. sakazakii CC4, most of the genes were also noticeable 

in C. sakazakii non-CC4 genomes with variable degree of presence and none of the genes 

was found absent in all C. sakazakii non-CC4 genomes (n=12) (Figure 4.3, Table 4.1). Of 

particular interest were 5 genes which were noted to be absent in majority of the C. 

sakazakii non-CC4 genomes (n=12). Four of these genes with locus_tag CSAK557_01621, 

CSAK557_01380, CSAK557_03949 and CSAK557_03870 encoded for the hypothetical 

proteins of unknown function while one gene with locus_tag CSAK557_02008 encoded for 

a metallo-beta-lactamase family protein (Table 4.1).  



  Chapter  4 

121 
 

 

Figure 4. 3 Variation of C. sakazakii CC4 core unique genes in 30 C. sakazakii isolates.  

The graph represents the variation of 39 unique genes in the core CC4 genome, across the pangenome of 30 C. sakazakii isolates. The X axis shows the genes while 
Y axis represents the percentage of non-CC4 isolates (n=12) positive for any gene.  
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Table 4. 1 Distribution of 39 C. sakazakii CC4 core unique genes in pan C. sakazakii genome (n=30) 

G
enes  

CSAK557
01621 

CSAK557_02008 

CSAK557_03180 

CSAK557_03870* 

CSAK557_03949 

papH_1 

papC_1 

sm
fA 

CSAK557_01630 

CSAK557_01631 

CSAK557_01632 

CSAK557_02432 

CSAK557_02433 

CSAK557_02434 

CSAK557_02974 

papD_2 

papH_2 

CSAK557_04785 

CSAK557_04786 

CSAK557_04787 

CSAK557_04788 

CSAK557_05013 

iolE_2 

CSAK557_05015 

iolG
_1 

iolG
_2 

iolD
 

iolC_2 

CSAK557_05020 

ybbH_3 

iolB_1 

CSAK557_05140 

apxlB_1 

apxlB_2 

CSAK557_05143 

CSAK557_05144 

CSAK557_05145 

CSAK557_05150 
CSAK557

05156 

Annotation  

H    M
etallo-beta-lactam

ase superfam
ily protein 

 H H H PAP fim
brial m

inor pilin protein precursor 
 O

M
 usher protein papC precursor 

 Fim
bria A protein precursor 

 Hothetical protein 

H H H H H H Chaperone protein papD precursor 

PAP fim
brial m

inor pilin protein precursor 

putative fim
brial subunit SteE 

putative m
inor fim

brial subunit StfF 

M
ajor M

R/P fim
bria protein precursor 

O
-antigen ligase RfaL 

H Inosose dehydratase 
 Hydroxypyruvate isom

erase 

Inositol 2-dehydrogenase 

Inositol 2-dehydrogenase 

trihydroxycyclohexane-1,2-dione hydrolase 

5-dehydro-2-deoxygluconokinase 

Hothetical protein 

putative HTH-type transcriptional regulator 

5-deoxy-glucuronate isom
erase 

T1SS m
em

brane fusion protein, HlyD  
 RTXI toxin determ

inant B 

RTX-I toxin determ
inant B 

Hothetical protein 

O
M

channel protein 

TISS O
M

 protein, TolC fam
ily 

H H 

Str.                                        

6 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

20 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

377 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

553 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

557 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

558 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

701 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

721 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

767 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

1219 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

1220 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
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Table 4.1 continued   CSAK557
01621 

CSAK557_02008 

CSAK557_03180 

CSAK557_03870* 

CSAK557_03949 

papH_1 

papC_1 

sm
fA 

CSAK557_01630 

CSAK557_01631 

CSAK557_01632 

CSAK557_02432 

CSAK557_02433 

CSAK557_02434 

CSAK557_02974 

papD_2 

papH_2 

CSAK557_04785 

CSAK557_04786 

CSAK557_04787 

CSAK557_04788 

CSAK557_05013 

iolE_2 

CSAK557_05015 

iolG
_1 

iolG
_2 

iolD
 

iolC_2 

CSAK557_05020 

ybbH_3 

iolB_1 

CSAK557_05140 

apxlB_1 

apxlB_2 

CSAK557_05143 

CSAK557_05144 

CSAK557_05145 

CSAK557_05150 
CSAK557

05156 

 H M
etallo-beta-lactam

ase superfam
ily protein 

 H H H PAP fim
brial m

inor pilin protein precursor 
 O

M
 usher protein papC precursor 

 Fim
bria A protein precursor 

 Hothetical protein 

H H H H H H Chaperone protein papD precursor 

PAP fim
brial m

inor pilin protein precursor 

putative fim
brial subunit SteE 

putative m
inor fim

brial subunit StfF 

M
ajor M

R/P fim
bria protein precursor 

O
-antigen ligase RfaL 

H Inosose dehydratase 
 Hydroxypyruvate isom

erase 

Inositol 2-dehydrogenase 

Inositol 2-dehydrogenase 

trihydroxycyclohexane-1,2-dione hydrolase 

5-dehydro-2-deoxygluconokinase 

Hothetical protein 

putative HTH-type transcriptional regulator 

5-deoxy-glucuronate isom
erase 

T1SS m
em

brane fusion protein, HlyD  
 RTXI toxin determ

inant B 

RTX-I toxin determ
inant B 

Hothetical protein 

O
M

channel protein 

TISS O
M

 protein, TolC fam
ily 

H H 

1221 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

1225 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

1231 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

1240 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

4 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

1587 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

SP291 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

658 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

1218 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

978 + - + - - - - - + + + + + + - - - - - - - - - - - - - - - - - + + + + + + + + 

1 - - - - - + + + + + + - - - + + + + - - + + + + + + + + + + + + + + + + + - - 
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*CSAK557_03870 is an homologue of the CSSP291_18210, H; Hypothetical protein, Str.;  Strain, Red font colour indicate CC4 isolates while purple  font colour show 
non-CC4 isolates. 

Table 4.1 continued  CSAK557
01621 

CSAK557_02008 

CSAK557_03180 

CSAK557_03870* 

CSAK557_03949 

papH_1 

papC_1 

sm
fA 

CSAK557_01630 

CSAK557_01631 

CSAK557_01632 

CSAK557_02432 

CSAK557_02433 

CSAK557_02434 

CSAK557_02974 

papD_2 

papH_2 

CSAK557_04785 

CSAK557_04786 

CSAK557_04787 

CSAK557_04788 

CSAK557_05013 

iolE_2 

CSAK557_05015 

iolG
_1 

iolG
_2 

iolD
 

iolC_2 

CSAK557_05020 

ybbH_3 

iolB_1 

CSAK557_05140 

apxlB_1 

apxlB_2 

CSAK557_05143 

CSAK557_05144 

CSAK557_05145 

CSAK557_05150 
CSAK557

05156 

 H M
etallo-beta-lactam

ase superfam
ily protein 

 H H H PAP fim
brial m

inor pilin protein precursor 
 O

M
 usher protein papC precursor 

 Fim
bria A protein precursor 

 Hothetical protein 

H H H H H H Chaperone protein papD precursor 

PAP fim
brial m

inor pilin protein precursor 

putative fim
brial subunit SteE 

putative m
inor fim

brial subunit StfF 

M
ajor M

R/P fim
bria protein precursor 

O
-antigen ligase RfaL 

H Inosose dehydratase 
 Hydroxypyruvate isom

erase 

Inositol 2-dehydrogenase 

Inositol 2-dehydrogenase 

trihydroxycyclohexane-1,2-dione hydrolase 

5-dehydro-2-deoxygluconokinase 

Hothetical protein 

putative HTH-type transcriptional regulator 

5-deoxy-glucuronate isom
erase 

T1SS m
em

brane fusion protein, HlyD  
 RTXI toxin determ

inant B 

RTX-I toxin determ
inant B 

Hothetical protein 

O
M

channel protein 

TISS O
M

 protein, TolC fam
ily 

H H 

5 - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + - - 

680 - - - - - + + + + + + - - - + + + + - - + + + + + + + + + + + + + + + + + - - 

520 - + - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + 

696 - + - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + 

140 - - - - - + + + - - - + + + + + + - + - - + + + + + + + + + + + + + + + + + + 

150 + - - - + + + + - - - + + + - + + - - - + + + + + + + + + + + + + + + + + + + 

1249 - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ES15 - - - - - - - - - - - + + + - - - - - - - + + + + + + + + + + + + + + + + + + 
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4.5.3.1 THE HYPOTHETICAL PROTEIN CSAK557_01621 

The hypothetical protein CSAK557_01621 despite its presence in 100% of the C. sakazakii 

CC4 genomes was also noted in two non-CC4 isolates 978 and 150 (Table 4.1). No functional 

relevance could be designated to this hypothetical as the BLASTx hits also revealed 

hypothetical protein of unknown function. The analysis of the flanking region of the gene 

showed that it was flanked by hypothetical proteins and some housekeeping traits such as 

proline porter II and cytochrome b-561 (involved in vitamin c regeneration) (Figure 4.4). The 

presence of CSAK557_01621 next to prop_1 encoding for the proline porter II could be of 

significance as proline transport in bacteria has been associated with osmoregulation in 

bacteria such as E. coli K12 (Grothe et al. 1986; Milner & Wood, 1989). It has been well 

established that C. sakazakii are able to survive under very low water activity (aw of ~0.2) 

environments such as PIF (Barron & Forsythe, 2007). Therefore, one possibility could be the 

regulation of proline porter II by the hypothetical protein CSAK557_01621, however only 

future studies aimed at its characterisation could elucidate its precise role and its 

significance in C. sakazakii.  

 

 

 

Figure 4. 4 The flanking region of the hypothetical protein CSAK557_01621.  

The figure above represents the cropped section of the screen shot showing flanking region of the 
hypothetical protein CSAK557_01621 on the genome of C. sakazakii CC4 isolate 557 as viewed in Artemis 
using annotated EMBL file.  
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4.5.3.2 THE HYPOTHETICAL PROTEIN CSAK557_03180 

The hypothetical protein CSAK557_03180 which was conserved in 100% of the CC4 genome 

was also noted in only one non-CC4 genome 978. The BLASTx analysis indicated a hit against 

prophage protein in C. turicensis 564 (accession; CCJ90293), hence indicating that it is a 

phage acquired trait which has been carried by CC4 isolates.  

4.5.3.3 THE HYPOTHETICAL PROTEIN CSAK557_03949 

Besides 100% of CC4 genomes, the hypothetical protein CSAK557_03949 was also noted in 

two of the non-CC4 isolates 150 and 1249. The BLASTx analysis could not reveal any 

functional relevance for this gene. Moreover, the gene was also flanked by hypothetical 

proteins both upstream and downstream when the flanking region was examined on the 

genome of C. sakazakii isolate 557. Further characterisation may clarify the role of this 

hypothetical protein and its predominance in CC4.   

4.5.3.4 METALLO-BETA-LACTAMASE SUPERFAMILY PROTEIN (CSAK557_02008) 

Another gene unique in the core CC4 genome was CSAK557_02008 encoding for metallo-

beta lactamase superfamily protein. This was an important observation as β lactamase 

family proteins are important towards antibiotic resistance in bacteria. The gene was also 

noted in two of the non-CC4 isolates 520 and 680 both of which belong to ST12. Moreover, 

both of these ST12 strains have clinical origin (Table 3.1), therefore the initial observation 

was suggesting beta lactam resistance could be restricted to CC4 and ST12 lineages.  

4.5.3.5 THE HYPOTHETICAL PROTEIN CSAK557_03870 or CSSP291_18210 

One of the most important observation in the present analysis was the hypothetical protein 

CSAK557_03870 which was conserved in 100% of the C. sakazakii CC4 genomes (n=18) 

analysed in the present study while absent entirely from the C. sakazakii non-CC4 genomes 

(n=12). This was an important observation, since the aim of the present analysis was to 

detect such a trait which was uniformly present in CC4 while uniformly absent from non-

CC4 genomes.  

It must be noted that the hypothetical protein CSAK557_03870 in CC4 isolate 557 is an 

homologue of the hypothetical protein CSSP291_18210 in C. sakazakii CC4 isolate SP291, 

therefore from this point onwards, in order to avoid any confusion which may arise later in 
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this thesis (chapter 6), the hypothetical protein CSAK557_03870 will be called as 

“hypothetical protein CSSP291_18210”.  

In order to predict any functional relevance, the BLASTx analysis of CSSP291_18210 having 

nucleotide sequence length of 270bp and translated amino acid sequence length of 89 

amino acids was undertaken. One of the top BLASTx hit with significant degree of homology 

(identities = 73% (65/89) and 85% positives (76/89) was against a putative inner membrane 

protein of Enterobacter aerogenes (accession: YP_007387546).  

Another hit with far less homology (identities = 46% (57/87) and 62% positives (54/87) was 

against the “chain A, crystal structure of the type VI effector-immunity complex Ssp1-rap1a 

from Serratia marcescens” (accession; 4BI8_A). The flanking region of the CSSP291_18210 

was also analysed on the genome of C. sakazakii CC4 isolate 557 (Figure 4.5), however it 

was flanked both upstream and downstream by hypothetical proteins of unknown function.  

 

Figure 4. 5 The flanking region of the hypothetical protein CSSP291_18210  
The figure above represents the cropped section of the screen shot showing flanking region of the 
hypothetical protein CSSP291_18210 on the genome of C. sakazakii CC4 isolate 557 as viewed in Artemis 
using annotated EMBL file.  
 
Furthermore, an attempt was also made to obtain any additional functional and structural 

relevance for this hypothetical protein using an online protein prediction tool available at 

http://ppopen.informatik.tu-muenchen.de/ (Bigelow et al. 2004; Ofran & Rost, 2007; Hamp 

et al. 2013). Although, the translated amino acid sequence of the hypothetical protein 

CSSP291_18210 (89 amino acid) could not assign any functional category, its predicted 

secondary structure indicated at least 10 protein binding sites and one polynucleotide 

binding region (Ofran & Rost, 2007) (Figure 4.6). These binding sites could be important for 

its interaction with other proteins thereby modulating either virulence or other important 

physiological function. Although from the present analysis, the homology of 

CSSP291_18210 did not indicate any direct association with virulence, yet the BLASTx 

homology against the inner membrane protein and  the presence of the protein binding  

http://ppopen.informatik.tu-muenchen.de/
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sites on its predicted secondary structure could be of significance. However, these are just 

predictions and only the full characterisation of the hypothetical protein CSSP291_18210 

could describe its precise role and its importance in C. sakazakii CC4.  
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Figure 4. 6 The In silico protein prediction of hypothetical protein CSSP291_18210.  

The figure above represents the secondary structure prediction of CSSP291_18210 (89 amino acid long) using online protein prediction tool http://ppopen.informatik.tu-
muenchen.de/. The red squares with stalks represent the protein binding sites while the yellow circle with a stalk shows a polynucleotide binding region. The red, blue 
and yellow rectangles represent the helices, exposed and buried parts of the protein. The composition of the secondary structure and its solvent accessibility is 
represented by the pie-chart.  

http://ppopen.informatik.tu-muenchen.de/
http://ppopen.informatik.tu-muenchen.de/
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4.5.4 SCREENING OF THE SELECTED GENES IN 107 CRONOBACTER GENOMES USING 

CRONOBACTER BLAST  

During the later stages of the current PhD study (by the end of 3rd year), 107 Cronobacter 

genomes which also included 30 C. sakazakii genomes analysed in the present study (Table 

3.1) were made available at Cronobacter BIGsDB which has a BLAST facility. These 107 

genomes included 37 CC4 genomes (all of which were C. sakazakii) and 70 non-CC4 

genomes belonging to 7 different species of Cronobacter. 

(http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates&page=plugi

n&name=BLAST) (last accessed; 20th Feb 2015). Hence it provided an opportunity to screen 

any trait of interest against 107 Cronobacter genomes. 

This opportunity was utilised in the present study and 4 hypothetical proteins 

CSAK557_01621, CSAK557_03949, CSAK557_02008 and CSSP291_18210 which showed 

predominant presence in C. sakazakii CC4 (Table 4.1) were screened in 107 Cronobacter 

genomes which represent the entire Cronobacter genus. Please note that the 37 CC4 

genomes in Cronobacter BLAST were all C. sakazakii while the remaining non-CC4 genomes 

represented 7 different species of Cronobacter. The hypothetical protein CSAK557_03180 

was excluded since it was found to be the homologue of a phage associated trait.  

The Cronobacter BLAST analysis of the hypothetical protein CSAK557_01621 indicated that 

the gene was present in 100% of the CC4 isolates (n=37) while only 12 of the 70 Cronobacter 

spp. non-CC4 isolates (including isolates belonging to C. sakazakii, C. malonaticus, C. 

turicensis and C. dublinensis), showing significant variation (P < 0.05) (Table S3).  

The Cronobacter BLAST analysis of the hypothetical protein CSAK557_03949 also indicated 

that the gene was present in 100% of the CC4 isolates (n=37) while it was also noted in 13 

of 70 Cronobacter spp. non-CC4 genomes including C. sakazakii, C. dublinensis, C. turicensis, 

C. malonaticus and C. condimenti. The hypothetical protein CSAK557_03949 varied 

significantly between CC4 and non-CC4 isolates (P < 0.05). This observation indicates that 

although the CSAK557_03949 might be an essential part of the C. sakazakii core CC4 

genome yet it is also noticeable in the pangenome of Cronobacter spp. non-CC4 isolates. 

The Cronobacter BLAST analysis of the hypothetical protein CSAK557_02008 also indicated 

significant variation (P < 0.05) between CC4 and non-CC4 isolates. The gene encoding for 

http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates&page=plugin&name=BLAST
http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates&page=plugin&name=BLAST
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the metallo-β-lactamase indicated that despite its presence in 100% of the CC4 genomes 

(n=37) the gene was also noted in majority i.e. 42 of 70 Cronobacter spp. non-CC4 genomes 

representing all 7 species of Cronobacter. Hence, although an integral part of the core CC4 

genome, yet it is not exclusive to CC4 and its distribution across non-CC4 genomes does not 

signify its uniqueness in C. sakazakii CC4 core genome.  

For the hypothetical protein CSSP291_18210, interestingly the BLAST results indicated that 

100% of the CC4 genomes (n=37) present in the Cronobacter PubMLST were positive. On 

the other hand, it was detected only in 2 of 70 non-CC4 Cronobacter spp. genomes present 

in Cronobacter PubMLST, indicating significant variation (P < 0.05) between CC4 and non-

CC4 isolates. Two of the non-CC4 genomes which were positive for the hypothetical protein 

CSSP291_18210 included C. sakazakii 2051 (CC64) and C. malonaticus 685 (CC129).  

 

Figure 4. 7 Distribution of Clonal Complex 64 isolates in Cronobacter PubMLST. 

 

The analysis of the Cronobacter spp. isolates deposited in  Cronobacter PubMLST indicates 

that a total of 28 isolates belong to CC64, all of which were C. sakazakii. More importantly 

82 % (23/28) of the CC64 isolates were obtained from food including infant formula 

ingredients while 37 % (16/28) represented isolates obtained from infant formula (the 

information was true on 3rd Feb, 2015). Therefore, the increased association of CC64 with 

food, especially infant formula is alarming as isolates from this clonal complex may also pose 

a potential risk to neonatal health and immuno-compromised individuals due to their 

association with infant formula and food such as ready to eat food, respectively.  Whether 

Source distribution of the 28 CC64 isolates in Cronobacter PubMLST

Clinical Environment Food Water Infant formula
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the hypothetical protein CSSP291_18210 is also predominant in CC64 is not clear at the 

moment, since C. sakazakii 2051 represented the only sequenced CC64 isolate in the 

Cronobacter PubMLST. Hence, it is warranted that future studies also include isolates from 

CC64.  

On the other hand, C. malonaticus is another Cronobacter spp. which has been associated 

with adult infections (Joseph & Forsythe, 2012; Joseph et al. 2012a, b; Hariri et al. 2013). 

However, the hypothetical protein CSSP291_18210 was only found in 1 sequenced isolate 

of C. malonaticus 685 (CC129) amongst a total of 14 sequenced C. malonaticus isolates 

present in the Cronobacter PubMLST.  

From the present analysis, it is suggested that the hypothetical protein CSSP291_18210 is 

predominant in CC4 and 2 of the non-CC4 isolates positive for this hypothetical protein may 

represent the rare variants which could have acquired this protein through horizontal gene 

transfer. Full characterisation of this hypothetical protein is warranted in future studies 

which may reveal important insights towards its significance in CC4.  
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 GENERAL DISCUSSION AND CONLCUSION 

The analysis presented in this chapter was aimed primarily at the identification of unique 

traits in C. sakazakii CC4 with the hope to find a possible link with its virulence or 

environmental persistence. In order to achieve this, a comparative genomics approach 

based on the core genomes was used in the analysis presented in this chapter. The 

pangenome of a bacterial lineage is the combination of a core genome which is 

conventionally defined as those genes present in all strains, and an accessory genome which 

includes the genes absent from one or more strains (Tettelin et al. 2005; van Tonder et al. 

2014).  

The aim was to first shortlist only those traits which are unique to CC4 core genome and 

then validate their presence in the pangenome of C. sakazakii isolates. The core genomes 

of both CC4 and non-CC4 genomes were constructed by using Mugsy and post-Mugsy 

scripts (section 2.2.8.2, Appendix text 1.1). As compared to non-CC4 core genome, the core 

CC4 genome was much larger and was almost double its size (Figure 4.1). It must however 

be noted that defining a core genome is arbitrary and depends on the number and nature 

of the isolates used to construct a core genome; conventionally larger the number of 

isolates, smaller would be the core genome size (van Tonder et al. 2014). However, since 

the number of isolates used for the construction of CC4 core genome (n=18) were higher 

than non-CC4 (n=12), the large size of C. sakazakii CC4 genomes indicated a very low 

sequence diversity within this lineage. The observation was interesting as the C. sakazakii 

isolates used in the present analysis were geographically and temporally diverse; the 18 CC4 

isolates were obtained during the last 6 decades from at least 9 different countries of the 

world (Table 3.1). Yet their close homology to each other is of great significance. The larger 

core genome size further validates the clonality of CC4 isolates observed by whole genome 

phylogeny of 30 C. sakazakii isolates (Figure 3.3). On the other hand, the smaller core 

genome size for C. sakazakii non-CC4 could be explained by the variation in the isolates used 

to construct it; the 12 non-CC4 isolates represented at least 8 different STs and 6 different 

clonal complexes (CCs) contrary to CC4 core genome which represented only one CC and 

three STs. 
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The results of the current analysis were based on the comparative genomics between one 

CC4 isolate 557 and one non-CC4 isolate 658 which was undertaken using ACT. A total of 

442 genes were identified unique to CC4 isolate 557 (Table S2). To validate how many of 

these traits are unique to CC4 core genome; a three way ACT comparison was undertaken 

using CC4 isolate 557, C. sakazakii core CC4 genome and C. sakazakii non-CC4 core genome. 

Any gene detected only in C. sakazakii CC4 isolate 557 and C. sakazakii core-CC4 genome 

while absent from C. sakazakii non-CC4 core genome was termed as unique to “CC4 core 

genome” (Figure 4.2). This way only 39 genes were detected unique to C. sakazakii CC4-

core genome.  

The 39 unique genes in C. sakazakii CC4-core genome included hypothetical proteins and 

housekeeping traits such as hydrolases, dehydrogenases; a number of traits of interest were 

also detected as unique to C. sakazakii CC4-core genome. These included 8 fimbrial 

associated genes found at different locations and a Type 1 Secretion System (T1SS) 

associated genes. Bacterial fimbriae are the appendages which act as adhesins and facilitate 

the bacterial attachment with the host surface and could play an important role towards 

the virulence of a bacterial pathogen (Connell et al. 1996). For example in uropathogenic E. 

coli, fimbrial mediated adhesion is an important virulence mechanism (Delepelaire, 2004). 

Similarly, bacterial secretion systems are important in establishing a successful host-

pathogen interaction, a number of protein secretion systems have been described in Gram 

negative bacteria (Type 1-VI) (Tseng et al. 2009). The T1SS associated genes found unique 

in the core-CC4 genome encoded for important TISS associated components such as HlyD 

family protein, RTX-I toxin determinant B and a TolC protein (Table 4.1) all of which are 

important parts of the TISS (Tseng et al. 2009).   

Although, conserved in C. sakazakii CC4 core genome and absent from the non-CC4 core 

genome, it was likely that these 39 genes might also be present in the pangenome of C. 

sakazakii non-CC4 isolates, therefore it was important to screen the pangenome of non-CC4 

isolates before any gene could be designated as CC4 specific. Therefore, in order to validate 

whether these 39 are strictly specific to CC4 genomes or also found in the pangenome of 

non-CC4 isolates, all of these genes were checked for their presence in 18 C. sakazakii CC4 

genomes and 12 C. sakazakii non-CC4 genomes. The results of the analysis partly validated 

the current analysis as all 39 genes were detected in 100% of the CC4 genomes (n=18). 

However, 38 of 39 genes were also detected in C. sakazakii non-CC4 genomes (pangenome) 
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with variable degree of presence indicating that while these traits are not part of the C. 

sakazakii core non-CC4 genome, yet their pangenome harbour these traits. The results were 

quantified to observe the degree of variability between C. sakazakii CC4 and C. sakazakii 

non-CC4 isolates for all 39 genes (Figure 4.3). Amongst these 39 genes five of the genes 

were of particular interest as they were noted with low frequency in non-CC4 isolates and 

analysed further. The CSAK557_01380 hypothetical protein is believed to be a phage 

acquired trait as indicated by the BLASTx hit and seem to be carried stably by CC4 isolates.  

The Cronobacter PubMLST contains 107 Cronobacter genomes which include 37 C. sakazakii 

CC4 genomes and 70 non-CC4 genomes which belong to 7 different species of the genus 

Cronobacter. The Cronobacter BLAST facility was used to check the variability of the 4 

hypothetical proteins CSAK557_01621, CSAK557_03949, CSAK557_02008 and 

CSSP291_18210 (CSAK557_03870) which were noticed predominantly in C. sakazakii CC4 

genomes (Table 4.1). Initial analysis with 30 C. sakazakii genomes indicated that the 

hypothetical protein CSAK557_01621 was found to be conserved across all C. sakazakii CC4 

and present only in 2 C. sakazakii non-CC4 isolates 140 and 978 (Table 4.1). However the 

gene was noted with very low frequency in non-CC4 isolates even when the analysis was 

expanded to 107 Cronobacter genomes; it was only noted in 18% of Cronobacter spp. non-

CC4 isolates (12/70) (section 4.4.4). The BLASTx analysis could not indicate a functional 

relevance for this protein. The presence of the proline porter II next to this gene provided 

some hint that this gene might be involved in the regulation of osmosis. Previous studies 

have described the role of a number of genes in the osmotolerance of C. sakazakii (Feeney 

and Sleator, 2011; Feeney et al. 2014), however these genes did not form the basis of 

differentiation between C. sakazakii CC4 and C. sakazakii non-CC4 (section 3.4.3.6). 

Therefore, only further characterisation of CSAK557_01621 gene can justify its 

predominance in C. sakazakii CC4.  

Similarly, when the analysis for the hypothetical protein CSAK557_03949 was expanded to 

107 genomes, it was noted predominantly in CC4 isolates (37/37) while only 7 % (13/70) of 

the Cronobacter spp. non-CC4 isolates including C. turicensis and C. dublinensis which have 

not previously been associated with infections. The BLASTx could not identify any functional 

relevance while the flanking regions also consisted of hypothetical proteins. The 

characterisation of CSAK557_03949 may also provide insight into its predominance in CC4.  
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The CSAK557_02008 encoding for metallo-beta lactamase, besides its uniform presence in 

all CC4 isolates was also noted in two of the C. sakazakii non-CC4 isolates (520 and 680) of 

clinical origin, both of which belong to ST12. The antibiotic resistance can enhance the 

virulence potential of bacterial pathogens as they become difficult to treat with 

conventional antibiotics. Antibiotic resistance has previously been reported in C. sakazakii 

against penicillin, tetracycline, ciprofloxacin and nalidixic acid (Caubilla-Barron et al. 2007; 

Kilonzo-Nthenge et al. 2012). Although resistance against ESβL (extended spectrum beta 

lactamases) has been reported in two of the CC4 isolates 701 and 767 (Caubilla-Barron et 

al. 2007), however the laboratory ESβL testing of 15 CC4 isolates indicated none of them 

were ESβL resistant (chapter 8). Furthermore, when the Cronobacter BLAST analysis was 

expanded to 107 genomes, the results indicated that the CSAK557_02008 encoding for 

metallo-beta lactamase was also present in 60% of the Cronobacter spp. non-CC isolates 

belonging to 7 different species of Cronobacter. Hence, the trait could not be regarded as 

specific to CC4 and or ST12.   

The most important observation in the initial analysis was the hypothetical protein 

CSSP291_18210 which was conserved across all C. sakazakii CC4 (n=18) while missing 

entirely form C. sakazakii non-CC4 isolates (n=12). Even when the analysis was expanded to 

107 Cronobacter spp. genomes, the gene was noted only in 2 of 70 Cronobacter spp. non-

CC4 isolates, C. sakazakii 2051 and C. malonaticus 685; these two isolates may represent 

rare variants within non-CC4 isolates. The C. sakazakii 2051 belongs to CC64 which 

represents an important clonal complex in Cronobacter PubMLST, as at least 37% of the 

strains were isolated from the infant formula (Figure 4.7). However, since there was one 

sequenced isolate C. sakazakii 2051 present in the Cronobacter PubMLST, the association 

of this hypothetical protein with CC64 cannot be determined. The important observation 

was its presence uniformly in all 37 CC4 isolates. The BLASTx analysis indicated hit against 

an inner membrane protein in Enterobacter aerogenes with high homology and to less 

homology with a T6SS effector protein (section 4..4.3.5). The flanking region of this 

hypothetical protein was investigated on the genome of C. sakazakii 557 however it was 

also flanked by uncharacterised hypothetical proteins (Figure 4.5). Using an online protein 

prediction tool (http://ppopen.informatik.tu-muenchen.de/), an attempt was made to 

obtain any further functional relevance for this protein using its amino acid sequence. 

Although no functional category was assigned, it was important to note the presence of 

http://ppopen.informatik.tu-muenchen.de/
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several protein binding sites from the deduced structure of this protein (Figure 4.6). 

Therefore, these observations suggested that this inner membrane like protein “unique” to 

CC4 protein could play some significant role towards virulence or fitness of CC4. Hence, 

further characterisation of this gene is warranted in order to precisely elucidate its role 

towards virulence or fitness of C. sakazakii CC4. The gene is now being analysed in a 

laboratory based independent study by Abdlrhman Alsonosi as part of his PhD study.   

An obvious observation in the present analysis was that all of the 39 genes which were 

initially found to be unique to the C. sakazakii CC4 core genome (Table 4.1) were uniformly 

absent from the two non-CC4 isolates 1218 and 658 both of which belong to CC1 (ST1); 

more importantly both of these isolates have clinical origin and were isolated from the fatal 

meningitic cases (Table 3.1). Nevertheless their conservation in CC4 genomes is important 

and warrants further investigation.  

The core genome analysis presented in this chapter was aimed to identify unique genes 

which could explain the clonality of C. sakazakii CC4 and their predominance in neonatal 

meningitis or environmental fitness. Relatively large core genome of CC4 indicated less 

sequence diversity within this lineage. Although none of the trait identified could directly 

be linked with the virulence of C. sakazakii CC4, yet the presence of the hypothetical protein 

CSSP291_18210 predominantly in CC4 isolates was significant and warrants future studies.  

The analysis presented in this chapter indicated that 34 of 39 genes which were unique to 

core-CC4 genome were present largely in the pangenome of C. sakazakii non-CC4 isolates. 

Therefore, from this point onwards, it was decided to screen the pangenome of C. sakazakii 

CC4 and C. sakazakii non-CC4 by comparative genomics to identify unique genes in C. 

sakazakii CC4 genomes, the analysis is presented in chapters 5 and 6.   
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IDENTIFICATION OF C. SAKAZAKII CC4 SPECIFIC TRAITS USING 

GENE BY GENE SEARCH APPROACH 
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 BACKGROUND 

To date, over 300 sequence types (ST) in the Cronobacter genus have been defined. Genome 

analysis has revealed clonality within the genus with over 40 clonal complexes (CC) 

identified so far (Forsythe et al. 2014). Amongst these clonal complexes, the CC4 isolates 

dominates the Cronobacter isolates in PubMLST (Figure 3.1). The ST4 constitutes the 

dominant sequence type in CC4 representing about 91% of all CC4 isolates in Cronobacter 

PubMLST (as of 2nd December 2014). A retrospective review of Cronobacter isolates from 

cerebral spinal fluid collected over a 60 year period across 6 countries revealed that majority 

were C. sakazakii ST4 (Joseph & Forsythe, 2011). This was substantiated by more recent 

analysis of a number of highly publicised cases in the US where C. sakazakii meningitis 

associated cases were all ST4 or its single/double loci variants constituting CC4 (CDC 2012; 

Hariri et al. 2013).  It is notable that C. sakazakii CC4 (ST4) has been reported to be 

frequently isolated from milk powder factories, powdered infant formula (PIF) processing 

plants and from PIF in Ireland, Switzerland, Germany and Australia (Muller et al. 2013; 

Power et al. 2013; Sonbol et al. 2013; Forsythe et al. 2014). At least 24% of Cronobacter 

strains isolated from the environment of 6 milk powder manufacturing plants in Australia 

and Germany were reported to be CC4 (Sonbol et al. 2013). The finished genome sequence 

of a C. sakazakii CC4 strain (SP291) was notable for its persistence in a PIF production facility 

in Ireland (Power et al. 2013). Therefore an improved understanding of C. sakazakii CC4 

strains at genomic level was warranted. It was of high significance to identify virulence 

associated determinants which are specific to this lineage. The main aim of the present PhD 

study was to analyse the genomes of C. sakazakii with the aim to identify any virulence 

associated traits which are specific only to C. sakazakii CC4. Different comparative genomic 

approaches were used in this study to identify any CC4 specific traits as described in 

chapters 3 and 4. In the present comparative genomic analysis  presented in this chapter a 

gene by gene search approach was used to list all the C. sakazakii CC4 specific traits which 

could be linked with virulence or its persistence in the environment especially in PIF or its 

production environment.  
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 HYPOTHESIS  

C. sakazakii CC4 isolates have unique virulence or environmental fitness associated traits. 

 AIMS OF THE CHAPTER  

The genomic analysis presented in this chapter is the continuation of comparative 

genomic analysis from chapters 3 and 4. The main aim of the genomic analysis was 

to find out any C. sakazakii CC4 specific trait which could explain its predominant 

association with neonatal meningitis or its persistence in PIF. The objectives of the 

chapter 5 were;  

• Undertake a comparative genome analysis of C. sakazakii CC4 isolate 377 

against a C. sakazakii non-CC4 isolate C. sakazakii ES15 through a gene by 

gene search approach using Artemis Comparison Tool (ACT). 

• List all the unique traits in C. sakazakii CC4 isolate 377. 

• Check for the presence and absence of the genes unique to C. sakazakii CC4 

isolate 377 in the genomes of remaining C. sakazakii CC4 and C. sakazakii 

non-CC4 isolates to determine C. sakazakii CC4 specific traits. 
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 METHODS 

5.4.1 STRAINS, SEQUENCING, GENOME ASSEMBLY AND ANNOTATION 

A total of 30 C. sakazakii strains were used in this study (Table 3.1); 18 C. sakazakii CC4 and 

12 C. sakazakii non-CC4. These strains were primarily clinical isolates which had been 

isolated between 1950 and 2010 from 11 countries (Table 3.1). Genome sequencing of 22 

C. sakazakii strains was carried out by the University of Exeter (UK) using Illumina Hiseq2500 

generating paired end reads. The genome assembly was with Velvet (Zerbino et al. 2008). 

The genomes were annotated using the prokaryotic genome annotation system (PROKKA) 

(Seemann, 2014) (section 2.2.5).  

5.4.2 COMPARATIVE GENOME ANALYSIS USING ACT 

Initially one C. sakazakii CC4 strain 377, was compared against a non-CC4 genome C. 

sakazakii strain ES15 using ACT. The genome of C. sakazakii 377 represents the earliest C. 

sakazakii CC4 (ST4) isolate in the Cronobacter PubMLST and in our culture collection and its 

genome has recently been announced by our group (Masood et al. 2013a). The C. sakazakii 

ES15 representing non-CC4 genomes was isolated from ground whole grains and belongs to 

CC100 (ST125) (Shin et al. 2012). The comparison was conducted manually using ACT by 

walking along the entire length of the genome by checking each and every single gene; this 

involved checking presence of each gene in C. sakazakii 377 against C. sakazakii ES15 using 

ACT. It should be noted that coverage filter was “by eye“ (section 2.2.7). All of the genes 

identified as unique to C. sakazakii CC4 strain 377 against C. sakazakii ES15 were listed. The 

comparison was then extended to the remaining C. sakazakii CC4 and non-CC4 genomes. 

From initially identified unique genes in C. sakazakii 377, each of these genes was checked 

manually in the genomes of the remaining C. sakazakii CC4 and C. sakazakii non-CC4 using 

ACT and the presence/absence of each gene was recorded for each genome. The final 

spreadsheet was then checked to determine if any pattern exists for the presence of certain 

genes in C. sakazakii CC4 or C. sakazakii non-CC4 genomes. For the ease of explaining the 

results the unique genes in C. sakazakii CC4 strain 377 were divided into the genomic 

regions (GRs) based on either their location or functionality. To represent the presence of 

the genes within a GR, a heat map of each GR was generated using SPSS representing the 

percentage of presence of each gene in a group by the intensity of colour i.e. higher the 
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intensity of the colour, higher the percentage of presence of a gene in a group (CC4 or non-

CC4) and vice versa.  

 RESULTS AND DISCUSSION  

5.5.1 WHOLE GENOME COMPARISON OF C. SAKAZAKII CC4 AND NON-CC4 GENOMES 

USING ACT  

The genome of the oldest CC4 strain in our culture collection, C. sakazakii 377 isolated in 

1950 was chosen to compare against C. sakazakii ES15, the latter being a non-clinical isolate 

from ground whole grain. A total of 465 genes were identified unique to C. sakazakii CC4 

strain 377 (Table S4). Each of these unique genes was checked for its presence in remaining 

17 CC4 and 11 non-CC4 genomes included in this study (Table 3.1). The plasmids of C. 

sakazakii BAA-894 (also known as 658) and C. sakazakii SP291 were also checked for the 

presence of these genes. A large proportion (295/465) representing at least 63% of these 

genes were hypothetical proteins of unknown function and traits associated with phages. 

To simplify the genomic comparison at this stage, the hypothetical proteins and cryptic 

phages were omitted and the remaining 168 genes which included a wide range of traits 

were divided into seven genomic regions (GR1-7) based on their function and location on 

the genome (Table S4). A heat map for each GR (Figures 5.1-7) shows the presence of a gene 

in both CC4 and non-CC4 group. Each of the GR is discussed briefly below.  

5.5.1.1 THE GR1 

The GR1 consisted of 27 genes located between Csak377_00005-00053. Of significance 

were the two copper and silver homeostasis (cus/sil and pco regions). Both of these regions 

have already been investigated in chapter 3 (section 3.4.2.9). None of these genomic 

regions within GR1 were detected as C. sakazakii CC4 specific. Both of these regions were 

present variably across the 2 groups (Figure 5.1, Table 5.1). The variation has been discussed 

in more detail in section 3.4.2.9.  

In addition, the GR1 also contained two toxin/anti-toxin system associated proteins vapC, 

vagC (annotated as a virulence associated protein). Another toxin/antitoxin system proteins 

parD1/parE4 were found adjacent to the first copper/silver homeostasis region. Both the 

toxin/anti-toxin system associated genes were present variably across the genomes of CC4 

and non-CC4 strains (Figure 5.1, Table 5.1).  
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Other traits in GR1 found variably across two sets of genomes included a disulfide isomerase, 

a putative restriction endonuclease, a transcriptional repressor pifC, a RepFIB replication 

protein called repB_1, a C protein motif parG and a parF protein (annotated as VirC1 

protein).  None of these traits were found to be specific to CC4 genomes.  

The absence of the  GR1 in the clinically significant C. sakazakii CC4 isolates such as  strains 

721 and 1221  both of which are the CSF isolate suggest that these genes might not play a 

significant role in the virulence potential of CC4 (Table 5.1).  Moreover the  entire contents 

of the GR1 were also  absent from the clinically significant non-CC4 isolates including 520 

and 1249 which further suggest that the genes in the GR1 might also not be crucial for the 

C. sakazakii virulence in general. 
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Figure 5. 1 Heat maps of variable regions GR1. 

The image indicates heat map of variable region GR1 representing visually the percentage of presence of any trait within GR1 across CC4 and non-CC4 groups. The 
intensity of the colour increases as the percentage of presence of a gene in a group increases and vice versa. The heat maps were generated in SPSS.  
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Table 5. 1 Gene contents of GR1 and their variation across C. sakazakii CC4 and non-CC4 genomes 

 

Csak377_00005 

Csak377_00006 

Csak377_00009 

Csak377_00018 

Csak377_00019 

Csak377_00023 

Csak377_00028 

Csak377_00031 

Csak377_00041 

Csak377_00044 

Csak377_00047 

Csak377_00051 

Csak377_00052 

Csak377_00053 

Strain 

vapC toxin 

Virulence associated 
protein 

Disulfide isom
erase 

parD1, antitoxin protein 

parE4, toxin protein 

YebZ_1, inner m
em

brane 
protein 

lytM
_1, G

lycyl-glycine 
endopeptidase precursor 

Protein of unknow
n 

function 

Putative restriction 
endonuclease 

YtaF, putative sporulation 
protein 

pifC, Transcriptional 
repressor 

repB_1, RepFIB 
replication protein A 

ParG
, C protein m

otif 

VirC1 protein 

1587 + + + + + + + + + + + + + + 
6 + + + + + + + + + + + + + + 
1225 + + + + + + + + + + + + + + 
1220 + + + + + + + + + + + + + + 
1219 + + + + + + + + + + + + + + 
557 + + + + + + + + + - + + + + 
1231 + + - + + + + + + - + - - - 
1240 + + + + + + + + + + + + + + 
553 + + + + + + + + + - + + + + 
SP291 + + + + + + + + + + + + + + 
4 + + + + + + + + + + + + + + 
767 + + + - - - + + - - - - - - 
701 + + + - - - - + - - - - - + 
558 - - - - - + + + - - - - - - 
20 - - - - - - - - - - - - - - 
721 - - - - - - - - - - - - - - 
1221 - - - - - - - - - - - - - - 
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Csak377_00005 

Csak377_00006 

Csak377_00009 

Csak377_00018 

Csak377_00019 

Csak377_00023 

Csak377_00028 

Csak377_00031 

Csak377_00041 

Csak377_00044 

Csak377_00047 

Csak377_00051 

Csak377_00052 

Csak377_00053 

Strain 

vapC toxin  

Virulence associated 
protein  

Disulfide isom
erase 

parD1, antitoxin protein  

parE4, toxin protein  

YebZ_1, inner m
em

brane 
protein 

lytM
_1, G

lycyl-glycine 
endopeptidase precursor 

Protein of unknow
n 

function 

Putative restriction 
endonuclease 

YtaF, putative sporulation 
protein 

pifC, Transcriptional 
repressor 

repB_1, RepFIB replication 
protein A 

ParG
, C protein m

otif 

VirC1 protein  

520 - - - - - - - - - - - - - - 
150 - - - - - - - - - - - - - - 
1249 - - - - - - - - - - - - - - 
1218  - - - - - + + + - - - - - - 
658  - - - - - + + + - - + - - - 
978 + + + - - - - - - - - + + + 
140 + + + - - - - - - - + + + + 
696 + + - + + + + + + - + + - + 
1 + + + + + + + + + - + + + + 
5 + + + + + + + + + - + + + + 
680 + + + + + + - - + - + - - + 

        Red font colour indicates CC4 while purple  indicates no-CC4 isolates. 

Table 5.1 continued 
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5.5.1.2 The GR2 

The GR2 region consisted of 37 genes located between Csak377_00100-00243 on the 

genome of the C. sakazakii CC4 isolate 377. The region was dominantly present in only two 

of the CC4 strains 1587 and 558 besides the reference CC4 strain 377.  A tellurite resistance 

gene (Csak377_00166) was present in three of the CC4 strains as well as three non-CC4 

strains. Three genes (Csak377_00169-00171) encoding type 1 restriction enzymes were 

present only in four of the CC4 strains of which two strains 1587 and 1231 were fatal 

meningitic isolates. A putative DNA double-strand break repair Rad50 ATPase 

(Csak377_00147) was present only in three CC4 and one non-CC4 strain. A RepFIB 

replication protein repB_2 (Csak377_00142) was present only in four CC4 and three non-

CC4 strains whereas a thymidylate synthase thyA_1 (Csak377_00153) was detected in three 

CC4 and five non-CC4 strains. A XerD, site-specific recombinase encoding gene 

(Csak377_00241) was noted only in genomes of two CC4 and two non-CC4 strains, all of 

which were clinical isolates.   

An RNA one modulator protein rop (Csak377_00238) was uniformly missing in all the CC4 

and non-CC4 strains apart from the reference CC4 strain 377.  

Other traits which were uniformly present in only three of the CC4 strains and missing from 

the rest of the CC4 and all non-CC4 strains included two aerobic cobaltochelatase subunit 

proteins cobT and cobS (Csak377_00125-6), a DNA polymerase III subunit alpha called 

dnaE_1 (Csak377_00127), a DNA polymerase thermostable protein polA_1  

(Csak377_00134),  a recombinase A protein recA_1 (Csak377_00136),  calcineurin-like 

phosphoesterase superfamily domain protein (Csak377_001450, a DNA polymerase III 

subunit epsilon dnaQ_1 (Csak377_00158), a ribonuclease HI rnhA_1 (Csak377_00164), type 

1 restriction enzyme hsdR_1 (Csak377_001690, a repressor of phase-1 flagellin protein 

(Csak377_001850, excinuclease ABC subunit B uvrB_1 (Csak377_00188), a putative 

chromosome-partitioning protein parB (Csak377_00190), a RepB family partition protein 

(Csak377_00190), an alpha-haemolysin translocation ATP-binding protein HlyB 

(Csak377_00191), a Flp pilus assembly protein  CpaE (Csak377_00221), a replicative DNA 

helicase (Csak377_00225) a DNA primase (Csak377_00225) and a DNA ligase 

(Csak377_00230).  
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Four of the conjugation associated protein coding genes Csak377_00100-5 were noted only 

in five of the CC4 isolates 1587, SP291, 558, 1220, 1240 and two non-CC4 isolates 1 and 8 

both of which belong to ST8. The presence of a transposase in the close proximity may 

indicate the acquisition of these genes through horizontal gene transfer.  

In brief, the GR2 did not show any CC4 specific pattern since the genes within this region 

were present variably across the two groups. 
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Figure 5. 2 Heat maps of variable regions GR2. 

The image indicates heat map of variable region GR2 representing visually the percentage of presence of any trait within GR2 across CC4 and non-CC4 groups. The 
intensity of the colour increases as the percentage of presence of a gene in a group increases and vice versa. The heat maps were generated in SPSS.  
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Table 5. 2 Gene contents of GR2 and their variation in C. sakazakii CC4 and non-CC4 strains  

 Csak377_00100 

Csak377
00101 

Csak377_00102 

Csak377_00105 

Csak377_00117 

Csak377_00121 

Csak377_00122 

Csak377_00125 

Csak377_00126 

Csak377_00127 

Csak377_00134 

Csak377_00136 

Csak377_00142 

Csak377_00145 

Csak377_00147 

Csak377_00153 

Csak377_00155 

Csak377_00158 

Csak377_00164 

Csak377_00166 

Csak377_00169 

Csak377_00170 

Csak377_00171 

Csak377_00185 

Csak377_00188 

Csak377_00189 

Csak377_00190 

Csak377_00191 

Csak377_00205 

Csak377_00211 

Csak377_00221 

Csak377_00225 

Csak377_00226 

Csak377_00230 

Csak377_00238 

Csak377_00241 

Csak377_00243 

C. sakazakii isolate  

m
beC_1, Conjugative accessory protein 

m
beC

2, Conjugative accessory protein 

m
beA_1, DN

A relaxase 

m
beC_3, Conjugative accessory protein 

Transposase 

Transposase 

Integrase 

cobT, Aerobic cobaltochelatase subunit  

cobS, Aerobic cobaltochelatase subunit  

dnaE_1, DN
A polym

erase III subunit alpha 

polA_1, DN
A polym

erase therm
ostable protein 

recA_1, Recom
binase A 

repB_2, RepFIB replication protein A 

Calcineurin-like phosphoesterase  

Putative DN
A double-strand break repair Rad50 ATPase 

thyA_1, Thym
idylate synthase 

dfrA, Dihydrofolate reductase 

dnaQ
_1, DN

A polym
erase III subunit epsilon 

rnhA_1, Ribonuclease HI 

Tellurite resistance protein 

hsdR_1, Type 1 restriction enzym
e EcoR124II R protein  

Type I restriction enzym
e specificity protein M

PN
_089 

Putative type I restriction enzym
eP M

 protein 

Repressor of phase-1 flagellin protein 

uvrB_1, Excinuclease ABC subunit B,  

parB, putativechrom
osom

e-partitioning protein 

ParB/RepB/Spo0J fam
ily partition protein 

hlyB, Alpha-hem
olysin  

Bacterial Ig-like dom
ain 

N
lpC/P60 fam

ily protein 

Flp pilus assem
bly protein 2C ATPase CpaE 

Replicative DN
A helicase 

DN
A prim

ase 

DN
A ligase 

rop, RN
A one m

odulator 

 XerD, Site-specific recom
binase 

U
ncharacterized protein conserved in bacteria 

6 - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + 
701 - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
767 - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
1225 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + 
20 - - - + + - - - - - - - - - - - - - - - + + + - - - - - - - - - - - - - + 
721 - - - - + - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - + + 
1221 - - - - + - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - + + 
1219 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + 
557 - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + 
1231 - - - - + - - - - - - - - - - - - - - - + + + - - - - - - - - - - - - - + 
4 - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + 
553 - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + 
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Table 5.2 continued  

 Csak377_00100 

Csak377
00101 

Csak377_00102 

Csak377_00105 

Csak377_00117 

Csak377_00121 

Csak377_00122 

Csak377_00125 

Csak377_00126 

Csak377_00127 

Csak377_00134 

Csak377_00136 

Csak377_00142 

Csak377_00145 

Csak377_00147 

Csak377_00153 

Csak377_00155 

Csak377_00158 

Csak377_00164 

Csak377_00166 

Csak377_00169 

Csak377_00170 

Csak377_00171 

Csak377_00185 

Csak377_00188 

Csak377_00189 

Csak377_00190 

Csak377_00191 

Csak377_00205 

Csak377_00211 

Csak377_00221 

Csak377_00225 

Csak377_00226 

Csak377_00230 

Csak377_00238 

Csak377_00241 

Csak377_00243 

C. sakazakii isolate  

m
beC_1, Conjugative accessory protein 

m
beC

2, Conjugative accessory protein 

m
beA_1, DN

A relaxase 

m
beC_3, Conjugative accessory protein 

Transposase 

Transposase 

Integrase 

cobT, Aerobic cobaltochelatase subunit  

cobS, Aerobic cobaltochelatase subunit  

dnaE_1, DN
A polym

erase III subunit alpha 

polA_1, DN
A polym

erase therm
ostable protein 

recA_1, Recom
binase A 

repB_2, RepFIB replication protein A 

Calcineurin-like phosphoesterase  

Putative DN
A double-strand break repair Rad50 ATPase 

thyA_1, Thym
idylate synthase 

dfrA, Dihydrofolate reductase 

dnaQ
_1, DN

A polym
erase III subunit epsilon 

rnhA_1, Ribonuclease HI 

Tellurite resistance protein 

hsdR_1, Type 1 restriction enzym
e EcoR124II R protein  

Type I restriction enzym
e specificity protein M

PN
_089 

Putative type I restriction enzym
eP M

 protein 

Repressor of phase-1 flagellin protein 

uvrB_1, Excinuclease ABC subunit B,  

parB, putativechrom
osom

e-partitioning protein 

ParB/RepB/Spo0J fam
ily partition protein 

hlyB, Alpha-hem
olysin  

Bacterial Ig-like dom
ain 

N
lpC/P60 fam

ily protein 

Flp pilus assem
bly protein 2C ATPase CpaE 

Replicative DN
A helicase 

DN
A prim

ase 

DN
A ligase 

rop, RN
A one m

odulator 

 XerD, Site-specific recom
binase 

U
ncharacterized protein conserved in bacteria 

1220 + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + 
1240 + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + 
1587 + + + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + 
558 + + + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - 

SP291 + + + + + - - - - - - - + - + - - - - - - - - - - - - - - - - - - - - - + 
1 + + + + + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - + - 
680 + + + + + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - 
5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - 
1218  - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - + 
658  - - - - - - - - - - - - - - + + - - - - - - - - - - - - - - - - - - - - + 
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Table 5.2 continued  

 Csak377_00100 

Csak377
00101 

Csak377_00102 

Csak377_00105 

Csak377_00117 

Csak377_00121 

Csak377_00122 

Csak377_00125 

Csak377_00126 

Csak377_00127 

Csak377_00134 

Csak377_00136 

Csak377_00142 

Csak377_00145 

Csak377_00147 

Csak377_00153 

Csak377_00155 

Csak377_00158 

Csak377_00164 

Csak377_00166 

Csak377_00169 

Csak377_00170 

Csak377_00171 

Csak377_00185 

Csak377_00188 

Csak377_00189 

Csak377_00190 

Csak377_00191 

Csak377_00205 

Csak377_00211 

Csak377_00221 

Csak377_00225 

Csak377_00226 

Csak377_00230 

Csak377_00238 

Csak377_00241 

Csak377_00243 

C. sakazakii isolate  

m
beC_1, Conjugative accessory protein 

m
beC

2, Conjugative accessory protein 

m
beA_1, DN

A relaxase 

m
beC_3, Conjugative accessory protein 

Transposase 

Transposase 

Integrase 

cobT, Aerobic cobaltochelatase subunit  

cobS, Aerobic cobaltochelatase subunit  

dnaE_1, DN
A polym

erase III subunit alpha 

polA_1, DN
A polym

erase therm
ostable protein 

recA_1, Recom
binase A 

repB_2, RepFIB replication protein A 

Calcineurin-like phosphoesterase superfam
ily dom

ain protein 

Putative DN
A double-strand break repair Rad50 ATPase 

thyA_1, Thym
idylate synthase 

dfrA, Dihydrofolate reductase 

dnaQ
_1, DN

A polym
erase III subunit epsilon 

rnhA_1, Ribonuclease HI 

Tellurite resistance protein 

hsdR_1, Type 1 restriction enzym
e EcoR124II R protein  

Type I restriction enzym
e specificity protein M

PN
_089 

Putative type I restriction enzym
eP M

 protein 

Repressor of phase-1 flagellin protein 

uvrB_1, Excinuclease ABC subunit B,  

parB, putativechrom
osom

e-partitioning protein 

ParB/RepB/Spo0J fam
ily partition protein 

hlyB, Alpha-hem
olysin translocation+ATP-binding+protein HlyB 

Bacterial Ig-like dom
ain 

N
lpC/P60 fam

ily protein 

Flp pilus assem
bly protein 2C ATPase CpaE 

Replicative DN
A helicase 

DN
A prim

ase 

DN
A ligase 

rop, RN
A one m

odulator 

 XerD, Site-specific recom
binase 

U
ncharacterized protein conserved in bacteria 

696 - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - + 
520 - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - 
140 - - - - + - - - - - - - + - - - - - - + - - - - - - - - - - - - - - - - + 
150 - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - + 
1249 - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - 
978 - - - - + - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - 

Red font colour indicates CC4 while purple  indicates no-CC4 isolates.
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5.5.1.3 THE GR3 

The GR3 region consisted of 51 genes located between Csak377_00325-00480. The region 

was present in most CC4 and non-CC4 strains and included wide range of traits associated 

with diverse range of functions. Of significance were arsenical efflux proteins, an iron 

acquisition region iutAiucABCD, multidrug efflux associated proteins and a starvation 

sensing protein, discussed below (Figure 5.3, Table 5.3). Some of the traits in GR3 seem to 

be plasmid borne such as iutAiucABCD. It is important to refer to the in silico plasmid 

profiling (section 3.4.5) which suggested that plasmid pESA3 was completely missing in 

isolates 6, ES15 and 520 while it was partially detected in isolates 557, 1 and 680 (section 

3.4.5).   

5.5.1.3.1 ARSENIC RESISTANCE  
 

Three genes present in majority of C. sakazakii genomes were associated with arsenic 

resistance. A homologue of the regulatory gene arsR (Csak377_00333) annotated as aseR, 

was found missing in three CC4 strains 701, 6 and 557 as well as three non-CC4 strains 1, 

520 and 680; all of these isolates, except for CC4 isolate 701 either lack full or partial length 

plasmid pESA3 (section 3.4.5). The absence of this trait from CC4 isolate 701 remains 

unclear as this isolate contains the full length plasmid pESA3. Other two genes arsB 

(Csak377_00334) encoding for arsenic efflux pump protein and arsC (Csak377_00335) 

encoding an arsenate reductase were found to be uniformly present in all CC4 strains but 

missing in one non-CC4 strain 520. Heavy metal resistance is an important characteristic 

adaptable by bacteria which enables them to survive in the environment containing toxic 

metals  such as Arsenic. Since the arsenic resistance associated genes were observed 

variably across both groups and did not show a dominant presence in any of the C. sakazakii 

CC4 or C. sakazakii non-CC4 group, the arsenic resistance genes may not form the basis of 

differentiation between CC4 and non-CC4 (Figure 5.3, Table 5.3), however they may 

represent strain specific variations. Moreover the plasmid less CC4 isolate 6 contains a 

number of homologue of the arsenic resistance associated genes (section 7.4.2.2.1) 

indicating that arsenic resistance in C. sakazakii is not strictly associated with plasmid profile. 
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5.5.1.3.2 POTASSIUM UPTAKE, PILUS ASSEMBLY PROTEIN AND STARVATION-SENSING 
PROTEIN  

 

A potassium uptake gene annotated as trkG_1 (Csak377_00336) was noted in all genomes 

except two CC4 strains 6 and 557 and three non-CC4 strains 1, 680 and 520, all of which lack 

either full length or partial length plasmid pESA3 (section 3.4.5) indicating that this is a 

plasmid borne trait. In addition, these isolates also lacked a pilus assembly associated gene 

pilA (Csak377_00342) encoding Tfp pilus assembly and a starvation sensing gene rspA 

(Csak377_00344) encoding for the starvation-sensing protein. The absence of these traits 

from the clinically significant CC4 and non-CC4 isolates may reflect that these genes might 

not be essential for the virulence of C. sakazakii (Figure 5.3, Table 5.3). Moreover their 

absence mainly in the plasmid less strains further indicates the plasmid borne nature of 

these traits.  

5.5.1.3.3 THE IRON ACQUISITION REGION  
 

The iron acquisition region iutA, iucABCD (Csak377_00390-00394) has previously been 

reported by Joseph et al (2012b) and investigated in  section 3.4.2.10. The region was found 

in all except one CC4 strain 6 (low invasive strain) and one non-CC4 strain 520 in addition to 

the ES15 isolate. As mentioned earlier (section  3.4.5.1) that isolates ES15, 6 and 520 lack 

the full length plasmid indicating that this iron acquisition region is plasmid borne in C. 

sakazakii and is not linked with CC4 or non-CC4.  

5.5.1.3.4 MULTIDRUG EFFLUX AND ANTIMICROBIAL PROTEINS  
 

Two multidrug efflux associated genes were noted in GR3, a gene mexB (Csak377_00370) 

encoding for the multidrug-efflux transporter was present in all CC4 strains except strain 6 

while absent from three non-CC4 strains 1, 680 and 520 all of which lack either full or partial 

length plasmid pESA3. Another multidrug efflux gene (Csak377_00381) encoding for 

multidrug efflux system protein MdtL was only found missing in CC4 strain 6 and non-CC4 

strain 520, these strains also lacked two additional genes (Csak377_00375) annotated as 

antimicrobial resistance protein MdtL and a Metallo-beta-lactamase superfamily protein 

(Csak377_00413). A fibrinolysin associated gene pla (Csak377_00380) annotated as a 

coagulase/fibrinolysin precursor was noted in all the genomes except CC4 strain 6 and three 

non-CC4 strains 1, 5 and 520. The GR3 also contained two genes encoding for a putative 
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transcriptional regulator (Csak377_00473) and a recombination protein F (Csak377_00480) 

both of which were present only in six CC4 genomes and missing uniformly from the non-

CC4 genomes. However, since these genes were missing in clinically significant C. sakazakii 

CC4 isolates such as 1225 and 701 (CSF isolates from fatal cases), therefore these traits may 

not be crucial in virulence of C. sakazakii CC4 (Figure 5.3, Table 5.3).  
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Figure 5. 3 Heat maps of variable regions GR3.  

 The image indicates heat map of variable region GR3 representing visually the percentage of presence of any trait within GR3 across CC4 and non-CC4 groups. The 
intensity of the colour increases as the percentage of presence of a gene in a group increases and vice versa. The heat maps were generated in SPSS. 
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Table 5. 3 Gene contents of GR3 and their variation in C. sakazakii CC4 and non-CC4 strains  

 Csak377_00325 

Csak377
00330 

Csak377
00332 

Csak377
00333 

Csak377
00334 

Csak377
00335 

Csak377
00336 

Csak377
00342 

Csak377
00344 

Csak377
00346 

Csak377
00348 

Csak377
00350 

Csak377
00354 

Csak377
00357 

Csak377
00362 

Csak377
00363 

Csak377
00365 

Csak377
00367 

Csak377
00370 

Csak377
00371 

Csak377
00374 

Csak377
00375 

Csak377
00376 

Csak377
00377 

Csak377
00380 

Csak377
00381 

Csak377
00385 

Csak377
00386 

Csak377
00388 

Csak377
00389 

Csak377
00390 

Csak377
00391 

Csak377
00392 

Csak377
00393 

Csak377
00394 

Csak377
00396 

Csak377
00398 

Csak377
00399 

Csak377
00400 

Csak377
00406 

Csak377
00411 

Csak377
00412 

Csak377
00413 

Csak377
00417 

Csak377
00418 

Csak377
00421 

Csak377
00423 

Csak377
00427 

Csak377
00432 

Csak377
00473 

C. sakazakii isolate  

Integrase 

yjiR
1, transcriptional regulator yjiR 

dapA
1, Dihydrodipicolinate synthase 

aseR, HTH-type transcriptional repressor AseR 

arsB, Arsenic efflux pum
p protein 

arsC, Arsenate reductase 

trkG
1, Trk system

 potassium
 uptake protein trkG 

Tfp pilus assem
bly protein, m

ajor pilin PilA 

rspA
1, Starvation-sensing protein rspA 

Arylesterase 

ACT dom
ain-containing protein 

Putative acetyltransferase 

antirepressor YcgF protein 

ariR
1, Putative tw

o-com
ponent-system

 connector  

Cyn operon transcriptional activator 

m
olybdate ABC transporter 

fadR
1, Fatty acid m

etabolism
 regulator protein 

yjaB
1, putative N

-acetyltransferase YjaB 

m
exB, M

ultidrug-efflux+transporter 

bepF, Efflux pum
p periplasm

ic linker BepF protein 

M
ltA-interacting protein M

ipA protein 

Antim
icrobial resistance protein M

ig-14 

G
lyoxalase-like dom

ain protein 

Bifunctional biotin-(acetyl-CoA-carboxylase) 

pla, Coagulase/fibrinolysin precursor 

M
dtL, m

ultidrug efflux system
 protein  

cobC
1, Alpha-ribazole phosphatase 

repB
3 , RepFIB replication protein A 

parA, Plasm
id partition protein A 

sopB, Plasm
id partition protein B 

iutA , Iron-regulated outer m
em

brane proteins 

iucD , L-lysine 6-m
onooxygenase 

iucC, Aerobactin synthase IucC 

iucB, N
(6)-hydroxylysine O

-acetyltransferase 

iucA, Aerobactin synthase IucA 

viuB, Vibriobactin utilisation protein ViuB 

hipA, Serine/threonine-protein kinase HipA 

treZ, M
alto-oligosyltrehalose trehalohydrolase 

treY, M
altooligosyl trehalose synthase 

sdaC
1, Serine transporter 

gst, G
lutathione S-transferase GST-4.5 

guaD, G
uanine deam

inase 

M
etallo-beta-lactam

ase superfam
ily protein 

csgA, C signal 

ATP-dependent helicase, HepA 

xerC
2, Tyrosine recom

binase XerC 

Corrinoid ABC transporter  

c  SM
I1 / KN

R4 fam
ily protein 

dsbG
, Thiol:disulfide  

Putative transcriptional regulator 

1587 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - 

558 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

701 + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + + + - 

767 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

1225 - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - 

20 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - 

721 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - 

1221 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - 

1220 - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - 

1219 - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

1240 - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - 

1231 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

 553 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - 
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520 - - - - - - - - - - - - + - - + - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - 
1 + - - - + + - - - + - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + - 
680 - - + + + + - - - + - - - - - + - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + - 
SP291 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
1218  - + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - 
658  - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - 
696 + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + + + + + - 
140 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + - 
150 - + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - 
1249 - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + - 
978 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + - 

Red font colour indicates CC4 while purple indicates non-CC4 isolates 

Table 5.3 continued  

 Csak377_00325 

Csak377
00330 

Csak377
00332 

Csak377
00333 

Csak377
00334 

Csak377
00335 

Csak377
00336 

Csak377
00342 

Csak377
00344 

Csak377
00346 

Csak377
00348 

Csak377
00350 

Csak377
00354 

Csak377
00357 

Csak377
00362 

Csak377
00363 

Csak377
00365 

Csak377
00367 

Csak377
00370 

Csak377
00371 

Csak377
00374 

Csak377
00375 

Csak377
00376 

Csak377
00377 

Csak377
00380 

Csak377
00381 

Csak377
00385 

Csak377
00386 

Csak377
00388 

Csak377
00389 

Csak377
00390 

Csak377
00391 

Csak377
00392 

Csak377
00393 

Csak377
00394 

Csak377
00396 

Csak377
00398 

Csak377
00399 

Csak377
00400 

Csak377
00406 

Csak377
00411 

Csak377
00412 

Csak377
00413 

Csak377
00417 

Csak377
00418 

Csak377
00421 

Csak377
00423 

Csak377
00427 

Csak377
00432 

Csak377
00473 

C. sakazakii isolate  

Integrase 

yjiR
1, transcriptional regulator yjiR 

dapA
1, Dihydrodipicolinate synthase 

aseR, HTH-type transcriptional repressor AseR 

arsB, Arsenic efflux pum
p protein 

arsC, Arsenate reductase 

trkG
1, Trk system

 potassium
 uptake protein trkG 

Tfp pilus assem
bly protein, m

ajor pilin PilA 

rspA
1, Starvation-sensing protein rspA 

Arylesterase 

ACT dom
ain-containing protein 

Putative acetyltransferase 

antirepressor YcgF protein 

ariR
1, Putative tw

o-com
ponent-system

 connector  

Cyn operon transcriptional activator 

m
olybdate ABC transporter 

fadR
1, Fatty acid m

etabolism
 regulator protein 

yjaB
1, putative N

-acetyltransferase YjaB 

m
exB, M

ultidrug-efflux+transporter 

bepF, Efflux pum
p periplasm

ic linker BepF protein 

M
ltA-interacting protein M

ipA protein 

Antim
icrobial resistance protein M

ig-14 

G
lyoxalase-like dom

ain protein 

Bifunctional biotin-(acetyl-CoA-carboxylase) 

pla, Coagulase/fibrinolysin precursor 

M
dtL, m

ultidrug efflux system
 protein  

cobC
1, Alpha-ribazole phosphatase 

repB
3 , RepFIB replication protein A 

parA, Plasm
id partition protein A 

sopB, Plasm
id partition protein B 

iutA , Iron-regulated outer m
em

brane proteins 

iucD , L-lysine 6-m
onooxygenase 

iucC, Aerobactin synthase IucC 

iucB, N
(6)-hydroxylysine O

-acetyltransferase 

iucA, Aerobactin synthase IucA 

viuB, Vibriobactin utilisation protein ViuB 

hipA, Serine/threonine-protein kinase HipA 

treZ, M
alto-oligosyltrehalose trehalohydrolase 

treY, M
altooligosyl trehalose synthase 

sdaC
1, Serine transporter 

gst, G
lutathione S-transferase GST-4.5 

guaD, G
uanine deam

inase 

M
etallo-beta-lactam

ase superfam
ily protein 

csgA, C signal 

ATP-dependent helicase, HepA 

xerC
2, Tyrosine recom

binase XerC 

Corrinoid ABC transporter  

c  SM
I1 / KN

R4 fam
ily protein 

dsbG
, Thiol:disulfide  

Putative transcriptional regulator 

6 - - - - + + - - - - - - + - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

557 + - - - + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + 
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5.5.1.4 The GR4 

The GR4 region consisted of eight genes encoding fimbrial associated proteins which include 

major fimbrial protein precursor mrpA, a putative minor fimbrial subunit StfF, a putative 

fimbrial subunit SteE, a PAP fimbrial minor pilin protein precursor papH_1, a chaperone 

protein precursor papD, an outer membrane usher protein precursor papC_1, a PAP fimbrial 

minor pilin protein precursor papH_2 and fimbrial A protein precursor smfA 

(Csak377_00977-00984). The latter four fimbrial associated genes (Csak377_00981-984) 

were the homologues of π fimbriae (CTU_36420-450) in C. turicensis which were reported 

missing from the genome of C. sakazakii BAA-894 (Joseph et al. 2012b). The whole of the 

GR4 was uniformly present across all CC4 genomes however the region was variably present 

in non-CC4 genomes (Figure 5.4, Table 5.4). It is interesting to note that besides  CC4 isolates, 

these fimbrial genes were also uniformly present in two ST12 isolates 696 (NEC II isolate) 

and 520 both of which although not CC4, yet represent clinically significant isolates. Three 

of the non-CC4 strains 1218 (CSF isolate), 978 and C. sakazakii 658 (CSF isolate) having a 

clinical origin, completely lacked this region while it was missing partially from three other 

non-CC4 strains 680, 140 and 150. Fimbriae are the appendage which bacteria use to adhere 

to and colonise the hosts surface such as intestinal epithelial cell lines (Baumler et al. 1996). 

The presence of this fimbrial region may give advantage to C. sakazakii CC4, however it 

seems unlikely since the region does not give a CC4 specific pattern as it is completely 

present in about half of the non-CC4 isolates investigated in this study. Moreover, non-CC4 

isolates also possess other fimbrial gene clusters as discussed in (section 3.4.2.1).  
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Figure 5. 4 Heat maps of variable regions GR4. 

The image indicates heat map of variable region GR4 representing visually the percentage of presence 
of any trait within GR4 across CC4 and non-CC4 groups. The intensity of the colour increases as the 
percentage of presence of a gene in a group increases and vice versa. The heat maps were generated in 
SPSS.  
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Table 5. 4 Gene contents of GR4 and their variation in C. sakazakii CC4 and non-CC4 strains  

 L
ouc_tag 

Csak377_00977 

Csak377_00978 

Csak377_00979 

Csak377_00980 

Csak377_00981 

Csak377_00982 

Csak377_00983 

Csak377_00984 

C. sakazakii isolate  

ST/CC 

M
ajor M

R/P fim
bria 

protein precursor, m
rpA 

Putative m
inor fim

brial 
subunit StfF 

Putative fim
brial subunit 

SteE 

PAP fim
brial m

inor pilin 
protein precursor, 
papH_1           

Chaperone protein papD 
precursor, papD 

O
uter m

em
brane usher 

protein papC precursor, 
papC_1 

PAP fim
brial m

inor pilin 
protein precursor, 
papH_2 

Fim
bria A protein 

precursor, sm
fA            

1587 109/4 + + + + + + + + 

558 4/4 + + + + + + + + 

6 4/4 + + + + + + + + 

767 4/4 + + + + + + + + 

1225 4/4 + + + + + + + + 

20 4/4 + + + + + + + + 

721 4/4 + + + + + + + + 

1221 4/4 + + + + + + + + 

1220 4/4 + + + + + + + + 

1219 4/4 + + + + + + + + 

701 4/4 + + + + + + + + 

557 4/4 + + + + + + + + 

1231 4/4 + + + + + + + + 

1240 4/4 + + + + + + + + 

553 4/4 + + + + + + + + 

4 15/4 + + + + + + + + 

SP291 4/4 + + + + + + + + 

1 8/8 + - + + + + + + 

5 8/8 + + + + + + + + 

680 8/8 - - - + + + + + 

1218  1/1 - - - - - - - - 

658  1/1 - - - - - - - - 

978 3/3 - - - - - - - - 

140 40/45 - - - + + + + + 

150  16/16 - - - + + + + + 

696 12 + + + + + + + + 

520 12 + + + + + + + + 

1249 31/31 + + + + + + + + 
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5.5.1.5 The GR5 

The GR5 consisted of 15 genes encoding for diverse range of functions located between 

Csak377_01070 and Csak377_01731. The genes in GR5 encoded for the antitermination 

protein, KilA-N domain protein, anaerobic benzoate catabolism transcriptional regulator, 

lactose operon repressor laci_1, putative transcriptional regulator, a spore protein hspA 

(hypothetical protein homologue), a putative membrane protein, SMI1/KNR4 family protein, 

ribulose-5-phosphate 4-epimerase and aldolases, site-specific recombinase XerD, ATP-

dependent helicase HepA, type-1 restriction enzyme R protein hsdR_2, putative toxin YpjF 

and antitoxin YeeU. Although the above mentioned traits were noted more in CC4, yet all 

of these traits show a mosaic pattern for the presence across two groups (Figure 5.5, Table 

5.5) and hence difficult to link with the virulence potential of C. sakazakii CC4.  

 

Figure 5. 5 Heat maps of variable regions GR5. 

 The image indicates heat map of variable region GR5 representing visually the percentage of presence 
of any trait within GR5 across CC4 and non-CC4 groups. The intensity of the colour increases as the 
percentage of presence of a gene in a group increases and vice versa. The heat maps were generated in 
SPSS.  
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Table 5. 5 Gene contents of GR5 and their variation in C. sakazakii CC4 and non-CC4 strains  

  Csak377_01070 

Csak377_01072 

Csak377_01091 

Csak377_01213 

Csak377_01218 

Csak377_01219 

Csak377_01222 

Csak377_01316 

Csak377_01318 

Csak377_01337 

Csak377_01587 

Csak377_01727    

Csak377_01729 

Csak377_01730 

Csak377_01731 

C. sakazakii isolate  

ST/CC 

Antiterm
ination protein 

KilA-N
 dom

ain protein 

Anaerobic benzoate catabolism
 

transcriptional regulator 

Lactose operon repressor, lacI_1           

Putative transcriptional 
regulator 

Spore protein SP21, hspA                 

Putative m
em

brane protein 

SM
I1 / KN

R4 fam
ily protein 

SM
I1 / KN

R4 fam
ily protein 

Ribulose-5-phosphate 4-
epim

erase and aldolases 

Site-specific recom
binase XerD 

ATP-dependent helicase HepA 

Type-1 restriction enzym
e R 

protein, hsdR_2           

Putative toxin YpjF, ypjF             

Antitoxin YeeU
 

1225 4/4 + + + + + + + + + + + + + + + 

1231 4/4 + + + + + + + + + + + + + + - 

1587 109/4 - - - + + + + - + + + + + + - 

558 4/4 - - - + + + + + + + + + + + + 

6 4/4 - - - + + + + + + + + + + + + 

767 4/4 - - - + + + + + + + + + + - - 

20 4/4 - - - - + + + + + + - + + + - 

721 4/4 - - - + - - - + + - - + + - - 

1221 4/4 - - - + - - - + + - - + + - - 

1220 4/4 - - - + + + + + + + + + + + - 

1219 4/4 - - - - + + + + + + + + + + - 

701 4/4 - - - + + + + + - + + + + - - 

557 4/4 - - - + + + + - - + - + + + + 

1240 4/4 - - - + + + + + + + + + + + + 

553 4/4 - - - + + + + + + + + - - + - 

4 15/4 - - - + + + + + + + + + + + + 

SP291 4/4 - - - + + + + + + + + + + + + 

1 8/8 + - - + + + + - - + - - - + - 

696 12 - - - + + + + + - + + + + + - 

5 8/8 - - - - - - - - - + - - - - - 

680 8/8 + - - + - - - - - + - - - + - 

1218  1/1 - - - - - - - - - + - + + - - 

658  1/1 - - - - - - - - - + - + + - - 

150  16/16 - - - - - - - - + + - + - - - 

1249 31/31 - - - - - - - - - + - - - - - 

978 3/3 - - - - - - - - + + - - - - - 

520 12 + + - - - - - - - - - + - - - 

140 40/45 - + - - - - - - + + - - - - - 
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5.5.1.6 The GR6 

The GR6 contained 7 genes (located between Csak377_02402 to Csak377_02980). A leucine 

efflux protein leuE (Csak377_02402) was detected in only six of the CC4 and only one non-

CC4 strain 978 (Figure 5.6, Table 5.6). A site-specific recombinase XerD (Csak377_02405) 

was detected in all except one CC4 strain 6, however only in four non-CC4 strains. Other 

five genes in GR6, Csak377_02976-80 encoding for a phenylacetate-CoA ligase, 

phenyloxazoline synthase mbtB, 1-deoxy-D-xylulose-5-phosphate synthase dxs_2, 

transketolase 2 tktB_1 and 3-oxoacyl-(acyl-carrier-protein) reductase fabG_5 respectively; 

were present uniformly across the CC4 group and six of the non-CC4 strains while variably 

present in remaining five of the non-CC4 strains. Hence, none of these traits show a CC4 

specific pattern and therefore could not be linked with the virulence potential of CC4 (Figure 

5.6, Table 5.6).  

 

Figure 5. 6 Heat maps of variable regions GR6.  

The image indicates heat map of variable region GR6 representing visually the percentage of presence 
of any trait within GR6 across CC4 and non-CC4 groups. The intensity of the colour increases as the 
percentage of presence of a gene in a group increases and vice versa. The heat maps were generated in 
SPSS.  
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Table 5. 6 Gene contents of GR6 and their variation in C. sakazakii CC4 and non-CC4 strains  

  Csak377_02402 

Csak377_02405 

Csak377_02976    

Csak377_02977 

Csak377_02978 

Csak377_02979 

Csak377_02980 

C. sakazakii isolate  

ST /CC 

Leucine efflux protein, 
leuE             

Site-specific recom
binase 

XerD 

Phenylacetate-CoA ligase 

Phenyloxazoline synthase 
M

btB, m
btB 

 1-deoxy-D-xylulose-5-
phosphate synthase, 
dxs_2, 

Transketolase 2, tktB_1           

3-oxoacyl-(acyl-carrier-
protein) reductase FabG

, 
fabG

_5          

1587 109/4 + + + + + + + 

558 4/4 - + + + + + + 

6 4/4 - + + + + + + 

767 4/4 + - + + + + + 

1225 4/4 - + + + + + + 

20 4/4 + + + + + + + 

721 4/4 - + + + + + + 

1221 4/4 - + + + + + + 

1220 4/4 - + + + + + + 

1219 4/4 - + + + + + + 

701 4/4 - + + + + + + 

557 4/4 + + + + + + + 

1231 4/4 - + + + + + + 

1240 4/4 - + + + + + + 

553 4/4 + + + + + + + 

4 15/4 - + + + + + + 

SP291 4/4 + + + + + + + 

1218  1/1 - + + + + + + 

658  1/1 - + + + + + + 

1 8/8 - + - + - - - 

5 8/8 - - - + - - - 

680 8/8 - - - + - - - 

696 12 - - - + - - - 

520 12 - - + + - + - 

140 40/45 - - + + + + + 

150  16/16 - - + + + + + 

1249 31/31 - - + + + + + 

978 3/3 + + + + + + + 
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5.5.1.7 The GR7 

The region GR7 contained 18 genes (located between Csak377_03205- 03963) (Figure 5.7, 

Table 5.7). The genes located between Csak377_03841-03850 were the O-antigen 

associated genes. All of these genes are part of the O:2 serotype of C. sakazakii described 

by Mullane et al. (2008). The genes were present uniformly across the CC4 group except 

strain 1240. The observation further strengthened the findings of the chapter 3 (section 

3.4.4) where all of the CC4 isolates aligned with O:2 serotype except for 1240 which belongs 

to a different O-antigen group (O:4). The variation of strain 1240 in GR7 from other CC4 

strains further justify its longer branch length on the SNP phylogeny (Figure 7.1). The O-

antigen variation between CC4 and non-CC4 has been discussed in more detail in (section 

3.4.4). In brief, the variation indicates that O:2 is the dominant serotype in CC4, however it 

is not exclusive to CC4 as some non-CC4 isolates such as 1249 and 978 also belong to O:2 

(section 3.4.4).  

Additionally in GR7, an acyltransferase family protein (Csak377_03205) was present in all 

CC4 isolates except strain 1587 while present only in one C. sakazakii non-CC4 isolate 978. 

Similarly, a putative toxin/anti-toxin Ykf/YfjZ (Csak377_03206-7) was also detected mainly 

in CC4 strains (present in 14/18 strains) while missing in majority of non-CC4 strains (present 

in 3/11 strains). Other traits in GR7 included an antirestriction protein (Csak377_03210) 

were present mostly in CC4 group (13/18) while detected only in three non-CC4 strains. 

Antirestriction proteins such as ArdA are typically plasmid encoded or found in 

bacteriophages; these antirestriction proteins protect the host DNA from degradation by 

inhibiting the restriction modification enzymes of the invading foreign DNA (Zavilgelsky and 

Rastorguev, 2008). The enrichment of antirestriction protein (Csak377_03210) in CC4 could 

be important towards genomic stability of C. sakazakii CC4 and hence warrants further 

investigation.  

A GTPase era_2 (Csak377_03216) was also detected in most of the CC4 strains (12/18) while 

only in three of the non-CC4 strains. GTPases are hydrolase enzymes universally distributed 

in bacteria; these enzymes are involved in functions such as protein synthesis, cell division 

and protein translocation (Caldon and March, 2003). Whether the enrichment of 

Csak377_03216 encoding a GTPase in CC4 genomes, is of significance, requires further 

investigation.  



  Chapter  5 

167 
 

A site-specific tyrosine recombinase XerC (Csak377_03917) was detected in three CC4 and 

one non-CC4 strain, a putative HTH-type transcriptional regulator (Csak377_03919) was 

detected in only two CC4 and two non-CC4 strains. A transcriptional repressor DicA 

(Csak377_03920) was detected in only two of the CC4 strains 1587 and SP291 and was not 

noted in any of the non-CC4 strains. Likewise, a putative two-component system connector 

protein ariR_2 (Csak377_03963) was also detected in only three of the CC4 strains while 

missing uniformly across the non-CC4 group.  

In brief, the GR7 was of significance as it contained some of the O-antigen associated 

genetic traits. From the previous section 3.4.4, it has been shown the O:2 is the dominant 

serotype for C. sakazakii CC4, however it is not specific to CC4 as non-CC4 isolates 1249 and 

978 were also O:2 serotype. The remaining traits in GR7 showed a mosaic pattern for their 

presence across two groups and hence none of the trait was CC4 specific. 
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Figure 5. 7 Heat maps of variable regions in GR7.  

The image indicates heat map of variable region GR7 representing visually the percentage of presence of any trait within GR7 across CC4 and non-CC4 groups. The 
intensity of the colour increases as the percentage of presence of a gene in a group increases and vice versa. The heat maps were generated in SPSS.  
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Table 5. 7 Gene contents of GR7 and their variation in C. sakazakii CC4 and non-CC4 strains 

  

Locus_tag 

Csak377_03205 

Csak377_03206 

Csak377_03207 

Csak377_03210 

Csak377_03216 

Csak377_03419 

Csak377_03431 

Csak377_03841 

Csak377_03843 

Csak377_03844 

Csak377_03845 

Csak377_03848 

Csak377_03849 

Csak377_03850 

Csak377_03917 

Csak377_03919 

Csak377_03920 

Csak377_03963 

   

Product 

Acyltransferase fam
ily 

protein 

Toxin YkfI  

Putative antitoxin YfjZ,            

Antirestriction protein 

G
TPase Era 

Putative HTH-type 
transcriptional regulator 
yhjB 

ATP-dependent helicase 

dTDP-4-dehydrorham
nose 

reductase, rfbD            

dTDP-4-dehydrorham
nose 

3,5-epim
erase, rfbC             

Putative O
-antigen 

transporter, rfbX             

Rham
nosyltransferase 

rham
nosyltransferase 

G
lycosyl transferases 

group 1 

dTDP-Rha:alpha-D-
G

lcN
Ac-pyrophosphate 

polyprenol, alpha-3-L-
rham

nosyltransferase, 
w

bbL            

Site-specific tyrosine 
recom

binase XerC 

Putative HTH-type 
transcriptional regulator 

Transcriptional repressor 
DicA 

ariR_2putative tw
o-

com
ponent-system

 
connector protein AriR 

Strain ST/CC                    

1240 4/4  + + + + + + + - - - - - - - - - - - 

1587 109/4  - + + - - + + + + + + + + + + + + + 

558 4/4  + + + + + + + + + + + + + + - - - - 

6 4/4  + + + + + + + + + + + + + + - - - - 

767 4/4  + - - - - + + + + + + + + + + - - - 

1225 4/4  + + + + + + + + + + + + + + - - - - 

20 4/4  + + + + + + + + + + + + + + - - - + 

721 4/4  + - - - - + + + + + + + + + - - - - 

1221 4/4  + - - - - + + + + + + + + + - - - - 

1220 4/4  + + + + + + + + + + + + + + - - - - 

1219 4/4  + + + + + + + + + + + + + + - - - - 

701 4/4  + - - - - + + + + + + + + + - - - - 

557 4/4  + + + + + + + + + + + + + + - - - - 

1231 4/4  + + + + + + + + + + + + + + - - - - 
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Locus_tag 

Csak377_03205 

Csak377_03206 

Csak377_03207 

Csak377_03210 

Csak377_03216 

Csak377_03419 

Csak377_03431 

Csak377_03841 

Csak377_03843 

Csak377_03844 

Csak377_03845 

Csak377_03848 

Csak377_03849 

Csak377_03850 

Csak377_03917 

Csak377_03919 

Csak377_03920 

Csak377_03963 

  

Product 

Acyltransferase fam
ily 

protein 

Toxin YkfI 

Putative antitoxin YfjZ, 

Antirestriction protein 

G
TPase Era 

Putative HTH-type 
transcriptional regulator 
yhjB 

ATP-dependent helicase 

dTDP-4-dehydrorham
nose 

reductase, rfbD 

dTDP-4-dehydrorham
nose 

3,5-epim
erase, rfbC 

Putative O
-antigen 

transporter, rfbX 

Rham
nosyltransferase 

rham
nosyltransferase 

G
lycosyl transferases 

group 1 

dTDP-Rha:alpha-D-
G

lcN
Ac-pyrophosphate 

polyprenol, alpha-3-L-
rham

nosyltransferase, 
w

bbL 

Site-specific tyrosine 
recom

binase XerC 

Putative HTH-type 
transcriptional regulator 

Transcriptional repressor 
DicA 

ariR_2putative tw
o-

com
ponent-system

 
connector protein AriR 

553 4/4  + + + + - + - + + + + + + + - - - - 

4 15/4  + + + + + + + + + + + + + + - - - - 

SP291 4/4  + + + + + + + + + + + + + + + + + + 

1249 31/31  - - - - - + + + + + + + + + - - - - 

978 3/3  + - - - - - - + + + + + + + - + - - 

1 8/8  - + + + + - - - - - - - - - - + - - 

5 8/8  - - - - - - - - - - - - - - - - - - 

680 8/8  - + + + + - - - - - - - - - - - - - 

1218 1/1  - - - - - - - - - - - - - - - - - - 

658 1/1  - - - - - - + - - - - - - - - - - - 

696 12  - + + - + + + - - - - - - - - - - - 

520 12  - - - - - + - + + - - - - - - - - - 

140 40/45  - - - - - + - - - - - - - - - - - - 

150 16/16  - - - - - - - - - - - - - - + - - - 

Table 5.7 continued 



  Chapter  5 

171 
 

The genomic comparison using the whole genome based comparative approach identified 

a number of unique traits in C. sakazakii 377, however none of the trait could form the basis 

of clear differentiation between CC4 and non-CC4 strains.  

5.5.1.8 LARGE ADHESION ASSOCIATED GENE IN C. SAKAZAKII GENOMES  

An interesting observation in this study was the presence of a large gene (~15kb) 

CSAK377_00585 (or CSSP291_03155 in CC4 isolate SP291) annotated as hypothetical 

protein which was present uniformly in CC4 genomes (18/18) yet variable in non-CC4 

genomes (6/12) (Table 5.8). Previously, a large (600 kDa) non-fimbrial adhesin encoding 

gene siiE (CAE11797) has been reported in Salmonella Typhimurium (Gerlach et al. 2007). 

The CSSP291_03155 was suspected to be a homologue of siiE, however the ACT comparison 

of CSSP291_03155 and siiE did not show any homology. The whole length nucleotide and 

protein sequences of CSSP291_03155 were searched for homology using BLAST in NCBI. It 

showed homology only in Cronobacter with partial gene homologues being identified only 

in non-CC4 C. sakazakii strain ES15 (ES15_0912) and C. turicensis z3032 (CTU_32080). 

Further investigation was undertaken and all the possible open reading frames ORFs within 

this gene were predicted using Artemis for ease of BLAST searching. The Artemis predicted 

a number of ORFs which were searched for homology using BLASTx in NCBI (Table 5.9). 

Majority of the ORFs were the homologues of adhesins or T1SS proteins; ten of these ORFs 

were the partial homologues of adhesin proteins, five of them were the homologues of type 

1 secretion system (T1SS) while remaining two were the homologues of large repetitive 

proteins. Bacterial adhesins are important in mediating the attachment and colonisation of 

bacteria to the host cells. Bacterial adhesins can recognize and bind to the receptors on the 

host cells which in turn may trigger cellular pathways which can facilitate the bacterial 

colonisation or invasion. The attachment of bacterial cells through adhesion to the host cells 

sometime alters bacterial gene expression which may facilitate the bacterial pathogenesis 

(Soto & Hultgren, 1999). The presence of this large adhesion associated gene may be 

important in virulence of C. sakazakii in general, however it is not a CC4 specific trait since 

it was also found to be variably present in half of the non-CC4 C. sakazakii genomes (6/12). 

Further investigation is warranted to characterise this genomic island to elucidate its precise 

role in C. sakazakii.  
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Table 5. 8 Presence of the full length adhesion associated gene CSSP291_03155 in C. sakazakii strains  

C. sakazakii isolate ST CC CSSP291_03155 
6 4 4 + 

20 4 4 + 
377 4 4 + 
553 4 4 + 
558 4 4 + 
701 4 4 + 
721 4 4 + 
767 4 4 + 

1219 4 4 + 
1220 4 4 + 
1221 4 4 + 
1225 4 4 + 
1231 4 4 + 
1240 4 4 + 

SP291 4 4 + 
557 4 4 + 

1587 109 4 + 
4 15 4 + 

978 3 3 + 
520 12  + 
696 12  + 
150 16 16 + 

1249 31 31 + 
140 40 45 + 
658 1 1 - 

1218 1 1 - 
ES15 125 100 - 

1 8 8 - 
5 8 8 - 

680 8 8 - 
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Table 5. 9 BLASTx analysis of the giant adhesion associated gene in C. sakazakii SP291* 

    CSSP291_03155 analysis after division into ORFs   

ORF No Coordinates BLASTx homology Accession 

1 654177:655082 Adhesin, AT-2 family transporter  (Pantoea sp. Sc1) WP_009089074 

2 654577:655104 Hemagglutinin/hemolysin/adhesin-like protein (Erwinia billingiae Eb661) EbC_30340 

3 654698:655690 Type 1 secretion target domain-containng protein, partial (Enterobacter mori) WP_010426201.1 

4 655192:656457 Adhesin for cattle intestine colonisation (Pectobacterium wasabiae) EbC_30340  

5 655908:656390 Autotransporter adhesin (Yersinia mollaretii ATCC 43969) EEQ10543 

6 656054:657160 Adhesin for cattle intestine colonisation (Escherichia coli) CE10_0459; AEQ11302  

7 656607:657062 Autotransporter adhesin (Yersinia mollaretii ATCC 43969) WP_004875316.1 

8 656698:657705 Type 1 secretion target domain-containing protein (Enterobacter cloacae) WP_020884206 

9 657204:657641 Adhesin for cattle intestine colonisation (Escherichia coli) WP_001454914 

10 657332:665359 Adhesin for cattle intestine colonisation (Pectobacterium wasabiae CFBP 3304) EJS92462 

11 658528:659079 Type 1 secretion target domain-containing protein, partial (Enterobacter mori) WP_010430919 

12 659406:659918 Hemagglutinin/hemolysin/adhesin-like protein (Erwinia billingiae Eb661) CAX60565 

13 660046:660459 Large repititive protein,  CTU_32110 (Cronobacter turicensis z3032) CTU_32110 

14 661789:662382 Type 1 secretion target domain-containing protein (Enterobacter sp. SST3) WP_008502299 

15 661875:662246 Large repetitive protein (Cronobacter turicensis 564) WP_007763466.1 

16 663088:663549 Autotransporter adhesin (Yersinia mollaretii) WP_004875316 

17 665360:665869 

Putative TolC family type I secretion outer membrane protein (Cronobacter 

sakazakii ES15) ES15_0913; AFJ98486 

                           * Not all the ORFs within CSSP291_03155 are listed here  
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 GENERAL DISCUSSION AND CONCLUSION  

Whole genome based phylogeny of 30 C. sakazakii strains indicated close clustering of 18 

CC4 strains collected from 9 different countries for over 6 decades; indicating a clonal 

genome signature for this clade (Figure 3.3). Although some interesting variations were 

observed, previous analysis presented in this thesis based on the screening of the potential 

virulence associated traits (chapter 3) and core genome comparative analysis (chapter 4) in 

C. sakazakii genomes could not identify any CC4 specific associated gene which could clearly 

explain its predominance in neonatal meningitis or its persistence in the environment. 

Therefore, it was decided to take the comparative genomic analysis further and use a 

different approach in the view that it may help identify any trait which is CC4 specific. Hence 

a gene by gene search approach was used by comparing one C. sakazakii CC4 (377) and C. 

sakazakii non-CC4 genome (ES15) to identify unique traits in C. sakazakii CC4 genome and 

expand the analysis to the remaining C. sakazakii CC4 and non-CC4 genomes to determine 

genes specific to CC4. The genomic comparison was undertaken using ACT. The gene by 

gene search identified 465 genes which were unique in the genome of C. sakazakii 377 

(Table S4). However, 63% of these gene represented hypothetical proteins of unknown 

function and phage associated traits. To make the genomic comparison simpler, the 

hypothetical and phage associated traits were omitted and the remaining genes were 

divided into 7 genomic regions based on their location and functional categories. It must 

however be noted that the all genes within a GR do not necessarily located next to each 

other, the GRs were assigned just to present the genomic comparison in a simplified manner 

based on functional similarities and close location.  

The traits in the GR1 were the homologues of copper and silver homoeostasis associated 

genes which have previously been described (Kucerova et al. 2010; Joseph et al. 2012b). 

The genes within GR1 were detected in most of the C. sakazakii CC4 and non-CC4 genomes, 

however no CC4 specific pattern was observed for any genes within GR1. Furthermore, 

since the region was absent in clinically significant C. sakazakii CC4 and non-CC4 isolates 

such as isolates 20, 1221 and 1249 all of which were CSF isolates, it suggested that the 

region may not be essential for the virulence potential of C. sakazakii in general or CC4 in 

particular.  
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The GR2 consisted of genes with diverse range of functions. Overall the genes within GR2 

were missing largely in both CC4 and non-CC4 strains and no CC4 specific pattern was 

observed for any of the traits within this region.   

The GR3 consisted of a number of important virulence associated traits such as arsenic 

resistance, iron acquisition, potassium uptake, pilus assembly, starvation sensing and multi 

drug efflux associated genes. However, the region did not indicate the basis of 

differentiation between CC4 and non-CC4 as most of these genes were detected in majority 

of the C. sakazakii isolates across both groups. Iron acquisition, heavy metal resistance, 

multi-drug efflux are the characteristics adapted by several bacterial pathogens which help 

them to survive within hostile conditions and cause infections in their susceptible hosts. The 

presence of these traits in most CC4 and non-CC4 isolates indicate that these traits 

contribute equally towards the virulence potential of C. sakazakii and cannot be linked 

specifically to any of the subgroup. The iron acquisition associated genes in GR3 have been 

also have been investigated in chapter 3 (3.4.2.10).   

The GR4 consisted of 8 genes encoding for the fimbrial adhesion genes. The fimbriae are 

the important bacterial appendages which help them adhere to the host surface (Proft & 

Baker, 2008). A number of fimbrial genes have been described in Cronobacter (Joseph et al. 

2012b) and investigated in chapter 3 (section 3.4.2.1). The GR4 represents an additional 

fimbrial region. This region was detected uniformly in all C. sakazakii CC4 isolates, however 

only 3 of C. sakazakii non-CC4 isolates completely lacked this region. Since the region was 

detected in more than half of the non-CC4 isolates (n=12) it may not form the basis of 

differentiation between the two groups, moreover its absence in clinically significant C. 

sakazakii isolates 658 and 1218 (fatal meningitic isolates) further suggested that it may not 

be essential for the virulence potential of C. sakazakii CC4 in particular and C. sakazakii in 

general.  

Similarly, the GR5 consisted of 15 genes which encoded for diverse range of proteins 

including transcriptional regulators, toxin/anti toxin system, however all of them showed a 

mosaic pattern of presence across the two groups and none of them indicated any C. 

sakazakii CC4 pattern.  
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Similarly, the GR6 consisted of nine genes encoding for the house keeping enzymes such as 

reductases, synthases, ligases, transketolase and a leucine efflux protein, however none of 

the gene was CC4 specific.  

Of particular significance was the GR7, other than the toxin/anti-toxin, actetyltransferases, 

anti-restriction proteins, transcriptional regulators and recombinases none of which 

showed a CC4 specific pattern, the genes located between Csak377_03841-03850 were part 

the O-antigen specific genes (Figure 5.7, Table 5.7). It was interesting to note that all of the 

O-antigen associated genes were uniformly present in all CC4 isolates except isolate 1240. 

In addition, non-CC4 isolates 978 and 1249 also contained these O-antigen associated genes. 

The O-antigen region has been investigated in detail in chapter 3 (section 3.4.5) where it 

was observed that all of the CC4 isolates belonged to O:2 except isolate 1240, while non-

CC4 isolates 978 and 1249 also had O:2 serotype. Thus O:2 is not the unique signature for 

C. sakazakii CC4 (section 3.4.5).  

An interesting observation in the present comparative genomic analysis was the presence 

of a giant ~15 kb long gene present in all of C. sakazakii CC4 isolates (n=18), however present 

as a whole in only half (6 of 12) non-CC4 genomes. Further investigation of this after dividing 

into smaller ORFs revealed that most were the homologues of either T1SS or adhesion 

associated genes. Adhesins are important towards the bacterial pathogenicity as they help 

a bacterium colonise the host surface (Soto and Hultgren, 1999). The gene was also noted 

in half of the non-CC4 isolates (6/12). However, this gene could be important towards the 

virulence of C. sakazakii in general and hence further investigation at the laboratory level is 

warranted to elucidate its importance in C. sakazakii.  

The analysis presented in this chapter was aimed for the identification of any potential 

virulence or environmental fitness associated trait in C. sakazakii CC4 using a gene by gene 

comparison of C. sakazakii CC4 and non-CC4 isolates. A total of 465 genes were identified 

unique in the genome of C. sakazakii CC4 isolate 377 against comparison with C. sakazakii 

non-CC4 isolate ES15. After omitting the phages and hypothetical traits, the remaining 

functional genes divided into 7 groups, could not form the basis of differentiation between 

CC4 and non-CC4. The GR7 which contained the O-antigen associated genes further 

strengthened the in silico serotyping presented in section 3.4.5. In addition a giant adhesion 

associated gene was noted in all C. sakazakii CC4 isolates, however due to its presence in 
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50% of the C. sakazakii non-CC4 isolates, it cannot be classed as CC4 specific trait. Although 

some interesting variations were observed, yet the present genomic analysis could not find 

any gene with functional annotation uniquely specific to C. sakazakii CC4 which could clearly 

explain its predominance in neonatal meningitis and its persistence in the environment 

especially in PIF and its associated production environment. The genomic analysis was 

carried further by fragmented genomic comparison using a program called Gegenees which 

can identify any unique genes in a target group. The analysis is presented in the following 

chapter 6.  

It is important to point out that although the hypothetical proteins and phage associated 

traits were omitted from this analysis, yet there were two hypothetical proteins 

CSAK377_02657 (homologue of CSAK557_03870 in CC4 isolate 557 and CSSP291_18210 in 

CC4 isolate SP291) and Csak377_03526 (homologue of CSSP291_10445 in C. sakazakii CC4 

isolate SP291) which were found specific to C. sakazakii CC4 (Table S4). These hypothetical 

proteins have been discussed in more detail in chapter 6.  

 



 

 

 

 

 

 

 

 

 

 

 

 CHAPTER 6 

FRAGMENTED COMPARATIVE GENOME ANALYSIS OF 

C. SAKAZAKII STRAINS USING GEGENEES TO IDENTIFY 

UNIQUE TRAITS IN C. SAKAZAKII CC4 
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 BACKGROUND 

Due to the predominant association of C. sakazakii CC4 with neonatal meningitis and its 

relatively frequent isolation from PIF and the environment (Joseph & Forsythe, 2011; Hariri 

et al. 2013; Muller et al. 2013; Sonbol et al. 2013; Forsythe et al. 2014); it was of significance 

to identify any unique traits in this lineage. The analysis presented in chapter 3 aimed to 

identify any potentially virulence and environmental fitness associated traits previously 

described in Cronobacter or closely related organisms revealed some interesting variations, 

however could not identify any trait strictly specific to C. sakazakii CC4. The analysis was 

carried forward in chapter 4 by investigating the core genome of C. sakazakii CC4, however 

except for one hypothetical protein (CSSP291_18210), none of the traits could directly be 

linked with CC4 clonality and its virulence potential or environmental fitness. Whole 

genomic comparison using Artemis Comparison Tool (ACT) through gene by gene search 

approach identified genomic regions which showed variable degree of presence across C. 

sakazakii CC4 and non-CC4 genomes; although some interesting variations such as the giant 

adhesion associated gene was observed, nevertheless no other trait could explain the 

clonality, virulence potential or environmental fitness of the CC4 (chapter 5).  

The genomic analysis presented in this chapter was aimed to identify the unique traits in C. 

sakazakii CC4 using a program called Gegenees (Agren et al. 2012). Gegenees is a program 

which fragments the genomes and compares each fragment against all the fragmented 

genomes used in comparison. It also allows a target group to be selected and to identify 

genomic fragments specific to that target group. The program has been used for the 

identification of unique traits in strains from the 2011 Escherichia coli O104:H4 outbreak, in 

the Bacillus cereus group and in the foot and mouth disease viruses (Agren et al. 2012). In 

this analysis, this program was used to analyse 30 C. sakazakii genomes keeping 18 CC4 

genomes as our target group.  
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 HYPOTHESIS  

C. sakazakii CC4 isolates have unique virulence or environmental fitness associated traits. 

 AIMS OF THE CHAPTER  

The aims of the analysis presented in this chapter were; 

• To undertake fragmented genomic analysis by Gegenees using 18 C. sakazakii CC4 

genomes as the target group to identify CC4 specific traits. 

 

• To undertake fragmented analysis by Gegenees keeping 12 non-CC4 genomes as the 

target group to identify any traits missing uniformly in CC4 genomes. 

 
• Validate the findings of Gegenees by Cronobacter BLAST and ACT. 
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 METHODS  

6.4.1 STRAINS, SEQUENCING, GENOME ASSEMBLY AND ANNOTATION 

A total of 30 C. sakazakii isolates which included 18 CC4 and 12 non-CC4 were used in this 

genomic analysis (Table 3.1). The 22 genomes were sequenced at University of Exeter using 

Illumina Hiseq2500 while additional genomes were accessed from Genbank (Table 3.1). The 

genome assembly was using Velvet (Zerbino et al. 2008). The genome annotation was 

undertaken using PROKKA (Seemann, 2014) (section 2.2.5).  

6.4.2 FRAGMENTED GENOMIC ANALYSIS USING GEGENEES  

The finished C. sakazakii CC4 genome C. sakazakii SP291 was used as the reference strain. 

Fragmented all against all comparison was performed by setting fragment size to 500bp and 

sliding step size as 500bp to ensure there are no overlaps. The search method used was 

BLASTN (section 2.2.10). The input files for each genome were in FASTA format. Automated 

fragmentation by Gegenees fragmented each genome into fragments of 500bp (section 

2.2.10). Initially 18 C. sakazakii CC4 genomes were used as the target group to identify the 

biomarker or unique traits in CC4, in this case C. sakazakii CC4 genome SP291 was used as 

the reference, hence all the genomic coordinates (or annotation) of the unique traits 

identified would refer to C. sakazakii SP291. The unique traits in C. sakazakii non-CC4 

isolates refer to the missing traits in C. sakazakii CC4. When identifying missing genomic 

fragments in C. sakazakii CC4, the genomes of 12 non-CC4 isolates were used as the target 

group, in this case the genome of C. sakazakii 658 was used as the reference strain, hence 

the genomic coordinates (or gene annotation) of all the missing genomic fragments in CC4 

(or unique traits in non-CC4) would refer to the genome of C. sakazakii 658.  
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 RESULTS AND DISCUSSION 

6.5.1 FRAGMENTED GEGENEES ANALYSIS TO IDENTIFY UNIQUE TRAITS IN C. SAKAZAKII 

CC4 

The fragmented all against all genomic analysis of 30 C. sakazakii genomes was undertaken 

using Gegenees. To identify unique genomic fragments (genes), 18 C. sakazakii CC4 

genomes were used as the target group (section 2.2.10). Interestingly, as with the whole 

genome alignment (Figure 3.3) the Gegenees alignment of 30 C. sakazakii genomes also 

revealed close clustering of the CC4 genomes as shown by the heat map (Figure 6.1) further 

validating the clonal nature of the CC4 genomes. The fragmented all against all genomic 

comparison of 30 C. sakazakii genomes by Gegenees revealed a unique signature for the 

CC4 genomes (Figure 6.1).  
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Figure 6. 1 Heat map of similarity indices of 30 C. sakazakii genomes. 

The heat plot of 30 C. sakazakii genomes based on BLASTN alignment of 500/500 is shown. 18 CC4 genomes (green font) were used as the target group, all the remaining 
genomes represented background group (red font). No threshold was used in order to screen both conserved and non-conserved genomic fragments for the CC4 unique 
genomic fragments. 
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In Gegenees analysis, a biomarker (max/min) score value of 1.0 in the target group refers 

to the unique genomic fragment or gene in the that target group (Agren et al. 2012). In the 

present analysis, 18 C. sakazakii CC4 genomes were used as the target group while the 

genome of C. sakazakii SP291 was used as the reference genome (Figure 6.2).  

 

Figure 6. 2 The target group settings in Gegenees. 

 The image above is the cropped section of the screen shot indicating the total number of genomes 
included in the fragmented Gegenees analysis and the target group (green font colour) and background 
group (red font colour) settings. The black font colour shows the reference genome in the target group.  

 

As a result of the fragmented all against all genomic comparison, regions with highest 

biomarker score i.e. 1.0 were found on the reference C. sakazakii SP291 genome 

demonstrating that these regions are unique to the target CC4 group (Figure 6.3). 
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Figure 6. 3 Unique regions in the C. sakazakii CC4 genomes.  

The figure shows CC4 unique regions (green, black encircled) identified by BLASTN alignment of 30 C. sakazakii genomes. The target group consisted of 18 CC4 genomes 
while remaining 12 non-CC4 genomes represented the background group. The genomic positions are with reference to the C. sakazakii SP291.  
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The investigation of these genomic regions was undertaken using their coordinates in the 

reference C. sakazakii SP291. These genomic regions represented 2 genes with locus_tag 

CSSP291_18210 and CSSP291_10445, both of which were annotated as hypothetical 

proteins (Table 6.1).  

Table 6. 1 Unique genes identified in C. sakazakii CC4 genomes (n=18) by Gegenees fragmented 
genomic analysis 

Locus_tag Annotation Blastx 

CSSP291_18210      Hypothetical 
protein 

Inner membrane protein of Enterobacter aerogenes (accession: 
YP_007387546) 73% (65/89) 

CSSP291_10445          Hypothetical 
protein 

Hypothetical protein COCC4DRAFT_56662 [Bipolaris maydis ATCC 
48331 30/91(33%)  

 

In order to investigate further and to predict the potential function of these hypothetical 

proteins, homology searches were performed in NCBI using BLASTx. The hypothetical 

protein CSSP291_18210 showed partial homology (identities = 73% (65/89) and 85% 

positives (76/89) was against a putative inner membrane protein of Enterobacter aerogenes 

(accession: YP_007387546). Another hit with less homology (identities = 46% (57/87) and 

62% positives (54/87) was against the “chain A, crystal structure of the type VI effector-

immunity complex Ssp1-rap1a from Serratia marcescens” (accession; 4BI8_A) (46% identity). 

This observation was quite interesting as the hypothetical protein CSSP291_18210 turned 

out to be the same as CSAK557_03870 which has been indicated as enriched in CC4 in 

chapter 4 (section 4.4.3.5). The hypothetical protein has been discussed in detail in section 

4.4.3.5. In brief, this hypothetical protein was initially noticed only in C. sakazakii CC4 

isolates (n=18) while absent from all C. sakazakii non-CC4 isolates (n=12). The flanking 

regions revealed only hypothetical proteins while the secondary structure in silico protein 

indicated several protein binding sites (Figures 4.5-6). For more detail on this hypothetical 

protein please see section 4.4.3.5.  

An additional finding with Gegenees analysis was the identification of the hypothetical 

protein CSSP291_10445 as enriched in CC4. The BLASTx could not predict any functional 

relevance for this hypothetical protein as most of the hits with considerable degree of 

homology indicated only hypothetical proteins of unknown function. The location of the 

hypothetical protein CSSP291_10445  was also taken into consideration. Using Artemis the 

flanking regions of these CC4 unique hypothetical proteins was investigated (Figure 6.4).
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Figure 6. 4 ACT comparison of the flanking region of the hypothetical protein CSSP291_10445 in one C. sakazakii CC4 SP291 and C. sakazakii non-CC4 658. 

The image above indicates the ACT comparison of the flanking region of the hypothetical protein CSSP291_10445 unique in 18 C. sakazakii CC4 genomes as identified by 
Gegenees fragmented genome comparison analysis. The flanking region was noticed in non-CC4 genomes as well.  
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The hypothetical protein CSSP291_10445 was flanked by housekeeping traits which 

included such as isocitrate dehydrognese, LysR family transcriptional regulator protein, 

hydrolase enzyme and other hypothetical proteins; methyl accepting chemotaxis proteins. 

However the flanking region was also noticed in non-CC4 genome 658 (Figure 6.4), it was 

therefore difficult to predict the any functional relevance for the unique hypothetical 

protein CSSP291_10445.  

An attempt was also made to predict the functional and structural properties of the 

hypothetical protein CSSP291_10445 using online protein prediction tool 

http://ppopen.informatik.tu-muenchen.de/ (Bigelow et al. 2004; Goldberg et al. 2012; 

Ofran & Rost, 2007; Hamp et al. 2013). No functional relevance could be predicted, however 

the location of this hypothetical protein was predicted to be the inner membrane protein. 

Furthermore, a secondary structure was also predicted with several protein binding sites on 

the surface of hypothetical protein CSSP291_10445 (Figure 6.5). The structural 

characteristic such as binding sites is an important feature which may mediate some 

virulence or fitness associated mechanism, however only full characterisation of this 

hypothetical protein can unravel its functional attributes and its significance in CC4. 

http://ppopen.informatik.tu-muenchen.de/
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Figure 6. 5 Secondary structure prediction for the hypothetical protein CSSP291_10445.  

The figure above represents the secondary structure prediction of CSSP291_10445 using online protein prediction tool http://ppopen.informatik.tu-muenchen.de/. 
The red squares with stalks represent the protein binding sites while the yellow circle with a stalk shows a polynucleotide binding region. The red, blue and yellow 
rectangles represent the helices, exposed and buried parts of the protein regarding solvent accessibility. The composition of the secondary structure and its solvent 
accessibility is represented by the pie-chart.  

 

http://ppopen.informatik.tu-muenchen.de/
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As mentioned elsewhere in this thesis,  the PubMLST website for Cronobacter also facilitates 

the genomic comparison of  all publically available Cronobacter genomes using BLAST 

facility. A total of 107 Cronobacter spp. genomes (last accessed; 20th February 2015) are 

available publically in the BIGSdb facility in Cronobacter PubMLST. Of these, 37 were CC4 

genomes, all of which were C. sakazakii strains. Additional 70 genomes represent non-CC4 

isolates representing all 7 species of the genus Cronobacter 

(http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates&page=plugi

n&name=BLAST/). The opportunity was exploited in order to observe the variation of the 

hypothetical protein CSSP291_10445 at a larger scale using Cronobacter BLAST. The BLAST 

results against 107 sequenced Cronobacter spp. genomes indicated that the hypothetical 

protein CSSP291_10445 was noted in 100% of the CC4 genomes (n=37) while it was 

detected in merely 5 out of 70 non-CC4 isolates which included 693, 700, 713, 714 and 715 

all of which were C. sakazakii belonging to CC13. Hence, the hypothetical protein 

CSSP291_10445 varied significantly between CC4 and non-CC4 isolates (P < 0.05). Please 

note that these genomes represent the 1994 French outbreak isolates which have been 

investigated in chapter 8. The observation is also of significance as all of the CC13 isolates 

in Cronobacter PubMLST were C. sakazakii; moreover almost half of the CC13 strains (12/26) 

were food isolates while ~36% (9/26) represented infant formula isolates. Whether, the 

hypothetical protein CSSP291_10445 is also a dominant trait in CC13 cannot be predicted 

with certainty as the genome sequences of only 5 of the 26 CC13 isolates in Cronobacter 

PubMLST are available at the time of writing this section of the thesis. Future studies are 

warranted to find the association of the hypothetical protein CSSP291_10445 with CC13.  

 

 

 

 

 

 

 

 

http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates&page=plugin&name=BLAST/
http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates&page=plugin&name=BLAST/
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6.5.2 FRAGMENTED GEGENEES ANALYSIS TO IDENTIFY MISSING GENES IN C. SAKAZAKII 

CC4 

Bacterial genomes constantly undergo gene gain and loss, a process called genome flux 

(Lawrence 1999; den Bakker et al. 2010). The loss of genes can sometimes enhance the 

virulence of a bacterium, for example the loss of ompT and cadA from Shigella where the 

presence of these genes can attenuate the virulence (Nakata et al. 1993; Maurelli et al. 

1998). Moreover the loss of function through deletion of certain genes can enhance 

bacterial adaptation to a certain habitat (Hottes et al. 2013). Since, C. sakazakii CC4 have 

frequently been associated with neonatal infections and isolated frequently from PIF, 

therefore it was important to investigate if any of the genes have been lost specifically from 

C. sakazakii CC4 genomes. Thus, the missing genes in C. sakazakii CC4 were also identified 

using Gegenees. In this case the target group settings were changed and the 12 non-CC4 

genomes (Table 3.1)  were used as the target group while the non-CC4 isolate C. sakazakii 

658 was used as the reference strain. The initial Gegenees analysis coupled with 

Cronobacter BLAST and manual genomic analysis by ACT identified only one hypothetical 

protein (ESA_02200) as specific to 12 C. sakazakii non-CC4 genomes while missing uniformly 

in 18 C. sakazakii CC4 genomes used in the present genomic analysis. The analysis was 

expanded by Cronobacter BLAST to 107 Cronobacter genomes including 37 CC4 and 70 

Cronobacter spp. non-CC4 genomes. The results of the BLAST analysis indicated uniform 

absence of this hypothetical protein in 36 CC4 isolates while present only in one C. sakazakii 

CC4 isolate ES713; however the results also indicated the hypothetical protein ESA_02200 

was not uniformly present in all 70 Cronobacter spp. non-CC4 isolates as it was found absent 

in 18 other Cronobacter spp. isolates as well (Table S5). Hence, although there was 

significant variation between CC4 and non-CC4 isolates (P < 0.05), the loss of ESA_02200 is 

not strictly specific to CC4. The BLASTx was performed to predict any functional relevance, 

however most of the hits with significant degree of homology only indicated 

uncharacterised hypothetical proteins. Furthermore, the analysis of the flanking region in 

the reference C. sakazakii BAA-894 could not indicate any functional relevance for this 

hypothetical protein as it was flanked by uncharacterised hypothetical, proteins both 

upstream and downstream (Figure 6.6). An attempt was also made to predict the function 

of this hypothetical protein using the in silico protein prediction tool 

http://ppopen.informatik.tu-muenchen.de/ (Bigelow et al. 2004; Goldberg et al. 2012; 

http://ppopen.informatik.tu-muenchen.de/
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Ofran & Rost, 2007; Hamp et al. 2013). However, no functional category and location of 

hypothetical protein ESA_02200 could be predicted. In future studies, characterisation of 

the hypothetical protein ESA_02200 may clarify its loss, predominantly from the CC4 

isolates.  

 

 

 

Figure 6. 6 Location of the CC4 missing gene 

The figure indicates the location the gene encoding for the hypothetical protein (purple colour). found 
missing in C. sakazakii CC4 genomes (n=18) while present uniformly in non-CC4 genomes (n=12).  
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 GENERAL DISCUSSION AND CONCLUSION 

The predominance of C. sakazakii CC4 in neonatal meningitis and its frequent isolation from 

the PIF is of high concern to neonatal health. Although, interesting variations were observed 

in chapters 3-5, however no key virulence associated gene which could explain the 

association of CC4 with virulence and environmental fitness, could be identified. Recently a 

new genomic analysis program has been developed which can help identify unique genes 

within a target group, the program is called Gegenees and has been used for the 

identification of unique genes in the Bacillus cereus group and in the foot and mouth disease 

viruses (Agren et al. 2012). Hence, it was of particular interest to utilise this program with 

the aim to identify unique genes within C. sakazakii CC4. As with the previous analysis, the 

same set of 30 C. sakazakii genomes consisting of 18 CC4 and 12 non-CC4 genomes were 

used in the Gegenees analysis (Table 3.1). The aim was twofold, first to identify any unique 

genes within CC4 and secondly to identify any genes specifically lost from the CC4 genomes.  

The fragmented analysis by Gegenees identified two hypothetical proteins CSSP291_18210 

and CSSP291_10445 enriched in CC4 isolates. The hypothetical protein CSSP291_18210 was 

also identified as enriched in CC4, in genome analysis presented in chapter 4. The present 

analysis further strengthened the finding of the chapter 4. The hypothetical protein 

CSSP291_18210 has been discussed in detail in chapter 4; in brief it was an homologue of 

the inner membrane protein as revealed by BLASTx and was only detected in 2 of the non-

CC4 isolates C. sakazakii 2051 and C. malonaticus (CC129). The C. sakazakii 2051 belongs to 

CC64 which has also been isolated frequently from the infant formula (section 4.4.4).  

An additional finding in the present analysis was the hypothetical protein CSSP291_10445 

which was found to be enriched in CC4 genomes. The expansion of the analysis to 107 

Cronobacter spp. genomes indicated that besides 100% of the CC4 genomes, the 

hypothetical protein was also detected in five of the CC13 isolates; an important lineage 

associated with food and infant formula (section 6.4.1). The BLASTx analysis could not 

predict homologies against a protein with known function as most hits indicated 

hypothetical proteins. Further, characterisation using the in silico protein prediction 

(section 6.4.1) also could not assign any functional relevance however, the secondary 

structure predicted the presence of some protein binding sites on its surface. These binding 

sites may be crucial for the interaction of this hypothetical protein with other molecules. 
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However, only further characterisation of this hypothetical protein can elucidate its 

importance in CC4.  

The loss of genes can also be important towards the virulence of bacterium or towards the 

adaptation of a particular habitat (Lawrence & Roth, 1999). Therefore, the Gegenees was 

also used to find out any genes which could have been lost specifically from CC4 genomes. 

In this case the 12 non-CC4 genomes were used as the target group where C. sakazakii 658 

was used as the reference genome. Only one hypothetical protein ESA_02200 was identified 

as unique to non-CC4 genomes while absent uniformly from the CC4 genomes (except for 

the isolate ES713). The analysis was taken further to suggest any functional relevance of 

this hypothetical protein using BLASTx and analysing the flanking region of this hypothetical 

protein, however no clue was found since the BLASTx results returned only hypothetical 

proteins while the flanking regions also was consisted of hypothetical proteins (Figure 6.6). 

Furthermore, the Cronobacter BLAST indicated that the loss of this hypothetical protein is 

not exclusive to CC4 as 18 other Cronobacter spp. non-CC4 genomes also lack this 

hypothetical proteins in their genomes (Table S5). The detailed laboratory based studies 

dedicated at the characterisation of these hypothetical proteins and to assay their effect on 

the virulence or fitness of C. sakazakii CC4 may elucidate their precise role.   

Although no key virulence associated genes could be noted, the detailed comparative 

genomic analysis presented in chapters 3-6 aimed to identify C. sakazakii CC4 specific traits 

revealed interesting variations including two hypothetical proteins (CSSP291_18210, 

CSSP291_10445) as predominant in CC4 isolates, the O:2 to be the dominant serotype for 

C. sakazakii CC4 and a giant adhesion associated gene present dominantly in the C. sakazakii 

CC4 isolates. In addition, the hypothetical protein ESA_02200 was noted to be 

predominantly missing from the CC4 genomes.    

It is important to mention that while undertaking fragmented genome analysis, contrasts 

other than CC4 against non-CC4 were also considered. Fragmented genome analysis was 

also performed by trying clinical, CSF and meningitic isolates as target groups, however no 

unique genes were detected in any of the target group (data not shown).  

The focus of the analysis was now moved to the second and third main aims of this thesis 

which were to study the diversity within C. sakazakii CC4 isolates (presented in the chapter 

7) and the genomic analysis with primary aim of source identification of C. sakazakii strains 
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isolated from the 1994 French outbreak of neonatal intensive care unit (NICU) which led to 

the deaths of 3 babies (presented in chapter 8).  
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DIVERSITY WITHIN CRONOBACTER SAKAZAKII CLONAL COMPLEX 4 
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 BACKGROUND 

Previous and current PhD studies at NTU have elaborated that there are differences 

amongst CC4 isolates in their clinical presentations, for example variation in the ability of 

CC4 isolates regarding adhesion and invasion was observed in vitro (Nasreddin Rhouma, 

2012; Faisal Almajed 2014, unpublished data). Hence, it was of significance to analyse the 

diversity within C. sakazakii CC4 isolates using genome sequence data, which was the focus 

of the analysis presented in this chapter. With the revolution in whole genome sequencing 

technologies, the detection of Single Nucleotide Polymorphism (SNP) amongst different 

bacterial isolates of the same species has become relatively easier and can therefore be 

used as a genomic tool to study intra-species variation or in other words to analyse the 

diversity within closely related bacterial isolates. This approach was exploited in the analysis 

presented in this study. The analysis presented in this chapter was based primarily on the 

SNP analysis and further comparative genomic studies within C. sakazakii CC4 isolates were 

undertaken to answer the questions arising from the SNP analysis. The sequenced C. 

sakazakii genomes analysed in this chapter are also available on Cronobacter BIGSdb (Jolley 

& Maiden, 2010). The genome comparator facility in the Cronobacter BIGSdb facilitates the 

comparative genomics of these isolates using the COG-cgMLST (Forsythe et al. 2014), 

therefore this platform provided an opportunity to correlate the findings with SNP analysis. 

The COG-cgMLST analysis of C. sakazakii CC4 isolates was based on the sequence backbone 

of C. sakazakii SP291 (Power et al. 2013). 
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 HYPOTHESIS  

C. sakazakii CC4 is genetically a clonal lineage.  

 AIMS OF THE CHAPTER 

The main aim of the analysis presented in this chapter was to study the diversity within C. 

sakazakii CC4 isolates. The analysis was undertaken with the following objectives. 

• SNP calling of C. sakazakii CC4 isolates using finished C. sakazakii CC4 isolate SP291 

as an index strain. 

• Manual filtration of the SNPs to retain only high quality SNPs. 

• Phylogeny estimation of the CC4 isolates using the filtered variant call format (VCF) 

files. 

• Variation analysis of the isolates as indicated by the SNP phylogeny. 

• Comparative genomics of high and low invasive C. sakazakii CC4 strains. 

• Heavy metal resistance assay of the selected C. sakazakii high and low invasive 

isolates. 

• The COG-cgMLST analysis of C. sakazakii CC4 isolates using C. sakazakii SP291 as the 

reference backbone. 
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 METHODOLOGY 

7.4.1 SINGLE NUCLEOTIDE POLYMORPHISM ANALYSIS OF C. SAKAZAKII CC4 GENOMES 

Single Nucleotide Polymorphism (SNP) analysis was performed on the C. sakazakii CC4 

isolates (Table 7.1) using SMALT and SAMtools (Li et al. 2009). The FASTA file of the 

published genome of the CC4 strain C. sakazakii SP291 was used as the reference or index. 

The resulting VCF files were filtered using VCFTools to include only SNPs with minimum 

quality score of 30, minimum depth of 8, and minimum allele frequency of 0.75 (Sahl et al. 

2011; Clark et al. 2012; McNally et al. 2013). A consensus sequence file was then created 

for each genome and used to create a maximum likelihood phylogeny by Dr Alan McNally 

using his scripts. The method is described in more detail in section 2.2.9. The resulting tree 

was visualised and annotated using the FigTree (http://beast.bio.ed.ac.uk/figtree).  

7.4.2 COMPARATIVE GENOME ANALYSIS 

The comparative genome analysis of C. sakazakii CC4 isolates was undertaken using Artemis 

Comparison Tool (ACT). The methods are described in more detail in sections 2.2.6 and 2.2.7. 

The genome comparator facility of Cronobacter PubMLST was also used.  

7.4.3 METAL RESISTANCE ASSAY 

Selected C. sakazakii isolates were tested for their ability to tolerate metals toxic at higher 

concentrations. Isolates were tested for 8 different metals  which included copper (II) 

sulphate (Sigma-Aldrich®, UK), sodium arsenate (Sigma-Aldrich®, UK), nickel chloride (Fisher 

Scientific, UK), silver nitrate (Alfa Aesar®, UK), zinc sulphate (BDH chemicals England), 

sodium tellurite (Sigma-Aldrich®, UK), cadmium carbonate (Harrington, USA) and cobalt (II) 

nitrate (Sigma-Aldrich®, UK). Each of the isolate was tested for 4 different concentrations of 

1M, 0.1M, 0.01M and 0.001M of each heavy metal. The method is described in detail in 

section 2.1.6.  

 

 

 

 

 

http://beast.bio.ed.ac.uk/figtree
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 RESULTS AND DISCUSSION 

7.5.1 SNP ANALYSIS OF C. SAKAZAKII CC4 STRAINS  

The SNP analysis of C. sakazakii CC4 genomes was undertaken using SMALT and filtered 

manually (section 2.2.9). The reference genome used was C. sakazakii SP291. The SNP 

phylogenetic tree was viewed and annotated using FigTree. The SNP phylogenetic tree of C. 

sakazakii CC4 (Figure 7.1) indicated that most of the C. sakazakii CC4 (n=13) strains were 

equidistant to the reference genome, however four of the CC4 strains; 6, 558, 1587 and 

1240 revealed variations on the SNP tree; these isolates showed greater number of SNPs 

compared to other isolates against the reference isolate SP291 (Table 7.1). The strain 1240 

is notable as it is serotype O:4 unlike other CC4 isolates which are O:2 (section 3.4.4).  

 

Figure 7. 1 The SNP based phylogeny of 18 CC4 strains.  

The SNPS were called using SMALT and SAMtools to generate the VCF files which were then merged and 
the maximum likelihood phylogeny was estimated.  Colour coding: purple = reference isolate; red = low 
invasive strains; blue = O:4; green = ST109. The scale bar shows the number of nucleotide substitutions. 
(Comment; Please note that at the time the SNP analysis was initiated the raw sequencing files (FASTQ) 
of the CC4 isolate 701 were not available and therefore could not be included in the SNP phylogeny).  
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The number of SNPs against the reference strain varied from as low as only 16 to as high as 

1245 SNPs. Most of the CC4 isolate (n=10) had SNPs in the range of 300 to 400 (Table 7.1). 

Considering the temporal and geographic diversity, this observation further supports the 

genomic stability of the CC4 isolates.  

Table 7. 1 SNP calls in C. sakazakii CC4 isolates against the reference C. sakazakii CC4 isolate SP291  

C. sakazakii CC4 
isolate  

No of SNPs Year of 
isolation  

Country Source 

377 16 1950 UK Clinical 
553 335 1977 Netherlands Clinical 
557 307 1979 Netherlands Clinical; Faeces 
6 668 1990 Canada Clinical 
558 785 1983 Netherlands Milk powder 
4 403 1990 Canada Clinical 
767 294 1994 France Clinical; Peritoneal 

fluid 
1587 554 2000 Israel Clinical; CSF 
20 239 2003 Czech 

Republic 
Clinical; Trachea 

721 414 2003 USA Clinical 
1220 280 2003 USA Clinical; CSF 
1221 360 2003 USA Clinical; CSF 
1231 343 2005 New Zealand Clinical; Blood 
1225 312 2007 USA Clinical; Faeces 
1219 306 2009 USA Clinical; CSF 
1240 1245 2009 USA Clinical; CSF 

CSF; Cerebrospinal fluid  

 

It was interesting to note that the earliest CC4 isolate 377 which was isolated in 1950 had 

only 16 SNPs against C. sakazakii CC4 isolate SP291. Unfortunately, the date of isolation for 

the reference strain SP291 is not known. The analysis of these 16 SNPs indicated, 9 of these 

SNPs were located in a single gene CSSP291_02330 encoding for a putative integrase, of 

which only 1 SNP was non-synonymous while the remaining 8 SNPs were synonymous 

(Table S6). Integrases are the enzymes that catalyse the integration of the viruses such as 

bacteriophages into the host chromosomal DNA, found ubiquitously in bacteria and are 

considered important for the horizontal gene transfer (Zaneveld et al. 2008). The presence 

of SNPs in a potentially phage acquired are unlikely to be significant, moreover these 

genomic areas also represent low sequence coverage areas. Three of the SNPs were located 

in a gene CSSP291_t20316 potentially encoding for a transfer RNA, however both of these 

SNPs were synonymous. The remaining 4 SNPs were all intergenic and synonymous. Hence, 
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the SNP difference between the reference isolate SP291 and the earliest isolate 377 indicate 

the close relatedness of these 2 isolates. It is important to consider the source of isolation 

for both these isolates as strain 377 was isolated from the milk powder in the UK while 

SP291 was isolated from a PIF manufacturing plant in Republic of Ireland, nevertheless both 

of these isolates were obtained from two neighbouring countries: UK and Ireland. Low 

number of SNP differences between these isolates suggest a possible common origin.     

 

Figure 7. 2 SNP map of C. sakazakii 377.  

The figure represents the location of SNPs on C. sakazakii 377. The location of the SNPs is with reference 
to C. sakazakii genome SP291. The outermost black ring with tick marks represents the C. sakazakii SP291 
genome. The inner circle with red marks shows the location of SNPs while innermost circle with purple 
(above average) and green (below average) spikes indicate GC contents in a particular location of the 
genome. The image was created using the DNA plotter feature of Artemis. The arrows indicate the 
location and annotation (red fonts) of the SNPs in isolate 377.  

 

The SNP phylogeny showed that although most of the CC4 isolates clustered close to each 

other, some differences were observed. Four of the CC4 strains; 6, 558, 1587 and 1240 

revealed variations on the SNP tree (Figure 7.1). Of these strains, C. sakazakii  6 and 558 

clustering together but relatively distant to other CC4 isolates, have previously been 

identified as low invasive on human brain microvascular endothelial cell lines (HBMEC) in 
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vitro (Faisal Almajed 2014; unpublished data). Further analysis was undertaken to study the 

variation in these 4 isolates.  

7.5.1.1 SNP VARIATION IN C. SAKAZAKII 1240  

A relatively large number of SNPs were detected in C. sakazakii CC4 isolate 1240 against the 

reference strain SP291 compared to other CC4 isolates. A total of 1245 SNPs were detected 

in CC4 isolate 1240; the SNP map indicated a high concentration of SNPs located between 

region 860000bp and 1290000bp (Figure 7.3).  

 

Figure 7. 3 SNP map of C. sakazakii 1240. 

The figure represents the location of SNPs on C. sakazakii 1240. The location of the SNPs is with reference 
to C. sakazakii genome SP291. The outermost black ring with tick marks represents the C. sakazakii SP291 
genome. The inner circle with red marks shows the location of SNPs while innermost circle with purple 
(above average) and green (below average) spikes indicate GC contents in a particular location of the 
genome. The image was created using the DNA plotter feature of Artemis. The black encircled is the 
genomic region having high concentration of SNPs (>1000) containing hypothetical proteins, some phage 
and O-antigen associated traits.  

 

Whether it is due to recombination, warrants further investigation. The analysis of the 

filtered VCF file indicated over 1000 SNPs in this region alone. The analysis of the genomic 

region indicated over 400 genes in this region, the majority of which were hypothetical 

proteins of unknown function and some phage associated traits. A notable observation was 
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the O-antigen associated genes located between CSSP291_05550 and CSSP291_05665. 

Previous in silico analysis indicated that 1240 is different from other CC4 isolates that it has 

an O:4 serotype, whereas the remaining strains are O:2 (section 3.4.4). The analysis 

indicates that O-antigen as well as hypothetical and page associated traits are the basis of 

longer branch length and hence variation of 1240 on the SNP tree. Further investigation of 

the hypothetical proteins may provide better insight into their significance in isolate 1240.  

7.5.1.2 SNP VARIATION IN C. SAKAZAKII 1587  

The C. sakazakii CC4 isolate 1587 had a total of 554 SNPs against the reference C. sakazakii 

CC4 isolate SP291, however like C. sakazakii 1240, this isolate also had a greater branch 

length on the SNP tree (Figure 7.1). The analysis of the VCF files after applying the filtering 

parameters revealed that the genomic region between region 320012bp to 351260bp had 

high density of SNPs in isolate 1587; this region alone contained 397 SNPs out of total 554 

SNPs. A SNP map of the isolate 1587 was also drawn using DNA plotter (Figure 7.4).  

 

Figure 7. 4 SNP map of C. sakazakii 1587. 

The figure represents the location of SNPs on C. sakazakii 1587. The location of the SNPs is with reference 
to C. sakazakii genome SP291. The outermost black ring with tick marks represents the C. sakazakii SP291 
genome. The inner circle with red marks shows the location of SNPs while innermost circle with purple 
(above average) and green (below average) spikes indicate GC contents in a particular location of the 
genome. The image was created using the DNA plotter feature of Artemis. The black encircled is the 
genomic region having high concentration of SNPs (397) containing only phage associated traits.   
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The black encircled region indicates the high density SNP region in 1587. The analysis of this 

genomic region revealed only phage associated traits. Hence, the major variation between 

CC4 isolate 1587 from other CC4 isolates was likely due to this strain specific phage 

acquisition which explains its longer branch length on the SNP tree (Figure 7.1).   

 

7.5.1.3 SNP VARIATION IN LOW INVASIVE C. SAKAZAKII ISOLATES 6 AND 558 

Low invasive C. sakazakii isolates 6 and 558 clustered closely on the SNP tree, having 668 

and 785 SNPs respectively (Table 7.1, Figure 7.1). The analysis of the SNPs in low invasive C. 

sakazakii isolates indicated that both of these isolates had high SNP density between 

genomic positions 430000 and 1290000 on the reference genome (Figure 7.5). This region 

had approximately 600 SNPs distributed in both isolates, the region consisted of wide 

variety of genomic traits such as large number of hypothetical proteins, housekeeping genes, 

transcriptional regulators and some phage associated traits. Due to time limitation, studying 

each of these SNPs and gene affected by that SNP was beyond the scope of the present 

study. However, the analysis of the SNP calls indicated that both of these isolates shared a 

common SNP (G to C; CAG to CAC) at position 83510 (with reference to C. sakazakii SP291 

genome). When the reference genome was viewed in Artemis, the position referred to a 

hypothetical protein CSSP291_04255. This was a non-synonymous SNP which changed the 

amino acid asparagine (CAG) to histidine (CAC). The flanking region of CSSP291_04255 

consisted of hypothetical proteins of unknown function. The BLASTx analysis of 

CSSP291_04255 indicated a phage protein in Escherichia coli UMEA 3108-1 (accession; 

EQW65158). Therefore, the “common” SNP in isolates 6 and 558 did not reveal any 

functional relevance.  
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Figure 7. 5 SNP mapping of low invasive C. sakazakii isolates. 

The figure represents the position of SNPs on C. sakazakii isolates 6 and 558. The location of the SNPs is 
with reference to C. sakazakii genome SP291. The outermost black ring with tick marks represents the C. 
sakazakii SP291 genome. The arrows marked as 1, 2, 3 and 4 represent the SNP dense areas common 
between isolates 6 and 558. The inner circle with red marks shows the location of SNPs while innermost 
circle with purple (above average) and green (below average) spikes indicate GC contents in a particular 
location of the genome. The image was created using the DNA plotter feature of Artemis.  

 

However, it was important to know if there are any differences in the genomic contents of 

high and low invasive C. sakazakii isolates. It was therefore decided to undertake 

comparative genomic study by choosing the genomes of representative high and low 

invasive CC4 isolates with the hope to identify potential invasion associated traits in high 

invasive isolates as well as unique traits in low invasive isolates.  

 

7.5.2 COMPARATIVE GENOMICS OF HIGH AND LOW INVASIVE C. SAKAZAKII CC4 

ISOLATES 

The relatively distant location of the low invasive isolates indicated that there might be 

some unique regions within these isolates making them distant from other CC4 isolates. 

Fragmented genomic analysis was undertaken using two CC4 isolates 6 and 558 as the 

target group, however no traits were identified which were unique in these two low invasive 

CC4 isolates (data not shown). It was therefore decided to carry the genomic analysis 

further by comparing a high invasive C. sakazakii CC4 isolate against a low invasive CC4 

isolate; the comparison was aimed to identify any potential invasion associated trait in high 

invasive CC4 isolate as well as to identify any traits unique to low invasive CC4 isolate. For 
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this purpose high invasive C. sakazakii CC4 isolate 767 was chosen to compare against the 

low invasive CC4 isolate 6 by a manual gene by gene search approach using ACT. Using a 

gene by gene search approach, the genes unique in high invasive isolate 767 as well as low 

invasive isolate 6 were listed (Table S7).  

7.5.2.1 UNIQUE TRAITS IN HIGH INVASIVE C. SAKAZAKII ISOLATE 767 

A total of 369 genes were found as unique to C. sakazakii isolate 767 in comparison with 

the low invasive isolate 6 (Table S7). Majority of the unique traits in high invasive C. 

sakazakii isolate 767 were dominated by hypothetical proteins and phage associated traits 

(241/369). The 128 remaining genes included a wide variety of traits such as multidrug-

efflux transporter MexB, a number of conjugal transfer genes, transcriptional regulators, 

serine transporters, aerobactin and iron acquisition genes (Table S7). Of particular interest 

was CSAK767_00886 annotated as invasion protein IagB, however the BLASTx analysis of 

this genes suggested it to be a homologue of the lytic transglycosylase in E. coli (accession; 

WP_024186589). The lytic transglycosylases are found ubiquitously in Gram negative 

bacteria and have been associated with the transport of macromolecules such as type 3 

secretion system and type IV pilus synthesis (Koraimann, 2003; Scheurwater et al. 2008). 

None of the traits identified unique to the high invasive strain 767 could directly be linked 

with its invasion associated capability.  

7.5.2.2 UNIQUE TRAITS IN LOW INVASIVE C. SAKAZAKII ISOLATE 6  

More traits were identified to be unique to the low invasive strain 6 compared to high 

invasive strain 767. A total of 324 genes were identified to be unique to strain 6 compared 

to 767 as shown in the supplementary table (Table S7). Again, a large number of these genes 

(168/324) were hypothetical proteins and phage associated traits. Transposases and 

integrases were found to be interspersed among these regions. Other traits included 

membrane proteins, a number of conjugation elements, transcriptional regulators, toxin, 

antitoxin system, type IV biogenesis and secretory proteins. Of particular interest were 

traits associated with the “heavy metal” resistance and transport which included arsenic, 

copper, manganese, chromate and nickel. Metals  such as nickel, arsenic, chromium and 

manganese at higher concentrations are generally toxic to the bacterial cells although 

certain metals  are essential for the activities of enzymes (Nies, 1999). It has been suggested 

that the term “heavy metal” is both meaningless and misleading, as it is a general tendency 
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to regard all the heavy metals as toxic or ecotoxic, however it is not supported by the facts 

(Duffus, 2002). Therefore, the heavy metals, in this thesis are referred either as metals or 

toxic metals (since these metals are toxic to bacteria at higher concentrations).  

Each of the metal resistance region in strain 6 is discussed below.  

7.5.2.2.1 ARSENIC RESISTANCE  
 

Arsenic is a toxic element which is released into the environment either by anthropogenic 

activities or through natural activities such as weathering and volcanic activities (Cullen and 

Reimer, 1989). Although arsenic is very toxic to microorganism, however due to its 

abundance in environment, certain bacterial species have developed resistance mechanism 

against arsenic compounds (Mukhopadhyay et al. 2002; Hobman, J. L., & Crossman, L. 

(2014). Several arsenic resistance associated, ars genes were detected as unique in low 

invasive C. sakazakii isolate 6 containing eight arsenic resistance associated genes with 

locus_tag CSAK6_00140-47 encoding for arsenical resistance operon trans-acting repressor 

arsD_1, arsenical pump-driving ATPase arsA_1, phosphinothricin N-acetyltransferase, 

arsenate reductase arsC_1, arsenic efflux pump protein arsB_1, arsenical pump-driving 

ATPase arsA_2, arsenical resistance operon trans-acting repressor arsD_2 and HTH-type 

transcriptional repressor aseR. However, it must be noted that the homologues of 

phosphinothricin N-acetyltransferase, arsenate reductase arsC_1, arsenic efflux pump 

protein arsB_1 were also detected in high invasive CC4 isolate 767.  

The arsenical compounds may contaminate several environments such as fresh water, 

ground water and sea water. However organisms such as bacteria, fungi and algae have 

developed mechanisms to survive in environments contaminated with arsenic. These 

mechanisms can include arsenite oxidation which is mediated by aox genes, respiratory 

arsenate reduction which is conferred by arr genes or resistance to arsenic through arsenic 

extrusion for cytoplasm defence mediated by ars genes (Branco et al. 2008). The arsenic 

resistance (ars) genes are found both in Gram negative and Gram positive bacteria such as 

E. coli, Staphylococcus species and Pseudomonas aeruginosa (Silver et al. 1981; Rosenstein 

et al. 1992; Carlin et al. 1995; Cai et al. 1998). The ArsA is part of the arsenic resistance 

operon which acts by forming a transmembrane complex with ArsB (Dey, 1997). The ArsR 

is a regulatory protein which controls the expression of the ars operon (Xu et al. 1996). The 
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function of the ArsH has not yet been fully described, however the ArsH was not found to 

be essential for the resistance against arsenic in E. coli (Branco, et al. 2008).  

In order to test whether there is any difference between the high and low invasive CC4 

isolates in their ability to resist arsenic, 10 different C. sakazakii isolates were tested 

including low invasive isolates 6 and 558 as well as high invasive isolates 767 and 20 (Faisal 

Almajed 2014, unpublished data). The strains were subjected to 4 different concentrations; 

1M, 0.1M, 0.01M and 0.001M of sodium arsenate (section 2.1.6). The results indicated all 

isolates were sensitive to 1M sodium arsenate while all of the isolates were able to resist 

up to 0.01M concentrations of this heavy metal. The interesting observation, however was 

the low invasive isolate 6 which was able to resist 0.1M concentration of sodium arsenate. 

This laboratory observation is in agreement with the genomic analysis. However it must be 

noted that the other low invasive isolate 558 was not able to tolerate 0.1M concentration 

of sodium arsenate. Moreover, the results indicated the ability of all isolates irrespective of 

their invasion capability or their clonal complex to tolerate relatively low concentrations of 

sodium arsenate up to 0.01M, indicating that arsenic resistance may not be a unique 

mechanism to low invasive C. sakazakii CC4 isolates. However further investigation may 

clarify the link between invasion and heavy metal resistance such as arsenic in C. sakazakii.  
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Table 7. 2 Disc diffusion assay to compare toxic metals sensitivity in C. sakazakii  

C. sakazakii strain 

ST/CC 

Invasion 

Sodium
 Arsenate 

  Copper (II) sulphate 

 Silver nitrate 

Sodium
 tellurite 

    1M 0.1 0.01 0.001 1M 0.1 0.01 0.001 1M 0.1 0.01 0.001 1M 0.1 0.01 0.001 

767 4/4 
High 

invasive* 35 19 0 0 
12 8 0 0 10 13 7 0 45 35 24 8 

20 4/4 
High 

invasive 40 26 0 0 
13 5 0 0 11 14 9 0 45 38 18 0 

6 4/4 
Non-

invasive 20 0 0 0 
10 6 0 0 12 15 8 0 35 25 9 0 

558 4/4 
Low 

invasive 31 15 0 0 
13 0 0 0 8 11 8 0 43 40 30 22 

377 4/4   35 15 0 0 11 6 0 0 13 12 15 0 45 40 32 14 

140 40/45 
Low 

invasive 35 23 0 0 
10 5 0 0 7 13 14 10 35 25 9 0 

150 16/16 
 Low 

invasive 26 11 0 0 
13 5 0 0 12 10 14 0 45 32 30 15 

978 3/3   31 14 0 0 10 0 0 0 10 11 10 0 50 35 10 8 

658 1/1 
Low 

invasive 28 10 0 0 
13 6 0 0 10 11 10 0 42 35 15 0 

520 12 Invasive 40 28 0 0 10 0 0 0 10 15 7 0 40 32 14 12 
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Table 7. 3 continued; Disc diffusion assay to compare toxic metals sensitivity in C. sakazakii  

C. sakazakii strain 

ST/CC 

Invasion 

 Cobalt (II) nitrate  

  N
ickel chloride 

Zinc sulphate  

Cadm
ium

 

carbonate  
    1M 0.1 0.01 0.001 1M 0.1 0.01 0.001 1M 0.1 0.01 0.001 1M 0.1 0.01 0.001 

767 4/4 High 
invasive* 21 8 0 0 14 0 0 0 22 9 0 0 0 0 0 0 

20 4/4 High 
invasive 22 10 0 0 17 0 0 0 15 9 0 0 0 0 0 0 

6 4/4 Non-
invasive 20 0 0 0 9 9 0 0 15 0 0 0 0 0 0 0 

558 4/4 Low 
invasive 17 7 0 0 18 0 0 0 15 7 0 0 0 0 0 0 

377 4/4   22 13 0 0 15 0 0 0 14 7 0 0 0 0 0 0 

140 40/45 Low 
invasive 23 7 0 0 15 0 0 0 14 0 0 0 0 0 0 0 

150 16/16  Low 
invasive 18 7 0 0 14 0 0 0 15 7 0 0 0 0 0 0 

978 3/3   23 8 0 0 18 0 0 0 15 7 0 0 0 0 0 0 

658 1/1 Low 
invasive 20 8 0 0 17 0 0 0 15 7 0 0 0 0 0 0 

520 12 Invasive 20 12 0 0 17 0 0 0 15 8 0 0 0 0 0 0 

 

* The invasion assays were conducted  by Faisal Almajed,  2014. The diameter for the zone of clearance was measured in mm. 
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7.5.2.2.2 NICKEL AND COBALT EFFLUX   
 

A nickel/cobalt efflux system encoding gene, rcnA was also found to be unique in the 

genome of low invasive C. sakazakii isolate 6 (Table S7). Metals such as nickel and cobalt 

are required by bacteria in a variety of metabolic functions though in trace amounts; high 

concentrations of these metals  can be toxic to bacteria. To overcome the high 

concentration of nickel and cobalt, one mechanism that bacteria have acquired is the efflux 

of these toxic metals  from the cell (Mergeay et al. 2003; Nies, 2003). Rodrigue et al. (2005) 

showed that inactivation of the yohM gene induces sensitivity to nickel or cobalt to E. coli 

cells, hence they proposed the new de-nomination for the yohM gene that is rcnA 

(resistance to cobalt and nickel) (Rodrigue et al. 2005).  

The laboratory assay was conducted to test the variability in nickel/cobalt resistance 

between the low and high invasive C. sakazakii isolates (Table 7.2). The results indicated 

that all of the isolates were able to resist nickel chloride at low concentrations of up to 0.1M. 

Similarly all the isolates were resistant to cobalt (II) nitrate at concentrations of up to 0.01M. 

At 0.1M, all the isolates were sensitive to cobalt (II) nitrate except for low invasive isolate 6. 

Interestingly, the low invasive isolate 6 showed variation at concentration of 0.1M; it was 

sensitive to nickel chloride while resistant to cobalt (II) nitrate at this concentration. The 

results here indicated that rcnA gene may not be the only gene responsible for nickel/cobalt 

resistance or efflux in C. sakazakii in general and low invasive isolates in particular as all the 

isolates showed some degree of resistance against these toxic metals .  

7.5.2.2.3 COPPER AND SILVER RESISTANCE  
 

Similarly, some copper and silver resistance and transport associated  genes which included 

copA_1 (copper resistance protein A precursor), copB (copper resistance protein B 

precursor), pcoC (copper resistance protein C precursor), csoR (copper-sensitive operon 

repressor) and pcoE (copper resistant protein PcoE) were detected unique to low invasive 

C. sakazakii isolate 6 (Table S7). The copper and silver resistance and transport genes have 

been investigated in section 3.4.2.9; the observation in this analysis is in agreement with 

previous analysis.  

The laboratory assays indicated that all of the tested isolates were able to resist copper (II) 

sulphate at concentrations of up to 0.01M whereas at concentration of 0.1M, only three of 
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the isolates 558, 978 and 520 were resistant, it should be noted that the isolate 558 is a low 

invasive CC4 isolate. However, isolate 520 which was moderately invasive on HBMEC was 

also resistant to copper (II) sulphate at concentration of 0.1M. In addition, the isolate 978 

was also resistant to 0.1M concentration of copper (II) sulphate. Similarly all the isolates 

were found to be sensitive to the silver nitrate at concentrations of 1M, 0.1M and 0.01M. 

At concentration of 0.001M all the strains were able to resist  silver nitrate, the only 

exception was C. sakazakii isolate 140 which showed some sensitivity to silver nitrate at this 

concentration. Overall, all of the isolates showed at least some degree of sensitivity to 

copper (II) sulphate and silver nitrate and no clear pattern was observed for the copper and 

silver resistance which could form the basis of subdivision within C. sakazakii isolates.  

7.5.2.2.4 IRON TRANSPORT  
 

At least three genes associated with iron transport FecA (Iron(III) dicitrate transport protein), 

fecC (Iron(III) dicitrate transport system permease protein) and fecD (Iron(III) dicitrate 

transport system permease protein) were also noted as unique in the low invasive C. 

sakazakii isolate 6 (Table S7). A number of iron acquisition and siderophore associated 

genes have been analysed and discussed in section 3.4.2.10.  

The comparative genomic analysis of high invasive C. sakazakii isolate 767 with low invasive 

C. sakazakii CC4 isolate 6 did not identify a key invasion associated gene which could directly 

be linked with invasion in high invasive isolates. However, a number of metal resistance and 

transport genes associated with copper, iron, nickel, arsenic, chromium were identified as 

unique to the low invasive C. sakazakii CC4 strain 6. Although laboratory test did not 

indicate a clear differentiation between high and low invasive isolates based on their metal 

tolerance ability (for tested metals) yet, the association of heavy metal resistance with 

invasion in C. sakazakii warrants further investigation.  
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7.5.3 The BIGsDB ANALYSIS OF C. SAKAZAKII CC4 ISOLATES  

The genome sequences of C. sakazakii isolates analysed in the present study are now 

available at the Cronobacter PubMLST which facilitates the genome comparison using the 

Cronobacter BIGsDB (Bacterial Isolate Genome Sequence Database) 

(http://pubmlst.org/perl/bigsdb/bigsdb.pl?page=plugin&name=GenomeComparator&db=

pubmlst_cronobacter_isolates) (Forsythe et al. 2014). Since the SNP analysis revealed 

genomic diversity within CC4 isolates based on the invasion phenotype, it was an 

opportunity to use this facility to study the diversity of CC4 genomes and to observe if there 

is any correlation between the findings of SNP analysis and BIGsDB comparative analysis of 

Cronobacter PubMLST. The comparative analysis was performed on 18 C. sakazakii CC4 

isolates (n=18) using the genome of C. sakazakii CC4 isolate SP291 as the reference 

backbone (NC_020260.1). A total of 3917 coding sequences were analysed of which of 545 

loci were exactly the same in all 18 CC4 isolates while 2682 loci showed allelic differences 

in 18 CC4 isolates. None of these 2682 variable loci had a unique pattern in low invasive 

isolates 6 and 558 as well as for the high invasive isolate 767 (data not shown). The 

neighbour-net joining tree did not indicate the clustering of low invasive isolates 6 and 558 

based on the alignment of 3917 coding sequences (Figure 7.6). However, it was interesting 

to note the clustering of the reference C. sakazakii SP291 with the oldest CC4 isolate 377 

and a fatal meningitic CC4 isolate 1587, despite their temporal as well as geographical 

diversity (Table 3.1). This is in agreement with the SNP phylogeny (Figure 7.1). Moreover, it 

further reinforces the close relatedness of the reference C. sakazakii CC4 isolate SP291 with 

the oldest CC4 isolate 377 (SNPs=16) as identified by SNP analysis (Table 7.1). The distance 

matrix of the 18 C. sakazakii CC4 isolates indicated that based on 3917 loci, the loci variation 

ranged from as low as 219 (1587 against 377) and as high as 2230 (701 against 557) (Figure 

7.7). Again low loci variation was observed between the reference isolate SP291 and the 

oldest CC4 isolate 377, both of which differ from each other only by 263 loci. Please note 

that the loci variation refers to the allelic variation between the isolates and is based on the 

reference isolate SP291. Additionally a total of 33 paralogues were also identified across 18 

CC4 isolates.  

 

http://pubmlst.org/perl/bigsdb/bigsdb.pl?page=plugin&name=GenomeComparator&db=pubmlst_cronobacter_isolates
http://pubmlst.org/perl/bigsdb/bigsdb.pl?page=plugin&name=GenomeComparator&db=pubmlst_cronobacter_isolates
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Figure 7. 6 The neighbour-net joining tree of C. sakazakii CC4 isolates (n = 18).  

 The tree indicates the variation amongst CC4 isolates based on 3917 coding sequences of the reference 
CC4 isolate SP291. The red font colour indicates the reference isolate. The orange highlighted circle 
indicates the clustering of the reference isolate with the oldest CC4 isolate 377 and 1587.  
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 ref 553 557 558 701 767 6 20 377 4 721 1219 1220 1221 1231 1240 1225 1587 

ref 0                  

553 1250 0                 

557 1939 1801 0                

558 864 1169 1819 0               

701 1989 1978 2230 1698 0              

767 1309 1271 1873 943 1719 0             

6 800 1105 1806 538 1746 1050 0            

20 1360 1430 1872 1403 2086 1482 1361 0           

377 263 1092 1828 701 1870 1182 630 1216 0          

4 1140 1152 1778 906 1856 1091 572 1354 986 0         

721 1320 1307 1822 1126 1905 1232 897 1474 1192 958 0        

1219 1649 1544 1957 1449 2219 1527 1259 1677 1535 1230 1385 0       

1220 1385 1327 1888 1163 2040 1260 945 1510 1258 985 1147 1420 0      

1221 1355 1354 1874 1157 2036 1284 912 1556 1223 942 946 1479 1191 0     

1231 1370 1316 1888 1186 2051 1300 1125 1542 1214 1125 1268 1575 1363 1351 0    

1240 1511 1443 1935 1261 2132 1411 948 1633 1348 968 1208 1532 1312 1266 1413 0   

1225 1576 1508 1926 1345 2057 1452 1098 1648 1426 1102 1301 1526 1350 1348 1453 1376 0  

1587 323 1168 1888 784 1912 1222 706 1268 219 1053 1213 1596 1301 1249 1309 1422 1491 0 

 

Figure 7. 7 The distance matrix of the C. sakazakii CC4 isolates (n = 18) produced by the Cronobacter BIGsDB comparative genome analysis.  

The distance matrix was produced by the alignment of 3917 coding sequences of the reference CC4 isolate SP291 and shows the allelic variability across 18 CC4 
isolates. High homology of the reference isolate SP291 with 377 and 1587 is notable.  
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 GENERAL DISCUSSION AND CONCLUSION  

The close association of the C. sakazakii CC4 with neonatal meningitis was at the heart of 

the present study. The genomic analysis in the present study has indicated that C. sakazakii 

CC4 is a stable and a clonal lineage as revealed by the whole alignment of 30 C. sakazakii 

isolates (Figure 3.3). This finding is further strengthened through a recent study by our 

group using whole genome-MLST (1865 loci) and ribosomal-MLST (51-loci) in Cronobacter 

PubMLST validated the clonal nature of C. sakazakii CC4, as CC4 isolates formed a distinct 

cluster on the phylogenetic trees (Forsythe et al. 2014). The comparative genomic analysis 

using different comparative genomic strategies could only identify hypothetical proteins as 

unique in the C. sakazakii CC4 genomes without a clear link with its virulence potential 

(chapters 3-6). Previous and a current parallel PhD study has indicated that C. sakazakii CC4 

isolates do differ in their clinical presentation such as their adhesion and invasion capability 

in vitro (Nasreddin Rhouma 2012; Faisal Almajed, 2014, unpublished data). Hence, it was of 

significance to study the genomic diversity within C. sakazakii CC4 using whole genome 

sequencing data. Single Nucleotide Polymorphism (SNP) has emerged as an important 

comparative genomic tool to study the genomic diversity within bacterial isolates of the 

same species. The SNP identification can help in phylogenetic characterisation of bacterial 

isolates, tracing strains during an epidemic, forensic investigations and comparing 

phenotype to genotype (Gardner & Slezak, 2010). The whole genome alignment of the CC4 

isolates used in the present study indicated a very large core genome which suggested a 

low sequence diversity within this lineage (section 4.4.1). However, SNPs represent the 

finest resolution of a DNA sequence (Lorenc et al. 2012). Therefore, in the present study, 

the SNP analysis was used to investigate if further sub-division occurs within this important 

clinical lineage. The finished genome of C. sakazakii SP291 was used as an index for SNP 

calling in the CC4 isolates. The SNPs were filtered to the high quality parameters previously 

defined to retain only good quality SNPs (section 2.2.9). The tree topology and the number 

of SNPs indicated that most of the isolates clustered closely to each other and had SNPs in 

the range of 300 to 400 (Table 7.1, Figure 7.1). Nevertheless, subdivisions were also 

observed. The larger branch lengths of C. sakazakii 1240 and 1587 were attributed to the 

increased density of SNPs in genomic areas containing phage acquired traits (Figures 7.3, 

7.4). An interesting observation was the close relatedness of the oldest CC4 isolate 377 with 

the index isolate SP291 as both of these isolates merely differ by 16 SNPs of which most 
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SNPs were located in a putative integrase in a low sequence coverage area. The possibility 

of both these isolates share a common origin cannot be excluded as the isolate 377 was 

obtained from the milk powder while SP291 was obtained from PIF manufacturing 

environment both from neighbouring countries (UK and Ireland) having free trade with each 

other. The only ambiguity is the unknown date of isolation for the CC4 isolate SP291. Given 

the very low sequence diversity between the CC4 isolates 377 and SP291 and close 

relatedness of their source of isolation, it is proposed that both of these isolates most likely 

share a common origin.  

Another interesting observation was the clustering of low invasive C. sakazakii isolates 6 

and 558 with each other on the SNP tree (Figure 7.1). Both of these CC4 isolates were 

temporally and geographically diverse. Isolate 6 was obtained from a clinical source from 

Canada in 1990 while isolate 558 was obtained from the Netherlands in 1983 from a clinical 

source (Table 7.1). This was significant as both of these isolates were suggested as low 

invasive on the HBMEC cell lines in vitro in a parallel PhD study (Faisal Almajed 2014, 

unpublished data). Although only 1 SNP was shared between these 2 isolates, yet both 

isolates had SNP dense areas; however located within phage associated traits (Figure 7.5). 

Nevertheless the observation was of significance and hence prompted comparative 

genomic analysis between high and low invasive C. sakazakii CC4 isolates. An attempt was 

made to identify unique traits in low invasive isolates 6 and 558 by keeping them as a target 

group in Gegenees (Agren et al. 2012), however none of the traits could be identified as 

specific to both of these isolates compared to other CC4 isolates (data not shown). Manual 

comparative genome analysis was undertaken using C. sakazakii 767 as high invasive strain 

against the low invasive C. sakazakii isolate 6. A number of unique traits were identified in 

both high and low invasive isolates (Table S7). No unique invasion associated trait could be 

identified unique to the high invasive isolate 767. The analysis of the invasion associated 

genes including ompA and ompX presented in chapter 3 did not differentiate the low and 

high invasive CC4 isolates based on their presence as these genes were uniformly detected 

in all of the C. sakazakii isolates (section 3.4.2.2). The interesting observation in this genomic 

comparison was the presence of a number of metal resistance genes associated with 

resistance against arsenic nickel, cobalt, chromate, copper and silver which were identified 

as unique in the genome of low invasive CC4 isolate 6. The metal resistance in bacteria is 

important in their survival in environments containing high metal concentrations. However, 



  Chapter  7 

219 
 

the association of metal resistance with bacterial invasion is not clear. To test this 

observation, a total of 10 C. sakazakii isolates with different invasion phenotypes were 

chosen to compare their ability to resist 8 different toxic metals  at 4 different 

concentrations (1M (1000 mm), 0.1M (100 mm), 0.1M (10 mm) and 0.001M (1 mm) (Table 

7.2). The choice of the isolates for heavy metal resistance assays was made in a way that 

they not only represent high and low invasive isolates but also represent equal proportion 

of CC4 and non-CC4 isolates. With few exceptions, all of the isolates were able to tolerate 

at least 6 different metals at concentrations of up to 0.1M. The results indicated that metal 

resistance in C. sakazakii is not limited to a certain group as the behaviour of the isolates 

was independent of their invasion phenotype (Table 7.2).  

It should be considered that the metal resistance assays in this study were conducted only 

to obtain a general overview of the level of difference in resistance of C. sakazakii high and 

low invasive isolates against selected metals. Hence, no control isolates were used. Another 

limitation is that the dilutions used were not suited for a general purpose metal toxicity 

assays. Moreover, the composition of the media may also affect the metal resistance 

behaviour of a bacterial isolate. Therefore, in future, in order to obtain a true picture of the 

metal toxicity in C. sakazakii, the experiments may be repeated using Minimum Inhibitory 

Concentration (MIC) assays. Appropriate control strains should be introduced in MIC assays 

while giving consideration to the choice of media for bacterial growth and dilutions used.  

The availability of the C. sakazakii CC4 isolates analysed in the present study in the 

Cronobacter PubMLST database along with additional genomes provided an opportunity to 

substantiate the findings of SNP analysis. The BIGsDB comparative analysis was performed 

using 18 C. sakazakii CC4 isolates with isolate SP291 as the reference backbone. The analysis 

of 3917 genes partly reinforced the findings of SNP analysis as indicated by the close 

relatedness of C. sakazakii isolates SP291 and 377 (Figures 7.6, 7.7). It further indicated that 

based on the reference 3917 genes, the diversity within CC4 isolates ranged from as low 

219 to as high as 2230 loci (allelic variation). The close relatedness of the CC4 isolate 377 

with the reference isolate SP291 was obvious further strengthening the proposal that both 

of these isolates share a common origin.  

The present analysis aimed to study the diversity within C. sakazakii CC4 isolates indicated 

the close relatedness of these isolates by SNP analysis. Although subdivisions were 
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observed within CC4 isolates, yet in most of the cases these differences were attributed to 

phage associated traits. The presence of heavy metal resistance associated genes in low 

invasive isolates was of interest, yet the laboratory data did not support that the hypothesis 

that low invasive C. sakazakii are heavy metal resistant. Further studies are warranted to 

precisely describe the association of metal resistance with invasion of C. sakazakii.  



 

 

 

 

 

 

 

 

 

 

 CHAPTER 8 

GENOMIC ANALYSIS OF CRONOBACTER SAKAZAKII STRAINS ISOLATED 

DURING OUTBREAKS IN A NEONATAL INTENSIVE CARE UNIT IN FRANCE, 

1994 
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 BACKGROUND  

There have been several outbreaks of C. sakazakii during the recent years (van Acker et al. 

2001; Himelright et al. 2002) but one of the largest outbreak of C. sakazakii which caught 

the attention of the researchers hit a NICU in France claiming the lives of at least 3 babies 

(Caubilla-Barron et al. 2007). The outbreak lasted for about 3 months (111 days; 5th May 

1994 to 11th July 1994). A total of 18 neonates were infected or colonised  with C. sakazakii 

of which 3 neonates died (Table 8.1); neonate H died of meningitis while neonates J and F 

died of NECII and NECIII respectively. Most of the neonates were underweight with average 

weight of 1461g. Besides neonate D, all of the remaining neonates were delivered preterm. 

An autopsy of the neonate H who died of meningitis revealed cerebral lesions. All of the 

infected neonates developed clinical symptoms within 28 days of birth, exception was 

neonate K who developed symptoms of NEC1 after 78 days of birth. All neonates (F, H, J) 

who died were low weight with weights of 1000g, 1500g and 1560g, respectively. Four of 

the neonates (C, E, O, Q) were asymptomatically colonised  while only 2 of the neonates N 

and P developed digestive problems of moderate nature. A detailed genotypic and 

phenotypic analysis of the C. sakazakii strains isolated from this outbreak has previously 

been undertaken (Caubilla-Barron et al. 2007). The PFGE analysis by Caubilla Barron and 

colleagues (2007) divided the strains into 4 distant pulsetypes (PFGE 1-4).  
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Figure 8. 1 PFGE profile of C. sakazakii isolates of French outbreak 1994, generated by Caubilla-
Barron et al. 2007* 

Dendrogram created from PFGE profiles of C. sakazakii isolates (Bionumerics software, version 3.5). 
Clustering was performed with UPGMA by using the Dice coefficient. Pulsotypes are identified on the 
left. The tolerance in the band was 1.5%, with an optimisation of 1.5%. The figure has been reused 
from Caubilla-Barron et al. 2007.  
*No copyright permission needed (http://journals.asm.org/site/misc/reprints.xhtml).  

 

It was important to note that all of the 3 fatalities during this outbreak were attributed to 

the PFGE 2 and more importantly all the PFGE 2 strains belong to clonal complex 4 (CC4) of 

Cronobacter MLST scheme (http://www.pubmlst.org/cronobacter/, Baldwin et al. 2009). 

Previous studies by our group have indicated strong association of C. sakazakii CC4 with 

neonatal meningitis (Joseph & Forsythe, 2011; Hariri et al. 2013). The advent of next 

generation sequencing has greatly facilitated the epidemiological investigation at the 

genomic level. The present study was focused on the reassessment as well as detailed 

genomic analysis of C. sakazakii strains isolated from this outbreak with the main aim of 

tracing the precise source of outbreak. Nearly all C. sakazakii strains previously analysed by 

http://journals.asm.org/site/misc/reprints.xhtml
http://www.pubmlst.org/cronobacter/
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Caubilla-Barron et al. (2007) were sequenced using Illumina MiSeq v3 chemistry (Table 8.1). 

Unfortunately, due to the long gap between the outbreak and present study, 2 of the 

isolates (704 of PFGE 1 and 697 of PFGE 2) have been lost from the culture collection, 

however the absence of these strains did not significantly affect the in depth analysis of this 

outbreak at the genomic level presented in this study.  
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 HYPOTHESIS  

Powdered Infant Formula (PIF) is the potential source of outbreak.  

 AIMS OF THE CHAPTER  

• Whole genome alignment and phylogeny determination of the 26 sequenced C. 

sakazakii isolates of the 1994 French outbreak.  

• Single Nucleotide Polymorphism analysis of the sequenced C. sakazakii isolates to 

trace the source of outbreak. 

• Extended spectrum β lactamase (ESβL) profiling of the CC4 isolates of the 1994 

French outbreak. 

• Virulence associated plasmid alignments of plasmids pAPEC-O2-R and PECOS88 

against sequenced isolates. 
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 METHODS 

8.4.1 BACTERIAL STRAINS  

A total of 26 C. sakazakii genomes were analysed in this study (Table 8.1). The strains were 

divided into 4 pulsetypes by Caubilla-Barron (2007). Since 3 strains 716, 717 and 718 

forming PFGE 4 in the PFGE profile (Figure 8.1) were isolated from an unopened can of the 

infant formula on the same day therefore, it was assumed that these are the multiple 

isolates of the same strain and hence only one isolate 716 was sequenced from this 

cluster. 
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Table 8. 1 Sequenced strains isolated from C. sakazakii the 1994 French NICU outbreak and SNP typing 

 

No C. sakazakii strain  Pulsetype ST/CC Baby Symptoms Isolation 
Date 
(1994) 

Day-No Isolation 
site 

SNPs 

1 699 PFGE1 12 A No-details 23-Mar 1 Trachea Reference strain* 
2 703 PFGE1 12 B NECII 25-Apr 34 Trachea 63 
3 708 PFGE1 12 C No symp. 09-May 48 Trachea 52 
4 696 PFGE1 12 D NECII 08-Jun 78 Stools 14 
5 690 PFGE1 12 E No symp. 19-Jun 89 Stools 64 
6 701 PFGE2 4 F  NEC III 

(DIED) 
07-Apr 16 Peritoneal 

fluid 
Reference strain* 

7 691 PFGE2 4 G No-details 19-Apr 28 Sputum 9 
8 767 PFGE3 4 H  Meningitis 

(DIED) 
11-May 50 Trachea 38 

9 709 PFGE2 4 C Septicaemia 12-May 51 Trachea 13 
10 705 PFGE2 4 B NEC II 24-May 63 Trachea 339 
11 695 PFGE2 4 J NEC II 

(DIED) 
07-Jun 77 Trachea 11 

13 692 PFGE2 4 L  NEC II  13-Jun 83 Stools 15 
14 702 PFGE2 4 K  NEC I 13-Jun 83 Stools 10 
15 694 PFGE2 4 M NEC II 14-Jun 84 Conjunctivae 8 
16 712 PFGE2 4  NEC II 17-Jun 87 Prepared 

formula 
6 

17 707 PFGE2 4 B NEC II 26-Jun 96 Skin 337 
18 711 PFGE2 4 O No-

symptoms 
27-Jun 97 Stools 14 

19 730 PFGE2 4 K NEC I  27-Jun 97 Stools 10 
20 698 PFGE2 4 D NEC II  01-Jul 101 Stools 10 



  Chapter  8 

228 
 

No C. sakazakii strain  Pulsetype ST/CC Baby Symptoms Isolation 
Date 
(1994) 

No Isolation 
site 

SNPs 

21 700 PFGE3 13 P Digestive 
problems 

15-Jun 85 Stools Reference strain* 

22 693 PFGE3 13 Q No symp. 18-Jun 88 Stools 4 
23 713 PFGE3 13   20-Jun 90 End of bottle 4 
24 714 PFGE3 13   27-Jun 97 End of bottle 3 
25 715 PFGE3 13   27-Jun 97 Prepared 

formula 
3 

26 716 PFGE4 14/1   11-Jul 111 Infant 
formula 

 

   ST; Sequence Type, CC; Clonal Complex, NEC; Necrotising enterocolitis; Symp.; symptoms, reference strain for SNP calling. 

Table 7.1 continued 
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8.4.2 GENOME SEQUENCING, ASSEMBLY, ANNOTATION  

Bacterial DNA was extracted from 1-day old cultures using GenElute™ bacterial genome kit 

(Sigma Aldrich®, USA). The genome sequences of 26 C. sakazakii strains were generated on 

Illumina MiSeq generating 300bp paired end reads (section 2.2.1). The de novo assembly 

was performed using Velvet (version 1.2.09, Zerbino et al. 2007). The genome assembly of 

the strains which were used as index for SNP calling was improved using Post Assembly 

Genome Improvement (PAGIT) suite of programmes (Swain et al. 2012). The finished 

genome of C. sakazakii SP291 (Genbank accessions CP004091-4) was used as references for 

contig reordering. The genomes were annotated using the prokaryotic genome annotation 

system (PROKKA) (Seemann, 2014). The methods are described in more detail in sections 

2.2.3-5.   

8.4.3 PHYLOGENETIC ANALYSIS 

The genome sequences of 26 C. sakazakii genomes (Table 8.1) were aligned using Mugsy 

(Angiuoli et al. 2012) and the core genome extracted as described previously (Sahl et al. 

2011; Clark et al. 2012; McNally et al. 2013). Maximum likelihood phylogeny was then 

reconstructed using RAxML with the GTR-gamma model (Stamatakis, 2005) and the 

resulting trees visualised and annotated using Figtree 

(http://tree.bio.ed.ac.uk/software/figtree/). The method is discussed in detail in section 

2.2.8.  

8.4.4 SINGLE NUCLEOTIDE POLYMORPHISM ANALYSIS  

Single Nucleotide Polymorphism (SNP) analysis was performed on sequenced C. sakazakii 

strains belonging to cluster 1, 2 and 3 (Table 8.1) using SMALT and SAMtools (Li et al. 2009). 

The SNP calling was done independently for each cluster using the earliest isolate in each 

cluster as the reference or index genome. The resulting VCF files were filtered in Artemis to 

include only SNPs with minimum quality score of 30, minimum depth of 8, and minimum 

allele frequency of 0.90 (Sahl et al. 2011; Clark et al. 2012; McNally et al. 2013). A consensus 

sequence file was then created for each genome and used to create a maximum likelihood 

phylogeny by Dr Alan McNally (section 2.2.9).  

 

http://tree.bio.ed.ac.uk/software/figtree/
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8.4.5 EXTENDED SPECTRUM Β LACTAMASE DETECTION 

The presence of Extended Spectrum β Lactamases (ESβL) and/or AmpC was determined 

using disc diffusion system of MASTDISCTM by zone size comparison which involved 

simultaneously testing the antibiotic and antibiotic plus inhibitor combinations. The method 

is described in more detail in section 2.1.7.  
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 RESULTS AND DISCUSSION  

8.5.1 WHOLE GENOME PHYLOGENY 

Whole genome phylogeny of the 26 C. sakazakii strains was constructed from the core 

genome using Mugsy (Angiuoli et al. 2011). The topology of the whole genome based 

phylogeny was in agreement with the PFGE profiles of Caubilla-Barron et al. (2007). The 

phylogeny indicated 4 clusters within these strains, cluster 2 being the largest group (Figure 

8.2). Three of the clusters (1, 2, 3) were isolated from neonates while the fourth “cluster” 

consisted of lone strain isolated from unopened can of infant formula. The result of the 

whole genome phylogeny was in complete agreement with previous study by Caubilla-

Barron et al. (2007). Since the grouping of the strains was identical to the PFGE profile, for 

clarity the clusters were given the same numbers as PFGE i.e. PFGE 1, 2, 3 and 4 represent 

the same strains as clusters 1, 2, 3 and 4 respectively in the present study. Please note that 

although isolate 716 was a lone strain, it was still designated it as “cluster 4” to avoid 

confusion since it was a part of PFGE 4 (Figure 8.1) by Caubilla-Barron et al. (2007). It was 

interesting to note that all the strains within the cluster 2 belong to Cronobacter MLST 

sequence type 4 or clonal complex 4 (CC4) which has previously been associated 

predominantly with neonatal meningitis (Joseph & Forsythe, 2011; Hariri et al. 2013) and 

all three neonates who died were infected by cluster 2 strains (Caubilla-Barron et al. 2007).   
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Figure 8. 2 Midpoint rooted whole genome maximum likelihood tree of 26 C. sakazakii strains 
isolated from French NICU outbreak, 1994.  

The genomes of 26 C. sakazakii strains approximately 4 million bp were aligned using Mugsy and 
maximum likelihood phylogeny generated using RAxML using GTRGAMMA substitution model. The tree 
was viewed and annotated using FigTree. The phylogeny indicated 4 distinct clusters. Cluster 1; ST12 
and PFGE1 (Blue shaded), Cluster 2; CC4 and PFGE2 (Orange shaded), Cluster 3; ST13 and PFGE 3 
(Purple shaded), Cluster 4; ST1 and PFGE4 (Green shaded). The tree was rooted to midpoint. The scale 
bar indicates the number of nucleotide substitutions.  

 

8.5.2 SINGLE NUCLEOTIDE POLYMORPHISM ANALYSIS  

Pathogen typing is essential to identify food-borne infections which have common origins 

and to help remove the contaminated food which is still in trade, it also helps in tracing back 

the contaminants to its source. Although PFGE is still widely used in outbreak analysis, its 

limitations are emerging, for instance co-migration of similar sized bands can obscure their 

discrimination (Turabelidze et al. 2013). The Single Nucleotide Polymorphism (SNPs) can 

cause significant changes in phylogenetic distances but they may not change the PFGE 

pattern. Therefore the isolates may appear identical on PFGE when they are not 

(Turabelidze et al. 2013). The variation in PFGE pattern in epidemiological data can hinder 

undertaking informed action against any bacterial outbreak. SNP analysis has proven to be 

more discriminatory and is being used to differentiate outbreak isolates which often show 

very low sequence diversity (Turabelidze et al. 2013; Leekitcharoenphon et al. 2014). SNP 

analysis has been used for the outbreak analysis in a number of studies including the 

outbreak of E. coli O157:H7 attributed to salad bar and romaine lettuce (Turabelidze et al. 

2013).  
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In the present study, 26 C. sakazakii isolates were divided into four clusters according to 

whole genome phylogeny (Figure 8.2) and PFGE (Caubilla-Barron et al. 2007). The SNP 

analysis was performed only on cluster 1, 2 and 3 as the genome sequence of only a single 

strain from cluster 4 was available (Table 8.1). Since in the this study the SNP calls were 

based on the reference genome, the reference genome has to be closely related to the 

strains being investigated. Using an un-related reference genome can significantly increase 

the number of SNPs which ultimately can affect the SNP phylogeny (Leekitcharoenphon et 

al. 2014). Therefore in the present study each of 3 clusters was analysed independently of 

the isolates from other clusters. The earliest isolate in each cluster was used as the 

reference or the index strain to identify SNPs in the subsequently isolated strains. To 

improve the quality of the identified SNPs, assembly of the reference genome was improved 

using PAGIT. The SNP calls were determined using SMALT and SAMtools as described 

previously.   

8.5.2.1 SNP TYPING OF CLUSTER 1  

Five of the isolates formed cluster 1 which were isolated between 23rd March and 19th June 

from babies A, B, C, D and E (Table 8.1). Two of these neonates (B and D) developed 

symptoms of NECII while 2 (C and E) remained asymptomatic, for the remaining 1 neonate 

(A) no clinical details were available. All of these isolates belong to ST12 of Cronobacter 

MLST scheme (Baldwin et al. 2009). SNP typing was undertaken in order to observe the 

strain relatedness within this cluster; the earliest isolate of this cluster i.e. C. sakazakii 699 

isolated on 23rd March 1994 was used as the reference for SNP typing and SNP phylogeny 

determined (Figure 8.3).  
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Figure 8. 3 SNP phylogeny of the cluster 1 strains. 

The SNPs were called using SMALT and SAMtools to generate the VCF files which were filtered using 
VCFTools to include only SNPs with minimum quality score of 30, minimum depth of 8, and minimum 
allele frequency of 0.90. A consensus sequence file was then created for each genome and used to 
create a maximum likelihood phylogeny. The red font colour indicates the reference strain. The scale 
bar indicates the number of nucleotide substitutions.  

 

The number of SNPs and tree topology indicated that the cluster 1 strains were relatively 

distant to the reference strain 699. The reference strain differed from the strain 696 by only 

14 SNPs indicating a possible common origin. One possibility could be the transfer of the 

strain from baby A to D but it seems unlikely as both of these isolates were obtained 78 

days apart. Since both of these strains were isolated over 2 months apart from each other 

therefore from the very low number of SNPs it is reasonable to speculate that these isolates 

share a common static origin where their growth was halted. It is unlikely that 

environmental sources in a hospital environment such as water or carer’s hands could be 

the origin for these 2 isolates. Therefore from these observations it is proposed that the 

origin for the isolates 699 and 696 is highly likely to be the PIF and both of the babies A and 

D could have been fed the same batch of PIF.  



  Chapter  8 

235 
 

The remaining three strains; 703, 708 and 690 were distant to the reference strain by over 

50 SNPs each; therefore for the cluster 1 strains, it is assumed that apart from isolates 699 

and 696 which are likely to be originated from PIF, the other 3 isolates were acquired 

independently from different sources, it could be PIF, water used to re-constitute the 

formula, the utensils used to handle the PIF or carer’s hand. It is interesting to note that like 

strain 703, three of the cluster 2 isolates (705, 706 and 707) were also isolated from baby 

B; however the strains in the two clusters were entirely different (~70,000 SNPs) indicating 

that baby B was co-infected with different unrelated strains of C. sakazakii.   

8.5.2.2 SNPS IN CLUSTER 2 

A total of 15 sequenced strains belonged to cluster 2 and had been isolated between 7th 

April and 1st July, 1994. These stains were isolated from different sites including peritoneal 

fluid, sputum, trachea, stools, skin and conjunctivae. The period of isolation of these strains 

was in parallel with cluster 1 strains. Of these strains, 11 were isolated from NEC cases at 

different stages, 1 from a septicaemia and 1 from a meningitis case, the remaining 2 isolates 

were obtained from babies O and G for whom no clinical details were provided. In the 

present analysis, the earliest isolate of this cluster C. sakazakii 701 isolated on 7th  April 1994 

was used as a reference strain for SNP calls in order to observe the strain relatedness and 

to determine the possible route of transmission. The SNPs in each of the strain isolated 

according to the date order were determined using SAMTools (Table 8.1) and SNP 

phylogeny (Figure 8.4) was constructed as described earlier.  

The tree topology indicated at least three subdivisions within cluster 2 strains; a group of 

11 isolates (group 1) joined by a short arm to isolate 767 (group 2) and through a large arm 

with three isolates 705, 706 and 707 (group 3). All of the isolates in group 1 (Figure 8.4, 

orange encircled) had remarkable degree of similarity with the reference (index) strain as 

shown by the number of SNP differences; maximum of 15 SNP differences to the index 

strain.  
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Figure 8. 4 SNP phylogeny of the cluster 2 strains. 

The SNPs calls were obtained using SMALT and SAMtools to generate the VCF files which were filtered 
using VCFTools to include only SNPs with minimum quality score of 30, minimum depth of 8, and 
minimum allele frequency of 0.90. A consensus sequence file was then created for each genome and 
used to create a maximum likelihood phylogeny. The tip labels shaded orange, green and yellow 
indicates groups 1, 2 and 3 respectively within cluster 2. The red tip label shows the reference strain. 
The red asteric represents the strains isolated from the fatal cases. The scale bar indicates the number 
of nucleotide substitutions.  

 

An interesting observation was the close relatedness of the reference isolate 701 with the 

prepared formula isolate 712 which differed from the reference isolate 701 by only 6 SNPs. 

Although the reference strain 701 was isolated at least two months earlier than the 

prepared formula isolate 712, the tree topology and small number of SNP differences 

suggest a common source of origin. Since C. sakazakii has the ability to survive in a wide 

variety of environments, it is unclear how the prepared formula was contaminated; in this 

case the potential source of contamination could either be PIF itself, water used to prepare 

formula, colonisation of bacterium on the utensils used for the feed preparation or the 

carer’s hands. However, since all of these 11 strains were isolated over 73 days period (25th 

April–19th June, 1994), it suggested that these isolates are likely to have a common origin. 

It seems unlikely that the same water was used over 73 days period to prepare PIF or the 

organism survived in the utensils or on the carer’s hands for that long, therefore it seems 

plausible that these isolates originated from a particular batch of the PIF which was used to 
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prepare baby formula. The analysis therefore suggest PIF to be the potential source of 

transmission of cluster 2 strains to at least 10 babies; F, H, C, O, J, D, L, G, M and K of which 

babies F, H and J died. Two of the isolates; 702 and 730 were obtained from the same baby 

K, 14 days apart; both of these strains differ from each other by 24 SNPs which could be the 

result of microevolution. 

The second “group” within cluster 2 was formed of a single isolate C. sakazakii 767 isolated 

from baby H, who died of meningitis (Figure 8.4, shaded green). This strain differed from 

the reference strain by 38 SNP, therefore from the SNP typing and tree topology, it seems 

likely that this strain is relatively different from all other isolates in cluster 2 and could have 

been acquired from a different source. The SNP mapping on the DNA plotter indicated a 

localisation of SNPs in this strain (Figure 8.5).  

 

Figure 8. 5 SNPs in C. sakazakii 767 against index isolate 701.  

The DNA plotter image indicating the localization of the SNPs (red mrkings) in isolate 767 in reference to 
isolate 701. The outer most black circle with tick marks show the genome size and positions. The red 
markings indicate the location of the SNPs in isolate 767 while the inner most spiked circle indicates the 
GC content (green: above average, purple: below average, average: 50%).  
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It was of importance to analyse these SNPs in isolate 767 in more detail. Therefore, 

further manual curation of these SNPs was performed by observing the precise location of 

these SNPs, gene annotation and visualising the sequence coverage at that area using the 

BAM file which was generetaed as an output of SAMTools (Figure 8.6).  

 

Figure 8. 6  Manual curation of the SNPs in C. sakazakii isolate 767. 

Panel A; All the SNPs in C. sakazakii 767 in reference to C. sakazakii 701, the bottom section shows the 
genomic annotation of the region containing the SNPs, above the bottom section the coloured 
markings indicate SNPs, below the top section of the panel is the BAM view showing the sequence 
coverage of the region while the top section with black spikes indicate the variation in GC content. 
Panel B; The zoomed in view showing an example of the details for the manual curation, the SNPs in 
the good coverage area were included while SNPs in bad coverage area were omitted.  

 

The in depth analysis indicated that out of 38 SNPs in C. sakazakii 767, at least 29 SNPs were 

located within phage associated traits (Table 8.2). The remaining 9 SNPs were located in 

uncharacterised hypothetical proteins, whether these hypothetical proteins also belong to 

the acquired traits remains unclear, however the lower GC content at that region as seen 

on DNA plotter shows it is highly likey. Therefore, these differences could not be linked with 

any functionality in C. sakazakii 767 which only seem to differ from the 11 strains of group 

1 within cluster 2 by potentially acquired genetic traits. Therefore from these observations, 

whether the source of origin for isolate 767 was the same as isolates in group 1 remains 

ambiguous.  

 



  Chapter  8 

239 
 

 

Table 8. 2 Genomic annotations containing SNPs in C. sakazakii 767 against the index isolate 701 

No POS (701) REF ALT QUAL GENE/LOCUS_TAG ANNOTATION  

1 3524559 C A 53 Csak701_03278 Acyltransferase family protein 

2 3524760 G A 157 Csak701_03278 Acyltransferase family protein 

3 3525295 G A 113 Csak701_03279 Hypothetical protein  

4 3527922 G T 222 Csak701_03280 Phage Tail Collar Domain protein 

5 3528092 C A 50 Csak701_03280 Phage Tail Collar Domain protein 

6 3528306 G A 139 Csak701_03280 Phage Tail Collar Domain protein 

7 3528444 C T 99 Csak701_03280 Phage Tail Collar Domain protein 

8 3529084 T C 110 Csak701_03281 Phage Tail Collar Domain protein 

9 3529146 A C 222 Csak701_03281 Phage Tail Collar Domain protein 

10 3529315 A G 117 Csak701_03281 Phage Tail Collar Domain protein 

11 3529818 C A 102 Csak701_03282 Hypothetical protein  

12 3530325 G T 81 Csak701_03282 Hypothetical protein  

13 3530469 T C 53.1 Csak701_03282 Hypothetical protein  

14 3530891 C A 48.1 Csak701_03283 Hypothetical protein  

15 3530960 A T 39 Csak701_03283 Hypothetical protein  

16 3531134 T G 72 Csak701_03284 phage baseplate assembly protein V 

17 3532674 G A 86 Csak701_03286 Hypothetical protein  

18 3534298 A G 66 mltc_2, Csak701_03288 Membrane-bound lytic murein transglycosylase precursor C 

19 3534409 G A 106 mltc_2, Csak701_03288 Membrane-bound lytic murein transglycosylase precursor C 

20 3534514 A G 110 mltc_2, Csak701_03288 Membrane-bound lytic murein transglycosylase precursor C 

21 3534984 C T 191 mltc_2, Csak701_03288 Membrane-bound lytic murein transglycosylase precursor C 

22 3549746 A G 108 Csak701_03309 Hypothetical protein  

23 3549914 A G 115 Csak701_03309 Hypothetical protein  

24 3549980 G T 222 Csak701_03309 Hypothetical protein  

25 3550007 T C 222 Csak701_03309 Hypothetical protein  

26 3550237 C G 154 Csak701_03310 putative chitinase 

27 3550291 G C 164 Csak701_03310 putative chitinase 

28 3550321 G A 156 Csak701_03310 putative chitinase 

29 3550402 T A 126 Csak701_03310 putative chitinase 

30 3797427 A G 38.3 intA_3, Csak701_03534 Prophage CP4-57 integrase 

31 3797700 G T 151 intA_3, Csak701_03534 Prophage CP4-57 integrase 

32 3797793 T G 63 intA_3, Csak701_03534 Prophage CP4-57 integrase 

33 3797858 C A 123 intA_3, Csak701_03534 Prophage CP4-57 integrase 

34 3797868 G A 47.3 intA_3, Csak701_03534 Prophage CP4-57 integrase 

35 3797919 C A 91 intA_3, Csak701_03534 Prophage CP4-57 integrase 

36 3797949 G T 114 intA_3, Csak701_03534 Prophage CP4-57 integrase 

37 3798204 C T 153 intA_3, Csak701_03534 Prophage CP4-57 integrase 

 38  3798339  C A  119 Un-annotated    
POS; Position, REF; reference nucleotide, ALT; altered nucleotide  
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The third group within cluster 2 consisted of 3 strains (Figure 8.4, shaded yellow) was distant 

to the reference strain as indicated by tree topology and SNP typing; all of the isolates in 

this group were obtained from the same infant i.e. baby B. Each of these isolates differ from 

the reference strain by more than 300 SNPs. This observation is in agreement with Caubilla-

Barron et al. (2007) where these strains formed a subcluster within the PFGE 2 (Figure 8.1). 

Further manual analysis showed that all of these 3 strains had a concentration of SNPs 

between 3.5-4.5 MB region loci which likely was the difference between these isolates and 

others in cluster 2 (Figure 8.7).  

 

 

 

Figure 8. 7 The SNP differences between group 1 and group 3 within cluster 3. 

The figure above shows the comparison between the strain 692 (group 1 of cluster 2) and 705 (group 3 
in cluster 2). The outer most, black circle with tick marks shows the genome size and positions. The red 
markings indicate the location of the SNPs while the innermost circle with green (above average) and 
purple spikes (below average) indicate GC contents. SNP image of one isolate from each group was 
chosen to show the differences, the concentrated SNPs as shown in 705 were missing from all the group 
1 isolates within cluster 2.  

 

It was beyond the scope of the present study to curate each of these single SNP and its 

annotation, however the genomic region in general contained a wide variety of traits 

including large number of hypothetical proteins. It was interesting to note that location of 

these SNPs was correlated with those of isolate 767, however the SNP density and spread 

(3.5-4.5MB) for the group 3 isolates was much higher. Whether this SNP concentration 

indicates a recent recombination event within a subset of cluster 2 or C. sakazakii CC4 

requires further investigation, yet it shows the common origin of these 3 isolates which 

differs from other isolates in cluster 2. Further analysis of these group 3 isolates within 
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cluster 2 was undertaken by SNP typing to observe homology amongst themselves. The SNP 

typing suggested that all 3 isolates showed a remarkable degree of homology amongst 

themselves and differed from each other by a maximum of 16 SNPs (data not shown); since 

these three isolates were isolated from baby B at different time points, the SNP differences 

between them could be the result of a microevolution. As distant on the phylogenetic tree 

from the reference and other isolates in cluster 2 (Figure 8.4), it is assumed that these 

strains might have infected the baby B through a different route of transmission, therefore 

the same batch of the PIF is unlikely to be the source of infection for baby B.  

8.5.2.3 SNPS IN CLUSTER 3 

Five of the isolates belonging to cluster 3 were isolated between 15th to 27th June (Table 

8.1). Two of the isolates (700, 693) were obtained from babies P and Q, the former had 

moderate digestive problems while the later was asymptomatic. Of the remaining 3 isolates, 

2 isolates (713, 714) were obtained from the bottle while 1 isolate (715) was obtained from 

unused prepared formula. The date of isolation of these isolates overlapped with cluster 1 

and 2 isolates. The MLST profile of these isolates indicated all of these isolates were ST13. 

All of the 5 strains were obtained between days 85 to 97 of the outbreak. The earliest isolate 

within this cluster, C. sakazakii 700 was used as the index to call SNPs in the remaining 4 

isolates. The SNPs were typed as described before and a phylogeny obtained (Figure 8.8). 

The SNP typing and tree topology of the isolates obtained from the babies P and Q, isolates 

obtained from end of the bottle and prepared formula indicates that all of these strains 

were highly identical to the index strain as a maximum of 4 SNPs were obtained. This 

observation led to the assumption that the potential source of the baby infection or 

colonisation was prepared formula. Whether the prepared formula was contaminated 

because of the survival of C. sakazakii in PIF or was due to contamination from a different 

source such as water, utensils used to prepare formula feed, temperature abuse or carer’s 

hands remains unclear. However, like group 1 of the cluster 2, it seems likely that PIF was 

also the source of contamination for the cluster 3 strains as these isolates seem to have a 

common origin and they were isolated over a 12 day period where it seems unlikely that 

contamination could be from any other source such as water. 
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Figure 8. 8 SNP phylogeny of the cluster 3 strains.  

The SNPS were called using SMALT and SAMtools to generate the VCF files which were were filtered using VCFTools to include only SNPs with minimum quality score of 
30, minimum depth of 8, and minimum allele frequency of 0.90. A consensus sequence file was then created for each genome and used to create a maximum likelihood 
phylogeny. The purple font colour indicates the reference strain. The scale bar indicates the number of nucleotide substitutions.  



 

 

8.5.2.4 SUMMARY 

In summary the SNP level investigation revealed that there were at least 3 outbreaks of 

diverse C. sakazakii isolates in the French NICU and there was a likelihood of a 4th outbreak. 

Contaminated batch (or batches) of PIF was the likely source of dissemination for at least 

two of the cluster 1, eleven of the cluster 2 and all five isolates of cluster 3 while origin of 

three cluster 1 and four of the cluster 2 isolates remains unclear as C. sakazakii has the 

ability to survive in wide variety of environment. There was a likelihood of a 4th outbreak as 

the cluster 4 isolates were obtained from the unopened can of formula; it is important to 

note that cluster 4 strain C. sakazakii 716 belongs to clonal complex 1 (CC1) which has 

frequently been associated with infant formula. At least 35% (as of date 20th Sep 2014)  of 

the CC1 isolates in Cronobacter PubMLST database have either been isolated from infant 

formula, infant formula ingredients or the milk powder manufacturing factories while at 

least 12% of the CC1 isolates belong to clinical cases which also include C. sakazakii BAA-

894 (Kucerova et al. 2010). Therefore, the risk of a 4th outbreak was quite high if the formula 

was fed to a neonate, it is plausible due to heightened risk that the hygienic practices were 

improved which may have avoided the dissemination of this clinically important lineage of 

C. sakazakii into neonates.  

8.5.3 ESβL profiling of the cluster 2 isolates  

Extended spectrum beta-lactamases (ESβL) are the enzymes harboured by certain bacterial 

species which provide resistance to bacteria against penicillin and cephalosporin antibiotics. 

The emergence of antibiotic resistance presents a serious challenge as it limits the 

treatment options available against the bacterial infections. Since in the French outbreak, 

only cluster 2 strains were associated with the deaths of 3 neonates, it was important to 

screen these strains for the ability to resist antibiotic treatments. All the strains in cluster 2 

were tested for their ability to resist ESβL and/or AmpC using disc diffusion method of 

MASTDICTM. All of the strains were found to be sensitive to ESβL and/or AmpC (Table 8.3).  

In addition to the laboratory ESβL profiling, several known resistance genes which confer 

resistance against beta lactam drugs such as blaCTX-M3 (Citrobacter freundii), blaCTX-M-1 

(Escherichia coli O25b:H4-ST131 str. EC958), ampC (Escherichia coli str. K-12 substr. 

MG1655) and blaSHV-5 (Klebsiella pneumoniae) were also searched for the homologues in 

all of the C. sakazakii genomes, however no homologue was detected in any of the C. 



  Chapter  8 

244 
 

sakazakii genomes analysed in this chapter. In future studies, it is also recommended that 

Antibiotic Resistance Genes Database (ARDB) (http://ardb.cbcb.umd.edu/) should also be 

searched for antibiotic resistance associated genes using genome sequenced C. sakazakii 

isolates. 

Table 8. 3 ESβL and/or AmpC profile of the French outbreak cluster 2 strains using disc diffusion 
system of MASTDISCTM* 

 
The ESβL and AmpC discs (MAST Group limited, UK) were placed equidistant on the TSA plates and 
pressed gently with  flame sterilised forceps to ensure complete contact with the TSA media. The 
TSA plates with ESβL and AmpC discs were incubated at 37oC for 24h.  For each disc the diameter 
of the zone was measured and compared with guidance image (D68C1, Figure 2.1) provided by the 
Mast group. *refer to Figure 2.1 (section 2.1.7), Dia.; Diameter in mm, Neg.; Negative. 
 
 
8.5.4 Alignment of C. sakazakii genomes against virulence associated plasmids  

The development of resistance against antibiotics and toxic metals  in bacteria pose an 

increasing challenge to the treatment of infectious disease. Antibiotic and metal resistance 

was thought to be linked with the presence of resistance genes both against antibiotics and 

toxic metals, located in close proximity on the bacterial plasmids (Samanta et al. 2012). The 

presence of the R plasmids such as pAPEC_O1-R and pAPEC-O2-R plasmids in extra intestinal 

pathogenic E. coli which are transmissible across bacteria suggest that these plasmids may 

act as the reservoir for the antimicrobial agents which may ultimately affect human health. 

Strain A (CPD10) B (CPD10 + 
ESβL 
inhibitor) 

C (CPD10 + 
AmpC inhibitor) 

D (CPD10 + 
ESβL inhibitor  
 + AmpC 
Inhibitor) 

      

 Dia. Dia. Dia. Dia. B-A D-C B-D A-C ESβL AmpC 

707 28 30 29 30 2 1 0 -1 Neg. Neg. 

691 27 28 27 27 1 0 1 0 Neg. Neg. 

695 23 24 24 23 1 -1 1 -1 Neg. Neg. 

701 28 27 28 29 -1 1 -2 0 Neg. Neg. 

767 22 22 21 22 0 1 0 1 Neg. Neg. 

730 27 28 27 27 1 0 1 0 Neg. Neg. 

711 30 29 29 29 -1 0 0 1 Neg. Neg. 

706 28 27 30 28 -1 -2 -1 -2 Neg. Neg. 

712 30 30 28 28 0 0 2 2 Neg. Neg. 

702 30 28 28 27 -2 -1 1 2 Neg. Neg. 

692 29 30 30 30 1 0 0 -1 Neg. Neg. 

698 28 30 30 28 2 -2 2 -2 Neg. Neg. 

694 29 30 29 27 1 -2 3 0 Neg. Neg. 

705 28 28 28 28 0 0 0 0 Neg. Neg. 

709 30 30 30 29 0 -1 1 0 Neg. Neg. 

http://ardb.cbcb.umd.edu/
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A homologue of the pAPEC-O2-R plasmid called PECOS88 has been found to be encoded on 

the genome of the neonatal meningitic E. coli strain S88 (O45: K1: H7) where it has been 

linked with increased level of bacteraemia in neonatal rat model of meningitis (Peigne et al. 

2009). Resistance genes encoded on pAPEC-O2-R in addition to the silCERS, silAB and silP 

which provide resistance against silver and copper, also include folA providing resistance to 

trimethoprim, aadA5 which encodes resistance to aminoglycoside, catB3 which contributes 

to resistance against chloramphenicol, and a beta lactamase gene (bla) contributing to 

resistance against beta lactam drugs (Johnson et al. 2005). C. sakazakii is ubiquitous in the 

environment and a frequent coloniser of humans and animals; the sharing of habitats with 

other commensal and pathogenic bacteria such as E. coli increase the chances of gene 

transfers through genetic exchange or through horizontal gene transfer. It was therefore of 

interest to find out whether a complete or partial homologue of pAPEC-O2-R or any of its 

resistance genes have homologues in C. sakazakii genomes being investigated in the 

present study and if present do these traits show variability across the 4 C. sakazakii clusters. 

To answer these questions plasmid pAPEC-O2-R was aligned against all 26 C. sakazakii 

genomes using BLAST Ring Image Generator (BRIG) and a comparative genome image 

obtained (Figure 8.9).  
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Figure 8. 9 Comparative genome image showing the alignment of pAPEC-O2-R plasmid against C. 
sakazakii genomes. 

The image was generated using BRIG. The central black solid circle indicates the plasmid pAPEC-O2-R 
(~100 kb). The distance between each dot is 4 kb. Second black spiked circle from inside out represents 
GC contents. Each of the coloured rings represent a different C. sakazakii genome, the colour coding is 
shown on the colour legend on the right of the figure. The solid colour rings are indicative of high BLAST 
homology with the reference while fade and broken rings represent low degree of homology. Rings from 
inside out represent isolates 690, 696, 699, 703, 708, 691, 692, 694, 695, 698, 701, 702, 705, 706, 707, 
709, 711, 712, 730, 767, 693, 700, 713, 714, 715 and 716 respectively. (Hyp: hypothetical protein).  

 

The result in Figure 8.9 showed that complete homologue of the pAPEC-O2-R was not 

detected in any of the C. sakazakii genome. However, it was interesting to note that a region 

of pAPEC-O2-R located between ~61-88 kb showed homology to most of the C. sakazakii 

genomes, the region was designated as homologous region. Further analysis by Artemis and 

WebACT indicated that the region consisted of 25 genes (Locus_tag: O2R_88 to O2R_111) 

(Table 8.4). This similarity between pAPEC-O2-R of avian E. coli and C. sakazakii was 

interesting and could be the result of horizontal gene transfer between E. coli and C. 

sakazakii, however to date there has been no report of avian isolation of C. sakazakii.  
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This region was selected and further investigated by Cronobacter BLAST 

(http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates&page=plugi

n&name=BLAST/). Each of the genes was BLAST searched to precisely check its presence in 

26 C. sakazakii genomes. The region consisted of a gene cluster silABCEPRS encoding for 

silver and copper efflux and binding proteins, this gene cluster was uniformly detected in all 

26 C. sakazakii genomes irrespective of the cluster grouping; the region has been previously 

described by our group (Kucerova et al. 2010; Joseph et al. 2012b) and has been investigated 

previously in this thesis (section 3.2.4.9). Since the region was present in all 4 clusters it 

indicates that although the region might be essential for the fitness of C. sakazakii in general. 

Another set of genes encoded on the plasmid pAPEC-O2-R was tetA and tetR encoding for 

tetracycline efflux protein and tetracycline repressor protein respectively, both of these 

genes were uniformly absent in all the of C. sakazakii genomes. The gene O2R_88 encoding 

for resolvases (resD) was present in all while another resolvase encoded by O2R_110 was 

absent from all C. sakazakii genomes. The hypothetical proteins encoding genes O2R_89-

90 were missing in all while other hypothetical proteins encoding genes O2R_92, O2R_94, 

O2R_99, O2R_102, O2R_104.2 and O2R_104 were detected in all of the C. sakazakii 

genomes. The gene O2R_93 encoding for hnh endonuclease was present in all the C. 

sakazakii genomes of cluster 1 and 3 while absent in all cluster 2 strains except C. sakazakii 

701, the gene was also absent from the cluster 4 strain C. sakazakii 716. Genes O2R_105 

and O2R_108 encoding a hypothetical protein and a relaxase respectively, were uniformly 

absent from all genomes whereas O2R_109 encoding for a transposase was missing only in 

cluster 2 strains. Hence, except for a transposase which was absent specifically from the 

cluster 2 genomes, no pattern for the presence of the traits could be observed in any 

particular cluster of the C. sakazakii strains analysed in the present study.  

http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates&page=plugin&name=BLAST/
http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_cronobacter_isolates&page=plugin&name=BLAST/
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Table 8. 4 Investigation of the pAPEC_O2-R homologous region using Cronobacter BLAST   

 G
ene  

resD 

O
2R_89 

O
2R_90 

O
2R_91 

O
2R_92 

O
2R_93, 

hnh 

O
2R_94 

silE 

silS 

silR 

silC  

O
2R_99 

silB 

silA 

O
2R_102 

silP 

O
2R_104 

O
2R_104.2 

O
2R_105  

tetA 

tetR 

O
2R_108 

O
2R_109 

O
2R_110 

TnpM
 

 Annotation 

Resolvase 

H
yp 

H
yp 

H
yp 

H
yp 

H
nh endonuclease 

H
yp 

Silver-binding protein 

silS 

silR 

O
uter m

em
brane efflux protein 

H
yp 

Efflux transporter, RN
D

 fam
ily, M

FP s 

H
eavy m

etal efflux pum
p 

H
yp 

Copper-translocating P-type ATPase 

H
yp 

Transposase 

H
yp 

Tetracycline efflux protein 

Tetracycline repressor protein 

Relaxase 

Tn1721 transposase 

Resolvase 

TnpM
 

C. sakazakii 
Isolate 

                          

690 

Cluster 1 

+ - - + + + + + + + + + + + + + + + - - - - + - - 
699 + - - + + + + + + + + + + + + + + + - - - - + - - 
703 + - - + + + + + + + + + + + + + + + - - - - + - - 
708 + - - + + + + + + + + + + + + + + + - - - - + - - 
696 + - - + + + + + + + + + + + + + + + - - - - + - - 
                           
691 

Cluster 2  

+ - - + + - + + + + + + + + + + + + - - - - - - - 
692 + - - + + - + + + + + + + + + + + + - - - - - - - 
694 + - - + + - + + + + + + + + + + + + - - - - - - - 
695 + - - + + - + + + + + + + + + + + + - - - - - - - 
698 + - - + + - + + + + + + + + + + + + - - - - - - - 
701 + - - + + + + + + + + + + + + + + + - - - - - - - 
702 + - - + + - + + + + + + + + + + + + - - - - - - - 
705 + - - + + - + + + + + + + + + + + + - - - - - - - 
706  + - - + + - + + + + + + + + + + + + - - - - - - - 
707 + - - + + - + + + + + + + + + + + + - - - - - - - 
709 + - - + + - + + + + + + + + + + + + - - - - - - - 
711 + - - + + - + + + + + + + + + + + + - - - - - - - 
712 + - - + + - + + + + + + + + + + + + - - - - - - - 
730 + - - + + - + + + + + + + + + + + + - - - - - - - 
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 G
ene  

resD 

O
2R_89 

O
2R_90 

O
2R_91 

O
2R_92 

O
2R_93, 

hnh 

O
2R_94 

silE 

silS 

silR 

silC  

O
2R_99 

silB 

silA 

O
2R_102 

silP 

O
2R_104 

O
2R_104.2 

O
2R_105  

tetA 

tetR 

O
2R_108 

O
2R_109 

O
2R_110 

TnpM
 

 Annotation 

Resolvase 

H
yp 

H
yp 

H
yp 

H
yp 

H
nh endonuclease 

H
yp 

Silver-binding protein 

silS 

silR 

O
uter m

em
brane efflux protein 

H
yp 

Efflux transporter, RN
D

 fam
ily, M

FP s 

H
eavy m

etal efflux pum
p 

H
yp 

Copper-translocating P-type ATPase 

H
yp 

Transposase 

H
yp 

Tetracycline efflux protein 

Tetracycline repressor protein 

Relaxase 

Tn1721 transposase 

Resolvase 

TnpM
 

767  + - - + + - + + + + + + + + + + + + - - - - - - - 
                           
693 

Cluster 3 

+ - - + + + + + + + + + + + + + + - - - - - + - - 
700 + - - + + + + + + + + + + + + + + + - - - - + - - 
713 + - - + + + + + + + + + + + + + + - - - - - + - - 
714 + - - + + + + + + + + + + + + + + - - - - - + - - 
715 + - - + + + + + + + + + + + + + + - - - - - + - - 
                           
716 

Cluster 4 

+ - - + + - + + + + + + + + + + + + - - - - + - - 

Hyp; Hypothetical protein 

  

Table 8.4 continued 
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Other antibiotic resistance genes including folA, aad5 and bla were not found in any of the 

C. sakazakii genomes analysed in the present study.   

Similarly, the plasmid PECOS88, a homologue of the pAPEC-O2-R plasmid in Escherichia coli 

strain S88 which according to Peigne and colleagues (2009) was linked with high level of 

bacteraemia in a neonatal meningitic rat model was also aligned against all C. sakazakii 

genomes, however whole length homologue was not detected in any of the genome (Figure 

8.10).  

 

Figure 8. 10 Comparative genome image showing the alignment of PECOS88 plasmid against C. 
sakazakii genomes 

 The image was generated through BRIG. The central black solid circle indicates the plasmid PECOS88 
(~133 kb). The distance between each dot is 10 kb. Second black spiked circle from inside represents 
GC contents. Each of the coloured rings represent a different C. sakazakii genome, the colour coding is 
shown on the colour legend on the right of the figure. The solid colour rings are indicative of high 
BLAST homology with the reference while fade and broken rings represent low degree of homology. 
Rings from inside out represent isolates 690, 696, 699, 703, 708, 691, 692, 694, 695, 698, 701, 702, 705, 
706, 707, 709, 711, 712, 730, 767, 693, 700, 713, 714, 715 and 716 respectively.   
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The putative virulence genes located on the PECOS88 included three different iron uptake 

systems; salmochelin (iroBCDEN), aerobactin (iucABCD and iutA) and the sitABCD genes 

(Johnson et al. 2006; Sabri et al. 2006). Additional virulence associated traits included an iss 

gene involved in compliment resistance by providing increased serum survival (Chuba et al. 

1989). Type 1 secretion system (T1SS) genes etsABC (Johnson et al. 2006), an outer 

membrane protease ompT (Stumpe et al. 1998) and a hemolysin encoding gene hlyF 

(Morales et al. 2004). However, the BRIG alignment showed that the whole length 

homologue of the plasmid PECOS88 was not present in any of the C. sakazakii genome 

analysed in this chapter. Further investigation by WebACT and Cronobacter indicated that 

except for the homologues of iron uptake aerobactin (iucABCD and iutA) which was 

detected in most of the C. sakazakii genomes, none of the other homologues were detected 

in C. sakazakii genomes; additionally, several homologues of transposes were found in most 

of the C. sakazakii genomes (Table 8.5).  
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Table 8. 5 BLAST investigation of the homologues of the PECOS88 genes in C. sakazakii isolates of the French outbreak 1994 

 Gene  

pECS88_0035 
InsA  

flm
C  C 

pECS88_0025 
insB 

pECS88_0036 
insB  

iutA  

iucA  

iucB  

iucC  

iucD  

pECS88_0007  
InsB  

pECS88_0008  
InsA  

iroN
 

PECS88_0149 

 Annotation 

 Transposase 

putative F-plasm
id 

m
aintenance protein 

fragm
ent of Transposase 

Transposase 

Ferric aerobactin receptor 
precursor 

Aerobactin siderophore 
biosynthesis protein 

N
(6)-hydroxylysine 

acetylase 

Aerobactin siderophore 
biosynthesis protein 

L-lysine 6-m
onooxigenase 

Transposase 

Transposase 

salm
ochelin siderophore 

receptor 

Putative transposase 

C. sakazakii Isolate               

690 Cluster 1 (CC12) + + + + + + + + + + + + + 

699 + + + + + + + + + + + + + 

703 + + + + + + + + + + + + + 

708 + + + + + + + + + + + + + 

696 + + - - + + + + + - - + + 

691 Cluster 2 (CC4) + + + + + - + + + + + + + 

692 + + + + + + + + + + + + + 

694 + + + + + + + + + + + + + 

695 + + + + + + + + + + + + + 

698 + + + + + + + + + + + + + 

701 + + + + + - + + + + + - + 

702 + + + + + + + + + + + - + 

705 + + + + + + + + + + + - + 

706 + + + + + + + + + + + + + 

707 + + + + + + + + + + + + + 

709 + + + + + + + + + + + + + 
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 Gene  

pECS88_0035 
InsA 

flm
C  C 

pECS88_0025 
insB 

pECS88_0036 
insB 

iutA 

iucA 

iucB 

iucC 

iucD
 

pECS88_0007  
InsB 

pECS88_0008  
InsA 

iroN
 

PECS88_0149 

 Annotation 

Transposase 

putative F-plasm
id 

m
aintenance protein 

fragm
ent of Transposase 

Transposase 

Ferric aerobactin receptor 
precusor 

Aerobactin siderophore 
biosynthesis protein 

N
(6)-hydroxylysine acetylase 

Aerobactin siderophore 
biosynthesis protein 

L-lysine 6-m
onooxigenase 

Transposase 

Transposase 

salm
ochelin siderophore 

receptor 

Putative transposase 

711  + + + + + + + + + + + + + 

712 + + + + - - - - - + + + + 

730 + + + + + + + + + + + + + 

767 + + - - + + + + + - + + + 

693 Cluster 3 (CC13) + + + + + + + + + + + + - 

700 + + + + + + + + + + + + - 

713 + + + + + + + + + + + + - 

714 + + + + + + + + + + + + - 

715 + + + + + + + + + + + + - 

716 Cluster 4 (CC14) + + + + + + + + + + + + - 

 

 

Table 8.5 continued 
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Thus the alignment of the plasmid PECOS88 with C. sakazakii genomes revealed that except 

for a putative transposase (pECS88_0149) which was absent specifically from the cluster 3 

and 4 strains, no specific pattern for the presence or absence of the genes was observed 

which could be related with a particular cluster of C. sakazakii strain being analysed in the 

current study. 

In summary, the comparative genome analysis by BRIG alignment against virulence 

associated plasmids could not identify any particular virulence associated trait which could 

form the basis of differentiation between different clusters.    
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 GENERAL DISCUSSION AND CONCLUSION  

The present study was aimed at the genomic dissection of the 1994 French C. sakazakii 

outbreak which lasted over 3 months. Whole genome phylogeny indicated at least 4 distinct 

clusters within the sequenced C. sakazakii strains. Although, Single Nucleotide 

Polymorphism has proven to be more discriminatory than the current epidemiological 

investigation methods like PFGE, it does re-emphasise the usefulness of PFGE. Genomic 

examination at the SNP level across different clusters authenticated that the strains in 

different clusters were completely un-related. Moreover, SNP analysis was undertaken to 

analyse the relatedness within each cluster independently of the other clusters. SNP 

analysis of the cluster 1, 2 and 3 revealed genetic diversity within each cluster; although 

some of the strains were highly related and likely to share a common ancestor, there were 

diverse strains within each cluster. SNP typing in combination with SNP phylogeny 

suggested PIF to be the possible origin for at least 40% of the cluster 1,  73% of the cluster 

2 and 100% of the cluster 3 sequenced strains. The possible origin for the remaining strains 

in these clusters remains unclear. An attempt was made to link the remaining isolates of 

cluster 1 PIF isolates from cluster 2 and 3, however SNP typing revealed that these strains 

were highly divergent from PIF isolates of cluster 2 and 3. Therefore present genomic level 

analysis of the isolates from the 1994 French NICU outbreak suggested that there were at 

least 3 independent but parallel outbreaks of C. sakazakii which lasted for 3 months with 

the possibility of a 4th outbreak as the cluster 4 strains belong to an unopened can of PIF; 

the cluster 4 isolate 716 belongs to CC1 which has frequently been isolated from the infant 

formula and also from the clinical sources. Furthermore, SNP analysis in this study 

suggested that all of these 3 outbreaks (clusters 1, 2 and 3) to some extent were associated 

with the consumption of contaminated PIF; however not all of the isolates within cluster 1 

and 2 could be linked with PIF. The origin of the remaining isolates in cluster 1 and 2 remains 

unclear as the ability of C. sakazakii to resist dry and desiccated conditions allows its survival 

not only in the PIF but wide range of environmental sources including water (Kucerova et 

al. 2011).  

Another important observation in this study was that different strains from different cluster 

groups of C. sakazakii colonised  the same baby indicating the ability of C. sakazakii strains 

to co-exist. For instance, 4 isolates were recovered from baby B at different time points 

during the outbreaks; 3 of these isolates belonged to cluster 2 (CC4) while one isolate 
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belonged to cluster 1 (ST12). These isolates from two different clusters were highly 

divergent as indicated by SNP differences (>70,000 SNPs) (data not shown) suggesting that 

they were acquired independently of each other. This was also the case with babies C and 

D which were colonised and infected by highly divergent (>70,000 SNPs) clusters 1 and 2 of 

C. sakazakii. The isolation of distant C. sakazakii strains suggests the ability of C. sakazakii 

to co-exist, whether co-existence of C. sakazakii is linked with neonatal infections warrants 

further investigation; however the present observation did not support this as baby C who 

was colonised  by isolates 708 and 709 of cluster 1 and 2 respectively, was asymptomatic.  

In the study presented in this chapter, the day of isolation of a C. sakazakii strain with the 

number of SNPs within the same outbreak could not be linked, which is contrary to other 

observations where the time of isolation and number of SNPs were correlated such as in 

the case of methicillin-resistant Staphylococcus aureus (MRSA) (Harris et al. 2010). This 

could be due to the differences in the epidemiology between these organisms, MRSA 

spreads between humans while C. sakazakii is ubiquitous in the environment and can 

survive and persist in non-human environments such as PIF, water and on solid surfaces 

(Kucerova et al. 2011). The observations in the present study were similar to the 

observations by Leekitcharoenphon et al. (2014) who studied different Salmonella 

outbreaks using whole genome sequencing data (Leekitcharoenphon et al. 2014).  

Another important observation was the association of the cluster 2 strains with all three 

casualties during the outbreak. More importantly all of the cluster 2 strains belong to clonal 

complex 4 (CC4) of the Cronobacter MLST scheme. The investigation was taken further to 

profile all the cluster 2 or CC4 strains for the presence of any extended spectrum beta 

lactamases using the disc diffusion method (MASTDISCTM), however all of the strains were 

found to be ESβL sensitive (Table 8.3).  Similarly BLAST searching the genomes also did not 

indicate any ESβL associated trait in C. sakazakii genomes analysed in this study.  

Plasmids are important sources for the dissemination of the virulence associated traits 

amongst bacterial species. Homologue of the pAPEC-O2-R plasmid called PECOS88 carrying 

antibiotic and metal resistance genes has been detected in the E. coli strain s88 (O45:K1:H7) 

which was linked with high level of bacteraemia in neonatal meningitis rat model (Peigne et 

al. 2009). E. coli strain s88 (O45:K1:H7) is a representative of the French clone (O45:K1:H7) 

which is associated with one third of the E. coli neonatal meningitis (ECNM), the strain was 
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isolated from the CSF of a new-born baby in Robert Debré Hospital, Paris, France (Bonacorsi 

et al. 2003). Each of the plasmids pAPEC-O2-R and PECOS88 were aligned independently 

with all the sequenced C. sakazakii isolates. However, no complete homologue for either of 

these plasmids was detected in any of the C. sakazakii genomes. An approximately ~12 kb 

region of the pAPEC-O2-R was found in all of the isolates consisting mainly of silABCEPRS 

associated with silver and copper efflux and binding protein; this region has previously been 

illustrated in Cronobacter (Kucerova et al. 2010; Joseph et al. 2012b) and analysed in this 

thesis (section 3.2.4.9). On the other hand PECOS88 alignment only indicated the presence 

of some transposases and partial homologues of aerobactin associated traits (iucABCD and 

iutA) which also have been described previously in Cronobacter (Kucerova et al. 2010; 

Joseph et al. 2012) (section 3.4.2.10). None of the virulence associated traits encoded on 

these plasmids such as tetA, tetR, folA (trimethoprim resistance), aad5 (aminoglycoside 

resistance) and bla (beta lactamase) encoded on pAPEC-O2-R and T1SS, iss (compliment 

resistance), hlyF (haemolysin) encoded on PECOS88 plasmid was detected in any of the C. 

sakazakii isolate from the 1994 French outbreak.  

In conclusion, the present study indicated PIF to be a major but not the exclusive source for 

the transmission of C. sakazakii to neonates in the 1994 French NICU outbreak. Improve 

practices in the manufacturing and preparation in addition to improved personal hygiene 

are essential to prevent the growth and transmission of this neonatal health associated 

pathogen.  
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 OVERVIEW  

Cronobacter sakazakii is a member of the genus Cronobacter and came to prominence for 

its association with neonatal infections which include bacteraemia, septicaemia and 

neonatal meningitis (Bar-Oz et al., 2001; Mullane et al., 2008; Joseph & Forsythe, 2011; 

Joseph et al. 2012a). However, it is one lineage of C. sakazakii known as Clonal Complex 4 

(CC4) which is of deep concern as it has been predominantly associated with neonatal 

meningitis (Joseph & Forsythe, 2011; Hariri et al. 2013; Forsythe et al. 2014). Not only does 

C. sakazakii CC4 dominantly associated with neonatal infections, it has been isolated 

frequently from the environment, more importantly from powdered infant formula (PIF) 

and associated production environments such as floors, bays, roller dryers, tankers and air 

filters (Neelam et al. 1987; Mosso et al. 1994; Van Os et al. 1996; Hein et al. 2009; Craven 

et al. 2010; Jacobs et al. 2011; Muller et al. 2013; Power et al. 2013; Sonbol et al. 2013).  

C. sakazakii CC4 represents the dominant clonal complex of the Cronobacter and represents 

the single or double loci variants of ST4 (Figure 3.1). ST4 is the dominant sequence type 

representing at least 91% of the total CC4 isolates in Cronobacter PubMLST (last checked; 

2nd December 2014). Large number of CC4 isolates have clinical origin (Figure 3.2). A number 

of neonatal fatalities have been associated with the infection of C. sakazakii CC4, for 

example in the French outbreak of 1994, each of 3 babies who died were infected by C. 

sakazakii CC4 (Caubilla-Barron et al. 2007). The predominant association of C. sakazakii CC4 

with neonatal infections and its predominant occurrence in the environment warranted in 

depth investigation. Although a number of studies have described virulence associated 

genes in C. sakazakii, none of the studies was aimed specifically to explain the association 

of C. sakazakii CC4 with neonatal infections and to explain the factors behind its uniqueness. 

Therefore, it was of great significance and it raised certain questions;  

Is C. sakazakii CC4 a clonal lineage? 

What makes C. sakazakii CC4 unique compared to other lineages of C. sakazakii?  

Are there any virulence associated genes specific to C. sakazakii CC4?  

Are there any environmental fitness associated genes specific to C. sakazakii CC4? 

How diverse is C. sakazakii CC4? 
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To answer all these question was important due to the direct association of C. sakazakii CC4 

with neonatal health.  

Next generation sequencing (NGS) or massively parallel sequencing has revolutionised 

genetics and genomics. The availability of high throughput instruments and rapid 

developments in analysis programs has a huge impact on research in the field of genomics. 

The development of the NGS technology has contributed a wealth of information in recent 

years and continues to bring enormous change in our understanding of the basic biological 

knowledge, genetics and biological research (Mardis, 2008, 2011). The constant and rapid 

development of NGS has exponentially dropped the cost of genome sequencing and 

nowadays the laboratories with modest research budget can afford to sequence small to 

large size genomes. The present study exploited this opportunity and a total of 50 genomes 

were sequenced in three different phases of the current PhD study (Table 2.1). The study 

was initiated with 30 C. sakazakii strains while 26 C. sakazakii isolates were sequenced only 

for the 1994 French outbreak analysis.  

The three main aims of the present study were; 

 Comparative genomic analysis for the identification of the CC4 specific traits. 

 Analyse the diversity within CC4. 

 Case study: Genome analysis of the isolates obtained from the French outbreak 

(1994) with the main aim of source identification. 
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 COMPARATIVE GENOMICS TO IDENTIFY CC4 SPECIFIC TRAITS 

The strategy used for the identification of unique traits within C. sakazakii CC4 can be 

divided into 4 parts. The genome screening for the traits which previously have been 

described in literature as associated with either virulence or environmental fitness of 

Cronobacter, core CC4 genome analysis, gene by gene search using ACT and fragmented 

comparative genomic analysis using Gegenees.  

9.2.1 GENOME SCREENING FOR VIRULENCE AND ENVIRONMENTAL FITNESS 

ASSOCIATED TRAITS  

9.2.1.1 CLONALITY OF C. SAKAZAKII CC4 

Using genome sequences of 30 C. sakazakii isolates, whole genome phylogeny was 

constructed (Figure 3.3). The results of the phylogenetic analysis were quite interesting as 

18 CC4 isolates formed a distinct cluster on the phylogenetic tree. It was interesting to note 

that 18 CC4 isolates were temporally and geographically diverse, isolated over 60 years from 

9 different countries across the globe. This unique clustering of the CC4 isolates was quite 

intriguing and prompted detailed genomic analysis to reveal which genomic traits are 

specifically found in CC4 conferring a clonal signature to this neonatal meningitic associated 

clade. The genome interrogation was undertaken using different strategies for the 

identification of unique traits within CC4. The first part of the study was to screen the traits 

which have previously been indicated in the literature to be associated with either virulence 

or environmental fitness in C. sakazakii or other Cronobacter species. The aim was to 

observe how these traits vary for their presence across CC4 and non-CC4 groups and to 

check if there is any trait which is specific to CC4 which could explain its clonal nature, its 

predominant association with neonatal infections especially meningitis and its frequent 

isolation from the environment especially PIF. For this purpose both virulence associated 

traits as well as environmental fitness associated traits were screened in 30 C. sakazakii 

genomes (Table 3.1).  

9.2.1.2 VIRULENCE ASSOCIATED GENE SCREENING  

Generally a bacterium has to cross several barriers before it can successfully establish an 

infection in its host (Wilson, 2002). A large number of C. sakazakii strains, especially CC4 

have been isolated from CSF of neonates with meningitis (Joseph & Forsythe, 2011; Hariri 
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et al. 2013). To survive within the host, the bacteria should have the ability to adopt to the 

survival conditions within the host environment and should have underlying genetic 

machinery to cause infection. In order to reach a neonates’ brain, C. sakazakii would have 

to overcome several host defence mechanisms which include the acidic environment of 

stomach, attachment and invasion of the intestinal epithelium to reach blood circulation, 

to resist the complement attack, survive within macrophages and cross the blood brain 

barrier (BBB) to get access to the brain (Wilson, 2002). The increased association of C. 

sakazakii CC4 with neonatal meningitis and its frequent isolation from clinical sources 

especially CSF warranted the investigation at the genomic level to reveal the virulence 

associated genes found uniquely in this clade. 

The first step for a bacterial pathogen to establish an infection is their ability to successfully 

colonise their host; it is considered an important mechanism for bacterial pathogens to 

attach to and colonise the surfaces such as the epithelial lining of the human stomach (Soto 

& Hultgren, 1999). Fimbriae are present predominantly in Gram negative bacteria helping 

them to adhere to the host surfaces which could ultimately lead to the infection. At least 

10 different fimbriae associated gene clusters which have previously been described in 

Cronobacter (Kucerova et al. 2010; Joseph et al. 2012b) were screened in 30 C. sakazakii 

genomes. The analysis indicated that clusters 2-7 and 9 (homologues of fimbrial genes in C. 

sakazakii BAA-894) were noted in most of the CC4 and non-CC4 isolates while the remaining 

3 clusters, fimbrial region 1, fimbrial region 8 (π fimbriae homologues of C. turicensis z3032) 

and fimbrial region 10 (curli fimbriae homologues of C. turicensis z3032) showed greater 

variation for their presence across two subsets. None of these showed specific association 

for its presence either in CC4 or non-CC4 group. In addition, the homologues of the type 1 

fimbrial operon (fimABCDEFGHI) of E. coli str. K-12 substr. MG1655 were not detected in 

any of the C. sakazakii genome (section 3.4.2.1).  

Invasion, like adhesion, is also considered crucial for bacterial pathogens for the 

establishment of successful infection (Badger et al. 1999). Several studies have established 

the role of outer membrane protein A (ompA) towards the invasion of the neonatal 

meningitic E. coli K1 as well as C. sakazakii (Badger et al. 2000; Mohan et al. 2009; Kim et al. 

2010). A study by Kim and Wang (2002) indicated  that a mutant of E. coli K1 strain RS218 

(018:K1:H7) in which the ompA gene was deleted, showed less invasion on Brain 

Microvascular Endothelial Cells (BMEC) when using in vitro invasion assays (Wang & Kim, 
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2002). Similarly Nair et al. (2009) showed that ompA is a major fibronectin binding protein 

in C. sakazakii and is essential for the invasion of the BMEC. Their study showed that the C. 

sakazakii mutants in which the ompA gene was knocked out exhibited significantly reduced 

invasion of the BMEC in vitro, indicating that ompA is required for the invasion and therefore 

the pathogenicity of C. sakazakii (Mohan et al. 2009). Another study by Koebnik (1999) 

showed that all the loops of the ompA protein were essential for its functioning (Koebnik, 

1999). It has also been proposed that ompA and ompX proteins in C. sakazakii are important 

and act synergistically towards the invasion of Human Brain Microvascular Cells (HBMEC) 

(Kim et al. 2010). It has been suggested that ompA along with ompX protein is involved in 

the basolateral invasion of C. sakazakii; the study showed that the mutants lacking ompA 

and ompX genes were significantly reduced in their ability to invade the human enterocyte-

like epithelial Caco-2 and human intestinal epithelial INT-407 cell lines (Kim et al. 2010).  

The genome screening of sequenced C. sakazakii isolates indicated that ompA and ompX 

were noted in 100% of CC4 and non-CC4 genomes. Due to the significance of ompA for the 

invasion of C. sakazakii which has been established in the previous studies, it was important 

to analyse the ompA gene in greater detail in order to observe any variations at the 

nucleotide and amino acid level which are unique to CC4. The ompA gene sequences of CC4 

and non-CC4 isolates were aligned and phylogeny determined; the resulting phylogeny was 

interesting as all except 2 CC4 isolates formed a unique cluster on the phylogenetic tree 

(Figure 3.6; section 3.4.2.3). The analysis of the gene sequence alignment revealed a very 

low sequence diversity (12 SNPs) across CC4 and non-CC4 isolates for the ompA (Table 3.2). 

The conversion of the nucleotide sequence into amino acid sequence in silico indicated that 

all of these SNPs were synonymous and hence were unlikely to confer any structural or 

functional changes to ompA. Hence, it is unlikely that variation in the ompA gene sequence 

may give a competitive advantage to CC4 isolates. The results indicated the ompA gene is 

equally important for both CC4 and non-CC4 isolates.  

Another gene associated with invasion is Inv encoding for invasin protein and has been 

linked with pathogenesis of Salmonella and Yersinia (Pepe & Miller, 1990). It has been 

revealed that in C. sakazakii 29544, a putative Inv (invasion protein) encoded by Inv gene is 

essential for the basolateral invasion of Caco-2 cells and acts synergistically with ompA 

(Chandrapala et al. 2014). The genome screening of sequenced C. sakazakii isolates showed 

that Inv gene was absent from 6 CC4 and 7 non-CC4 isolates (section 3.4.2.2). The absence 
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of Inv gene from clinically important strain like a CSF isolate 721 weakens the probability 

that this gene is essential for the invasion of C. sakazakii in general and CC4 in particular 

(section 3.4.2.2).  

Filamentous haemagglutinin (FHA) is the large, rod shaped protein (>200 kDa) which is 

expressed by bacteria such as Bordetella pertussis (Makhov et al. 1994). The FHA facilitates 

bacterial adhesion to epithelial cells and macrophages in vitro and is involved in colonisation 

of trachea in vivo (Julio & Cotter, 2005). A 27 kb FHA locus, reported by Franco et al. (Franco 

et al. 2011a) located on the pCTU1 plasmid of C. turicensis z3032, was interrogated in the 

sequenced genomes (section 3.4.2.4), however none of the CC4 or non-CC4 isolates showed 

the presence of the complete locus indicating that this trait may not be crucial for the 

virulence of C. sakazakii in general or CC4 in particular.  

Macrophages are the immune cells which provide the first line of defence against bacterial 

pathogens to invade the internal cells. Once engulfed by the macrophages, the bacterial 

cells are enclosed in a vacuole called phagosome which then fuses with lysosome and 

bacteria get digested (Ernst et al. 1999). Bacteria have adapted mechanisms to avoid or 

survive within the hostile environment of macrophages (Pizarro-Cerda et al. 1996). A 

macrophage survival associated gene sodA encodes for superoxide dismutase in C. sakazakii 

658 (Kucerova et al. 2010). The sodA gene was noted invariably across two subsets of the 

sequenced genomes (section 3.4.2.5). Similarly, zinc metalloprotease zpx associated with 

rounding of the CHO cells (Kothary et al. 2007) was noted in most of the isolates across CC4 

and non-CC4. The results of the protease activity assays by Hana Sonbol indicated that all 

of the tested isolates (15 CC4 and 8 non-CC4) showed protease activity irrespective of their 

clonal complex (section 3.4.2.5).  

Evasion of the bactericidal effects of serum is a common characteristic feature of the 

invasive isolates of several species such as Streptococcus (Hol et al. 1995; Hoe et al. 1999; 

Williams et al. 2001). A plasmid encoded plasminogen activator (cpa) which has been linked 

with resistance against bactericidal activity of serum in C. sakazakii was noted only in the 

isolates which showed the presence of the full length pESA3 plasmid. It was not detected in 

isolates which lack either full length or partial length plasmid including CC4 isolate 6 and 

non-CC4 isolates 1, 680, 520 and ES15. Although it is an important trait, it does not form the 

basis of differentiation between two groups. The parallel laboratory study by Sumyya Hariri 
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using 16 CC4 and 6 non-CC4 sequenced isolates indicated that in C. sakazakii serum 

resistance is strongly related with the presence of plasmid pESA3 as plasmid less isolates 6 

and 520 were sensitive to serum (section 3.4.2.6: Sumyya Hariri, personal communications).   

Lysis of red blood cells known as haemolysis is an important pathogenic mechanism 

employed by certain bacteria such as E. coli (Wong et al. 2012).  A number of haemolysin 

associated traits (ESA_00102, ESA_00432, ESA_00643, ESA_02810, ESA_02937 and 

ESA_03540) which have been reported previously (Joseph et al. 2012b) were searched for 

homology in the sequenced isolates and were noted uniformly across all of the isolates. The 

parallel laboratory study by Hana Sonbol showed that all 4 isolates (701, 680, 696 and 658) 

tested for haemolysis activity were positive on both horse and sheep blood  (section 3.4.2.7).  

In E. coli K1, Type 6 Secretion System (T6SS), which is a newly described bacterial secretion 

system has been linked with the invasion of blood brain barrier (Zhou et al. 2012). At least 

10 different T6SS associated gene clusters were indicated previously by Joseph et al. (2012b). 

The genome interrogation of the sequenced isolates indicated that none of isolates 

contained any of these cluster as a complete unit, rather a mosaic pattern for the presence 

of the genes within these clusters was noticed (Table S1). The analysis suggested that T6SS 

may not be essential for the virulence of C. sakazakii (section 3.4.2.8).  

In trace amounts, toxic metals  such as copper are essential for the bacterial cells for the 

metabolic and growth associated cellular processes. However, their presence in excess can 

be toxic to bacterial cells. For example, copper is an important micronutrient which is 

required for the survival of the bacteria as it participates in the redox reactions by acting as 

a co-factor for the enzymes. However, due to its high chemical reactivity, the accumulation 

of copper can be a hazard for the bacteria. Hence bacteria have evolved mechanisms to 

efflux toxic metals  when exposed to high concentrations (Arguello et al. 2013). The 

genomes of 30 C. sakazakii isolates were screened for the presence of two copper and silver 

resistance associated regions ESA_04236-45 (cusESRCFBA/silEP) and ESA_04248–55 

(pcoABCERS) (section 3.4.2.9). Genome analysis of CC4 isolate 377 indicated that cus/sil and 

pco genes were located together on its chromosome (Figure S3), however no CC4 specific 

pattern was observed as both regions indicated a variable pattern of presence across two 

groups. However, it was important to note that CC4 and non-CC4 isolates of clinically 

significant origin such as 701, 767, 721, 1221 and 1249 all of which were CSF isolates lacked 
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either one or both of these copper and silver resistance associated regions which questions 

their significance towards the virulence of C. sakazakii in general and CC4 in particular 

(section 3.4.2.9).  

Iron is essential for all forms of life including bacterial pathogens. It is involved in in such 

crucial biological activities as DNA synthesis and energy generation. Vertebrate hosts use a 

mechanism called nutritional immunity to sequester iron from invading bacterial pathogens. 

Once within the vertebrate host, bacterial pathogens need iron to maintain their growth 

and survival, where they encounter iron limiting conditions. In order to combat host iron 

sequestration, most bacterial pathogens have generally developed three iron uptake 

mechanisms; siderophore based iron uptake, heme acquisition system and 

lactoferrin/transferrin receptors (Kehl-Fie and Skaar, 2009; Skaar, 2010) (section 3.5.2.10).  

The interrogation of the sequenced isolates for the enterobactin synthesis and transport 

system, plasmid-borne operon for aerobactin synthesis (iucABCD) and its receptor iutA  a 

siderophore synthesis which have previously been reported (Joseph et al. 2012b) indicated 

that all of these regions were present predominantly across both CC4 and non-CC4 groups.  

The exception was plasmid less isolates 6, 520 and ES15 which lacked the plasmid-borne 

aerobactin synthesis and its receptor (iucABCD, iutA) (section 3.4.2.10). The analysis 

indicated that iron acquisition associated genes do not give any competitive advantage to 

CC4 over non-CC4 and that iron acquisition machinery has evolved efficiently and commonly 

across C. sakazakii.  

Another important virulence associated mechanism is the ability of the bacteria to exploit 

alternative carbon and energy sources such as sialic acid. Gram negative bacteria such as 

neonatal meningitic E. coli K1 have evolved the ability to utilise sialic acid (Wang, 2009). 

Sialic acid is present in its conjugated form in the human brain, therefore it may provide 

bacterial pathogens such as C. sakazakii with an alternative carbon and energy source 

(Wang, 2009). Since C. sakazakii has been associated with neonatal meningitis and 

frequently been isolated from the CSF, it was important to screen the sequenced isolates 

for the presence of any genes which have been associated with sialic acid utilisation (Joseph 

et al. 2012b; Joseph et al. 2013). Previous studies by our group has shown that amongst 

Cronobacter, C. sakazakii has the necessary genes and the ability to utilise sialic acid as an 

energy source (Joseph et al. 2012b; Joseph et al. 2013). Parallel laboratory studies by 
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Sumyya Hariri has shown that all of the tested C. sakazakii isolates were able to grow on 

ganglioside GM1 media (Joseph et al. 2013). The sialic acid utilisation genes nanAKTR, nanC, 

nagAB, neuC and siaPQM were screened in the sequenced isolates in order to observe any 

variation cross CC4 and non-CC4. However, as expected, all of the sialic acid genes were 

noted uniformly across the two groups indicating that all of the C. sakazakii isolates 

irrespective of which clonal complex or sequence type they belong, have acquired the ability 

to utilise sialic acid (section 3.4.2.11). Recent research in our group indicates that the sialic 

acid utilisation and the sialic acid genes may not be exclusive to C. sakazakii as isolates of 

other Cronobacter species are giving a hint for the presence of sialic acid genes (Sumyya 

Hariri; personal communications, unpublished data).  

In summary, the genome screening for the above mentioned potentially virulence 

associated genes did not indicate a clear CC4 specific pattern for any of the trait. Most of 

the traits analysed indicated a variable pattern for the presence of these genes across both 

groups. Hence, based on these traits, no significant variation in the virulence potential of 

CC4 and non-CC4 could be deduced.  

9.2.1.3 GENOME SCREENING FOR THE ENVIRONMENTAL FITNESS ASSOCIATED TRAITS 

The analysis was taken further for screening the genetic traits which have been proposed 

to be associated with environmental fitness of C. sakazakii in previous studies. It is 

important to mention that all of the sequenced isolates contained genes associated with 

stress response (data not shown). Some of the environmental fitness associated traits which 

were screened in the sequenced isolates included rpoS, thermotolerance, acid, osmotic 

stress,  biofilm and capsule formation (colanic acid synthesis) associated genes.  

In Gram-negative bacteria the rpoS gene encoding for the alternative sigma factor σs 

regulates a large regulon which modulates the expression of ∼10% of the genome, including 

genes associated with general stress response (Weber et al. 2005). In E. 

coli and Salmonella spp. the rpoS gene has been regarded as highly mutable (Robbe-Saule 

et al. 2003; Bhagwat et al. 2006; Dong et al. 2009). Moreover in E. coli, the level of 

expression of the rpoS gene has been linked with variation in stress response  (Robey et al. 

2001; Chiang et al. 2011). A study by Ordonez et al. (2012) elucidated the role of the rpoS 

gene in C. sakazakii indicating that full length gene sequence is important for the bacterial 

response against acidic, alkaline and osmotic stress (Ordonez et al. 2012). The presence and 
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variability of the rpoS gene in sequenced C. sakazakii isolates was analysed (3.4.3.2). The 

gene was detected uniformly in all of the isolates. Although, CC4 isolates did indicate 

distinct clustering on the phylogenetic tree (Figure 3.14), the alignment of rpoS indicated a 

very low sequence diversity with 17 SNPs distributed across 30 sequenced isolates (Figure 

3.15, Table 3.3). This high sequence conservation was unlikely to cause significant changes 

in the stress response behaviour of the CC4 compared to non-CC4 isolates. This observation 

was supported by the stress response assays such as dry heat stress response, 

osmotolerance and acid resistance assays where no significant variation was observed 

between CC4 and non-CC4 (Hana Sonbol; personal communications). The analysis indicated 

that although rpoS might be important for the general stress response in C. sakazakii, it 

does not vary significantly between CC4 and non-CC4 and therefore unlikely to affect the 

stress response behaviour between the 2 groups.  

The ability to resist the acidic conditions of the stomach is important for the bacterial 

pathogen for its growth and survival. The ompR gene which has been associated with acid 

resistance in C. sakazakii (Alvarez-Ordonez et al. 2014) was detected in all of the sequenced 

isolates, both CC4 and non-CC4. Furthermore, the acid resistance assays performed by Hana 

Sonbol indicated no significant variation in the ability of C. sakazakii CC4 and non-CC4 

isolates to grow at pH 3.5 (section 3.4.3.4).  

Another important characteristic of the bacterial cells is their ability to form biofilms on the 

biotic and abiotic surfaces. The biofilm can provide competitive advantage to bacterial cells 

and can make them resistant to desiccation, disinfectants, antibiotics, extreme 

temperatures as well as help them survive in environments with low pH such as stomach 

(Scher et al., 2005; Wood et al., 2006; Dancer et al., 2009; Osaili & Forsyhte 2009). However, 

the genome interrogation of the sequenced isolates did not indicate any variation for the 

presence of the biofilms associated genes. All of the sequenced isolates irrespective of the 

clonal complex or sequence type, harboured biofilm formation genes bcsBEFZ homologues 

of the earliest C. sakazakii CC4 isolate 377 (Masood et al. 2013a) as well as the homologues 

of hypothetical proteins ESA_00281 and ESA_00282 suggested by Hartmann et al. (2010) to 

be involved in biofilm formation (section 3.4.3.5). Previous study using majority of the 

sequenced isolates analysed in the present study, indicated that all of these isolates were 

able to form biofilms on the soya, whey and casein based formulas (Nassrudin Rhouma 2012, 

unpublished data) (section 3.4.3.5). The colanic acid synthesis associated genes cluster 
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(ESA_01155-01175; wzABCKM) was noted in most of the CC4 and non-CC4 isolates. 

Moreover, as per previous PhD study, the capsule production was not found to be specific 

to CC4 as most tested C. sakazakii CC4 and non-CC4 isolates were able to produce capsule 

on the milk agar (Nassrudin Rhouma 2012, unpublished data).  

The frequent isolation of C. sakazakii CC4 from the PIF and from the dry and desiccated 

environment indicates its ability to survive in conditions with very low water activity. A 

number of genes associated with osmotolerance in C. sakazakii were proposed by Feeney 

et al. (2014). The Prop osmolyte uptake system homologues indicated by  ESA_02131, 

ESA_01706, ESA_04214, ESA_pESA3p05450, ESA_01226, ESA_00673 and ESA_03328 in C. 

sakazakii BAA-894 genome (Feeney et al. 2014) were detected dominantly across both CC4 

and non-CC4 groups showing no significant variation between the 2 groups except for the 

plasmid borne gene ESA_pESA3p05450. Similarly the E. coli homologues of the osmo-

protectants TrkH, trkG, trkA, trkE, kdpA, kdpB, kdpC, kdpD, kdpE, phoP, phoQ, ompC, ompF, 

envZ and ompR (Feeney et al. 2011) were also noted uniformly across both groups except 

for trkG which showed only slight variation (section 3.4.3.6).  

The increased stress tolerance of C. sakazakii such as thermotolerance and desiccation 

tolerance can enhance its survival in the environment of PIF manufacturing factories which 

can increase its chances of contaminating the PIF, thereby growing the risk of exposure to 

the neonate. Thermotolerant bacteria having the ability to adapt to sub-boiling 

temperatures may ultimately contaminate the pasteurized food product (Hsieh & Ren, 2001; 

Fyre & Donnelly, 2005; Prejit et al. 2007). A number of studies suggest the thermotolerance 

of Cronobacter either equivalent or higher than other Enterobacteriaceae (Nazarowec-

White & Farber, 1997; Breeuwer et al. 2003; Iversen et al. 2004; Dancer et al. 2009). 

Gajdosova and colleagues (2011) identified an 18kb long region in C. sakazakii ATCC 29544 

associated with its thermotolerance at 58oC.  The region consisted of 22 open reading 

frames (orf) of which orfHIJK was experimentally linked with thermotolerance as the cloning 

of these orfs into E. coli resulted in two fold increase in its D58 value (Gajdosova et al. 2011). 

The genomes of 30 C. sakazakii isolates were screened for the presence of 22 orfs suggested 

by Gajdosova et al. 2011. Interestingly, all of these 22 orfs showed high degree of variation 

between CC4 and non-CC4 isolates. More importantly, the orfHIJK were noted 

predominantly in the CC4 isolates (>50% isolates) than non-CC4 (<10%), showing significant 

variation. Nevertheless, the absence of these regions in clinically significant isolate 701 and 



  Chapter  9 

270 
 

a “persistent thermotolerant” CC4 isolate SP291 (Power et al. 2013) questioned its 

significance in CC4. Additionally, the laboratory heat tolerance assays performed by Hana 

Sonbol on 7 CC4 and 6 non-CC4 sequenced isolates (section 3.4.3.3) did not indicate a 

significant difference between the 2 groups for their ability to tolerate dry heat. Hence, the 

analysis here suggested that although the association of orfHIJK with thermotolerance 

cannot be negated, yet it may not be the only region responsible for thermotolerance in C. 

sakazakii (section 3.4.3.3).   

9.2.1.4 IN SILICO SEROTYPING OF SEQUENCED ISOLATES  

The O-antigen is the hypervariable and the outermost region of the lipopolysaccharides (LPS) 

in Gram negative bacteria. The O-antigen is important for its role in the innate immunity 

and its variation has been used to define serotyping schemes in Gram negative bacteria 

(Wang et al. 2010). To date, up to 7 different O-antigen types have been described in  C. 

sakazakii (Table 3.5). It was therefore of high interest to align the genetic regions associated 

with these serotypes to observe any variation between CC4 and non-CC4 based on O-

antigen. The analysis indicated a highly interesting pattern as 17/18 CC4 isolates showed 

complete alignment with O:2 antigen, the only exception being isolate 1240 which aligned 

with O:4 (Table 3.6). However it was noticeable that O:2 antigen was not limited to CC4 as 

2 non-CC4 isolates 978 and 1249 also aligned with O:2. The remaining 11 non-CC4 isolates 

were divided into three O-antigen types i.e. O:1, O:3 and O:4 indicating sequence type 

independent pattern of O-antigen in C. sakazakii (Table 3.6). More recent analysis of 

genomes in Cronobacter PubMLST has indicated that O:2 antigen is a dominant antigen type 

in C. sakazakii and is distributed amongst 19 different sequence types of which 16 sequence 

types are non-CC4 (Khaled Ibrahim, personal communications; unpublished data). Hence, 

although O:2 antigen was noted dominantly in CC4, yet it cannot be considered a unique 

signature for CC4 (section 3.4.4). Furthermore, it is distributed widely amongst C. sakazakii 

and cannot either be considered as the signature for the neonatal meningitis as a number 

of different isolates of different STs with non-clinical origin also belong to O:2 serotype.   

9.2.1.5 IN SILICO PLASMID PROFILING OF THE SEQUENCED ISOLATES  

The large plasmid pESA3 of C. sakazakii BAA-894 and pCTU1 of C. turicensis z3032 have been 

regarded as virulence plasmids (Franco et al. 2012). The virulence associated genes located 

on these plasmids such as eitCBAD and iucABCDE/iutA (section 3.4.2.10), Cronobacter 
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plasminogen activator (cpa) (section 3.4.2.6), 17 kb T6SS (section 3.4.2.8) and a filamentous 

haemagglutinin (FHA locus) (section 3.4.2.4) have been covered separately. In order to 

investigate the presence of the full length plasmids in the sequenced isolates, pESA3 

plasmid was aligned with 29 sequenced isolates (excluding C. sakazakii BAA-894) using Blast 

Ring Image Generator (BRIG). The results did not show a CC4 specific variation. The plasmid 

was missing completely in one CC4 isolate 6 while only 90kb region of the plasmid was found 

in the CC4 isolate 557. The plasmid was completely absent in two non-CC4 isolates 520, 

ES15 and was partially present in isolates 1 and 680 (70kb). Hence the in silico plasmid 

profiling indicated only strain specific variations across CC4 and non-CC4 (section 3.4.5, 

Figure 3.20). A similar pattern was observed for the pCTU1 plasmid (Figure S2).  

9.2.1.6 SCREENING OF THE NEONATAL MENINGITIC ESCHERICHIA COLI (NMEC) 

VIRULENCE DETERMINANTS IN C. SAKAZAKII 

Amongst the NMEC, E. coli strains having K1 capsular polysaccharide are predominant and 

represent almost 80% of the NMEC associated cases (Glode et al. 1977). The E. coli K1 is 

associated predominantly with neonatal meningitis which is induced by a complicated 

multistage process (Kim, 2001, 2002). It was therefore of significance to screen the 

sequenced C. sakazakii isolates for potential virulence associated determinants of E. coli K1 

for the presence of the homologues. The traits which were screened for in sequenced C. 

sakazakii isolates included ibe proteins, Asla, TraJ and cnf1 all of which have been 

associated with virulence in E. coli K1 (Bonacorsi & Bingen, 2005).  

The aslA (encoding for the arylsulfatase enzymes which contain highly conserved sulfatase 

motifs) has been linked with invasion of HBMEC (Hoffman et al. 2000). Similarly the TraJ 

(conjugal transfer transcriptional regulator) has been associated with macrophage survival 

and invasion of E. coli K1 (Hill et al. 2003). Moreover, the cnf1 (cytotoxic necrotising factor 

1) is linked with the invasion of BMEC and penetration of E. coli K1 to the central nervous 

system (Khan et al. 2002). The genome analysis indicated that homologue of none of these 

genes was present in any of the 30 sequenced C. sakazakii isolates (Figure 3.21, Table 3.7).  

Similarly, the ibe proteins including ibeA, ibeB and IbeC have also been associated with 

invasion of HBMEC (Huang et al. 1999; Wang et al. 1999; Huang et al 2001, Wang & Kim, 

2002). The genome screening of the sequenced C. sakazakii isolates indicated that except 

for ibeB, none of the homologue was detected in any of the isolates. The ibeB gene was 
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noted more in CC4 isolates (15/18) than non-CC4 (6/12). However, the BLASTx analysis of 

ibeB was indicating homology against the cusC gene in C. sakazakii which was part of the 

copper/silver efflux system (section 3.4.2.9). Furthermore, the trait was absent in clinically 

significant isolates such as 20, 721 and 1249 (Figure 3.21, Table 3.7).  

The plasmid PECOS88, a homologue of the pAPEC-O2-R plasmid in Escherichia coli strain 

S88 which according to Peigne and colleagues (2009) was linked to high level of bacteraemia 

in a neonatal meningitic rat model was also aligned against all C. sakazakii genomes, 

however the whole length homologue was not detected in any of the genome (Figure 3.22). 

The putative virulence genes located on the PECOS88 included three different iron uptake 

systems; salmochelin (iroBCDEN), aerobactin (iucABCD and iutA) and the sitABCD genes 

(Johnson et al. 2006; Sabri et al. 2006). Additional virulence associated traits included an iss 

gene involved in compliment resistance by providing increased serum survival (Chuba et al. 

1989), type 1 secretion system (T1SS) genes etsABC (Johnson et al. 2006), an outer 

membrane protease ompT (Stumpe et al. 1998) and a haemolysin encoding gene hlyF 

(Morales et al. 2004). It was curious to investigate whether any of these sequenced isolates 

contain the homologue of the plasmid PECOS88. The Blast Ring Image Generator (BRIG) was 

used to align 30 sequenced isolates against the plasmid PECOS88, however none of the 

isolates contained full length plasmid (Figure 3.22). The regions of homology included 

iucABCD and iutA  which has already been covered in section 3.4.2.10 and partial 

homologue of the iroN and several transposases.  

The analysis until this stage aimed to screen the virulence and environmental fitness 

associated traits of Cronobacter and E. coli K1 could not indicate any trait which can define 

clear differentiation between CC4 and non-CC4 isolates. The analysis was taken further 

using three different strategies i.e. core genome analysis, a gene by gene search approach 

and fragmented genomic analysis using Gegenees; aimed to identify traits unique to C. 

sakazakii CC4.  

 

 

 

 



  Chapter  9 

273 
 

9.2.2 UNIQUE GENES IN C. SAKAZAKII CC4 CORE GENOME 

The genome screening of the C. sakazakii isolates for the previously described virulence and 

environmental fitness associated traits revealed interesting variations such as O:2 antigen 

and thermotolerance associated genes; however none of the traits was found completely 

specific to CC4 which could clearly explain its predominance in neonatal infections and in 

the environment (chapter 3). The clonal nature of the of the C. sakazakii CC4 genomes 

(Figure 3.3) was quite intriguing and it was hypothesised that there might be some unique 

traits within its core genome which might explain its unique nature associated with its 

virulence or environmental persistence. For this purpose C. sakazakii CC4 core genome and 

C. sakazakii non-CC4 core genome were constructed using 18 and 12 genomes respectively 

(section 2.2.8.2). A relatively larger core genome was revealed for C. sakazakii CC4 

compared to non-CC4 core genome (Figure 4.1). The large size of the CC4 core genome 

further strengthened its clonal nature and low sequence diversity as was revealed earlier 

by whole genome phylogeny (Figure 3.3).  

The comparative genomic analysis was undertaken in 3 steps. Initially one C. sakazakii CC4 

isolate 557 was compared against one C. sakazakii non-CC4 isolate 658 (CC1/ST1). The 

unique genes (total of 442) in the C. sakazakii CC4 isolate 557 were listed which consisted 

of variety of different traits including large number of hypothetical proteins and some phage 

associated traits  (Table S2). Using a 3 way ACT, the CC4 genome 557 was aligned against C. 

sakazakii CC4 core genome and C. sakazakii non-CC4 core genome (Figure 4.2). Three way 

ACT indicated only 39 genes unique to C. sakazakii CC4 core genome (Table 4.1). Since the 

aim of the present analysis was to look for the traits which are CC4 specific, hence the 

pangenome of 30 C. sakazakii isolates (18 CC4 and 12 non-CC4, Table 3.1) was interrogated 

for the variation of 39 genes. This was done by manually checking each of the 39 genes. The 

analysis indicated that 34 of 39 genes were also noticeable in C. sakazakii non-CC4 isolates 

suggesting that although these genes were not part of the C. sakazakii non-CC4 core 

genome, yet they were present in its pangenome. Five of these 39 genes with locus_tag 

CSAK557_01621, CSAK557_01380, CSAK557_03949, CSAK557_03870 and CSAK557_02008 

were of particular interest as they were noted predominantly in C. sakazakii CC4 genomes 

(Table 4.1). All of these genes  were annotated as hypothetical protein of unknown function, 

the exception being CSAK557_02008 which was annotated as metallo-β-lactamase family 

protein.  
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The BLASTx analysis of the 5 hypothetical proteins also could not reveal any trait with 

functional importance which could be linked with virulence or environmental fitness of C. 

sakazakii CC4. Amongst these hypothetical proteins, of particular significance was 

CSAK557_03870 or CSSP291_18210 which was detected only in 18 C. sakazakii CC4 

genomes while absent from all 12 C. sakazakii non-CC4 genomes (Table 4.1). The 

predominance of the hypothetical protein CSSP291_18210 in CC4 was further strengthened 

when the analysis was expanded to include 107 Cronobacter genomes in Cronobacter 

PubMLST; these genomes contain 37 C. sakazakii CC4 genomes while 70 non-CC4 

Cronobacter spp. genomes which belong to 7 different species of the genus Cronobacter 

(section 4.4.4). The Cronobacter BLAST indicated that the hypothetical protein 

CSSP291_18210  was conserved across 37 C. sakazakii CC4 genomes while only detected in 

2 of 70 Cronobacter spp. non-CC4 isolates; C. sakazakii 2051 and C. malonaticus 685. These 

2 isolates likely represent the rare variants amongst non-CC4 which might have acquired 

these genes through horizontal gene transfer. Hence, the hypothetical protein 

CSSP291_18210 seemed likely to be CC4 specific trait as it was not only found to be 

conserved in the C. sakazakii core CC4 genome but also predominant in the CC4 pangenome 

when the analysis was expanded (section 4.4.4). It is also important to point out that C. 

sakazakii 2051 belongs to CC64; the source analysis of the CC64 isolates in Cronobacter 

PubMLST indicated large proportion of the isolates from food (23/28) including infant 

formula (Figure 4.7). Whether hypothetical protein CSSP291_18210 is also present 

dominantly in CC64 remains unclear since C. sakazakii 2051 represented the only 

sequenced isolate of CC64.    

The BLASTx analysis of  the CSSP291_18210 revealed homologies against a membrane 

protein in Enterobacter aerogenes (section 4.4.3.5). Furthermore an attempt was also made 

for in silico prediction of this hypothetical protein using an online protein prediction tool 

(section 4.4.3.5). However, no functional category was assigned to this hypothetical protein 

although its secondary structure indicated some protein binding sites which could be 

important for its interaction with other proteins (Figure 4.6). Nevertheless, characterisation 

of this hypothetical protein in future studies is warranted in order to illustrate its 

importance in C. sakazakii CC4.  
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9.2.3 GENE BY GENE SEARCH OF THE PAN C. SAKAZAKII GENOME FOR THE 

IDENTIFICATION OF CC4 SPECIFIC TRAITS 

The core genome analysis, initially, could only identify hypothetical protein CSSP291_18210 

specific to C. sakazakii CC4. The genomic analysis was taken further to screen the pan C. 

sakazakii genome (n=30) using a gene by gene search approach. The aim of the analysis was 

to compare to the earliest C. sakazakii CC4 isolates 377 against a non-CC4 isolate ES15 using 

a gene by search in ACT. All the genes unique in CC4 isolate 377 were listed and then 

checked for their presence in the remaining 28 C. sakazakii isolates (17 CC4 and 11 non-

CC4). At this stage hypothetical proteins and phage associated traits were omitted from the 

genomic comparison in order to make the comparison simpler.  

The unique genes in CC4 isolate 377 were divided into 7 regions based on their function or 

location. Wide variety of traits were found in these 7 regions such as copper and silver 

homeostasis (cus/sil and pco) (which have already been studied in detail section 3.4.2.9), 

arsenic resistance genes, potassium uptake, pilus assembly protein and starvation-sensing 

protein, iron acquisition genes iutA, iucABCD (already investigated in detail in section 

3.4.2.10), multidrug efflux and antimicrobial proteins, fimbrial associated genes and 

housekeeping genes such as relaxes, endonuclease, transcription, translation, toxin/anti-

toxin and conjugation associated traits. Although some strains specific variations were 

observed, however no CC4 specific genes were noticed in these regions.  

Of considerable interest were 7 genes located between Csak377_03841 and 

Csak377_03850 associated with O-antigen synthesis which were found uniformly in CC4 

isolates but missing in all non-CC4 isolates except isolates 1249 and 978. These genes 

represented only part of the O-antigen and not the entire O:2 locus. The O-antigen region 

have been investigated in section 3.4.4 and the findings are largely in agreement as O:2 was 

predominant serotype in CC4, however not exclusive as two of the non-CC4 isolates 1249 

and 978 were also O:2 (Table 5.7).   

The most interesting observation in the present analysis was the giant adhesion associated 

gene CSSP291_03155 which was noted predominantly in CC4 isolates. The full length genes 

was detected in all of the CC4 isolates (18/18), however only half of the non-CC4 isolates 

(6/12) possessed the full length gene. For the ease of BLAST searching, the CSSP291_03155 

gene was divided into smaller open reading frames (orfs) and searched for homology using 
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BLASTx. Interestingly majority of the hits indicated adhesion associated traits or type 1 

secretion system associated traits. However, due to its presence in 50% of the non-CC4 

isolates, the trait cannot be regarded as a CC4 specific trait. Yet, its significance cannot be 

neglected as it might play an important role towards virulence of C. sakazakii in general. 

Future studies aimed at characterising this gene may reveal important insights into its 

significance in C. sakazakii.  

Another significant observation in this study was the presence of 2 hypothetical proteins 

CSAK377_02657 (homologue of CSSP291_18210 in C. sakazakii CC4 isolate SP291) and 

Csak377_03526 (homologue of CSSP291_10445 in C. sakazakii CC4 isolate SP291) which 

were specific to 18 CC4 isolates against 12 non-CC4 isolates (Table S4).  However, since this 

analysis omitted the hypothetical protein and phage associate traits, therefore these 

hypothetical proteins were not discussed in detail here. Both of these hypothetical proteins 

were highlighted in the other parts of the study.  

The search for the CC4 specific traits was taken one step ahead by fragmented genomic 

analysis using Gegenees.  

 

9.2.4 FRAGMENTED GENOMIC ANALYSIS FOR THE IDENTFICATION OF CC4 SPECIFIC 

TRAITS  

With the lowering cost of genome sequencing, the need for the platforms for genome 

analysis is becoming more popular. The advanced genomic analysis tools in this area are 

continuously being developed. One such tool which has recently been developed is called 

Gegenees (Agren et al. 2012). The principle of the program relies on the genomic 

fragmentation into sizeable fragments and then BLAST searching. The program allows to 

choose a target group within a set of genomes in order to find biomarker traits (unique 

genes) within the target group. Gegenees has been used for the identification of the 

biomarker traits within the Bacillus cereus group and in the foot and mouth disease viruses 

(Agren et al. 2012). Hence, it was another opportunity for the identification of the CC4 

specific traits.  
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The fragmented genomic analysis was performed on 30 C. sakazakii isolates (Table 3.1) by 

setting the fragment size to 500 bp. The heat map for the similarity indices generated by 

Gegenees further reinforced the clonality of the 18 C. sakazakii CC4 isolates (Figure 6.1).  

The biomarker score settings were set to the max of 1.0 which indicates only those genes 

which are specific to the target group. This way two of the genomic fragments were 

identified as specific to 18 CC4 isolates against 12 non-CC4 isolates, in the initial fragmented 

analysis (Figure 6.3). The interrogation of the genome annotation for the reference C. 

sakazakii CC4 isolate indicated these genomic fragments correspond to two hypothetical 

proteins. These hypothetical proteins were CSSP291_18210 and CSSP291_10445. 

Interestingly, the CSSP291_18210 was the homologue of CSAK557_03870 in CC4 isolate 557 

which was identified as CC4 enriched in chapter 4 and a homologue of CSAK377_02657 in 

CC4 isolate 377 which was identified as CC4 enriched in chapter 5 (Table S4). Hence, this 

hypothetical protein was indicated as CC4 enriched by three different types of genomic 

analysis presented in this thesis. To avoid the locus_tag confusion, this hypothetical protein 

is denoted only by CSSP291_18210.  

As discussed  previously, the hypothetical protein CSSP291_18210 is the homologue of the 

inner membrane protein with some predicted protein binding sites and was also noted in 

only 2 of the non-CC4 isolates C. sakazakii 2051 and C. malonaticus 685 of which C. sakazakii 

2051 belongs to CC64; an important clonal complex related to food especially infant formula 

(section 4.4.3.5).  

An additional finding by Gegenees fragmented analysis was the hypothetical protein 

CSSP291_10445 which was found to be CC4 enriched. The analysis of the 107 Cronobacter 

spp. revealed 100% conservation of this hypothetical protein in CC4 genomes while it was 

noted only in 5 of the C. sakazakii non-CC4 isolates all of which belong to CC13 including 

693, 700, 713, 714 and 715. The CC13 is also an important clonal complex as all of the 

isolates in this clonal complex are C. sakazakii. Moreover, a large proportion of the CC13 in 

the Cronobacter PubMLST were isolated from the infant formula. Hence, the CC13 also 

warrants attention in the future studies (section 6.4.1).  

The BLASTx as well as in silico protein prediction could not reveal any functional relevance 

for hypothetical protein CSSP291_10445. However, it was predicted to be located in the 

inner membrane of the bacterial cell and also contain some protein binding sites on its 
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surface. These characteristics are important which may mediate some important virulence 

or environmental fitness associated mechanism in C. sakazakii CC4. Future studies are 

warranted to characterise this hypothetical protein to describe its significance in CC4. It is 

also suggested that future studies may also include some CC13 isolates as it seems to be an 

important clonal complex due to its association with food especially infant formula (section 

6.4.1).  

The gene loss can also enhance the virulence potential of bacteria (Nakata et al. 1993; 

Maurelli et al. 1998). An additional finding through fragmented genomic analysis was an 

hypothetical protein ESA_02200 missing from the CC4 strains. No functional relevance 

could be identified for this hypothetical protein. The analysis of the 107 Cronobacter 

genomes indicated that this gene was also missing from the 18 Cronobacter spp. non-CC4 

isolates. Future studies are warranted to clarify the absence of ESA_02200 predominantly 

in CC4 (section 6.4.2).  

 

Until this stage, as a result of the comparative genomics (chapter 3-6), two hypothetical 

proteins were detected as predominant in the C. sakazakii CC4 isolates. From this point 

onwards, the focus of the analysis was moved to study the diversity within CC4 and French 

outbreak (1994) investigation using the genome sequence data.  

 

 DIVERSITY WITHIN C. SAKAZAKII CC4  

The strong clustering of the CC4 isolates on whole genome phylogeny (Figure 3.3) and large 

core genome size of the CC4 isolates (Figure 4.1) suggested very low sequence diversity 

within this clonal complex. However laboratory experiments in previous and current parallel 

PhD studies suggested differences in the CC4 isolates regarding their clinical presentations 

such adhesion and invasion assays (Nasreddin Rhouma 2012; Faisal Almajed 2014). Hence, 

it was of significance to study the diversity within CC4. For this purpose two different 

strategies were used, SNP analysis and COG-cgMLST.  

The SNP analysis was undertaken using SMALT and SAMtools and filtered to retain high 

quality SNPs (section 2.2.9). The finished C. sakazakii CC4 isolate SP291 was used as the 

reference for SNP calling in remaining 17 CC4 isolates (Table 7.1). With exceptions, the 
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average number of SNPs between most CC4 isolates and the index strain SP291 was ~300-

400 SNPs (Table 7.1). This is a relatively low number of SNPs considering the geographical 

and temporal spread of the CC4 isolates (Table 3.1). The SNP phylogeny showed some 

interesting variations as 2 of the isolates 1240 and 1587 showed longer branch; the longer 

branch length of the CC4 isolate 1240 was not a surprise as the in silico serotyping indicated 

that this isolate, unlike other 17 CC4 isolates, belong to C. sakazakii O:4 serotype (section 

3.4.4). The lowest number of SNP differences was between the reference isolate SP291 and 

the earliest CC4 isolate 377 which differ from each other only by 16 SNPs. The high genetic 

similarity as well as relatedness of the source of isolation between these 2 isolates 

suggested that both of these isolates may share a common origin.  

The isolate 1240 had the most number of SNPs differing from the index isolate SP291 by 

1245 SNPs (Table 7.1). The analysis of these SNPs indicated most of the SNPs in a region 

containing genetic traits associated with O-antigen, hypothetical proteins and some phage 

associated traits (Figure 7.3).  

The CC4 isolate 1587 with longer branch length had a concentration of SNPs between region 

320012bp to  351260bp, the analysis of this genetic region indicated only phage associated 

traits (Figure 7.4).  

An interesting observation on the SNP phylogeny was the clustering together of the 2 CC4 

isolates 6 and 558, both of which have been categorised as low invasive on HBMEC, in vitro 

in a parallel PhD study (Faisal Almajed 2014, unpublished data). The analysis of the SNPs 

indicated a high concentration of SNPs in both of these isolates in the phage associated 

genomic regions (Figure 7.5). It was important to know whether there are genomic 

differences between the high and low invasive CC4 isolates in terms of gene contents. This 

observation formed the basis of comparative genomics of high and low invasive isolates.  

Comparative genomics of high invasive CC4 isolate 767 was undertaken against the low 

invasive CC4 isolate 6. None of the unique traits in the high invasive CC4 isolate 767 could 

directly be related to its invasiveness. On the other hand, a number of metal resistance 

associated genes including arsenic, copper, manganese, chromate, nickel and copper were 

noted in low invasive isolate 6 (Table S7). Although, in trace amounts the metals  are 

required for the metabolic functions, yet there increased concentrations are harmful for the 

bacterial cells. Hence, the acquisition of metal resistance genes in bacteria is important as 
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it helps them survive in a wide variety of environments containing higher concentrations of 

these toxic metals .  

The relationship between the bacterial invasion and metal resistance is not clear. In order 

to verify if there is any subdivision between the C. sakazakii isolates based on metal 

resistance, a total of 10 C. sakazakii isolates were chosen to test for 4 different 

concentrations (1M, 0.1M, 0. 01M and 0.001M) of 8 different toxic metals  which included 

copper (II) sulphate, sodium arsenate, nickel chloride, cobalt (II) nitrate, silver nitrate, zinc 

sulphate, cadmium carbonate and sodium tellurite. The choice of the isolates was made in 

such a way that these isolates not only represent high invasive (767, 20) and low invasive 

(6, 558) but also equal proportion of the CC4 and non-CC4 isolates (5 isolate from each 

group). The results of the metals  resistance assays indicated that most of the isolates were 

able to resist toxic metals  at concentrations of up to 0.01M irrespective of their invasion 

phenotype or clonal complex (section 7.3.3). Further investigation may clarify the 

association of metal resistance with invasion in C. sakazakii.  

The genome sequences of the isolates analysed in the present study are also available at 

the Cronobacter PubMLST which host a genome comparator facility. The opportunity was 

utilised to perform BIGsDB analysis for 18 of the CC4 isolates keeping the CC4 isolate SP291 

as the reference isolate. The analysis was based on the 3917 genes of the reference isolate 

SP291. Of total 3917 loci, at least 2682 loci showed allelic variations amongst 18 CC4 isolates. 

The allelic variation ranged from as low as 219 (1587 against 377) and as high as 2230 (701 

vs 557). The results, in part verified the findings of the SNP analysis as three of the CC4 

isolates SP291, 377 and 1587 clustered together on the neighbour net joining tree (Figure 

7.6). These isolates also clustered closely on the SNP phylogeny, although with a longer 

branch length of isolate 1587 (Figure 7.1). The low number of SNP difference, low frequency 

of the loci variations as well as the relatedness in the source of isolation all support the 

proposal that isolates 377 and SP291 share a common origin. The fact that that SNP analysis 

and BIGsDB analysis may not be in complete agreement can be explained as the SNP calls 

in the CC4 isolates were subjected to rigorous filtering parameters (section 2.2.9).  

The SNP analysis, overall, revealed a low sequence diversity within CC4. The analysis of the 

sequenced CC4 isolates by SNP analysis revealed interesting pattern as clustering together 

of the low invasive isolates. The genomic comparison between high and low invasive strains 
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revealed a number of metal resistance associated  genes in the low invasive isolate 6. 

However, the metal resistance assays did not correlate with invasion phenotype and metal 

resistance ability of C. sakazakii. The BIGsDB comparative analysis of 18 CC4 isolates in part 

verified the findings of the SNP analysis and supported the proposal that CC4 isolates SP291 

and 377 are likely to have a common source of origin.   

 

 GENOMIC ANALYSIS OF THE C. SAKAZAKII STRAINS ISOLATED DURING OUTBREAKS 

IN A NEONATAL INTENSIVE CARE UNIT IN FRANCE, 1994 

As discussed earlier, there have been several outbreaks associated with C. sakazakii, 

however the largest outbreak hit a French NICU, 1994 lasting for approximately 3 months. 

A total of 18 neonates were infected or asymptomatically colonised  during the length of 

the outbreak. The most significant observation in this outbreak was that all 3 babies which 

died during this outbreak were infected by the C. sakazakii isolates belonging to clonal 

complex 4. Hence, it was of significance to analyse this outbreak in greater detail using the 

genome sequence data. The previous study by Caubilla-Barron et al. (2007) focused only on 

the genotypic and phenotypic characteristics of the C. sakazakii isolates obtained from this 

outbreak and divided the isolates into 4 clusters using PFGE (Figure 8.1).  In the present 

study,  26 of the C. sakazakii isolates from this outbreak were sequenced and their genomic 

data used for the detailed investigation. The aim was to construct the whole genome 

phylogeny to overview the larger subdivisions and then trace the outbreak source for these 

isolates using single nucleotide polymorphism. 

The whole genome phylogeny (Figure 8.2) was largely in agreement with the PFGE 

clustering of Caubilla-Barron et al. (2007). The whole genome phylogeny indicated 4 

divisions which were all in agreement with Caubilla-Barron et al. (2007). The largest group 

was cluster 2 containing 15 isolates all of which were CC4. The cluster 1, 3 and 4 contained 

5, 5 and 1 isolates respectively belonging to CC12, CC13 and CC1 respectively. The whole 

genome phylogeny (Figure 8.2) in the present study favours the PFGE for observing the 

larger subdivision.  
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The SNP analysis was used to analyse the strain relatedness and to predict the potential 

source of outbreak. The SNP level analysis is advantageous over the PFGE analysis as it 

provides more resolution in an outbreak investigation. Although, PFGE is still widely used 

for the outbreak investigations, however it has limitations such as co-migration of the 

similar sized bands which may hinder the precise outbreak source (Turabelidze et al. 2013). 

With the low sequencing costs, the SNP analysis is becoming more affordable by the smaller 

laboratories where it can be used for the bacterial outbreak investigation. The SNP analysis 

is particularly significant in the cases where the bacterial isolates show very low sequence 

diversity. The SNP analysis has been used for the outbreak investigation of the E. coli 

O157:H7 associated with salad bar and romaine lettuce (Turabelidze et al. 2013; 

Leekitcharoenphon et al. 2014).  

In the present study, the strategy was to use the earliest isolate in each cluster as index 

strain to call SNPs in the remaining isolates of that cluster. The number of SNPs were used 

as a measure of the strain relatedness i.e. low the number of SNPs between two isolates, 

the more related these isolates are and vice versa.  

The SNP analysis of the cluster 1 showed a low number of SNPs (14 SNPs) between the index 

isolate 699 and the isolate 696 indicating a possible common source of origin. Both of these 

isolates were isolated approximately 2 months apart. The C. sakazakii are known for their 

ability survive the dry and desiccated environment of the PIF (Caubilla-Barron et al. 2007). 

In this environment there growth would be halted and the genome evolution would reduce 

to minimum. It is therefore likely that both of these isolates 699 and 696 were transmitted 

to babies through same batch of PIF where they survived and their growth was halted. The 

remaining 3 isolates could have been acquired from the independent sources such as water, 

carer’s hands, utensils used to prepare PIF as these isolates showed relatively greater 

number of SNPs against the index isolate (section 8.4.2.1, Figure 8.3, Table 8.1).  

The cluster 2 represented the most important cluster as all 3 deaths during this outbreak 

were attributed to this cluster, more importantly, all of these isolates were CC4 which was 

the rationale for initiating this outbreak investigation. From the total of 15 CC4 isolates, 11 

were isolated from NEC cases, 1 from septicaemia and 1 from a meningitis case, the 

remaining 2 isolates were obtained from the asymptomatic babies. The earliest isolate of 

this cluster, C. sakazakii 701 was used as the index strain. The SNP typing and the tree 
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topology for the cluster 2 or CC4 isolates indicated further subdivisions within this cluster 

dividing it into the groups of 11, 1 and 3 isolates. The index isolate 701 clustered with the 

largest group and differ by only 6 SNPs from the prepared formula isolate 712. From this 

observation, it was suggested that the possible source of origin for 11 of these isolates was 

PIF. The isolate 767 showed relatively more SNPs against the index isolate 701, most of 

which were located in the phage area making it difficult to predict its source of origin. The 

remaining 3 isolates (705, 706, 707) which were obtained from the same baby showed more 

than 300 SNPs against the index isolate 701 indicating an independent acquisition for these 

3 isolates. Moreover, these 3 isolates were highly identical to each other.  

The cluster 3 contained 5 isolates obtained within 10 days from each other. The earliest 

isolate 693 was used as the index isolate to call SNPs. The SNP calls and tree topology 

indicated a maximum of 4 SNP differences between the index and the remaining isolates. 

The close resemblance of the index isolate with the prepared formula isolate 715, suggested 

that all of these 5 isolates were potentially originated from PIF. 

Hence, SNP level investigation suggested PIF to be the potential source of outbreak for at 

least 40% of the cluster 1,  73% of the cluster 2 and 100% of the cluster 3 C.  sakazakii 

isolates. There was likelihood of a 4th outbreak as the cluster 4 isolate 716 was obtained for 

the unopened can of the PIF. It is important to note that isolate 716 belongs to CC1 and the 

Cronobacter PubMLST database showed that CC1 has also been isolated frequently from 

clinical sources as well as from the infant formula.  

Given the clinical significance, the ESβL and AmpC profiling was also undertaken only for 

the cluster 2 or CC4 isolates of the French outbreak, however none of these isolates was 

found to be ESβL or AmpC resistant (section 8.4.3).  

Additionally, all of the sequenced isolates were also aligned against some known virulence 

associated plasmids which included pAPEC-O2-R and PECOS88 (Peigne et al. 2009). A 

homologue of the pAPEC-O2-R plasmid called PECOS88 has been found to be encoded on 

the genome of the neonatal meningitic E. coli strain S88 (O45: K1: H7) where it has been 

linked with an increased level of bacteraemia in a neonatal rat model of meningitis (Peigne 

et al. 2009). Both of these plasmid were aligned against the 26 sequenced C. sakazakii 

isolates (Table 8.1). The pAPEC-O2-R contain genes such as folA encoding resistance to 

trimethoprim aadA5 which encodes resistance to aminoglycoside, catB3 which contributes 
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to resistance against chloramphenicol and a beta-lactamase gene (bla) contributing to 

resistance against beta-lactam drugs; in addition silCERS, silAB and silP which provide 

resistance against silver and copper (Johnson et al. 2005). The complete homologue of the 

pAPEC-O2-R was not detected in any of the sequenced isolate, the only homology was 

against the copper and silver resistance region which has already been described in previous 

studies (Kucerova et al. 2010; Joseph et al. 2012b) and has been investigated previously in 

this study (section 3.4.2.9).  

Similarly the PECOS88 plasmid of the E. coli S88 (O45: K1: H7) which has been associated 

with high level bacteraemia in neonatal meningitic rat model was also aligned against the 

26 sequenced isolates using BRIG. Again, the complete homologue was not detected in any 

of the isolate, the only homology was against the iron acquisition region iutA, iucABCD 

which has been has been discussed previously in this thesis (section 3.4.2.10).   
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 CONCLUSION  

The association of C. sakazakii CC4 with neonatal infections especially neonatal meningitis, 

its persistence in the environment and its frequent isolation from the infant formula has 

been well established by the previous studies. However, the genetic factors behind the 

virulence potential as well as environmental fitness of this important neonatal health 

associated lineage of Cronobacter are not known. The present study was the first of its kind 

aimed primarily for the identification of the traits unique in the C. sakazakii CC4. Whole 

genome phylogeny revealed close clustering of the CC4 isolates  despite their geographic as 

well as temporal diversity. Comparative genomics could only reveal two hypothetical 

proteins CSSP291_18210 and CSSP291_10445 predominant in C. sakazakii CC4 genomes. In 

addition, an hypothetical protein ESA_02200 was found to be dominantly  absent from the 

CC4 isolates. The screening of the virulence and environmental fitness associated genes 

indicated a nearly equal spread for most of the traits investigated. The O:2 serotype was 

found to be the dominant serotype for CC4, however not exclusive to CC4. A giant adhesion 

associated gene CSSP291_03155 was noted in all C. sakazakii CC4 isolates yet variably in 

non-CC4 isolates. These results of the comparative genomics suggested that C. sakazakii 

CC4 might not be more virulent than non-CC4. The dominance of C. sakazakii CC4 in 

neonatal infections could be due to its predominance in the environment and PIF, ultimately 

increasing its exposure to neonates. Whether the hypothetical proteins identified as CC4 

enriched in the present study have a role towards the virulence or fitness of C. sakazakii 

CC4 remains unclear at this stage. These hypothetical proteins warrant further investigation 

in future studies in order to elucidate their significance in CC4.  

 The low sequence diversity of the CC4 was further strengthened by the SNP analysis as 

average of ~300-400 SNP differences were noted between the CC4 isolates and the index 

strain SP291. Two of the low invasive CC4 isolates clustered together. Comparative 

genomics revealed metal resistance associated genes in the low invasive isolate. The 

laboratory studies could not reveal any difference in the metal resistance between high and 

low invasive isolates.  

The investigation of the 1994 French outbreak isolates using whole genome sequencing 

data revealed 4 subdivisions within these isolates indicating three parallel outbreaks with 

the possibility of a 4th outbreak. It further revealed PIF to be the potential outbreak source 
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not only for the cluster 2 or CC4 isolates but for majority of the isolates in three clusters. 

The analysis also revealed the ability of C. sakazakii to co-infect its host. The SNP analysis 

revealed that multiple isolates from the same baby belonging to different clonal complexes 

or sequence types were completely unrelated to each other, indicating the ability of  C. 

sakazakii isolates from different clonal complexes to co-exist in its human host which might 

ultimately increase the risk of infection.  

The present PhD study has revealed important insights into the genomics of the neonatal 

meningitic C. sakazakii CC4 and has paved the way for further analysis to help better 

understand the pathogenicity of this important neonatal health associated bacterial lineage.  
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 KEY NOVEL FINDINGS OF THE CURRENT PhD STUDY  

 Whole genome phylogeny indicated close clustering of the 18 CC4 isolates. 

 The C. sakazakii CC4 core genome was larger in size indicating low sequence 

diversity within this clonal complex. 

 Comparative genomics revealed two hypothetical proteins; CSSP291_18210 and 

CSSP291_10445 predominant in CC4. 

 Comparative genomics revealed hypothetical protein ESA_02200 predominantly 

absent from the CC4 genomes. 

 The O:2 was the dominant serotype for C. sakazakii CC4 isolates. 

 The thermotolerant region orfHIJK was dominantly detected in CC4 isolates.  

 C. sakazakii isolates 6, ES15, 520 completely lacked the plasmid PESA3 while C. 

sakazakii isolates 1, 680 and 557 had partial length plasmid PESA3. 

 Comparative genomics revealed a large adhesion associated gene CSSP291_03155 

predominantly in C. sakazakii CC4 isolates.  

 The SNP phylogeny revealed subdivisions within CC4 isolates as low invasive CC4 

isolates 6 and 558 clustered together.  

 Comparative genomics of high and low invasive C. sakazakii isolates revealed metal 

resistance associated genes in low invasive isolate. 

 Metal resistance assays revealed no significant difference in metal sensitivity 

between high and low invasive isolates. 

 The SNP analysis indicated that the earliest CC4 isolate 377 and CC4 isolate SP291 

might have originated from a common source. 

 The outbreak investigation using genome sequence data for the 1994 French 

outbreak revealed 3 parallel outbreaks with the potential of a 4th outbreak and PIF 

to be the major potential outbreak source. 

 The outbreak investigation revealed that C. sakazakii isolates belonging to 

different sequence types and clonal complexes have the ability to co-infect and 

hence co-exist in a human host.  
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Figure 9. 1 The schematic representation of the work flow undertaken in the current PhD study.  

The work was divided into three main sections (Block capitals). The green font colour shows the methodology while purple colour fonts highlight the key findings 
of the each section. 
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 FUTURE DIRECTIONS  

9.7.1 CHARACTERISATION OF THE CC4 ENRICHED HYPOTHETICAL PROTEINS  

Future studies are warranted to characterise the two CC4 enriched hypothetical proteins 

CSSP291_18210 and CSSP291_10445. Initially, the studies may involve site directed 

mutagenesis and tissue culture studies by creating knock down or knock out gene mutants 

for these hypothetical proteins. The mutants and the wild type strains can then be 

compared for their ability to invade and attach the human intestinal and brain cell lines and 

can also be tested for any variation in the physiological traits such as desiccation resistance, 

heat tolerance and osmotolerance. It is also suggested that the C. sakazakii isolates from 

CC13 may also be included as this lineage has also been isolated frequently from PIF and 

the hypothetical protein CSSP291_10445 was also detected in isolates belonging to this 

lineage.  

Furthermore, the difference in the expression of these hypothetical proteins encoding 

genes can also be studied after subjecting the selected isolates to hostile conditions such as 

desiccation, heat and osmotic shock.  

Once the significance of these hypothetical proteins in C. sakazakii CC4 is determined 

additional proteomics based approaches such as mass spectrometry, MALDI-TOF, Western 

blot etc. may be used further characterisation of these hypothetical proteins.  

Although not completely specific to CC4, due to the predominant presence in the CC4 

isolates, the characterisation of the giant adhesion associated gene CSSP291_03155 using 

above strategies may also clarify its significance towards virulence of C. sakazakii.  

9.7.2 CHARACTERISATION OF THE CC4 MISSING HYPOTHETICAL PROTEIN ESA_02200 

Future studies are also warranted to characterise the hypothetical protein ESA_02200 

which was found to be missing predominantly in the CC4 genomes. The characterisation of 

this hypothetical protein using same strategy as above (section 9.10.1), may provide 

important insights towards its absence in nearly all CC4 isolates analysed in the present 

study.  
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9.7.3 TRANSCRIPTOMICS FOR THE DIFFERENTIAL GENE EXPRESSION ANALYSIS  

In the present PhD study, an exhaustive genome search was undertaken to find out the 

genes which are specific to C. sakazakii CC4. Apart from two hypothetical proteins enriched 

in CC4, no other genes could be found specific to CC4 genomes which can clearly explain its 

predominance in neonatal infections and its prevalence in the environment. In future 

studies, it is suggested that the gene expression studies are undertaken to investigate the 

gene contents which are differentially expressed in C. sakazakii CC4 after exposing them to 

stress conditions such as desiccation, heat and osmotic shock. The gene expression studies 

may result in the identification of important genes expressed exclusively in CC4 or 

overexpressed in the CC4 genomes under different hostile environmental conditions.   

9.7.4 RELATIONSHIP BETWEEN SEROTYPE AND VIRULENCE POTNETIAL OF C. SAKAZAKII 

Since the present study indicated that O:2 antigen is the dominant serotype in C. sakazakii 

CC4, it is recommended that future studies should also be undertaken to clarify if any 

relationship exists between C. sakazakii serotypes and their virulence potential.  

9.7.5 RECOMBINATION DETECTION IN C. SAKAZAKII CC4 

Recombination is a key driver and an important evolutionary force through which DNA 

segments are exchanged between closely related organisms. It is an important 

evolutionary factor which enables the acquisition of resistance elements and virulence 

traits. It is therefore recommended to detect the recombination events in C. sakazakii CC4 

using Bayesian approaches. The recombination detection may provide important insights 

in to the genome evolution of C. sakazakii CC4.  
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Figure 9. 2 Schematic representation of the future work emerging from the present PhD study.  

Three different types of studies are suggested to better understand the virulence potential of C. sakazakii CC4. The text in the block capitals (dark orange) 
indicates the objectives for the future work while the text in the purple colour suggest the strategies which could be  used.  
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Figure S1. PCR amplification of the ompA in selected C. sakazakii CC4 and non-CC4 genomes 

Five microlitre of the PCR product was loaded into each well. Lane 1 contains 1 KB DNA ladder (promega).  Lane 2 contains 

PCR amplified DNA from C. sakazakii 658 as a positive control.  Lane  3-15 contain the PCR products of C. sakazakii isolates 

1, 2, 4, 5. 6, 12, 20, 520, 553, 555, 557, 558, 580  and 680 respectively. As seen in the figure all the strains were positive 

for ompA gene as 500 bp DNA product  was yielded for each strain. A negative control was also run containing only the 

PCR reaction mixture without any template DNA.  

 

 

 

 

Figure S2. BRIG alignment of the pCTU1 plasmid with C. sakazakii isolates 

The image above represents the alignment of the pCTU1 plasmid (138 kb) with 18 C. sakazakii CC4 (red rings) and 11 C. 

sakazakii non-CC4 (purple rings). The legend on the left hand side of the figure indicates ring for each isolate. The central 

solid black circle represent the reference plasmid backbone, the second and third rings from inside out represent the GC 

contents and GC skew respectively. 
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Figure S3 . Clustering of cus/sil and pco genes.  

The genome of C. sakazakii isolate 377 was analysed using Artemis. The screen shot indicating the 

clustering of cus/sil and pco genes potentially linked with copper and silver resistance or efflux. 
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Table S1. Virulence and environmental fitness associated traits in sequenced C. sakazakii isolates  

    

Isolate 

6 

20 

377 

553 

557 

558 

701 

721 

767 

1219 

1220 

1221 

1225 

1231 

1240 

SP291 

4 

1587 

658 

1218 

978 

1 5 

680 

520 

696 

150 

1249 

140 

ES15 

    

ST 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

15 

109 

1 1 3 8 8 8 

12 

12 

16 

31 

40 

125 

    

CC 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 3 8 8 8     16 

31 

45 

100 

Category Gene/Locus_tag                                                               

Fimbrial region 1 [ESA_01970-6] 

ESA_01970   - - - - - - - - - - - - - - - - - - + + + - - - - - - - - + 

ESA_01971   - - - - - - - - - - - - - - - - - - + + + - - - - - - - - + 

ESA_01972   - - - - - - - - - - - - - - - - - - + + + - - - - - - - - + 

ESA_01973   - - - - - - - - - - - - - - - - - - + + + - - - - - - - - + 

ESA_01974   - - - - - - - - - - - - - - - - - - + + + + + + - - + - - + 

ESA_01975   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_01976   - - - - - - - - - - - - - - - - - - + + + - - - - - - - - + 

ESA_02342   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Fimbrial region 2 [ESA_02342-5] 

ESA_02343   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02344   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02345   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02538   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Fimbrial region 3 [ESA_02538-42] 

ESA_02539   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02540   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02541   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02542   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02795   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Fimbrial region 4 [ESA_02795-99] 

ESA_02796   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02797   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02798   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02799   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_03512   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
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Fimbrial region 5 [ESA_03512-20], 
Beta fimbriae 

ESA_03513   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_03514   + + + + + + + + + + + + + + + + + + + + + - + - + + + + + + 

ESA_03515   + + + + + + + + + + + + + + + + + + + + + - + - + + + + + + 

ESA_03516   + + + + + + + + + + + + + + + + + + + + + - + + + + + + + + 

ESA_03517   + + + + + + + + + + + + + + + + + + + + + - + + + + + + + + 

ESA_03518   + + + + + + + + + + + + + + + + + + + + + - + + + + + + + + 

ESA_03519   + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + 

ESA_03520   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_04067    + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + 

ESA_04068   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Fimbrial region 6 [ESA_04067-73] 

ESA_04069   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_04070   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_04071   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_04072   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_04073   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_03812   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Fimbrial region 7 [ESA_03812-15] 

ESA_03813   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_03814   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_03815   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

CTU_36390   + + + + + + + + + + + + + + + + + + - - - - + - + + + + - - 

CTU_36400   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Fimbrial region 8 [ctu_36390-
36450],  ? fimbriae 

CTU_36410   - + + - - + + - + + + + - + + + - + - - - - - - + + - + - - 

yfc; SCTU_36420   + + + + + + + + + + + + + + + + + + - - - + + + + + + + + - 

yfcU, CTU_36430   + + + + + + + + + + + + + + + + + + - - - + + + + - + + + - 

CTU_36440   + + + + + + + + + + + + + + + + + + - - - + + + + + + + + - 

smfA, CTU_36450   + + + + + + + + + + + + + + + + + + - - - + + + + + + + + - 

Fimbrial region 9 [ESA_03231-33 

ESA_03231 putative major pilin 
subunit   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_03232   + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + 

ESA_03232   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

csgG, CTU_16160   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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Fimbrial region 10 [CTU-16160-230], 
curli fimbriae 

csgF, CTU_16170   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

csgE, CTU_16180   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

csgD, CTU_16190   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

csgB, CTU_16200   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

csgA, CTU_16210   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

csgC, CTU_16220   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

CTU_16230   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

fimA   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

fimB   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Type 1 fimbrial operon, 
fimABCDEFGHI, E. coli str. K-12 

substr. MG1655 

fimC   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

fimD   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

fimE   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

fimF   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

fimG   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

fimH   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

fimI   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Invasion 

ompA   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ompX   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Inv   + - + - - + + - + + + + - + + + - + + + - - + - - - - + - + 

FHA locus 

Ctu_1p01140   - - - - - - - - - - - - - - - - - - - - - + + + - - - - - - 

Ctu_1p01150   - - - - - - - - - - - - - - - - - - - - - + + + - - - - - - 

Ctu_1p01160   - - - - - - - - - - - - - - - - - - - - - + + + - - - - - - 

Ctu_1p01170   - - - + + - - - - - - - - - - - - - + - + - - - - - - - - - 

Ctu_1p01180   - - - + + - - - - - - - - - - - - - + - + - - - - - - - - - 

Ctu_1p01190   - - - + + - - - - - - - - - - - - - + - + - - - - - - - - - 

Ctu_1p01200   - - - + + - - - - - - - - - - - - - + - + - - - - - - - - - 

Ctu_1p01210   - - - + + - - - - - - - - - - - - - + - + - - - - - - - - - 

T6SS 

ESA_00141   - + - - + + - + - + + + + - + - + - - + - - + - - + + - - - 

ESA_00142   + - - - + + - - - - - - - + - - + - - + + + - + - + + + - + 

ESA_00140   - + - - + + - + - + + + + + + - + + - + - - + - + + - - + - 
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ESA_00143   - - - - + + - - - - - - - - - - + - - + - - - - - + - + - - 

ESA_00144   - + + - + + + - + - - - - - - - + - + - + - + + + - - - + - 

ESA_00145   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02035   + + + + + + + + + + - - - + - + + + + + + + + + + + - + + + 

ESA_02036   - - - - + - - - - - - - - - - - + - - - - - - - - - - - - - 

ESA_02037   + + + + + + + + + + - - - + - + + - + + + + + + + + - + + + 

ESA_02038   + + + + + + - + + + - - - + - - + - + - + + + + + + - - + + 

ESA_02039   + - - - + - + + + + - + - + - - + - + - - + - + + + + - - - 

ESA_02040   + - - - + - + + + + - + - + - - + - + - - + - + - + + - - - 

ESA_02735   + + + + + + + + + + + + - + - - + - + + + + + + + + - + + - 

ESA_02736   + + + + + + - + - + - - - - - - + - + + + + + + - + - + + + 

ESA_02737   + + + + + + + + - + - - - - - - + - + + + + + + - + - + + + 

ESA_02738   + + + + + + + + - + - - - + - - + - + + + + + + - + - + + + 

ESA_02739   + - - - + - + - - + + - - + - - + - + + - + - + - - - + - - 

ESA_02740   - - + - + + - + - + - - - - - - + - + + - - - - - + - - - + 

ESA_pESA3p05491   + + + + + + + + + + + + - + - + + + + + + + + + + + + + + + 

ESA_pESA3p05492   + + + + + + + + + + + + - + - - + + + + + + + - - + + + + + 

ESA_pESA3p05493   + + + - + + + - - + - + - - - - + - + - + + + + + - + - + + 

ESA_pESA3p05494   + - - - + - - - - - - + - - - - + - - - - + - - + - + - - - 

ESA_pESA3p05495   + - - - + - - - - - - + - - - - + - - - - + - + - - - - - - 

ESA_pESA3p05496   + - - - + - - - + + + + - + - - + - + - - + - + - - + - - - 

ESA_pESA3p05497   + - - - + - - - + - + + - - - - + - + - - + - + - - + - - - 

ESA_pESA3p05498   - - - - + - - - - - + - - + - - + - - - - + - + - - + - - - 

ESA_pESA3p05499   - - - - + - - - - - - - - - - - + - - - - - - + - - - - - - 

ESA_pESA3p05500   + - - - + - - - - - - + - - - - + - - - - + - + - - + - - - 

ESA_pESA3p05501   - - - - + - - - - - - - - - - - + - - - - + - + - - - - - - 

ESA_pESA3p05502   - - - - + - - - - - - - - - - - + - - - - - - + - - - - - - 

ESA_pESA3p05503   + - - - + - - - - - - - - - - - + - - - - + - + - - - - - - 

ESA_pESA3p05504   + - - - + - - - - - - + - - - - + - - - - + - + - - - - - - 

ESA_pESA3p05505   - - - - + - - - - - - - - - - - + - - - - - - + - - - - - - 
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ESA_pESA3p05506   + - - - + - + + - - - + - - - + + - - + - + - + + + + + - - 

ESA_pESA3p05507   + - - + + - + + + - + + + + + - + + + + - + - + + + + + - - 

ESA_pESA3p05508   - + + + + + + + - - + - - + - - + - - + + - + + + + - + + + 

ESA_pESA3p05509   - + + + + + + + + - + - - + - - + + - + + - + + + + - + + + 

ESA_pESA3p05510   + + + + + + + + + - + + + + + + + + + + + + + + + + + + + + 

Ctu_12090   + - - - - - - - - + + - - + - + + - + + - + - + - - - + - - 

ctu_12100   + + + - - + - - - + + - - + - - + - + + + + + + + - - + + + 

clpB   + + + - - + - + - + - - - - - - + - + - + + + + + + - - + + 

Sialic acid 

Yhch    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

nanK   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

nanT   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

nanA   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

nanR   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

nanC   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

nanE   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

nagA   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

nagB   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

neuC   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

siaP   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

siaQ   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

siaM   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Enterobaction 

ESA_00791   + + + + + + - + + + + + + + + + + + + + + + + + + + + + + + 

ESA_00792   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02728   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02729   + + + + + + - + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02730   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02731   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_00793   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_00794   + + + + + + - + + + + + + + + + + + + + + + + + + - + + + + 

ESA_00795   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
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ESA_00796   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_00797   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_00798   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_00799   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_00800   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02727   + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + 

Siderophore 

ESA_03187   + + + + + + - + + + + + + + + + + + + + + + + + - + + + + + 

ESA_03188   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_03189   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ES-_03190   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_02242   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Aerobaction 

iucA   - + + + + + + + + + + + + + + + + + + + + + + + - + + + + - 

iucB   - + + + + + + + + + + + + + + + + + + + + + + + - + + + + - 

iucC   - + + + + + + + + + + + + + + + + + + + + + + + - + + + + - 

iucD   - + + + + + + + + + + + + + + + + + + + + + + + - + + + + - 

iutA   - + + + + + + + + + + + + + + + + + + + + + + + - + + + + - 

Biofilm 

ESA_00281   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_00282   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

flhE (ESA_01356)   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

 fliD (ESA_01287)   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

flgJ, ESA_02266   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

bcsB   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

bcsE   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

bcsF   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

bcsZ   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Colanic acid ESA_01155-01175; wzABCKM   + + + + 

+ 
(12 
kb) + + + + + + + + + 

+ 
(17 
kb) + + + + + + + + + + 

+ 
(17 
kb) + + 

+ 
(17 
kb) + 

Stress response rpoS   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

E. coli osmotolerance homologues  

TrkH   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

TrkG   + + + + + + + + + + + - + - + - - + + + - + + + + + + + - + 
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TrkA   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

TrkE   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

kdpA   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

kdpB   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

kdpC   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

kdpD   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

kdpE   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

PhoP   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

PhoQ   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ompC   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ompF   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

envZ   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ompR   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

kup   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Prop homologues 

ESA_02131   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_01706   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_04214   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_pESA305450   + + + + + + + + + + + - + - + - - + + + - + + + + + + + + + 

ESA_01226   + + + + + + + + + + + + + - + + + + + + + + + + + + + + + + 

ESA_00673   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

ESA_03328   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Haemolysin genes 

ESA_00102 (Hemolysin activator 
protein precursor)   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
ESA_00432  (Predicted membrane 
protein hemolysin III homologue)   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
ESA_00643 (Hemolysins and related 
proteins containing CBS domains)   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
ESA_02810 (Hemolysin expression 
modulating protein)   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
ESA_02937 (Putative hemolysin 
(smaller - ~1790 bp))   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
ESA_03540 (21 kDa hemolysin 
precursor)   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

hlyA   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

hlyB   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

hlyC   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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hlyD   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Copper & silver resistance 

ESA_04236 (silE)  + - + + + + + - + + + - + + + + + + + + - + + + - + - - - - 

ESA_04237 (cusS)  + - + + + + + - + + + - + + + + + + + + - + + + - + - - - - 

ESA_04238  (cusR) 
 

+ - + + + + + - + + + - + + + + + + + + - + + + - + - - - - 

ESA_04239 (cusC) 
 

+ - + + + + + - + + + - + + + + + + + + - + + + - + - - - - 

ESA_04240 (cusF) 
 

+ - + + + + + - + + + - + + + + + + + + - + + + - + - - - - 

ESA_04241 (cusB) 
 

+ - + + + + + - + + + - + + + + + + + + - + + + - + - - - - 

ESA_04242 (cusA) 
 

+ - + + + + + - + + + - + + + + + + + + - + + - - + - - - - 

ESA_04243 (CopG) 
 

+ - + + + + + - + + + - + + + + + + + + - + + + - + - - - - 

ESA_04244 (silP_1) 
 

+ - + + + + + - + + + - + + + + + + + + - + + + - + - - - - 

ESA_04245 (silP_2) 
 

+ - + + + + + - + + + - + + + + + + + + - + + + - + - - - - 

ESA_04248 (pcoE) 
 

+ - + + + + - - - + + - + + + + + + + + - + + + - + - - - - 

ESA_04249 (pcoA) 
 

+ - + + + + - - - + + - + + + + + + + + - + + + - + - - - - 

ESA_04250 (pcoB) 
  

+ - + + + + - - - + + - + + + + + + + + - + + + - + - - - - 

ESA_04251 (CopC) 
  

+ - + + + + - - - + + - + + + + + + + + - + + + - + - - - - 

ESA_04252 (PcoE_1) 
 

+ - + + + + - - - + + - + + + + + + + + - + + + - + - - - - 

ESA_04253 (PcoR) 
 

+ - + + + + - - - + + - + + + + + + + + - + + + - + - - - - 

ESA_04254 (PcoS) 
 

+ - + + + + - - - + + - + + + + + + + + - + + + - + - - - - 

ESA_04255 (PcoE_2) 
  

+ - + + + + - - - + + - + + + + + + + + - + + + - + - - - - 

Miscellaneous 

sodA   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Hha   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Zn metallo   + + + + + + + - + + + + + + + + + + + + + + + + + + + + + + 

Pla   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

rspA (ESA_pESA3p05473)   - + + + - + + + + + + + + + + + + + + + + - + - - + + + + - 

cpa (ESA_pESA3p05434)   - + + + + + + + + + + + + + + + + + + + + - + - - + + + + - 

hlyA   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

hlyB   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

hlyC   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

hlyD   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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rcK   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

pagC   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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Table S2. Unique genes in C. sakazakii CC4 isolate 557 against C. sakazakii non-CC4 isolate 658 

No Locus_tag/gene start  end Annotation 

1 CSAK557_00247 183951 184301 Phage-related protein 

2 papC_1 321444 323951 Outer membrane usher protein papC precursor 

3 papH_1 324024 324584 PAP fimbrial minor pilin protein precursor 

4 smfA 324656 325189 Fimbria A protein precursor 

5 CSAK557_00627 492999 493751 hypothetical protein 

6 intS_1 762314 763513 Putative prophage CPS-53 integrase 

7 rfbD 895112 896008 dTDP-4-dehydrorhamnose reductase 

8 CSAK557_01138 897724 898731 Glycosyl transferasesgroup 1 

9 wbbL 898721 899485 dTDP-Rha:alpha-D-GlcNAc-pyrophosphate polyprenol, alpha-3-L-rhamnosyltransferase 

10 leuE 961085 961729 Leucine efflux protein 

11 CSAK557_01226 961957 962727 hypothetical protein 

12 CSAK557_01620 1255030 1255965 hypothetical protein 

13 CSAK557_01621 1255962 1256417 hypothetical protein 

14 CSAK557_01630 1262993 1263475 hypothetical protein 

15 CSAK557_01631 1263475 1263702 hypothetical protein 

16 CSAK557_01632 1263832 1264056 hypothetical protein 

17 CSAK557_01683 1298645 1299625 Transposase DDE domain protein 

18 ykfI 1302939 1303280 Toxin YkfI  

19 yfjZ 1303301 1303618 Putative antitoxin YfjZ 

20 CSAK557_01690 1303639 1303860 hypothetical protein 

21 ykfG_2 1303869 1304345 hypothetical protein 

22 CSAK557_01692 1304361 1304819 Antirestriction protein 

23 ykfF 1304921 1305160 hypothetical protein 

24 CSAK557_01694 1305237 1305704 hypothetical protein 

25 yafY 1305728 1306171 putative lipoproteinyafY precursor 

26 CSAK557_01696 1306171 1306407 hypothetical protein 

27 CSAK557_01697 1306444 1307145 hypothetical protein 

28 CSAK557_01698 1307362 1308183 hypothetical protein 

29 era_2 1308275 1309138 GTPase Era 
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30 CSAK557_01884 1453553 1453924 hypothetical protein 

31 CSAK557_01941 1506048 1506770 hypothetical protein 

32 CSAK557_02001 1559194 1559880 hypothetical protein 

33 CSAK557_02002 1559877 1561226 hypothetical protein 

34 CSAK557_02008 1565465 1566094 Metallo-beta-lactamase superfamily protein 

35 CSAK557_02176 1705806 1706288 hypothetical protein homologue of cssp291_10445 

36 ugl 1936512 1937699 Unsaturated glucuronyl hydrolase 

37 lacY_1 1937716 1938975 Lactose-proton symport 

38 CSAK557_02434 1938993 1940837 hypothetical protein 

39 CSAK557_02444 1949015 1949917 hypothetical protein 

40 CSAK557_02445 1950088 1950906 hypothetical protein 

41 CSAK557_02447 1952469 1953518 site-specific tyrosine recombinase XerC 

42 CSAK557_02756 2235475 2236521 hypothetical protein 

43 CSAK557_02757 2236518 2237129 hypothetical protein 

44 fimH 2427497 2428483 hypothetical protein 

45 CSAK557_03180 2610127 2611212 hypothetical protein 

46 CSAK557_03287 2705906 2707072 hypothetical protein 

47 CSAK557_03838 3193036 3193263 hypothetical protein 

48 CSAK557_03839 3193315 3194415 hypothetical protein 

49 CSAK557_03840 3194559 3195047 hypothetical protein 

50 CSAK557_03841 3195605 3195718 hypothetical protein 

51 CSAK557_03844 3197550 3197831 hypothetical protein 

52 CSAK557_03870 3222005 3222274 hypothetical protein homologue of cssp291_18210 

53 clpV1_3 3228066 3230822 hypothetical protein 

54 elfA_2 3230886 3231416 hypothetical protein 

55 papD_1 3231503 3232261 Chaperone protein papD precursor 

56 htrE_2 3232349 3234949 Heat shock protein E 

57 CSAK557_03883 3234934 3235530 fimbrial-like adhesinprotein SfmF 

58 hcp1_2 3237828 3238313 hypothetical protein 

59 CSAK557_03887 3238448 3239026 hypothetical protein 

60 CSAK557_03888 3239013 3240359 hypothetical protein 

61 CSAK557_03943 3284696 3285562 hypothetical protein 
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62 intA_3 3285737 3286288 Prophage CP4-57 integrase 

63 CSAK557_03949 3289374 3289808 hypothetical protein 

64 CSAK557_03951 3290767 3290916 hypothetical protein 

65 CSAK557_03952 3291632 3292111 hypothetical protein 

66 CSAK557_03953 3292111 3292386 hypothetical protein 

67 CSAK557_04237 3539876 3540067 hypothetical protein 

68 arsA_1 3540427 3540780 Arsenical pump-driving ATPase 

69 ywnH 3540982 3541509 Putative phosphinothricin acetyltransferase YwnH 

70 aqpZ2 3541559 3541801 Aquaporin Z 2 

71 CSAK557_04241 3541913 3542011 hypothetical protein 

72 CSAK557_04558 3807335 3808522 FRG domain protein 

73 CSAK557_04559 3808928 3809152 hypothetical protein 

74 CSAK557_04560 3809364 3810098 hypothetical protein 

75 CSAK557_04561 3810340 3811185 hypothetical protein 

76 CSAK557_04562 3811175 3811330 hypothetical protein 

77 CSAK557_04563 3811296 3811775 conjugal transfer protein TrbJ 

78 CSAK557_04564 3811963 3812943 conjugal transfer protein TrbL 

79 arsD 3812940 3813302 Arsenical resistanceoperon trans-acting repressor ArsD 

80 arsA_2 3813320 3815071 Arsenical pump-driving ATPase 

81 arsB 3815119 3816408 Arsenic efflux pump protein 

82 arsC 3816421 3816756 Arsenate reductase 

83 kfoC_2 3817039 3819135 Chondroitin polymerase 

84 CSAK557_04570 3819214 3820236 phage major capsid protein, P2 family 

85 CSAK557_04571 3820297 3821121 Phage capsid scaffolding protein (GPO) serine peptidase 

86 CSAK557_04572 3821163 3822323 hypothetical protein 

87 CSAK557_04573 3822399 3822875 hypothetical protein 

88 CSAK557_04574 3823165 3823608 T5orf172 domain protein 

89 CSAK557_04610 3849651 3850274 hypothetical protein 

90 CSAK557_04611 3850274 3851302 hypothetical protein 

91 CSAK557_04612 3851357 3852403 hypothetical protein 

92 CSAK557_04613 3852408 3853403 P pilus assembly protein, pilin FimA 

93 CSAK557_04614 3853415 3854752 Glycosyltransferase (GlcNAc) 
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94 CSAK557_04615 3854746 3855345 hypothetical protein 

95 oprF_2 3855349 3856968 Outer membrane porinF precursor 

96 CSAK557_04617 3856961 3857446 hypothetical protein 

97 CSAK557_04618 3857510 3858463 ribosomal-protein-alanine acetyltransferase 

98 ygaP 3858530 3859066 Inner membrane protein ygaP 

99 ygaV 3859068 3859373 putative HTH-type transcriptional regulator ygaV 

100 CSAK557_04621 3859579 3860772 galactoside permease 

101 CSAK557_04622 3860839 3861192 putative membrane protein 

102 CSAK557_04623 3861197 3861676 hypothetical protein 

103 ytcD 3861727 3862110 putative HTH-type transcriptional regulator ytcD 

104 cpnA 3862211 3862939 Cyclopentanol dehydrogenase 

105 ripA 3863123 3863836 HTH-type transcriptional repressor of iron proteins A 

106 CSAK557_04627 3863989 3864381 hypothetical protein 

107 CSAK557_04628 3864454 3865140 hypothetical protein 

108 CSAK557_04629 3865340 3866158 transcriptional activator FtrA 

109 CSAK557_04630 3866233 3866595 Cupin domain protein 

110 CSAK557_04631 3866592 3867053 hypothetical protein 

111 CSAK557_04632 3867590 3867808 hypothetical protein 

112 CSAK557_04633 3867844 3868392 Restriction endonuclease 

113 CSAK557_04634 3868398 3868625 hypothetical protein 

114 CSAK557_04635 3868622 3870733 Type IV secretory pathway, VirD4 components 

115 CSAK557_04636 3870792 3871481 integrating conjugative element membrane protein, family 

116 CSAK557_04637 3871674 3871991 integrative conjugative element protein, RAQPRD family 

117 CSAK557_04638 3872576 3872875 site-specific tyrosine recombinase XerC 

118 CSAK557_04639 3873718 3874416 hypothetical protein 

119 CSAK557_04640 3874419 3874832 hypothetical protein 

120 CSAK557_04641 3874832 3875131 hypothetical protein 

121 CSAK557_04642 3875697 3875960 Transposase 

122 CSAK557_04643 3875987 3876817 insertion element IS2transposase InsD 

123 CSAK557_04644 3877011 3877748 hypothetical protein 

124 CSAK557_04645 3877876 3878091 putative transcriptional regulator 

125 CSAK557_04646 3878519 3879577 hypothetical protein 
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126 CSAK557_04647 3880198 3880776 hypothetical protein 

127 CSAK557_04648 3880918 3881655 hypothetical protein 

128 CSAK557_04649 3881676 3882362 hypothetical protein 

129 CSAK557_04650 3882507 3882812 hypothetical protein 

130 CSAK557_04651 3882848 3883210 hypothetical protein 

131 CSAK557_04652 3883456 3884904 hypothetical protein 

132 CSAK557_04653 3884931 3885347 conjugative transferregion lipoprotein 

133 CSAK557_04654 3885347 3888163 Type IV secretory pathway, VirB4 components 

134 CSAK557_04655 3888160 3888567 hypothetical protein 

135 CSAK557_04656 3888834 3889241 integrating conjugative element protein, family 

136 CSAK557_04657 3889238 3890209 integrating conjugative element protein, family 

137 CSAK557_04658 3891152 3892066 putative restrictionendonuclease 

138 repA_1 3892261 3892719 Replication-associated protein 

139 CSAK557_04660 3893412 3893519 hypothetical protein 

140 CSAK557_04661 3893605 3893769 type IV conjugative transfer system pilin TraA 

141 CSAK557_04662 3893766 3894251 conjugal transfer protein TraM 

142 CSAK557_04663 3895213 3895827 site-specific tyrosine recombinase XerC 

143 CSAK557_04664 3896708 3897472 hypothetical protein 

144 CSAK557_04665 3897555 3897731 hypothetical protein 

145 CSAK557_04666 3897934 3898554 hypothetical protein 

146 CSAK557_04667 3898909 3899151 hypothetical protein 

147 CSAK557_04668 3899271 3899573 Transposase 

148 CSAK557_04669 3899542 3900663 Transposase 

149 CSAK557_04670 3901014 3901676 hypothetical protein 

150 CSAK557_04676 3908810 3910477 hypothetical protein 

151 CSAK557_04677 3910480 3911028 hypothetical protein 

152 CSAK557_04678 3911000 3911725 hypothetical protein 

153 CSAK557_04679 3911715 3912254 Bacteriophage tail assembly protein 

154 CSAK557_04680 3912233 3912670 hypothetical protein 

155 CSAK557_04681 3912934 3913620 hypothetical protein 

156 CSAK557_04682 3913613 3914200 hypothetical protein 

157 CSAK557_04683 3914209 3915564 Tail fiber protein 
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158 intA_4 3915620 3916861 Prophage CP4-57 integrase 

159 CSAK557_04685 3916845 3919382 hypothetical protein 

160 CSAK557_04686 3919363 3920418 hypothetical protein 

161 CSAK557_04706 3939959 3940309 hypothetical protein 

162 CSAK557_04707 3940306 3942291 hypothetical protein 

163 CSAK557_04708 3942325 3942600 Transposase 

164 CSAK557_04709 3942645 3943022 IS1 transposase 

165 CSAK557_04710 3943201 3945396 putative P-loop ATPase 

166 CSAK557_04711 3945463 3946023 hypothetical protein 

167 CSAK557_04712 3946109 3946321 hypothetical protein 

168 CSAK557_04713 3946501 3946731 Virulence-associatedprotein 

169 vapC 3946728 3947144 tRNA(fMet)-specific endonuclease VapC 

170 CSAK557_04715 3947193 3947690 hypothetical protein 

171 CSAK557_04716 3947694 3948392 hypothetical protein 

172 CSAK557_04717 3948896 3949012 hypothetical protein 

173 CSAK557_04718 3949009 3950403 integrating conjugative element protein, family 

174 CSAK557_04719 3950405 3950743 hypothetical protein 

175 CSAK557_04720 3950754 3952109 hypothetical protein 

176 traC 3952525 3953106 DNA primase TraC 

177 CSAK557_04722 3953198 3954151 hypothetical protein 

178 CSAK557_04723 3954282 3954965 Type I restriction-modification system methyltransferase subunit 

179 CSAK557_04724 3955049 3955327 hypothetical protein 

180 CSAK557_04725 3955324 3955971 hypothetical protein 

181 CSAK557_04726 3956342 3956965 Integrase  

182 CSAK557_04727 3957097 3958176 type II secretion system protein F 

183 CSAK557_04728 3958186 3958782 hypothetical protein 

184 CSAK557_04729 3958787 3959266 invasion protein IagB 

185 CSAK557_04730 3959263 3959931 Type IV leader peptidase family protein 

186 CSAK557_04731 3959931 3961082 hypothetical protein 

187 CSAK557_04732 3960990 3961547 hypothetical protein 

188 CSAK557_04733 3961504 3961758 conjugal transfer protein TraR 

189 CSAK557_04734 3961751 3963466 integrating conjugative element, PFGI_1 class, ParB family protein 
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190 dnaB_2 3963463 3963834 Replicative DNA helicase 

191 CSAK557_04736 3963834 3964454 hypothetical protein 

192 CSAK557_04737 3964826 3965560 hypothetical protein 

193 CSAK557_04738 3965635 3966354 hypothetical protein 

194 CSAK557_04739 3966347 3968173 hypothetical protein 

195 pifC_1 3968136 3968504 Transcriptional repressor pifC 

196 dnaB_3 3968851 3969303 Replicative DNA helicase 

197 CSAK557_04742 3969290 3969847 hypothetical protein 

198 CSAK557_04743 3969844 3970170 hypothetical protein 

199 CSAK557_04744 3970170 3972230 Phage-related minor tail protein 

200 CSAK557_04745 3972418 3972675 hypothetical protein 

201 CSAK557_04746 3972822 3973154 hypothetical protein 

202 CSAK557_04747 3973154 3973495 hypothetical protein 

203 CSAK557_04748 3973496 3973789 Phage holin family 2 

204 CSAK557_04749 3973799 3974254 hypothetical protein 

205 CSAK557_04750 3974251 3974922 hypothetical protein 

206 CSAK557_04751 3975119 3975610 hypothetical protein 

207 CSAK557_04752 3975683 3975886 hypothetical protein 

208 ssb_2 3975904 3976452 Helix-destabilizing protein 

209 CSAK557_04754 3976531 3976773 hypothetical protein 

210 CSAK557_04755 3976757 3977005 hypothetical protein 

211 CSAK557_04756 3977115 3977396 hypothetical protein 

212 CSAK557_04757 3977594 3979132 integrating conjugative element relaxase, PFGI-1 class 

213 xerD_1 3979173 3980126 Tyrosine recombinaseXerD 

214 CSAK557_04759 3980752 3981075 hypothetical protein 

215 CSAK557_04760 3981053 3981856 hypothetical protein 

216 topB_3 3981908 3983584 DNA topoisomerase 3 

217 CSAK557_04762 3983598 3984320 integrating conjugative element protein, family 

218 CSAK557_04763 3984802 3985110 hypothetical protein 

219 CSAK557_04764 3985111 3985722 site-specific tyrosine recombinase XerC 

220 CSAK557_04765 3987607 3987798 hypothetical protein 

221 CSAK557_04766 3987816 3987983 hypothetical protein 
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222 CSAK557_04767 3988085 3988882 hypothetical protein 

223 CSAK557_04768 3989401 3990417 hypothetical protein 

224 CSAK557_04769 3990505 3991722 hypothetical protein 

225 CSAK557_04770 3991732 3992262 hypothetical protein 

226 CSAK557_04771 3992446 3993360 hypothetical protein 

227 CSAK557_04772 3994120 3995460 hypothetical protein 

228 CSAK557_04773 3995904 3996902 Plasmid encoded RepAprotein 

229 traJ 3997755 3998108 Relaxosome protein 

230 CSAK557_04775 3998190 3998546 conjugal transfer protein TrbJ 

231 CSAK557_04776 3999188 3999619 Bacteriophage CI repressor helix-turn-helix domain protein 

232 CSAK557_04777 4000198 4000512 hypothetical protein 

233 CSAK557_04778 4000730 4002592 Bacteriophage replication gene A protein (GPA) 

234 CSAK557_04779 4002711 4002935 hypothetical protein 

235 CSAK557_04780 4002909 4003178 Ogr/Delta-like zinc finger 

236 CSAK557_04781 4003229 4003561 phage portal protein,PBSX family 

237 ompF_3 4003584 4003829 Porin OmpF 

238 papD_2 4003856 4004614 Chaperone protein papD precursor 

239 papH_2 4004658 4005212 PAP fimbrial minor pilin protein precursor 

240 CSAK557_04785 4005242 4006165 putative fimbrial subunit SteE 

241 CSAK557_04786 4006240 4006653 putative minor fimbrial subunit StfF 

242 mrpA 4006662 4007189 Major MR/P fimbria protein precursor 

243 CSAK557_04788 4007432 4008715 O-antigen ligase RfaL 

244 ygiW_3 4008791 4009219 hypothetical protein 

245 rcnA 4009391 4010533 Nickel/cobalt effluxsystem rcnA 

246 csoR 4010546 4010815 Copper-sensitive operon repressor 

247 CSAK557_04792 4010921 4012219 enterobactin exporterEntS 

248 CSAK557_04793 4012493 4013446 hypothetical protein 

249 CSAK557_04794 4013486 4014919 chromate transporter,chromate ion transporter (CHR) family 

250 CSAK557_04795 4015148 4015906 hypothetical protein 

251 CSAK557_04796 4015960 4016880 hypothetical protein 

252 CSAK557_04797 4016944 4017315 hypothetical protein 

253 CSAK557_04798 4017456 4018145 hypothetical protein 
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254 CSAK557_04799 4018091 4018918 hypothetical protein 

255 xerC_3 4019092 4019685 Tyrosine recombinaseXerC 

256 repB_2 4020065 4020937 RepFIB replication protein A 

257 CSAK557_04802 4021402 4021641 ParG  

258 CSAK557_04803 4021694 4022311 putative crown gall tumor protein VirC1 

259 CSAK557_04804 4022862 4023575 hypothetical protein 

260 ybaQ 4023831 4024265 putative HTH-type transcriptional regulator ybaQ 

261 CSAK557_04806 4024347 4024820 Type IV secretory pathway, TrbL components 

262 CSAK557_04807 4024865 4025581 hypothetical protein 

263 rmlA 4025639 4027222 Glucose-1-phosphate thymidylyltransferase 

264 rfbC 4027226 4027768 dTDP-4-dehydrorhamnose 3,5-epimerase 

265 rfbX 4027833 4029089 Putative O-antigen transporter 

266 CSAK557_04811 4029086 4030063 rhamnosyltransferase 

267 CSAK557_04812 4030075 4030830 hypothetical protein 

268 CSAK557_04813 4031115 4033940 hypothetical protein 

269 CSAK557_04814 4034378 4034980 hypothetical protein 

270 CSAK557_04815 4035925 4036689 hypothetical protein 

271 CSAK557_04816 4036709 4037539 rhamnosyltransferase 

272 xerC_4 4037565 4037894 Tyrosine recombinaseXerC 

273 umuC_7 4037922 4039196 hypothetical protein 

274 CSAK557_04819 4039153 4039482 hypothetical protein 

275 CSAK557_04820 4039546 4039932 hypothetical protein 

276 CSAK557_04821 4040054 4040779 integrating conjugative element protein, family 

277 CSAK557_04822 4040792 4041658 hypothetical protein 

278 CSAK557_04823 4041865 4042986 site-specific tyrosine recombinase XerC 

279 CSAK557_04824 4043427 4043711 hypothetical protein 

280 CSAK557_04825 4043794 4044612 hypothetical protein 

281 CSAK557_04826 4044612 4044851 hypothetical protein 

282 dam_2 4044752 4045255 DNA adenine methylase 

283 CSAK557_04828 4045485 4045718 hypothetical protein 

284 CSAK557_04829 4045785 4046186 hypothetical protein 

285 CSAK557_04830 4046190 4046606 hypothetical protein 



  Appendices (Table S2) 

332 
 

286 CSAK557_04831 4046599 4046790 hypothetical protein 

287 CSAK557_04832 4046801 4047304 Phage regulatory protein CII (CP76) 

288 CSAK557_04833 4047521 4050640 hypothetical protein 

289 CSAK557_04834 4051088 4052917 hypothetical protein 

290 CSAK557_04835 4053261 4053884 hypothetical protein 

291 CSAK557_04836 4053966 4054274 hypothetical protein 

292 CSAK557_04837 4054429 4054794 hypothetical protein 

293 CSAK557_04838 4054883 4055299 hypothetical protein 

294 CSAK557_04839 4055523 4056113 integrating conjugative element protein, family 

295 CSAK557_04840 4056127 4056549 integrating conjugative element protein, family 

296 CSAK557_04841 4056546 4057247 integrating conjugative element protein, family 

297 CSAK557_04842 4057461 4058120 integrating conjugative element protein, family 

298 CSAK557_04843 4058117 4058323 conjugative transferregion protein 

299 CSAK557_04844 4058657 4058920 hypothetical protein 

300 CSAK557_04845 4058923 4060074 hypothetical protein 

301 dnaB_4 4060165 4060692 Replicative DNA helicase 

302 cpsD 4060689 4061603 Tyrosine-protein kinase CpsD 

303 CSAK557_04848 4061766 4062548 hypothetical protein 

304 CSAK557_04849 4063092 4063724 hypothetical protein 

305 CSAK557_04850 4063833 4064693 hypothetical protein 

306 CSAK557_04851 4064707 4066089 Phage-related lysozyme (muraminidase) 

307 CSAK557_04852 4065901 4066371 hypothetical protein 

308 CSAK557_04853 4066364 4067500 hypothetical protein 

309 gcvA_3 4075036 4075473 Gcv operon activator 

310 CSAK557_04862 4075936 4076916 Transposase DDE domain protein 

311 CSAK557_04863 4079051 4079614 hypothetical protein 

312 CSAK557_04864 4079706 4079870 hypothetical protein 

313 topB_4 4080153 4080638 DNA topoisomerase 3 

314 CSAK557_04866 4081069 4081329 hypothetical protein 

315 CSAK557_04867 4081668 4081814 hypothetical protein 

316 CSAK557_04868 4082042 4082710 hypothetical protein 

317 CSAK557_04869 4082735 4083085 hypothetical protein 
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318 CSAK557_04872 4085014 4086318 Site-specific recombinase XerD 

319 CSAK557_04873 4086427 4086582 hypothetical protein 

320 CSAK557_04874 4086579 4086824 hypothetical protein 

321 CSAK557_04875 4087470 4087781 anaerobic benzoate catabolism transcriptional regulator 

322 CSAK557_04876 4087990 4088280 DNA-binding transcriptional regulator Nlp 

323 CSAK557_04939 4135125 4135781 hypothetical protein 

324 CSAK557_04942 4138720 4139952 hypothetical protein 

325 CSAK557_04943 4140031 4140261 hypothetical protein 

326 CSAK557_04944 4140261 4140857 hypothetical protein 

327 CSAK557_04945 4140942 4141412 hypothetical protein 

328 CSAK557_04946 4141569 4142447 putative periplasmiciron-binding protein precursor 

329 mntB 4142450 4143322 Manganese transport system membrane protein mntB 

330 znuC_1 4143319 4144011 Zinc import ATP-binding protein ZnuC 

331 CSAK557_04949 4144373 4144618 hypothetical protein 

332 CSAK557_04986 4170733 4171539 Phage small terminasesubunit 

333 CSAK557_04987 4171532 4171984 Phage head completionprotein (GPL) 

334 CSAK557_04988 4171981 4172481 P2 phage tail completion protein R (GpR) 

335 CSAK557_04989 4172481 4173188 Phage virion morphogenesis family protein 

336 CSAK557_04990 4173185 4173751 hypothetical protein 

337 CSAK557_04991 4173822 4174097 hypothetical protein 

338 CSAK557_04992 4174265 4174480 hypothetical protein 

339 epsE_2 4174846 4176168 Type II traffic warden ATPase 

340 CSAK557_04994 4176176 4176673 type IV pilus biogenesis protein PilP 

341 CSAK557_04995 4176660 4177940 Pilin accessory protein (PilO) 

342 bfpB 4177944 4179617 Bundle-forming pilusB 

343 CSAK557_04997 4179637 4179864 PilM  

344 CSAK557_04998 4180082 4181437 integrating conjugative element protein PilL, PFGI-1 class 

345 dam_3 4181908 4182510 DNA adenine methylase 

346 CSAK557_05000 4182507 4182815 hypothetical protein 

347 CSAK557_05001 4182792 4183058 hypothetical protein 

348 CSAK557_05002 4183285 4186248 putative ATPase 

349 CSAK557_05003 4186306 4186974 integrating conjugative element protein, family 
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350 CSAK557_05004 4186986 4187387 hypothetical protein 

351 repA_2 4187921 4188439 Replication-associated protein 

352 pifC_2 4189131 4189514 Transcriptional repressor pifC 

353 aseR 4189554 4189937 HTH-type transcriptional repressor AseR 

354 CSAK557_05008 4190784 4191119 hypothetical protein 

355 CSAK557_05009 4191010 4191360 integrating conjugative element membrane protein, family 

356 CSAK557_05010 4191373 4191741 integrating conjugative element protein, family 

357 CSAK557_05011 4191731 4192150 Type II secretory pathway, ATPase PulE/Tfp pilus assembly pathway, ATPase PilB 

358 CSAK557_05012 4192099 4192326 hypothetical protein 

359 csbC 4192360 4193856 putative metabolite transport protein CsbC 

360 iolE_2 4194287 4195186 Inosose dehydratase 

361 CSAK557_05015 4195216 4196100 Hydroxypyruvate isomerase 

362 iolG_1 4196136 4196279 Inositol 2-dehydrogenase/D-chiro-inositol 3-dehydrogenase 

363 iolG_2 4196342 4197166 Inositol 2-dehydrogenase/D-chiro-inositol 3-dehydrogenase 

364 iolD 4197223 4199163 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase 

365 iolC_2 4199656 4200831 5-dehydro-2-deoxygluconokinase 

366 CSAK557_05020 4201076 4201591 hypothetical protein 

367 ybbH_3 4201738 4202592 putative HTH-type transcriptional regulator ybbH 

368 iolB_1 4202652 4202801 5-deoxy-glucuronate isomerase 

369 lacI_3 4206953 4207369 Lactose operon repressor 

370 lacI_4 4207332 4208120 Lactose operon repressor 

371 CSAK557_05027 4208590 4208874 Transposase 

372 CSAK557_05028 4208922 4209440 hypothetical protein 

373 htpX_2 4229851 4230606 hypothetical protein 

374 CSAK557_05053 4230609 4230842 hypothetical protein 

375 CSAK557_05054 4230820 4231317 putative membrane protein 

376 kefB_2 4231320 4232042 NEM-activable K( )/H() antiporter 

377 kefC_3 4232045 4233082 K( )/H( ) antiporter 

378 trxC_2 4233086 4233526 Thioredoxin-2 

379 CSAK557_05058 4233516 4234661 hypothetical protein 

380 CSAK557_05059 4234741 4235352 hypothetical protein 

381 CSAK557_05060 4235442 4236329 YfdX protein 
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382 CSAK557_05061 4236432 4236830 YfdX protein 

383 CSAK557_05062 4236980 4237393 hypothetical protein 

384 hspA_1 4237386 4237631 Spore protein SP21 

385 CSAK557_05064 4237826 4238320 ATP-dependent metallopeptidase HflB 

386 ftsH_2 4238287 4238841 ATP-dependent zinc metalloprotease FtsH 

387 CSAK557_05066 4238902 4239093 hypothetical protein 

388 clpC 4239093 4240892 ATP-dependent Clp protease ATP-binding subunit ClpC 

389 clpB_1 4240877 4241266 Chaperone protein ClpB 

390 CSAK557_05069 4241359 4241985 type VI secretion ATPase, ClpV1 family 

391 hspA_2 4242152 4242721 Spore protein SP21 

392 CSAK557_05071 4242861 4243037 DNA binding domain, excisionase family 

393 CSAK557_05072 4243344 4243856 hypothetical protein 

394 CSAK557_05097 4268093 4268773 Acyltransferase family protein 

395 CSAK557_05098 4268809 4269639 hypothetical protein 

396 CSAK557_05099 4271471 4272112 hypothetical protein 

397 CSAK557_05100 4272127 4273242 hypothetical protein 

398 CSAK557_05101 4273218 4275215 hypothetical protein 

399 CSAK557_05139 4302834 4303052 hypothetical protein 

400 CSAK557_05140 4303078 4303461 type I secretion membrane fusion protein, HlyD family 

401 apxIB_1 4303471 4304118 RTX-I toxin determinant B 

402 apxIB_2 4304073 4305677 RTX-I toxin determinant B 

403 CSAK557_05143 4305701 4306621 outer membrane channel protein 

404 CSAK557_05144 4306720 4307100 type I secretion outer membrane protein, TolC family 

405 CSAK557_05145 4307185 4309131 hypothetical protein 

406 CSAK557_05146 4309110 4309436 hypothetical protein 

407 CSAK557_05147 4310040 4310600 hypothetical protein 

408 CSAK557_05148 4310866 4311693 hypothetical protein 

409 CSAK557_05149 4311740 4313281 hypothetical protein 

410 CSAK557_05150 4313320 4313697 hypothetical protein 

411 CSAK557_05151 4313828 4314067 hypothetical protein 

412 CSAK557_05152 4314129 4314662 hypothetical protein 

413 CSAK557_05153 4314601 4316088 hypothetical protein 
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414 CSAK557_05154 4316484 4317164 hypothetical protein 

415 CSAK557_05155 4318304 4318492 hypothetical protein 

416 CSAK557_05156 4318676 4319083 hypothetical protein 

417 CSAK557_05242 4381149 4381523 hypothetical protein 

418 dxs_2 4381793 4382158 1-deoxy-D-xylulose-5-phosphate synthase 

419 CSAK557_05391 4487245 4488321 hypothetical protein 

420 CSAK557_05392 4488276 4488794 hypothetical protein 

421 intS_2 4581144 4581905 Putative prophage CPS-53 integrase 

422 intA_5 4581953 4582366 Prophage CP4-57 integrase 

423 CSAK557_05527 4582577 4582774 hypothetical protein 

424 CSAK557_05530 4586884 4587210 Recombinational DNA repair protein (RecE pathway) 

425 CSAK557_05534 4587842 4587973 Lambda Phage CIII 

426 CSAK557_05535 4588072 4588221 hypothetical protein 

427 CSAK557_05537 4590119 4590241 hypothetical protein 

428 CSAK557_05538 4590291 4590644 hypothetical protein 

429 CSAK557_05540 4592380 4593096 T5orf172 domain protein 

430 CSAK557_05541 4594013 4594192 hypothetical protein 

431 CSAK557_05546 4601214 4601405 hypothetical protein 

432 CSAK557_05547 4602777 4603004 hypothetical protein 

433 CSAK557_05548 4604484 4604684 Head fiber protein 

434 CSAK557_05549 4604794 4605003 hypothetical protein 

435 CSAK557_05550 4605191 4605685 hypothetical protein 

436 CSAK557_05551 4608155 4608439 hypothetical protein 

437 CSAK557_05552 4608491 4608853 hypothetical protein 

438 CSAK557_05553 4610363 4610521 hypothetical protein 

439 CSAK557_05554 4610935 4611195 hypothetical protein 

440 CSAK557_05555 4611197 4611613 hypothetical protein 

441 CSAK557_05556 4611628 4611825 hypothetical protein 

442 CSAK557_05557 4611825 4612130 hypothetical protein 
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Table S3. Variation of five CC4 core genome unique genes in 107 Cronobacter genomes 

 

No Isolate species CC4 CSAK557_03870 CSAK557_01621 CSAK557_03180 CSAK557_03949 CSAK557_02008 

1 4 C. sakazakii CC4 + + + + + 

2 6 C. sakazakii CC4 + + + + + 

3 20 C. sakazakii CC4 + + + + + 

4 377 C. sakazakii CC4 + + + + + 

5 553 C. sakazakii CC4 + + + + + 

6 557 C. sakazakii CC4 + + + + + 

7 558 C. sakazakii CC4 + + + + + 

8 691 C. sakazakii CC4 + + + + + 

9 692 C. sakazakii CC4 + + + + + 

10 694 C. sakazakii CC4 + + + + + 

11 695 C. sakazakii CC4 + + + + + 

12 698 C. sakazakii CC4 + + + + + 

13 701 C. sakazakii CC4 + + + + + 

14 702 C. sakazakii CC4 + + + + + 

15 705 C. sakazakii CC4 + + + + + 

16 706 C. sakazakii CC4 + + + + + 

17 707 C. sakazakii CC4 + + + + + 

18 709 C. sakazakii CC4 + + + + + 

19 711 C. sakazakii CC4 + + + + + 

20 712 C. sakazakii CC4 + + + + + 

21 721 C. sakazakii CC4 + + + + + 

22 730 C. sakazakii CC4 + + + + + 

23 767 C. sakazakii CC4 + + + + + 

24 1105 C. sakazakii CC4 + + + + + 

25 1219 C. sakazakii CC4 + + + + + 
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26 1220 C. sakazakii CC4 + + + + + 

27 1221 C. sakazakii CC4 + + + + + 

28 1225 C. sakazakii CC4 + + + + + 

29 1231 C. sakazakii CC4 + + + + + 

30 1240 C. sakazakii CC4 + + + + + 

31 1533 C. sakazakii CC4 + + + + + 

32 1537 C. sakazakii CC4 + + + + + 

33 1542 C. sakazakii CC4 + + + + + 

34 1587 C. sakazakii CC4 + + + + + 

35 ES713 C. sakazakii CC4 + + + + + 

36 G-2151 C. sakazakii CC4 + + + + + 

37 SP291 C. sakazakii CC4 + + + + + 

38 1 C. sakazakii Non-CC4 - - - - - 

39 5 C. sakazakii Non-CC4 - - - - - 

40 92 C. turicensis Non-CC4 - + - - + 

41 140 C. sakazakii Non-CC4 - - - - - 

42 150 C. sakazakii Non-CC4 - + - + - 

43 507 C. malonaticus Non-CC4 - - - - + 

44 510 C. malonaticus Non-CC4 - - - - + 

45 520 C. sakazakii Non-CC4 - - - - + 

46 530 C. muytjensii Non-CC4 - - + - + 

47 564 C. turicensis Non-CC4 - - + - + 

48 581 C. universalis Non-CC4 - - - + + 

49 582 C. dublinensis Non-CC4 - + - + + 

50 583 C. dublinensis Non-CC4 - - - + + 

51 658 C. sakazakii Non-CC4 - - - - - 

52 680 C. sakazakii Non-CC4 - - - - - 

53 681 C. malonaticus Non-CC4 - - - - + 

54 685 C. malonaticus Non-CC4 + - - + + 

55 687 C. malonaticus Non-CC4 - - - + + 

56 690 C. sakazakii Non-CC4 - - - - + 
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57 693 C. sakazakii Non-CC4 - - - - - 

58 696 C. sakazakii Non-CC4 - - - - + 

59 699 C. sakazakii Non-CC4 - - - - + 

60 700 C. sakazakii Non-CC4 - - - - - 

61 703 C. sakazakii Non-CC4 - - - - + 

62 708 C. sakazakii Non-CC4 - - - - + 

63 713 C. sakazakii Non-CC4 - - - - - 

64 714 C. sakazakii Non-CC4 - - - - - 

65 715 C. sakazakii Non-CC4 - - - - - 

66 716 C. sakazakii Non-CC4 - - - - - 

67 978 C. sakazakii Non-CC4 - + + - - 

68 984 C. sakazakii Non-CC4 - + + - - 

69 1210 C. dublinensis Non-CC4 - - - + + 

70 1211 C. turicensis Non-CC4 - - - - + 

71 1218 C. sakazakii Non-CC4 - - - - - 

72 1249 C. sakazakii Non-CC4 - - - + - 

73 1330 C. condimenti Non-CC4 - - - - + 

74 1536 C. sakazakii Non-CC4 - - - - - 

75 1545 C. malonaticus Non-CC4 - - - - + 

76 1553 C. turicensis Non-CC4 - - - - + 

77 1554 C. turicensis Non-CC4 - + - - + 

78 1556 C. dublinensis Non-CC4 - + - + + 

79 1558 C. malonaticus Non-CC4 - - - - + 

80 1560 C. dublinensis Non-CC4 - + + - + 

81 1569 C. malonaticus Non-CC4 - - - - + 

82 1846 C. malonaticus Non-CC4 - - - + + 

83 1880 C. turicensis Non-CC4 - + - - + 

84 2030 C. dublinensis Non-CC4 - + - - + 

85 2045 C. malonaticus Non-CC4 - - - - + 

86 2046 C. malonaticus Non-CC4 - - - - + 

87 2048 C. sakazakii Non-CC4 - - - - - 
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88 2051 C. sakazakii Non-CC4 + + - - - 

89 2064 C. sakazakii Non-CC4 - - - - - 

90 2087 C. sakazakii Non-CC4 - - - - - 

91 2089 C. sakazakii Non-CC4 - - - - - 

92 2106 C. sakazakii Non-CC4 - - - - - 

93 2107 C. sakazakii Non-CC4 - - - - + 

94 2109 C. malonaticus Non-CC4 - - - - + 

95 2161 C. sakazakii Non-CC4 - - - - - 

96 ATCC 51329 C. muytjensii Non-CC4 - - - - + 

97 
CMCC 
45402 C. malonaticus Non-CC4 - - - - + 

98 E764 C. sakazakii Non-CC4 - - - - + 

99 ES15 C. sakazakii Non-CC4 - - - - - 

100 ES35 C. sakazakii Non-CC4 - - - - - 

101 HPB5174 C. sakazakii Non-CC4 - - - - - 

102 LMG 23823 C. dublinensis Non-CC4 - - - + + 

103 LMG 23824 C. dublinensis Non-CC4 - + - + + 

104 LMG 23825 C. dublinensis Non-CC4 - + - - + 

105 LMG23826 C. malonaticus Non-CC4 - - - - + 

106 
NBRC 
102416T C. sakazakii Non-CC4 - - - - - 

107 NCTC9529T C. universalis Non-CC4 - - - + + 
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Table S4.  Presence of the unique genes identified in C. sakazakii CC4 isolate 377 against non-CC4 isolate ES15, in the remaining 17 CC4 and 11 non-CC4 isolates  

 

      

Strain 

1587 

558 

6 

767 

1225 

20 

721 

1221 

1220 

1219 

701 

557 

1231 

1240 

553 

4 

SP291 

1 5 

680 

1218 

658 

696 

520 

140 

150 

1249 

978 

      

ST  

109/CC4 

ST4/CC4 

ST4/CC4 

ST4/CC4 

ST4/CC4 

ST4/CC4 

ST4/CC4 

ST4/CC4 

ST4/CC4 

ST4/CC4 

ST4/CC4 

ST4/CC4  

ST4/CC4 

ST4/CC4 

ST4/CC4 

ST15/CC4 

ST109/CC4 

ST8/CC8 

ST8 /CC8 

ST8/CC8 

ST1/CC1 

ST1/CC1 

ST12 

ST12 

ST40/45 

ST16/CC16 

ST31 

ST3/CC3 

      

  

Fatal m
en 

Clin 

Clin 

Fatal m
en 

Fatal m
en 

Clin 

CSF 

CSF 

CSF 

Fatal m
en 

Fatal m
en 

Clin 

Fatal m
en 

CSF 

Clin 

Clin 

Prod. Site 

Clin 

Clin 

CSF 

CSF 

Fatal m
en 

Clin 

Clin 

Spice 

Spice 

Fatal m
en 

EFT 

No Locus_tag Product                                                           

1 
Csak377_
00002 Hypothetical protein   + - + - + - - - + + - - - + + + + - - - - - - - - - - + 

2 
Csak377_
00003 Hypothetical protein   + - + - + - - - + + - - - + + + + - - - - - - - - - - + 

3 
Csak377_
00004 Hypothetical protein   + - + - + - - - + + - - - + + + + - - - - - - - - - - + 

4 
Csak377_
00005 vapC toxin    + - + + + - - - + + + + + + + + + + + + - - + - + - - + 

5 
Csak377_
00006 Virulence associated protein    + - + + + - - - + + + + + + + + + + + + - - + - + - - + 

6 
Csak377_
00008 Hypothetical protein   + - + + + - - - + + + + - + + + + + + - - - - - + - - + 

7 
Csak377_
00009 Disulfide isomerase   + - + + + - - - + + + + - + + + + + + + - - - - + - - + 

8 
Csak377_
00010 Hypothetical protein   + - + - + - - - + + - - - + + + + - - - - - - - - - - - 

9 
Csak377_
00011 Hypothetical protein   + - + + + - - - + + + - - + + + + - - - - - + - + - - - 

10 
Csak377_
00012 Hypothetical protein   + - + + + - - - + + + - - + + + + - - - - - + - + - - - 

11 
Csak377_
00014 Hypothetical protein   + - + - + - - - + + - - - + + + + - - - - - - - - - - + 

12 
Csak377_
00015 Hypothetical protein   + - + - + - - - + + - - - + + + + - - - - - - - - - - + 

13 
Csak377_
00016 Hypothetical protein   + - + - + - - - + + - - - + + + + - - - - - - - - - - + 

14 
Csak377_
00017 Hypothetical protein   + - + - + - - - + + - - - + + + + - - - - - - - - - - + 

15 
Csak377_
00018 parD1, antitoxin protein    + - + - + - - - + + - + + + + + + + + + - - + - - - - - 

16 
Csak377_
00019 parE4, toxin protein    + - + - + - - - + + - + + + + + + + + + - - + - - - - - 

17 
Csak377_
00020 

pcoE, putative copper-binding protein 
precursor   + + + - + - - - + + - + + + + + + + + + + + + - - - - - 

18 
Csak377_
00021 CusS1, Sensornkinase    + + + - + - - - + + - + + + + + + + + + + + + - - - - - 
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19 
Csak377_
00022 copR, Transcriptional activator protein   + + + + + - - - + + + + + + + + + + + + + + + - - - - - 

20 
Csak377_
00023 YebZ_1, inner membrane protein   + + + - + - - - + + - + + + + + + + + + + + + - - - - - 

21 
Csak377_
00024 

pcoC, Copper resistance proteinC 
precursor   + + + - + - - - + + - + + + + + + + + + + + + - - - - - 

22 
Csak377_
00025 

copB, Copper resistance protein B 
precursor   + + + - + - - - + + - + + + + + + + + + + + + - - - - - 

23 
Csak377_
00026 

copA_1, Copper resistance protein A 
precursor   + + + - + - - - + + - + + + + + + + + + + + + - - - - - 

24 
Csak377_
00027 

silE_1, Silver-binding protein silE 
precursor 
BLASTx; copper resistant protein PcoE   + + + - + - - - + + - + + + + + + + + + + + + - - - - - 

25 
Csak377_
00028 

lytM_1, Glycyl-glycine endopeptidase 
precursor   + + + + + - - - + + - + + + + + + + + - + + + - - - - - 

26 
Csak377_
00029 Hypothetical protein   + + + + + - - - + + + + + + + + + + + - + + + - - - - - 

27 
Csak377_
00031 Protein of unknown function   + + + + + - - - + + + + + + + + + + + - + + + - - - - - 

28 
Csak377_
00032 cusA, Cation efflux system protein    + + + + + - - - + + + + + + + + + + + + + + + - - - - - 

29 
Csak377_
00033 cusB, Cation efflux system protein    + + + + + - - - + + + + + + + + + + + + + + + - - - - - 

30 
Csak377_
00034 cusF, Cation efflux system protein    + + + + + - - - + + + + + + + + + + + + + + + - - - - - 

31 
Csak377_
00035 cusC, Cation efflux system protein    + + + + + - - - + + + + + + + + + + + + + + + - - - - - 

32 
Csak377_
00037 cusS__2, Sensor kinase   + + + + + - - - + + + + + + + + + + + + + + + - - - - - 

33 
Csak377_
00038 silE_2, Silver-binding protein   + + + + + - - - + + + + + + + + + + + + + + + - - - - - 

34 
Csak377_
00039 Hypothetical protein   + + + + + - - - + + + + + + + + + + + + + + + - - - - - 

35 
Csak377_
00040 Hypothetical protein   + - + - + - - - + + - - - + + + + + - - - - - - - - - - 

36 
Csak377_
00041 Putative restriction endonuclease   + - + - + - - - + + - + + + + + + + + + - - + - - - - - 

37 
Csak377_
00043 Hypothetical protein   + - + - + - - - + + - - - + - + + - - - - - - - - - - - 

38 
Csak377_
00044 YtaF, putative sporulation protein   + - + - + - - - + + - - - + - + + - - - - - - - - - - - 

39 
Csak377_
00045 Hypothetical protein   + - + - + - - - + + - - - + - + + - - - - - - - - - - - 

40 
Csak377_
00046 Hypothetical protein   + - + - + - - - + + - - - + - + + - - - - - - - - - - - 

41 
Csak377_
00047 pifC, Transcriptional repressor   + - + - + - - - + + - + + + + + + + + + - + + - + - - - 

42 
Csak377_
00048 Hypothetical protein   + - + - + - - - + + - - - + + + + - - - - - - - - - - - 

43 
Csak377_
00049 Hypothetical protein   + - + - + - - - + + - + - + + + + + + + - - + - + - - - 

44 
Csak377_
00051 repB_1, RepFIB replication protein A   + - + - + - - - + + - + - + + + + + + - - - + - + - - + 

45 
Csak377_
00052 ParG, C protein motif   + - + - + - - - + + - + - + + + + + + - - - - - + - - + 

46 
Csak377_
00053 VirC1 protein    + - + - + - - - + + + + - + + + + + + + - - + - + - - + 

47 
Csak377_
00054 Hypothetical protein   + + - - - - - - + - - - - + - - + + - + - - - - - - - - 
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48 
Csak377_
00100 

mbeC_1, Conjugative accessory 
protein   + + - - - - - - + - - - - + - - + + - + - - - - - - - - 

49 
Csak377_
00101 

mbeC_2, Conjugative accessory 
protein   + + - - - - - - + - - - - + - - + + - + - - - - - - - - 

50 
Csak377_
00102 mbeA_1, DNA relaxase   + + - - - - - - + - - - - + - - + + - + - - - - - - - - 

51 
Csak377_
00103 Hypothetical protein   - + - - - - - - + - - - - - - - + + - + - - - - - - - - 

52 
Csak377_
00104 Hypothetical protein   + + - - - + + + + - - - + + - + + + - + - - - - - - - - 

53 
Csak377_
00105 

mbeC_3, Conjugative accessory 
protein   + + - - - + - - + - - - - + - - + + - + - - - - - - - - 

54 
Csak377_
00116 Hypothetical protein   + + - - - + - - + - - - - + - - + + - + - - - - - - - - 

55 
Csak377_
00117 Transposase   + + - + - + + + + - + + + + + + + + - + - - - - + - - + 

56 
Csak377_
00118 Hypothetical protein   - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

57 
Csak377_
00121 Transposase   - - + - - - - - - - - - - - - - - - - - - - - - - - - - 

58 
Csak377_
00122 Integrase   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

59 
Csak377_
00123 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

60 
Csak377_
00124 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

61 
Csak377_
00125 

cobT, Aerobic cobaltochelatase 
subunit    + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

62 
Csak377_
00126 cobS, Aerobic cobaltochelatase subunit    + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

63 
Csak377_
00127 

dnaE_1, DNA polymerase III subunit 
alpha   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

64 
Csak377_
00128 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

65 
Csak377_
00129 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

66 
Csak377_
00130 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

67 
Csak377_
00131 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

68 
Csak377_
00132 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

69 
Csak377_
00133 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

70 
Csak377_
00134 

polA_1, DNA polymerase thermostable 
protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

71 
Csak377_
00135 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

72 
Csak377_
00136 recA_1, Recombinase A   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

73 
Csak377_
00137 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

74 
Csak377_
00138 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

75 
Csak377_
00139 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

76 
Csak377_
00140 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

77 
Csak377_
00141 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 



  Appendices (Table S4) 

344 
 

78 
Csak377_
00142 repB_2, RepFIB replication protein A   + + - - - - + + - - - - - - - - + - - - - - - - + + + - 

79 
Csak377_
00143 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

80 
Csak377_
00144 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

81 
Csak377_
00145 

Calcineurin-like phosphoesterase 
superfamily domain protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

82 
Csak377_
00146 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

83 
Csak377_
00147 

Putative DNA double-strand break 
repair Rad50 ATPase   + + - - - - - - - - - - - - - - + - - - - + - - - - - - 

84 
Csak377_
00148 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

85 
Csak377_
00149 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

86 
Csak377_
00152 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

87 
Csak377_
00153 thyA_1, Thymidylate synthase   + + - - - - - - - - - - - - - - - - - - + + + + - - - + 

88 
Csak377_
00154 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

89 
Csak377_
00155 dfrA, Dihydrofolate reductase   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

90 
Csak377_
00156 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

91 
Csak377_
00157 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

92 
Csak377_
00158 

dnaQ_1, DNA polymerase III subunit 
epsilon   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

93 
Csak377_
00159 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

94 
Csak377_
00160 Hypothetical protein   + + - - - - - - - + - - - - - - - - - - - - - - - - - - 

95 
Csak377_
00161 Hypothetical protein   + + - - - - - - - + - - - - - - - - - - - - - - - - - - 

96 
Csak377_
00162 phage N-6-adenine-methyltransferase   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

97 
Csak377_
00163 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

98 
Csak377_
00164 rnhA_1, Ribonuclease HI   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

99 
Csak377_
00165 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

100 
Csak377_
00166 Tellurite resistance protein   + + - - - - - - - - - - - - - - - + - + - - - - + - - - 

101 
Csak377_
00167 Hypothetical protein   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

102 
Csak377_
00168 Hypothetical protein   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

103 
Csak377_
00169 

hsdR_1, Type 1 restriction enzyme 
EcoR124II R protein    + + - - - + - - - - - - + - - - - - - - - - - - - - - - 

104 
Csak377_
00170 

Type I restriction enzyme specificity 
protein MPN_089   + + - - - + - - - - - - + - - - - - - - - - - - - - - - 

105 
Csak377_
00171 

Putative type I restriction enzymeP M 
protein   + + - - - + - - - - - - + - - - - - - - - - - - - - - - 

106 
Csak377_
00172 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

107 
Csak377_
00173 Hypothetical protein   - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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108 
Csak377_
00174 Hypothetical protein   - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

109 
Csak377_
00176 Hypothetical protein   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

110 
Csak377_
00177 Hypothetical protein   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

111 
Csak377_
00178 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

112 
Csak377_
00179 Hypothetical protein   - + - - - - - - - - - - - - - - - - - - - - - - - - - - 

113 
Csak377_
00180 Hypothetical protein   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

114 
Csak377_
00181 Hypothetical protein   + + - - - - - - - - - - - - - - - + + + - - - - - - - - 

115 
Csak377_
00182 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

116 
Csak377_
00183 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

117 
Csak377_
00184 Hypothetical protein   - + - - - - - - - - - - - - - - - - - - - - - - - - - - 

118 
Csak377_
00185 Repressor of phase-1 flagellin protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

119 
Csak377_
00186 Hypothetical protein   - + - - - - - - - - - - - - - - - - - - - - - - - - - - 

120 
Csak377_
00187 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

121 
Csak377_
00188 uvrB_1, Excinuclease ABC subunit B,    + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

122 
Csak377_
00189 

parB, putativechromosome-
partitioning protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

123 
Csak377_
00190 

ParB/RepB/Spo0J family partition 
protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

124 
Csak377_
00191 

hlyB, Alpha-hemolysin 
translocation+ATP-binding+protein 
HlyB   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

125 
Csak377_
00192 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

126 
Csak377_
00193 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

127 
Csak377_
00194 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

128 
Csak377_
00195 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

129 
Csak377_
00196 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

130 
Csak377_
00197 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

131 
Csak377_
00198 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

132 
Csak377_
00199 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

133 
Csak377_
00200 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

134 
Csak377_
00201 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

135 
Csak377_
00202 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

136 
Csak377_
00203 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 
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137 
Csak377_
00204 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

138 
Csak377_
00205 Bacterial Ig-like domain   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

139 
Csak377_
00206 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

140 
Csak377_
00207 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

141 
Csak377_
00208 Phage tape measure domain protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

142 
Csak377_
00209 Phage related protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

143 
Csak377_
00210 Phage minor tail protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

144 
Csak377_
00211 NlpC/P60 family protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

145 
Csak377_
00212 Phage-related protein tail component   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

146 
Csak377_
00213 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

147 
Csak377_
00214 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

148 
Csak377_
00216 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - + + - - - - 

149 
Csak377_
00217 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

150 
Csak377_
00218 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

151 
Csak377_
00219 Hypothetical protein   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

152 
Csak377_
00220 Hypothetical protein   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

153 
Csak377_
00221 

Flp pilus assembly protein 
2C+ATPase+CpaE   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

154 
Csak377_
00222 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

155 
Csak377_
00223 Hypothetical protein   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

156 
Csak377_
00224 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

157 
Csak377_
00225 Replicative DNA helicase   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

158 
Csak377_
00226 DNA primase   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

159 
Csak377_
00227 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

160 
Csak377_
00228 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

161 
Csak377_
00229 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

162 
Csak377_
00230 DNA ligase   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

163 
Csak377_
00231 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

164 
Csak377_
00232 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

165 
Csak377_
00233 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

166 
Csak377_
00234 Hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 
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167 
Csak377_
00236 Hypothetical protein   - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

168 
Csak377_
00237 Hypothetical protein   + + - + - + + + + - + + + + + + + + - - - - + - + - - + 

169 
Csak377_
00238 rop, RNA one modulator   - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

170 
Csak377_
00239 Hypothetical protein   - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

171 
Csak377_
00240 Hypothetical protein   - - - - - - + + - - - - - - - - - + + - - - + - - - - - 

172 
Csak377_
00241  XerD, Site-specific recombinase   - - - - - - + + - - - - - - - - - + + - - - - - - - - - 

173 
Csak377_
00243 

Uncharacterized protein conserved in 
bacteria   + - + - + + + + + + - + + + + + + - - - + + + - + + - - 

174 
Csak377_
00325 Integrase   + + - + - + + + - - + + + - + + + + - - - - + - + - - + 

175 
Csak377_
00327 Hypothetical protein   + - - - + - - - + - - - + - - - + + - - + + - - - - - + 

176 
Csak377_
00330 

yjiR_1, Putative HTH-
type+transcriptional regulator yjiR   + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

177 
Csak377_
00332 dapA_1, Dihydrodipicolinate synthase   + + - + + + + + + + - - + + + + + - + + + + + - + + + + 

178 
Csak377_
00333 

aseR, HTH-type transcriptional 
repressor AseR   + + - + + + + + + + - - + + + + + - + + + + - - + + + + 

179 
Csak377_
00334 arsB, Arsenic efflux pump protein   + + + + + + + + + + + + + + + + + + + + + + + - + + + + 

180 
Csak377_
00335 arsC, Arsenate reductase   + + + + + + + + + + + + + + + + + + + + + + + - + + + + 

181 
Csak377_
00336 

trkG_1, Trk system potassium uptake 
protein trkG   + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

182 
Csak377_
00337 Hypothetical protein   + + - + + + + + + + + - + + + + + - - - + + + - + + + + 

183 
Csak377_
00339 Hypothetical protein   + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

184 
Csak377_
00341 Hypothetical protein   + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

185 
Csak377_
00342 

Tfp pilus assembly protein, major pilin 
PilA   + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

186 
Csak377_
00343 mngR_1, Hypothetical protein    + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

187 
Csak377_
00344 

rspA_1, Starvation-sensing protein 
rspA   + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

188 
Csak377_
00346 Arylesterase   + + - + + + + + + + + - + + + + + + + + + + + - + + + + 

189 
Csak377_
00347 Hypothetical protein   + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

190 
Csak377_
00348 ACT domain-containing protein   + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

191 
Csak377_
00349 yqjZ, Hypothetical protein    + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

192 
Csak377_
00350 Putative acetyltransferase   + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

193 
Csak377_
00351 yycE, Hypothetical protein    + + - + + + + + + + + - + + + + + - + - + + + - + + + + 

194 
Csak377_
00354 

Blue light and temperature-regulated 
antirepressor YcgF protein   + + + + + + + + + + + + + + + + + - + - + + + + + + + + 

195 
Csak377_
00355 Hypothetical protein   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

196 
Csak377_
00356 Hypothetical protein   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 
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197 
Csak377_
00357 

ariR_1, Putative two-component-
system connector protein AriR protein   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

198 
Csak377_
00359 Hypothetical protein   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

199 
Csak377_
00361 Hypothetical protein   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

200 
Csak377_
00362 Cyn operon transcriptional activator   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

201 
Csak377_
00363 

molybdate ABC transporter 
periplasmic molybdate-binding protein   + + + + + + + + + + + + + + + + + - + + + + + + + + + + 

202 
Csak377_
00365 

fadR_1, Fatty acid metabolism 
regulator protein   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

203 
Csak377_
00366 Hypothetical protein   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

204 
Csak377_
00367 

yjaB_1, putative N-acetyltransferase 
YjaB   + + - + + + + + + + + + + + + + + - + - - + + - + + + + 

205 
Csak377_
00368 Hypothetical protein   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

206 
Csak377_
00369 Hypothetical protein   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

207 
Csak377_
00370 mexB, Multidrug-efflux+transporter   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

208 
Csak377_
00371 

bepF, Efflux pump periplasmic linker 
BepF protein   + + - + + + + + + + + + + + + + + - + - + + + - + - + + 

209 
Csak377_
00374 MltA-interacting protein MipA protein   + + - + + + + + + + + + + + + + + - + - + + + - + - + + 

210 
Csak377_
00375 

Antimicrobial resistance+protein Mig-
14   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

211 
Csak377_
00376 Glyoxalase-like domain protein   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

212 
Csak377_
00377 

Bifunctional biotin-[acetyl-CoA-
carboxylase] synthetase/biotin+operon 
repressor   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

213 
Csak377_
00378 Hypothetical protein   + + - + + + + + + + + + + + + + + - + - + + + - - - + + 

214 
Csak377_
00379 Hypothetical protein   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

215 
Csak377_
00380 pla, Coagulase/fibrinolysin precursor   + + - + + + + + + + + + + + + + + - + - + + + - + + + + 

216 
Csak377_
00381 MdtL, multidrug efflux system protein    + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

217 
Csak377_
00382 Hypothetical protein   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

218 
Csak377_
00383 Hypothetical protein   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

219 
Csak377_
00384 Hypothetical protein   + + - + + + + + + + + + + + + + + + + + + + - - + + + + 

220 
Csak377_
00385 cobC_1, Alpha-ribazole phosphatase   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

221 
Csak377_
00386 repB_3 , RepFIB replication protein A   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

222 
Csak377_
00387 hypothetical protein   + + - + + + + + + + - + + + + + + + + - + + - - + + + + 

223 
Csak377_
00388 parA, Plasmid partition protein A   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

224 
Csak377_
00389 sopB, Plasmid partition protein B   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

225 
Csak377_
00390 

iutA , Iron-regulated outer membrane 
proteins   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 
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226 
Csak377_
00391 iucD , L-lysine 6-monooxygenase   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

227 
Csak377_
00392 iucC, Aerobactin synthase IucC   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

228 
Csak377_
00393 

iucB, N(6)-hydroxylysine O-
acetyltransferase   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

229 
Csak377_
00394 iucA, Aerobactin synthase IucA   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

230 
Csak377_
00396 

viuB, Vibriobactin utilisation protein 
ViuB   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

231 
Csak377_
00398 

hipA, Serine/threonine-protein kinase 
HipA   + + - + + + + + + + + + + + + + + + + + + + + + + + + + 

232 
Csak377_
00399 

treZ, Malto-oligosyltrehalose 
trehalohydrolase   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

233 
Csak377_
00400 treY, Maltooligosyl trehalose synthase   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

234 
Csak377_
00403 hypothetical protein   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

235 
Csak377_
00406 sdaC_1, Serine transporter   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

236 
Csak377_
00409 hypothetical protein   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

237 
Csak377_
00410 hypothetical protein   + + - + + + + + + + + + + + + + + + + + + + - - + + + + 

238 
Csak377_
00411 gst, Glutathione S-transferase GST-4.5   + + - + + + + + + + + + + + + + + + + + + + - - + + + + 

239 
Csak377_
00412 guaD, Guanine deaminase   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

240 
Csak377_
00413 

Metallo-beta-lactamase superfamily 
protein   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

241 
Csak377_
00415 hypothetical protein   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

242 
Csak377_
00416 hypothetical protein   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

243 
Csak377_
00417 csgA, C signal   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

244 
Csak377_
00418 ATP-dependent helicase, HepA   + + - + + + + + + + + + + + + + + + + + + + + - - + - - 

245 
Csak377_
00419 hypothetical protein   + + - + + + + + + + + + + + + + + + + + + + + - - + - - 

246 
Csak377_
00420 hypothetical protein   + + - + + + + + + + + + + + + + + + + + + + + - - + - - 

247 
Csak377_
00421 xerC_2, Tyrosine recombinase XerC   + + - + + + + + + + - + + + + + + + + + + + + - + + + + 

248 
Csak377_
00423 

Corrinoid ABC transporter substrate-
binding protein   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

249 
Csak377_
00426 hypothetical protein   + + - + + + + + + + + + + + + + + + + + + + + - + + + + 

250 
Csak377_
00427 c  SMI1 / KNR4 family protein   + + - + + + + + + + + - + + + + + + + + + + + - + + + + 

251 
Csak377_
00428 hypothetical protein   + + - + + + + + + + + - + + + + + + + + + + + - + + + + 

252 
Csak377_
00429 hypothetical protein   + + - + + + + + + + + - + + + + + + + + + + + - + + + + 

253 
Csak377_
00430 hypothetical protein   + + - + + + + + + + + - + + + + + + + + + + + - + + + + 

254 
Csak377_
00432 

dsbG, Thiol:disulfide interchange 
protein DsbG precursor   + + - + + + + + + + + - + + + + + + + + + + + - + + + + 

255 
Csak377_
00433 hypothetical protein   + + - + - + - - - - + - + - + - + + + + + + + - + + + + 
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256 
Csak377_
00434 hypothetical protein   + + - + - + - - - - + - + - + - + + + + - + + - + + + - 

257 
Csak377_
00470 intA_1, Prophage CP4-57 integrase   - + - + - - - - - - - + + - - - + - - - + + + - - - - - 

258 
Csak377_
00471 Transposase   + + + + + + - - + + - + - + - + + + - - - - - - - - - - 

259 
Csak377_
00472 hypothetical protein   - + - + - - - - - + - + - - - - + - - - - - - - - - - - 

260 
Csak377_
00473 putative transcriptional regulator   - + - + - - - - - + - + + - - - + - - - - - - - - - - - 

261 
Csak377_
00474 hypothetical protein   - + - + - - - - - + - + - - - - + - - - - - - - - - - - 

262 
Csak377_
00475 hypothetical protein   - + - + - - - - - + - + - - - - + - - - - - - - - - - - 

263 
Csak377_
00476 hypothetical protein   - + - + - - - - - + - + - - - - + - - - - - - - - - - - 

264 
Csak377_
00477 hypothetical protein   - + - + - - - - - + - + - - - - + - - - - - - - - - - - 

265 
Csak377_
00478 hypothetical protein   - + - + - - - - - + - + - - - - + - - - - - - - - - - - 

266 
Csak377_
00479 hypothetical protein   - + - + - - - - - + - + - - - - + - - - - - - - - - - - 

267 
Csak377_
00480 Recombination protein F   - - - + - - - - - + - - - - - - + - - - - - - - - - - - 

268 
Csak377_
00660     

celllulose biosynthesis operon protein 
BcsF/YhjT   + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

269 
Csak377_
00661 cellulose biosynthesis protein BcsE   + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

270 
Csak377_
00662 hypothetical protein   + + + + + + + + + + + + + + - + + + + - + + + + + + + + 

271 
Csak377_
00663 cell division protein   + + + + + + + + + + + + + + - + + + + + + + + + + + + + 

272 
Csak377_
00665 

bcsB, Cellulose synthase regulatory 
subunit   + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

273 
Csak377_
00666 bcsZ, Endoglucanase precursor   + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

274 
Csak377_
00821     Microvirus H protein (pilot protein)   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

275 
Csak377_
00822 

Bacteriophage replication gene A 
protein (GPA)   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

276 
Csak377_
00823 Bacteriophage scaffolding protein D   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

277 
Csak377_
00824 Capsid protein (F protein)   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

278 
Csak377_
00825 Major spike protein (G protein)   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

279 
Csak377_
00910     hypothetical protein   + + + - + + + + + + + + + + + + + - - - + + + - - + + - 

280 
Csak377_
00911 hypothetical protein   + - - - - + - - - - - + + - + - + - - - + + - - - + - - 

281 
Csak377_
00912 hypothetical protein   + - + - + + + + + + - + + + + + + - - - + + - - - + - - 

282 
Csak377_
00913 hypothetical protein, dltB   + - + - + + + + + + - + + + + + + - - - + + - - - + - - 

283 
Csak377_
00917     hypothetical protein   - - + - + + + + + + - + + + + + + - - - + + - - + + - - 

284 
Csak377_
00918     hypothetical protein   - - + - + + + + + + - + + + + + + - - - + + - - + + - - 

285 
Csak377_
00977 

Major MR/P fimbria protein precursor, 
mrpA   + + + + + + + + + + + + + + + + + + + - - - + + - - + - 
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286 
Csak377_
00978 Putative minor fimbrial subunit StfF   + + + + + + + + + + + + + + + + + - + - - - + + - - + - 

287 
Csak377_
00979 Putative fimbrial subunit SteE   + + + + + + + + + + + + + + + + + + + - - - + + - - + - 

288 
Csak377_
00980 

PAP fimbrial minor pilin protein 
precursor, papH_1             + + + + + + + + + + + + + + + + + + + + - - + + + + + - 

289 
Csak377_
00981 

Chaperone protein papD precursor, 
papD   + + + + + + + + + + + + + + + + + + + + - - + + + + + - 

290 
Csak377_
00982 

Outer membrane usher protein papC 
precursor, papC_1   + + + + + + + + + + + + + + + + + + + + - - + + + + + - 

291 
Csak377_
00983 

PAP fimbrial minor pilin protein 
precursor, papH_2   + + + + + + + + + + + + + + + + + + + + - - + + + + + - 

292 
Csak377_
00984 Fimbria A protein precursor, smfA              + + + + + + + + + + + + + + + + + + + + - - + + + + + - 

293 
Csak377_
01070 Antitermination protein   - - - - + - - - - - - - + - - - - + - + - - - + - - - - 

294 
Csak377_
01072 KilA-N domain protein   - - - - + - - - - - - - + - - - - - - - - - - + + - - - 

295 
Csak377_
01076 hypothetical protein   + - + - + - + + - - - - + + - + + + + + + + - + + - + + 

296 
Csak377_
01081    hypothetical protein   - - - - + - - - - - - - + - - - - + + - + + - - - - - - 

297 
Csak377_
01082 hypothetical protein   - - - - + - - - - - - _ + - - - - + + - + + - - - - - - 

298 
Csak377_
01085    hypothetical protein   + + + + + + - - + + + + + + + + - + + + + + + - + - - + 

299 
Csak377_
01086 hypothetical protein   - - + - + - + + - - - - + + - + - + + - + + - - + - - + 

300 
Csak377_
01089    hypothetical protein   - - - - + - - - - - - - + - - - - - - - - - - - - - - - 

301 
Csak377_
01090 hypothetical protein   - - - - + - - - - - - - + - - - - - - - - - - - - - - - 

302 
Csak377_
01091 

Anaerobic benzoate catabolism 
transcriptional regulator   - - - - + - - - - - - - + - - - - - - - - - - - - - - - 

303 
Csak377_
01212 Transposase   + + + + + + + + + + + + + + + + + + - + + + + - - - - - 

304 
Csak377_
01213 Lactose operon repressor, lacI_1             + + + + + - + + + - + + + + + + + + - + - - + - - - - - 

305 
Csak377_
01216 IS1 transposase   + + + + + - + + + - + + + + + + + + + + - - + - - - - - 

306 
Csak377_
01217 Transposase   + + + + + + - - + + - + + + + + + + - - - - - - - - - - 

307 
Csak377_
01218 Putative transcriptional regulator   + + + + + + - - + + + + + + + + + + - - - - + - - - - - 

308 
Csak377_
01219 Spore protein SP21, hspA                   + + + + + + - - + + + + + + + + + + - - - - + - - - - - 

309 
Csak377_
01221 hypothetical protein   + + + + + + - - + + - + + + + + + + - - - - + - - - - - 

310 
Csak377_
01222 Putative membrane protein   + + + + + + - - + + + + + + + + + + - - - - + - - - - - 

311 
Csak377_
01223 hypothetical protein, htpX_1             + + + + + + - - + + + + + + + + + + - - - - + - - - - - 

312 
Csak377_
01224 hypothetical protein   + - - + - - - - - - + - + - + - + + - - - - + - - - - - 

313 
Csak377_
01225 Integrase core domain protein   + - - + - - - - - - + - + - + - + + - - - - + - - - - - 

314 
Csak377_
01316 SMI1 / KNR4 family protein   - + + + + + + + + + + - + + + + + - - - - - + - - - - - 

315 
Csak377_
01318 SMI1 / KNR4 family protein   + + + + + + + + + + - - + + + + + - - - - - - - + + - + 
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316 
Csak377_
01319 hypothetical protein   + + + + + + + + + + - - + + + + + - - - - - - - + + - + 

317 
Csak377_
01320 hypothetical protein   + + + + + + + + + + - - + + + + + - - - - - - - - + - + 

318 
Csak377_
01324 hypothetical protein   + + + + + + + + + + - - + + + + + - - + - - - - - - + - 

319 
Csak377_
01330    hypothetical protein   + + + + + + - - + + + + + + + + + + + + + + + - + + + + 

320 
Csak377_
01331 hypothetical protein   + + + + + + - - + + - + + + + + + - - - - - - - + - + - 

321 
Csak377_
01332 hypothetical protein   + + + + + + - - + + - + + + + + + + + - - - - - + - + - 

322 
Csak377_
01333 hypothetical protein   + + + + + + - - + + + + + + + + + + + + - - - - + + + - 

323 
Csak377_
01334 hypothetical protein   + + + + + + - - + + - + + + + + + + + + - - - - + + - - 

324 
Csak377_
01335 hypothetical protein   + + + + + + - - + + + + + + + + + - - - - - - - - - - - 

325 
Csak377_
01337 

Ribulose-5-phosphate 4-epimerase 
and aldolases   + + + + + + - - + + + + + + + + + + + + + + + - + + + + 

326 
Csak377_
01338 hypothetical protein   + + + + + + - - + + + + + + + + + + + + + + - - + + + + 

327 
Csak377_
01339 hypothetical protein   + + + + + + - - + + + + + + + + + + + + + + - - + + + + 

328 
Csak377_
01352 hypothetical protein   + + + + + + + + + + + + + + + + + - - - + + - - + + + + 

329 
Csak377_
01353 hypothetical protein   + + + + + + + + + + + + + + + + + - - - + + - - + + + + 

330 
Csak377_
01357    hypothetical protein   + + + + + + + + + + + + + + + + + - - - - + + - - - - - 

331 
Csak377_
01397 Prophage CP4-57 integrase, intA_2    + + + + + + + + + + + + + + - + + - - - - - - - - - + - 

332 
Csak377_
01399 hypothetical protein   + - + + + + + + + + + + + + - + + - - - - - - - - - - - 

333 
Csak377_
01400 hypothetical protein   + - + + + + + + + + + + + + - + + - - - - - - - - - + - 

334 
Csak377_
01401 hypothetical protein   + - + + + + + + + + + + + + - + + - - - - - - - - - + - 

335 
Csak377_
01402 hypothetical protein   + + + + + + + + + + + + + + + + + - - - + + - + - + + - 

336 
Csak377_
01403 hypothetical protein   + + + + + + + + + + + + + + + + + - - - - - + - - + + - 

337 
Csak377_
01574 hypothetical protein   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

338 
Csak377_
01575 hypothetical protein   + + + - + - - - + + - - + + - + - - - - - - - - - - - - 

339 
Csak377_
01576 hypothetical protein   + + + - + - - - + + - - + + - + - - - - - - - - - - - - 

340 
Csak377_
01577 hypothetical protein   + + - - - - - - - - - - - - - - - - - - - - - - - - - - 

341 
Csak377_
01578 hypothetical protein   + - - - - + - - - - - - - - - - - - - - - - - - + - - - 

342 
Csak377_
01579 hypothetical protein   + - - - - + - - - - - - - - - - - - - - - - - - - - - - 

343 
Csak377_
01580 hypothetical protein   + - - - - + - - - - - - - - - - - - - - - - - - - - - - 

344 
Csak377_
01581 hypothetical protein   + - - - - + - - - - - - - - - - - - - - - - - - + - - - 

345 
Csak377_
01582 hypothetical protein   + - - - - + - - - - - - - - - - - - - - - - - - - - - - 
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346 
Csak377_
01583 hypothetical protein   + - + - + - - - + + - - + + - + - - - - - - - - - - - - 

347 
Csak377_
01584 hypothetical protein   + + + - + - - - + + - - + + - + - - - - - - - - - - - - 

348 
Csak377_
01585 hypothetical protein   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

349 
Csak377_
01586 hypothetical protein   + - - - - - - - - - - - - - - - - - - - - - - - - - - - 

350 
Csak377_
01587 Site-specific recombinase XerD   + + + + + - - - + + + - + + + + + - - - - - + - - - - - 

351 
Csak377_
01727    ATP-dependent helicase HepA   + + + + + + + + + + + + + + - + + - - - + + + + - + - - 

352 
Csak377_
01728 hypothetical protein   + + + + + + + + + + + + + + - + + - - - + + + + - + - - 

353 
Csak377_
01729 

Type-1 restriction enzyme R protein, 
hsdR_2             + + + + + + + + + + + + + + - + + - - - + + + - - - - - 

354 
Csak377_
01730 Putative toxin YpjF, ypjF               + + + - + + - - + + - + + + + + + + - + - - + - - - - - 

355 
Csak377_
01731 Antitoxin YeeU   - + + - + - - - - - - + - + - + + - - - - - - - - - - - 

356 
Csak377_
01732 hypothetical protein   - + + - + + - - + + - + + + + + + + - + - - + - - - - - 

357 
Csak377_
01733 hypothetical protein, ykfG_1   + + + - + - - - - - - + + + + + + - - - - - - - - - - - 

358 
Csak377_
01734 hypothetical protein   + + + + + + - - + + + + + + + + + + - + - - + - - - - - 

359 
Csak377_
01735 hypothetical protein   - + - - - - - - - - - + - - - - + - - - - - - - - - - - 

360 
Csak377_
01736 hypothetical protein   - - - - - - - - - - - - - - - - + - - - - - - - - - - - 

361 
Csak377_
01737 Retron-type reverse transcriptase   + + + - + + + + + + - + + + + + + + + - - - - - + - - - 

362 
Csak377_
01740 hypothetical protein   - - - - + - - - - - - - + - - - - - - - - - - - - - - - 

363 
Csak377_
01909    hypothetical protein   + + + + + + + + + + - + + + + + + - - - - - - - - - - - 

364 
Csak377_
02398   hypothetical protein   + - - - - + + - - - - + - - + - + - - - - - - - - - - + 

365 
Csak377_
02399 hypothetical protein   + - - - - + + - - - - + - - + - + - - - - - - - - - - + 

366 
Csak377_
02400 hypothetical protein   + - - - - + + - - - - + - - + - + - - - - - - - - - - + 

367 
Csak377_
02402 Leucine efflux protein, leuE               + - - + - + - - - - - + - - + - + - - - - - - - - - - + 

368 
Csak377_
02403 hypothetical protein   + + - - - + - - - - - + - - + - + + - + - - - - - + - + 

369 
Csak377_
02405 Site-specific recombinase XerD   + + + - + + + + + + + + + + + + + + - - + + - - - - - + 

370 
Csak377_
02475 hypothetical protein   + + + + + + + + + + + + + + + + + + - - - - + + + + + + 

371 
Csak377_
02476 hypothetical protein   + + + + + + + + + + + + + + + + + + - - - - + + + + + + 

372 
Csak377_
02635    hypothetical protein   + + + + + + + + + + + + + + + + + + + + - - + - - - - - 

373 
Csak377_
02652    hypothetical protein   + + - + + + + + + + - - + + + + + - - - - - - - - - - - 

374 
Csak377_
02653 hypothetical protein   + + - + + + + + + + + - + + + + + - - - - - - - - - - - 

375 
CSAK377
_02657 hypothetical protein   + + + + + + + + + + + + + + + + + - - - - - - - - - - - 
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376 
Csak377_
02668 hypothetical protein, fimH                   + + + + + + + + + + + + + + + + + + + + - - + + + - + - 

377 
Csak377_
02976    Phenylacetate-CoA ligase   + + + + + + + + + + + + + + + + + - - - + + - + + + + + 

378 
Csak377_
02977 Phenyloxazoline synthase MbtB, mbtB   + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

379 
Csak377_
02978 

 1-deoxy-D-xylulose-5-phosphate 
synthase, dxs_2,   + + + + + + + + + + + + + + + + + - - - + + - - + + + + 

380 
Csak377_
02979 Transketolase 2, tktB_1             + + + + + + + + + + + + + + + + + - - - + + - + + + + + 

381 
Csak377_
02980 

3-oxoacyl-[acyl-carrier-protein] 
reductase FabG, fabG_5            + + + + + + + + + + + + + + + + + - - - + + - - + + + + 

382 
Csak377_
02982 hypothetical protein   + + + + + + + + + + + + + + + + + - - - + + - - + + + + 

383 
Csak377_
03006    hypothetical protein   + - + + + + + + + + - + + + - + + - - - - - - - - - - - 

384 
Csak377_
03007 hypothetical protein   + + + + + + + + + + - + + + - + + - - - - - - - - - - - 

385 
Csak377_
03008 hypothetical protein   + + + + + + + + + + - + + + - + + - - - - - - - - - - - 

386 
Csak377_
03009 Retron-type reverse transcriptase   - - - - - - - - - - - - - - - - + - - - - - - - - - - - 

387 
Csak377_
03011 hypothetical protein   - - - - - - - - - - - - - - - - + - - - - - - - - - - - 

388 
Csak377_
03205    Acyltransferase family protein   - + + + + + + + + + + + + + + + + - - - - - - - - - - + 

389 
Csak377_
03206 Toxin YkfI, ykfI               + + + - + + - - + + - + + + + + + + - + - - + - - - - - 

390 
Csak377_
03207 Putative antitoxin YfjZ, yfjZ               + + + - + + - - + + - + + + + + + + - + - - + - - - - - 

391 
Csak377_
03208 hypothetical protein   + + + - + + - - + + - + + + + + + + - + - - + - - - - - 

392 
Csak377_
03209 hypothetical protein, ykfG_2             - + + - + + - - + + - + + + + + + + - + - - - - - - - - 

393 
Csak377_
03210 Antirestriction protein   - + + - + + - - + + - + + + + + + + - + - - - - - - - - 

394 
Csak377_
03211 hypothetical protein, ykfF               - + + - + + - - + + - + + + + + + + - + - - + - - - - - 

395 
Csak377_
03212 hypothetical protein   + + + + + + - - + + + + + + + + + + - + - - + - - - - - 

396 
Csak377_
03213 hypothetical protein   - - - - - - - - - - - - + - + - + + - + - - + - - - - - 

397 
Csak377_
03214 hypothetical protein   - - - - - - - - - - - - + - + - + + - - - - + - - - - - 

398 
Csak377_
03215 hypothetical protein   - + + - + + - - + + - + + + + + + + - + - - - - - - - - 

399 
Csak377_
03216 GTPase Era, era_2              - + + - + + - - + + - + + + - + + + - + - - + - - - - - 

400 
Csak377_
03217 hypothetical protein   - - - - - + - - - - - - + - - - + + - + - - + - - - - - 

401 
Csak377_
03218 hypothetical protein   - - - - - + - - - - - - + - - - + + - + - - + - - - - - 

402 
Csak377_
03412    hypothetical protein   + + + + + + + + + + + + + + + + + - - - - - - + + - + - 

403 
Csak377_
03413 hypothetical protein   + + + + + + + + + + + + + + + + + - - - - - + + + - + - 

404 
Csak377_
03414 

Phage-related lysozyme 
(muraminidase)   + + + + + + + + + + + + + + + + + - - - - - + + + - + - 

405 
Csak377_
03415 hypothetical protein   + + + + + + + + + + - + + + + + + - - - - - + + + - + - 
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406 
Csak377_
03416 hypothetical protein   + + + + + + + + + + + + + + + + + - - - - - + + + - + - 

407 
Csak377_
03417  hypothetical protein   + + + + + + + + + + + + + + + + + - - - - - + + + - + - 

408 
Csak377_
03418 hypothetical protein   + + + + + + + + + + + + + + + + + - - - - - + + + - + - 

409 
Csak377_
03419 

Putative HTH-type transcriptional 
regulator yhjB, yhjB   + + + + + + + + + + + + + + + + + - - - - - + + + - + - 

410 
Csak377_
03428    hypothetical protein   + + + - + + + + + + - + + + - + + + - - - - - - - - + - 

411 
Csak377_
03429 hypothetical protein   + + - - + + + + + + - + + + - + + + - - + + + + - + + + 

412 
Csak377_
03431    ATP-dependent helicase   + + + + + + + + + + + + + + - + + - - - - + + - - - + - 

413 
Csak377_
03432 hypothetical protein   + + + + + + + + + + + + + + + + + - - - - - + - + - + - 

414 
Csak377_
03526 hypothetical protein   + + + + + + + + + + + + + + + + + - - - - - - - - - - - 

415 
Csak377_
03841 

dTDP-4-dehydrorhamnose reductase, 
rfbD              + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

416 
Csak377_
03843 

dTDP-4-dehydrorhamnose 3,5-
epimerase, rfbC               + + + + + + + + + + + + + - + + + - - - - - - + - - + + 

417 
Csak377_
03844 Putative O-antigen transporter, rfbX               + + + + + + + + + + + + + - + + + - - - - - - - - - + + 

418 
Csak377_
03845 Rhamnosyltransferase   + + + + + + + + + + + + + - + + + - - - - - - - - - + + 

419 
Csak377_
03846 hypothetical protein   + + + + + + + + + + + + + - + + + - - - - - - - - - + + 

420 
Csak377_
03847 hypothetical protein   + + + + + + + + + + + + + - + + + - - - - - - - - - + + 

421 
Csak377_
03848 rhamnosyltransferase   + + + + + + + + + + + + + - + + + - - - - - - - - - + + 

422 
Csak377_
03849 Glycosyl transferases group 1   + + + + + + + + + + + + + - + + + - - - - - - - - - + + 

423 
Csak377_
03850 

dTDP-Rha:alpha-D-GlcNAc-
pyrophosphate polyprenol, alpha-3-L-
rhamnosyltransferase, wbbL              + + + + + + + + + + + + + - + + + - - - - - - - - - + + 

424 
Csak377_
03917   

Site-specific tyrosine recombinase 
XerC   + - - + - - - - - - - - - - - - + - - - - - - - - + - - 

425 
Csak377_
03918 hypothetical protein   + - - - - - - - - - - - - - - - + - - - - - - - - + - - 

426 
Csak377_
03919 

Putative HTH-type transcriptional 
regulator   + - - - - - - - - - - - - - - - + + - - - - - - - - - + 

427 
Csak377_
03920 Transcriptional repressor DicA   + - - - - - - - - - - - - - - - + - - - - - - - - - - - 

428 
Csak377_
03921 hypothetical protein   + + + - - - + + - - - - - + - + + - - - - - - - + + + + 

429 
Csak377_
03927 hypothetical protein   + - - - - - - - - - - - - - - - + - - - - - - - + - - + 

430 
Csak377_
03932  hypothetical protein   + + + - - - + + - - - - - + - + + + - - - - - - - + - - 

431 
Csak377_
03943    hypothetical protein   + - - - - - - - - - - - - - - - + - - - - - - - - - + - 

432 
Csak377_
03956    hypothetical protein   + + - - - - - - - - - - - - - - + - - - - - - - + + - - 

433 
Csak377_
03962    hypothetical protein   + - + - - + + + - - - - - + - + + - - - + + - - - - + - 

434 
Csak377_
03963 

ariR_2putative two-component-system 
connector protein AriR   + - - - - + - - - - - - - - - - + - - - - - - - - - - - 
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435 
Csak377_
03964 Phage terminase, small subunit   + - - - - + - - - - - - - - - - + - - - + + - - - - + - 

436 
Csak377_
03965 

Phage terminase-like protein, large 
subunit   + - - - - + - - - - - - - - - - + - - - + + - - - - + - 

437 
Csak377_
03966  hypothetical protein   + - - - - + - - - - - - - - - - + - - - + + - - - - + - 

438 
Csak377_
03967 phage portal protein, HK97 family   + - - - - + - - - - - - - - - - + - - - + + - - - - + - 

439 
Csak377_
03968  phage prohead protease, HK97 family   + - - - - + - - - - - - - - - - + - - - + + - - - - - - 

440 
Csak377_
03969 

putative phage phi-C31 gp36 major 
capsid-like protein   + - - - - + - - - - - - - - - - + - - - + + - - - - - - 

441 
Csak377_
03970 hypothetical protein   + - - - - + - - - - - - - - - - + - - - + + - - - - - - 

442 
Csak377_
03971 Bacteriophage head-tail adaptor   + - - - - + - - - - - - - - - - + - - - + + - - - - - - 

443 
Csak377_
03972 hypothetical protein   + - - - - + - - - - - - - - - - + - - - + + - - - - - - 

444 
Csak377_
03973 hypothetical protein   + - - - - + - - - - - - - - - - + - - - + + - - - - - - 

445 
Csak377_
03974 hypothetical protein   + - - - - + - - - - - - - - - - + - - - - - - - - - - - 

446 
Csak377_
03975 

 Mu-like prophage tail sheath protein 
gpL   + - - - - + - - - - - - - - - - + - - - - - - - - - - - 

447 
Csak377_
03976 Phage tail tube protein   + - - - - + - - - - - - - - - - + - - - - - - - - - - - 

448 
Csak377_
03977 hypothetical protein   + - - - - + - - - - - - - - - - + - - - - - - - - - - - 

449 
Csak377_
03978 

phage tail tape measure protein, 
TP901 family, core region   + - - - - + - - - - - - - - - - + + - - + + + - - + + - 

450 
Csak377_
03979 

Mu-like prophage DNA circulation 
protein   + + + + + + + + + + - + + + + + + - - - - - - - + + - + 

451 
Csak377_
03980 Mu-like prophage tail protein gpP   + - - - - + - - - - - - - - - - + - - - - - - - - - - - 

452 
Csak377_
03981 Mu-like prophage protein gp45   + - - - - + - - - - - - - - - - + - - - - - - - - - - - 

453 
Csak377_
03982 Phage protein GP46   + - - - - + - - - - - - - - - - + - - - - - - - - - - - 

454 
Csak377_
03983 hypothetical protein   + - - - - + - - - - - - - - - - + - - - + + - - - - - - 

455 
Csak377_
03984 hypothetical protein   + - - - - + - - - - - - - - - - + - - - + + - - - - - - 

456 
Csak377_
03985 hypothetical protein   + - - - - + - - - + - - - - - - + - - - + + - + - - + - 

457 
Csak377_
03986 hypothetical protein   + - - - - + - - - - - - - - - - + - - - + + - - - - + - 

458 
Csak377_
03987 hypothetical protein   + - - - + + - - - - - - - - - - + + - - + + - - - - + - 

459 
Csak377_
03988 hypothetical protein   + - - - + + - - - - - - - - - - + + - - + + - - - + + - 

460 
Csak377_
04031    Transposase   + + + + + + + + + + + + + + + + + + + + + + + + + - - + 

461 
Csak377_
04039    hypothetical protein   + + + + + + + + + + + + + + + + + - - - - - - - - + - + 

462 
Csak377_
04040 hypothetical protein   + + + + + + + + + + + + + + + + + - - - - - - - + + + + 

463 
Csak377_
04047    hypothetical protein   + + + + + + + + + + + + + + + + + + + - - - - + - - + + 

464 
Csak377_
04048 hypothetical protein   + + + + + + + + + + - + + + + + + + + - - - - + - - + + 
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465 
Csak377_
04220    hypothetical protein   + + + + + + + + + + + + + + + + + - - - + + - - - + + + 
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Table S5. Investigation of the hypothetical proteins identified by Gegenees as unique in 18 C. sakazakii 
CC4 genomes (against 12 non-CC4 genomes) and missing in CC4, using Cronobacter BLAST 

Isolate  Species  CSSP291_10445       
    
CSSP291_18210       

 
ESA_02200 

4 C. sakazakii CC4 + + 
- 

6 C. sakazakii CC4 + + 
- 

20 C. sakazakii CC4 + + 
- 

377 C. sakazakii CC4 + + 
- 

553 C. sakazakii CC4 + + 
- 

557 C. sakazakii CC4 + + 
- 

558 C. sakazakii CC4 + + 
- 

691 C. sakazakii CC4 + + 
- 

692 C. sakazakii CC4 + + 
- 

694 C. sakazakii CC4 + + 
- 

695 C. sakazakii CC4 + + 
- 

698 C. sakazakii CC4 + + 
- 

701 C. sakazakii CC4 + + 
- 

702 C. sakazakii CC4 + + 
- 

705 C. sakazakii CC4 + + 
- 

706 C. sakazakii CC4 + + 
- 

707 C. sakazakii CC4 + + 
- 

709 C. sakazakii CC4 + + 
- 

711 C. sakazakii CC4 + + 
- 

712 C. sakazakii CC4 + + 
- 

721 C. sakazakii CC4 + + 
- 

730 C. sakazakii CC4 + + 
- 

767 C. sakazakii CC4 + + 
- 

1105 C. sakazakii CC4 + + 
- 

1219 C. sakazakii CC4 + + 
- 

1220 C. sakazakii CC4 + + 
- 

1221 C. sakazakii CC4 + + 
- 

1225 C. sakazakii CC4 + + 
- 

1231 C. sakazakii CC4 + + 
- 

1240 C. sakazakii CC4 + + 
- 

1533 C. sakazakii CC4 + + 
- 

1537 C. sakazakii CC4 + + 
- 

1542 C. sakazakii CC4 + + 
- 
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1587 C. sakazakii CC4 + + 
- 

ES713 C. sakazakii CC4 + + 
+ 

G-2151 C. sakazakii CC4 + + 
- 

SP291 C. sakazakii CC4 + + 
- 

1 C. sakazakii Non-CC4 - - 
+ 

5 C. sakazakii Non-CC4 - - 
+ 

92 C. turicensis Non-CC4 - - 
- 

140 C. sakazakii Non-CC4 - - 
+ 

150 C. sakazakii Non-CC4 - - 
+ 

507 C. malonaticus Non-CC4 - - 
+ 

510 C. malonaticus Non-CC4 - - 
+ 

520 C. sakazakii Non-CC4 - - 
+ 

530 C. muytjensii Non-CC4 - - 
- 

564 C. turicensis Non-CC4 - - 
- 

581 C. universalis Non-CC4 - - 
+ 

582 C. dublinensis Non-CC4 - - 
- 

583 C. dublinensis Non-CC4 - - 
- 

658 C. sakazakii Non-CC4 - - 
+ 

680 C. sakazakii Non-CC4 - - 
+ 

681 C. malonaticus Non-CC4 - - 
+ 

685 C. malonaticus Non-CC4 - + 
+ 

687 C. malonaticus Non-CC4 - - 
+ 

690 C. sakazakii Non-CC4 - - 
+ 

693 C. sakazakii Non-CC4 + - 
+ 

696 C. sakazakii Non-CC4 - - 
+ 

699 C. sakazakii Non-CC4 - - 
+ 

700 C. sakazakii Non-CC4 + - 
+ 

703 C. sakazakii Non-CC4 - - 
+ 

708 C. sakazakii Non-CC4 - - 
+ 

713 C. sakazakii Non-CC4 + - 
+ 

714 C. sakazakii Non-CC4 + - 
+ 

715 C. sakazakii Non-CC4 + - 
+ 

716 C. sakazakii Non-CC4 - - 
+ 

978 C. sakazakii Non-CC4 - - 
+ 

984 C. sakazakii Non-CC4 - - 
+ 

1210 C. dublinensis Non-CC4 - - 
- 
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1211 C. turicensis Non-CC4 - - 
- 

1218 C. sakazakii Non-CC4 - - 
+ 

1249 C. sakazakii Non-CC4 - - 
+ 

1330 C. condimenti Non-CC4 - - 
- 

1536 C. sakazakii Non-CC4 - - 
+ 

1545 C. malonaticus Non-CC4 - - 
+ 

1553 C. turicensis Non-CC4 - - 
- 

1554 C. turicensis Non-CC4 - - 
- 

1556 C. dublinensis Non-CC4 - - 
- 

1558 C. malonaticus Non-CC4 - - 
+ 

1560 C. dublinensis Non-CC4 - - 
- 

1569 C. malonaticus Non-CC4 - - 
+ 

1846 C. malonaticus Non-CC4 - - 
+ 

1880 C. turicensis Non-CC4 - - 
- 

2030 C. dublinensis Non-CC4 - - 
- 

2045 C. malonaticus Non-CC4 - - 
+ 

2046 C. malonaticus Non-CC4 - - 
+ 

2048 C. sakazakii Non-CC4 - - 
+ 

2051 C. sakazakii Non-CC4 - + 
+ 

2064 C. sakazakii Non-CC4 - - 
+ 

2087 C. sakazakii Non-CC4 - - 
+ 

2089 C. sakazakii Non-CC4 - - 
+ 

2106 C. sakazakii Non-CC4 - - 
+ 

2107 C. sakazakii Non-CC4 - - 
+ 

2109 C. malonaticus Non-CC4 - - 
+ 

2161 C. sakazakii Non-CC4 - - 
+ 

ATCC 51329 C. muytjensii Non-CC4 - - 
- 

CMCC 45402 C. malonaticus Non-CC4 - - 
+ 

E764 C. sakazakii Non-CC4 - - 
+ 

ES15 C. sakazakii Non-CC4 - - 
+ 

ES35 C. sakazakii Non-CC4 - - 
+ 

HPB5174 C. sakazakii Non-CC4 - - 
+ 

LMG 23823 C. dublinensis Non-CC4 - - 
- 

LMG 23824 C. dublinensis Non-CC4 - - 
- 

LMG 23825 C. dublinensis Non-CC4 - - 
- 

LMG23826 C. malonaticus Non-CC4 - - 
+ 
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NBRC 102416T C. sakazakii Non-CC4 - - 
+ 

NCTC9529T C. universalis Non-CC4 - - 
+ 
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Table S6.  SNP calls in the earliest C. sakazakii CC4 isolate 377 with SP291 as the reference strain  

POS REF ref codon amino acid ALT alt codon amino acid  Nature Gene Annotation  

351213 T TAT Tyrosine C TAC Tyrosine Synonymous Intergenic   

351220 C TTC Phenylalanine T TTT Phenylalanine Synonymous Intergenic   

351246 C TGC Cysteine T TGT Cysteine Synonymous CSSP291_t20316  

351250 A GGA Glycine G GGG Glycine Synonymous CSSP291_t20316  

351251 C GAC Aspartic acid T GAT Aspartic acid Synonymous CSSP291_t20316  

455855 A GGA Glycine C GGC Glycine Synonymous CSSP291_02330 Putative integrase 

455858 G TCG Serine A TCA Serine Synonymous CSSP291_02330 Putative integrase 

455879 C ATC Isoleucine T ATT Isoleucine Synonymous CSSP291_02330 Putative integrase 

455886 C CCC Proline G CCG Proline Synonymous CSSP291_02330 Putative integrase 

455957 G TCG Serine A TCA Serine Synonymous CSSP291_02330 Putative integrase 

455963 G AGG Arginine A AGA Arginine Synonymous CSSP291_02330 Putative integrase 

455980 G TAG Stop codon  A TAA Stop codon  Synonymous CSSP291_02330 Putative integrase 

455996 T GTT Valine C GTC Valine Synonymous CSSP291_02330 Putative integrase 

456389 G AAG Lysine T AAT Asparagine or Aspartic acid Non-synonymous CSSP291_02330 Putative integrase 

456419 C ATC Isoleucine T ATT Isoleucine Synonymous Intergenic   

2499701 T CTT Leucine A CTA Leucine Synonymous Intergenic   
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Table S7. Comparative genomics of high CC4 isolate 767 and low invasive CC4 isolate 6  

Locus_tag Unique genes in C. sakazakii 767    Locus_tag Unique genes in C. sakazakii 6  

CSAK767_03653  Glyoxalase-like domain protein     

iucA_2     Aerobatin synthase IuA   Gene/Locus Tag Product  

iucA_1     Aerobatin synthase IuA   kduI 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase 

ahpF_1     Alkyl hydroperoxide redutase subunit F   CSAK6_02171 

anaerobic benzoate catabolism transcriptional 

regulator 

kgtP_2     Alpha-ketoglutarate permease   CSAK6_03882 Antirestriction protein 

cobC_2     Alpha-ribazole phosphatase   CSAK6_03709 antitoxin HipB 

CSAK767_03680     Antibioti biosynthesis monooxygenase   parD1 Antitoxin ParD1 

CSAK767_03684     Arylesterase   yeeU Antitoxin YeeU 

CSAK767_03682     AT domain-ontaining protein   arsC_1 Arsenate reductase 

CSAK767_03620 

    Autotransporter protein or domain, integral membrane 

beta-barrel involved in protein seretion   arsC_2 Arsenate reductase 

cph2_6     Bateriophytohrome ph2   arsB_1 Arsenic efflux pump protein 

CSAK767_03652 

    bifuntional biotin--[aetyl-oA-arboxylase] 

synthetase/biotin operon repressor   arsA_1 Arsenical pump-driving ATPase 

ycgF_1     Blue light- and temperature-regulated antirepressor YgF   arsA_2 Arsenical pump-driving ATPase 

CSAK767_03669     division inhibitor protein   arsR Arsenical resistance operon repressor 

dmlR_10     D-malate degradation protein R   arsD_1 Arsenical resistance operon trans-acting repressor ArsD 

bepF     Efflux pump periplasmi linker BepF   arsD_2 Arsenical resistance operon trans-acting repressor ArsD 

gst     Glutathione S-transferase GST-.   clpP1 ATP-dependent Clp protease proteolytic subunit 1 

CSAK767_04220     Host-nulease inhibitor protein Gam   pcrA ATP-dependent DNA helicase pcrA 

ycgE_3     HTH-type transriptional repressor YgE   CSAK6_03864 ATP-dependent metallopeptidase HflB 

iutA_2     Iron-regulated outer membrane proteins   bfpB Bundle-forming pilus B 

iutA_3     loain reeptor   fdhA_2 

Glutathione-independent formaldehyde 

dehydrogenase 

CSAK767_03608     Metallo-beta-latamase superfamily protein   ydhP_2 Inner membrane transport protein ydhP 
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map_2     Methionine aminopeptidase   CSAK6_03873  IS2 transposase Tnp 

CSAK767_03666 

    molybdate AB transporter, periplasmi molybdate-binding 

protein   CSAK6_04024 putative P-loop ATPase 

CSAK767_03648     multidrug efflux system protein MdtL   CSAK6_02025 site-specific tyrosine recombinase XerC 

mdtH_2     Multidrug resistane protein MdtH   CSAK6_01955 Transposase DDE domain protein 

iucB     N()-hydroxylysine O-aetyltransferase   CSAK6_01248 chaperone protein DnaJ 

pla     oagulase/fibrinolysin preursor   CSAK6_00941 

chromate transporter, chromate ion transporter (CHR) 

family 

CSAK767_03552     conjugal transfer mating pair stabilization protein TraN   CSAK6_03644 

chromate transporter, chromate ion transporter (CHR) 

family 

CSAK767_03580     plasmid partitioning protein   CSAK6_03567 conjugal transfer protein TraR 

CSAK767_03582     plasmid SOS inhibition protein A   CSAK6_03610 conjugative transfer region lipoprotein 

yjiR_2     putative HTH-type transriptional regulator yjiR   CSAK6_03605 conjugative transfer region protein 

CSAK767_04120     putative membrane protein   copA_1 Copper resistance protein A precursor 

csgA     signal   copB Copper resistance protein B precursor 

baeS_1     Signal transdution histidine-protein kinase BaeS   pcoC Copper resistance protein C precursor 

rspA_3     Starvation-sensing protein rspA   csoR Copper-sensitive operon repressor 

trkG_2     Trk system potassium uptake protein trkG   rusA_1 Crossover junction endodeoxyribonuclease rusA 

xerC_2     Tyrosine reombinase Xer   dmlR_12 D-malate degradation protein R 

iucC    Aerobatin synthase Iu   CSAK6_03776 DNA methylase 

phoP_2 

   Alkaline phosphatase synthesis transriptional regulatory 

protein phoP   traC DNA primase TraC 

CSAK767_03700    arboxylate/amino aid/amine transporter   topB_2 DNA topoisomerase 3 

CSAK767_03614    ATP-dependent lp protease ATP-binding subunit lpA   CSAK6_02170 DNA-binding transcriptional regulator Nlp 

CSAK767_04202    Bateriophage lysis protein   CSAK6_03646 enterobactin exporter EntS 

fadR_2    Fatty aid metabolism regulator protein   fbpC2 Fe(3 ) ions import ATP-binding protein FbpC 2 

guaD    Guanine deaminase   CSAK6_00928 fec operon regulator FecR 

aseR    HTH-type transriptional repressor AseR   CSAK6_03626 FRG domain protein 

CSAK767_04130    III protein family protein   era_2 GTPase Era 
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CSAK767_03571    Ketosteroid isomerase-related protein   ssb_3 Helix-destabilizing protein 

iucD    L-lysine -monooxygenase   CSAK6_03982 hemin importer ATP-binding subunit 

CSAK767_03629    Major Failitator Superfamily protein   CSAK6_01257 HNH endonuclease 

treY    Maltooligosyl trehalose synthase   aseR HTH-type transcriptional repressor AseR 

treZ_1    Malto-oligosyltrehalose trehalohydrolase   CSAK6_01998   hypothetical protein 

CSAK767_03655    MltA-interating protein MipA   CSAK6_02022   hypothetical protein 

mexB    Multidrug-efflux transporter MexB   CSAK6_02023   hypothetical protein 

CSAK767_04181    Nlp/P family protein   CSAK6_02024   hypothetical protein 

CSAK767_03539    conjugal transfer pilus assembly protein TraW   CSAK6_02035   hypothetical protein 

CSAK767_03540    conjugal transfer protein TrbI   CSAK6_02036   hypothetical protein 

CSAK767_03597    orrinoid AB transporter substrate-binding protein   CSAK6_02040   hypothetical protein 

parA    Plasmid partition protein A   CSAK6_03927   hypothetical protein 

ybcO    prophage-derived unharaterized protein ybO   CSAK6_03948   hypothetical protein 

CSAK767_04225    reombination protein F   CSAK6_03950   hypothetical protein 

repB    RepFIB repliation protein A   CSAK6_03954   hypothetical protein 

rusA_2    rossover juntion endodeoxyribonulease rusA   CSAK6_04023   hypothetical protein 

tsr_8    Serine hemoreeptor protein   CSAK6_00129 hypothetical protein 

sdaC_2    Serine transporter   ykfG_1 hypothetical protein 

CSAK767_03593    SMI / KNR family protein   CSAK6_00131 hypothetical protein 

CSAK767_04200    Terminase small subunit   CSAK6_00132 hypothetical protein 

dsbG    Thiol:disulfide interhange protein DsbG preursor   CSAK6_00133 hypothetical protein 

btuC_2    Vitamin B import system permease protein Btu   CSAK6_00134 hypothetical protein 

cpdA_2   3','-yli adenosine monophosphate phosphodiesterase pdA   CSAK6_00136 hypothetical protein 

CSAK767_01960   AIPR protein   CSAK6_00137 hypothetical protein 

CSAK767_02305   APdomain protein   CSAK6_00346 hypothetical protein 

arsC   Arsenate redutase   CSAK6_00348 hypothetical protein 

CSAK767_04192   Baterial Ig-like domain (group 2)   CSAK6_00351 hypothetical protein 

CSAK767_01936   Bateriophage I repressor helix-turn-helix domain protein   CSAK6_00943 hypothetical protein 
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dapA_2   Dihydrodipiolinate synthase   CSAK6_01066 hypothetical protein 

yhdJ   DNA adenine methyltransferase YhdJ   CSAK6_01067 hypothetical protein 

bglF_4   EIIBA-Bgl   CSAK6_01068 hypothetical protein 

glgX_2   Glyogen debranhing enzyme   CSAK6_01070 hypothetical protein 

mgtB   Magnesium-transporting ATPase, P-type    CSAK6_01071 hypothetical protein 

treZ_2   Malto-oligosyltrehalose trehalohydrolase   CSAK6_01072 hypothetical protein 

nodD2_5   Nodulation protein D 2   CSAK6_01073 hypothetical protein 

CSAK767_03546   cconjugal transfer pilus assembly protein TraE   CSAK6_01074 hypothetical protein 

CSAK767_03547   cconjugal transfer pilus assembly protein TraL   CSAK6_01178 hypothetical protein 

CSAK767_03534   cconjugal transfer pilus assembly protein TraU   CSAK6_01235 hypothetical protein 

CSAK767_03533   cconjugal transfer pilus assembly protein Trb   CSAK6_01236 hypothetical protein 

CSAK767_03545   cconjugal transfer protein TraK   CSAK6_01238 hypothetical protein 

sopB   Plasmid partition protein B   CSAK6_01239 hypothetical protein 

yjaB_2   putative N-aetyltransferase YjaB   CSAK6_01240 hypothetical protein 

CSAK767_03246   reombination protein F   CSAK6_01241 hypothetical protein 

CSAK767_04214   Repliation protein P   CSAK6_01242 hypothetical protein 

repA   Repliation-assoiated protein   CSAK6_01247 hypothetical protein 

trg_9   Ribose and galatose hemoreeptor protein   CSAK6_01249 hypothetical protein 

hipA   Serine/threonine-protein kinase HipA   CSAK6_01250 hypothetical protein 

CSAK767_01932   site-speifi tyrosine reombinase Xer   CSAK6_01251 hypothetical protein 

slt_1   Soluble lyti murein transglyosylase preursor   CSAK6_01253 hypothetical protein 

CSAK767_02302   Terminase small subunit   CSAK6_01254 hypothetical protein 

CSAK767_03688   Tfp pilus assembly protein, major pilin PilA   CSAK6_01255 hypothetical protein 

CSAK767_02301   Transposase   CSAK6_01256 hypothetical protein 

CSAK767_03869   Transposase   CSAK6_01258 hypothetical protein 

CSAK767_03551   Ureidoglyolate lyase   CSAK6_01264 hypothetical protein 

viuB   Vibriobatin utilisation protein ViuB   CSAK6_01268 hypothetical protein 

cynR_1   yn operon transriptional ativator   CSAK6_01533 hypothetical protein 
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CSAK767_03654  antimirobial resistane protein Mig-   CSAK6_01534 hypothetical protein 

hipB  Antitoxin HipB   CSAK6_01536 hypothetical protein 

CSAK767_04129  Bateriophage lambda Kil protein   CSAK6_01537 hypothetical protein 

CSAK767_04208  phage antitermination protein Q   CSAK6_01542 hypothetical protein 

CSAK767_04182  phage minor tail protein L   CSAK6_01543 hypothetical protein 

CSAK767_04187  phage tail protein   CSAK6_01544 hypothetical protein 

CSAK767_04203  phage-related lysozyme (muraminidase)   CSAK6_01545 hypothetical protein 

CSAK767_04185  phage-related minor tail protein   CSAK6_01791 hypothetical protein 

CSAK767_04183  phage-related protein   CSAK6_01792 hypothetical protein 

CSAK767_04180  phage-related protein, tail omponent   CSAK6_01793 hypothetical protein 

CSAK767_04179  phage-related protein, tail omponent   CSAK6_01794 hypothetical protein 

CSAK767_03679  putative aetyltransferase   CSAK6_02026 hypothetical protein 

ywnA  putative HTH-type transriptional regulator ywnA   CSAK6_02033 hypothetical protein 

pknH  putative serine/threonine-protein kinase pknH   CSAK6_02034 hypothetical protein 

yusV_2 

 putative siderophore transport system ATP-binding protein 

YusV   CSAK6_02037 hypothetical protein 

ariR  putative two-omponent-system onnetor protein AriR   CSAK6_02038 hypothetical protein 

CSAK767_01933  S ribosomal protein L22/unknown domain fusion protein   CSAK6_02039 hypothetical protein 

dsbD_2  Thiol:disulfide interhange protein DsbD preursor   CSAK6_02133 hypothetical protein 

CSAK767_04198 3hypothetial protein   CSAK6_02137 hypothetical protein 

CSAK767_03863 Abi-like protein   CSAK6_02138 hypothetical protein 

relB_2 Antitoxin RelB   CSAK6_02139 hypothetical protein 

CSAK767_00888 Ar-like DNA binding domain protein   CSAK6_02140 hypothetical protein 

CSAK767_01258 Ar-like DNA binding domain protein   CSAK6_02172 hypothetical protein 

CSAK767_02270 Bateriophage II protein   CSAK6_02173 hypothetical protein 

CSAK767_02234 Bateriophage lysis protein   CSAK6_02631 hypothetical protein 

CSAK767_01964 Bateriophage P2-related tail formation protein   CSAK6_02633 hypothetical protein 

CSAK767_01943 Bateriophage repliation gene A protein (GPA)   CSAK6_02634 hypothetical protein 
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traD DNA transport protein TraD   CSAK6_02635 hypothetical protein 

CSAK767_01974 DNA-binding transriptional regulator   CSAK6_02636 hypothetical protein 

fieF_1 Ferrous-iron efflux pump FieF   CSAK6_02637 hypothetical protein 

CSAK767_01962 Gene 2-like lysozyme   CSAK6_02638 hypothetical protein 

CSAK767_03640    hypothetial protein   CSAK6_02664 hypothetical protein 

CSAK767_04122    hypothetial protein   CSAK6_02895 hypothetical protein 

CSAK767_03681    hypothetial protein   CSAK6_02895 hypothetical protein 

CSAK767_03592    hypothetial protein   CSAK6_02896 hypothetical protein 

CSAK767_03651    hypothetial protein   dltB hypothetical protein 

CSAK767_03690    hypothetial protein   clpV1_1 hypothetical protein 

CSAK767_03586    hypothetial protein   clpV1_2 hypothetical protein 

CSAK767_03670    hypothetial protein   CSAK6_03562 hypothetical protein 

CSAK767_03601    hypothetial protein   CSAK6_03563 hypothetical protein 

CSAK767_03645    hypothetial protein   CSAK6_03568 hypothetical protein 

CSAK767_03668   hypothetial protein   CSAK6_03569 hypothetical protein 

CSAK767_03559   hypothetial protein   CSAK6_03570 hypothetical protein 

CSAK767_03701   hypothetial protein   CSAK6_03571 hypothetical protein 

CSAK767_03619   hypothetial protein   CSAK6_03574 hypothetical protein 

CSAK767_03615   hypothetial protein   CSAK6_03575 hypothetical protein 

mngR_1   hypothetial protein   CSAK6_03577 hypothetical protein 

CSAK767_04133   hypothetial protein   CSAK6_03578 hypothetical protein 

CSAK767_03673   hypothetial protein   CSAK6_03582 hypothetical protein 

recT   hypothetial protein   CSAK6_03590 hypothetical protein 

CSAK767_03600     hypothetial protein   CSAK6_03594 hypothetical protein 

CSAK767_03603     hypothetial protein   CSAK6_03599 hypothetical protein 

CSAK767_04222     hypothetial protein   CSAK6_03609 hypothetical protein 

yycE     hypothetial protein   CSAK6_03612 hypothetical protein 

CSAK767_03683     hypothetial protein   CSAK6_03616 hypothetical protein 
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CSAK767_03594     hypothetial protein   CSAK6_03617 hypothetical protein 

CSAK767_04038     hypothetial protein   CSAK6_03618 hypothetical protein 

psiB     hypothetial protein   CSAK6_03620 hypothetical protein 

CSAK767_03587     hypothetial protein   CSAK6_03621 hypothetical protein 

CSAK767_03602     hypothetial protein   CSAK6_03622 hypothetical protein 

CSAK767_03612     hypothetial protein   CSAK6_03623 hypothetical protein 

CSAK767_03584     hypothetial protein   umuC_1 hypothetical protein 

CSAK767_03577     hypothetial protein   CSAK6_03627 hypothetical protein 

CSAK767_03694     hypothetial protein   ygiW_3 hypothetical protein 

CSAK767_03644     hypothetial protein   CSAK6_03634 hypothetical protein 

CSAK767_03578     hypothetial protein   CSAK6_03635 hypothetical protein 

CSAK767_04094     hypothetial protein   CSAK6_03636 hypothetical protein 

CSAK767_03585     hypothetial protein   CSAK6_03637 hypothetical protein 

CSAK767_03579     hypothetial protein   CSAK6_03638 hypothetical protein 

CSAK767_03572     hypothetial protein   CSAK6_03639 hypothetical protein 

CSAK767_03646     hypothetial protein   CSAK6_03640 hypothetical protein 

CSAK767_03650     hypothetial protein   CSAK6_03641 hypothetical protein 

traV  hypothetial protein   CSAK6_03642 hypothetical protein 

CSAK767_03561  hypothetial protein   CSAK6_03643 hypothetical protein 

CSAK767_04190  hypothetial protein   CSAK6_03645 hypothetical protein 

CSAK767_04215  hypothetial protein   CSAK6_03762 hypothetical protein 

CSAK767_03660  hypothetial protein   CSAK6_03763 hypothetical protein 

CSAK767_03591  hypothetial protein   htpX_2 hypothetical protein 

CSAK767_03641  hypothetial protein   CSAK6_03769 hypothetical protein 

CSAK767_04124  hypothetial protein   CSAK6_03774 hypothetical protein 

CSAK767_04201  hypothetial protein   CSAK6_03775 hypothetical protein 

CSAK767_04135  hypothetial protein   CSAK6_03778 hypothetical protein 

CSAK767_04204  hypothetial protein   CSAK6_03852 hypothetical protein 
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CSAK767_04205  hypothetial protein   CSAK6_03853 hypothetical protein 

CSAK767_03538  hypothetial protein   CSAK6_03854 hypothetical protein 

CSAK767_03560  hypothetial protein   CSAK6_03876 hypothetical protein 

CSAK767_03647  hypothetial protein   CSAK6_03877 hypothetical protein 

CSAK767_04194  hypothetial protein   CSAK6_03878 hypothetical protein 

CSAK767_03542  hypothetial protein   CSAK6_03880 hypothetical protein 

CSAK767_03692  hypothetial protein   ykfF hypothetical protein 

CSAK767_04132  hypothetial protein   ykfG_2 hypothetical protein 

CSAK767_04212  hypothetial protein   CSAK6_03884 hypothetical protein 

CSAK767_03568  hypothetial protein   yfdG hypothetical protein 

CSAK767_03535  hypothetial protein   CSAK6_04013 hypothetical protein 

CSAK767_04193  hypothetial protein   CSAK6_04014 hypothetical protein 

CSAK767_04211  hypothetial protein   CSAK6_04015 hypothetical protein 

CSAK767_04184  hypothetial protein   CSAK6_04242 hypothetical protein 

CSAK767_03537  hypothetial protein   CSAK6_04243 hypothetical protein 

CSAK767_04213  hypothetial protein   CSAK6_04244 hypothetical protein 

CSAK767_03606  hypothetial protein   CSAK6_04245 hypothetical protein 

CSAK767_04186  hypothetial protein   CSAK6_04247 hypothetical protein 

CSAK767_04191  hypothetial protein   CSAK6_04248 hypothetical protein 

traC  hypothetial protein   CSAK6_04249 hypothetical protein 

CSAK767_03605  hypothetial protein   CSAK6_04250 hypothetical protein 

CSAK767_04128  hypothetial protein   yebZ_2 Inner membrane protein YebZ 

CSAK767_03611  hypothetial protein   yjeO Inner membrane protein yjeO 

CSAK767_04127 hypothetial protein   CSAK6_03770 Integrase core domain protein 

CSAK767_03583 hypothetial protein   CSAK6_03601 

integrating conjugative element membrane protein, 

family 

CSAK767_03689 hypothetial protein   CSAK6_03604 

integrating conjugative element membrane protein, 

family 
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CSAK767_04178 hypothetial protein   CSAK6_03583 

integrating conjugative element protein PilL, PFGI-1 

class 

CSAK767_03567 hypothetial protein   CSAK6_03572 integrating conjugative element protein, family 

CSAK767_03590 hypothetial protein   CSAK6_03595 integrating conjugative element protein, family 

CSAK767_03661 hypothetial protein   CSAK6_03597 integrating conjugative element protein, family 

CSAK767_03663 hypothetial protein   CSAK6_03603 integrating conjugative element protein, family 

CSAK767_04134 hypothetial protein   CSAK6_03606 integrating conjugative element protein, family 

CSAK767_04197 hypothetial protein   CSAK6_03607 integrating conjugative element protein, family 

CSAK767_03536 hypothetial protein   CSAK6_03608 integrating conjugative element protein, family 

CSAK767_04188 hypothetial protein   CSAK6_03613 integrating conjugative element protein, family 

CSAK767_03574 hypothetial protein   CSAK6_03614 integrating conjugative element protein, family 

CSAK767_04189 hypothetial protein   CSAK6_03615 integrating conjugative element protein, family 

CSAK767_04131 hypothetial protein   CSAK6_02639 integrating conjugative element relaxase, PFGI-1 class 

CSAK767_01934 hypothetial protein   CSAK6_03566 

integrating conjugative element, PFGI_1 class, ParB 

family protein 

CSAK767_01935 hypothetial protein   CSAK6_03602 

integrative conjugative element protein, RAQPRD 

family 

CSAK767_01948 hypothetial protein   CSAK6_03591 invasion protein IagB 

CSAK767_01949 hypothetial protein   fecA_2 Iron(III) dicitrate transport protein FecA 

CSAK767_01975 hypothetial protein   fecC 

Iron(III) dicitrate transport system permease protein 

fecC 

yfdG hypothetial protein   fecD 

Iron(III) dicitrate transport system permease protein 

fecD 

CSAK767_02238 hypothetial protein   CSAK6_03633 IS1 transposase 

CSAK767_02262 hypothetial protein   CSAK6_03708 IS1 transposase 

CSAK767_02263 hypothetial protein   kefC_2 K( )/H( ) antiporter 

CSAK767_02267 hypothetial protein   lexA_1 LexA repressor 

CSAK767_02273 hypothetial protein   mntB Manganese transport system membrane protein mntB 

CSAK767_02276 hypothetial protein   azr_1 NADPH azoreductase 
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CSAK767_02278 hypothetial protein   rcnA Nickel/cobalt efflux system rcnA 

CSAK767_02279 hypothetial protein   CSAK6_01540 ParG 

CSAK767_02280 hypothetial protein   CSAK6_01265 Phage gp6-like head-tail connector protein 

CSAK767_02281 hypothetial protein   CSAK6_01266 Phage head-tail joining protein 

CSAK767_02283 hypothetial protein   CSAK6_01243 phage N-6-adenine-methyltransferase 

CSAK767_02284 hypothetial protein   CSAK6_01261 phage portal protein, HK97 family 

CSAK767_02285 hypothetial protein   CSAK6_01267 phage protein, HK97 gp10 family 

CSAK767_02287 hypothetial protein   CSAK6_00935 phage resistance protein 

CSAK767_02288 hypothetial protein   CSAK6_01259 Phage terminase, small subunit 

CSAK767_02289 hypothetial protein   CSAK6_01260 Phage terminase-like protein, large subunit 

CSAK767_02290 hypothetial protein   bar Phosphinothricin N-acetyltransferase 

CSAK767_02291 hypothetial protein   CSAK6_03586 Pilin accessory protein (PilO) 

CSAK767_02292 hypothetial protein   CSAK6_03584 PilM 

CSAK767_02293 hypothetial protein   intA_2 Prophage CP4-57 integrase 

CSAK767_02294 hypothetial protein   yhfQ 

Putative ABC transporter substrate-binding lipoprotein 

yhfQ precursor 

CSAK767_02295 hypothetial protein   yfjZ Putative antitoxin YfjZ 

CSAK767_02296 hypothetial protein   CSAK6_00148 putative ATPase 

CSAK767_02297 hypothetial protein   CSAK6_01179 putative ATPase 

CSAK767_02298 hypothetial protein   CSAK6_03619 putative ATPase 

CSAK767_02303 hypothetial protein   CSAK6_01252 putative chitinase 

CSAK767_03805 hypothetial protein   pcoE_1 putative copper-binding protein pcoE precursor 

repE hypothetial protein   CSAK6_01541 putative crown gall tumor protein VirC1 

umuD_2 hypothetial protein   pinR Putative DNA-invertase from lambdoid prophage Rac 

CSAK767_03822 hypothetial protein   CSAK6_03705 putative enzyme related to lactoylglutathione lyase 

CSAK767_03836 hypothetial protein   CSAK6_00939 putative flavoprotein 

CSAK767_03837 hypothetial protein   yghU putative GST-like protein yghU 

CSAK767_03842 hypothetial protein   yafY putative lipoprotein yafY precursor 
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CSAK767_03844 hypothetial protein   CSAK6_03766 putative membrane protein 

CSAK767_04424 hypothetial protein   CSAK6_03951 Putative NADH-flavin reductase 

CSAK767_04425 hypothetial protein   CSAK6_03952 putative outer membrane protein 

CSAK767_04426 hypothetial protein   CSAK6_03579 putative periplasmic iron-binding protein precursor 

hcp1_3 hypothetial protein   CSAK6_01263 putative phage phi-C31 gp36 major capsid-like protein 

CSAK767_00337 hypothetial protein   CSAK6_01246 putative phage-encoded protein 

CSAK767_00338 hypothetial protein   intS_1 Putative prophage CPS-53 integraseintS_2e 

CSAK767_00885 hypothetial protein   fecI putative RNA polymerase sigma factor fecI 

CSAK767_01257 hypothetial protein   yusV_2 

putative siderophore transport system ATP-binding 

protein YusV 

CSAK767_01937 hypothetial protein   CSAK6_01532 putative sporulation protein YtaF 

CSAK767_01939 hypothetial protein   ypjF putative toxin YpjF 

CSAK767_01940 hypothetial protein   CSAK6_00135 putative transcriptional regulator 

CSAK767_01941 hypothetial protein   CSAK6_00347 putative transcriptional regulator 

ybiI_2 hypothetial protein   bin3 Putative transposon Tn552 DNA-invertase bin3 

CSAK767_01944 hypothetial protein   CSAK6_04246 Relaxase/Mobilisation nuclease domain protein 

smf_2 hypothetial protein   repB RepFIB replication protein A 

CSAK767_01955 hypothetial protein   dnaB_2 Replicative DNA helicase 

CSAK767_01963 hypothetial protein   CSAK6_03598 Restriction endonuclease 

CSAK767_01965 hypothetial protein   sigM RNA polymerase sigma factor sigM 

CSAK767_01966 hypothetial protein   frmA_2 S-(hydroxymethyl)glutathione dehydrogenase 

CSAK767_02128 hypothetial protein   cusS_1 Sensor kinase CusS 

CSAK767_02129 hypothetial protein   CSAK6_01237 Serine dehydrogenase proteinase 

CSAK767_02130 hypothetial protein   frmB S-formylglutathione hydrolase frmB 

CSAK767_02131 hypothetial protein   silE_1 Silver-binding protein silE precursor 

CSAK767_02232 hypothetial protein   CSAK6_00350 Site-specific recombinase XerD 

CSAK767_02240 hypothetial protein   CSAK6_01234 Site-specific recombinase XerD 

CSAK767_02254 hypothetial protein   CSAK6_00349 site-specific tyrosine recombinase XerC 
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CSAK767_02257 hypothetial protein   CSAK6_01180 site-specific tyrosine recombinase XerC 

CSAK767_02272 hypothetial protein   CSAK6_01928 site-specific tyrosine recombinase XerC 

CSAK767_02274 hypothetial protein   CSAK6_03593 site-specific tyrosine recombinase XerC 

CSAK767_02275 hypothetial protein   hspA_2 Spore protein SP21 

CSAK767_03127 hypothetial protein   trxC_1 Thioredoxin-2 

CSAK767_03235 hypothetial protein   parE4 Toxin ParE4 

CSAK767_03806 hypothetial protein   ykfI Toxin YkfI 

CSAK767_03807 hypothetial protein   copR Transcriptional activator protein CopR 

CSAK767_03808 hypothetial protein   CSAK6_00940 transcriptional regulator, Acidobacterial, PadR-family 

parM hypothetial protein   frmR_2 Transcriptional repressor frmR 

CSAK767_03817 hypothetial protein   pifC Transcriptional repressor pifC 

CSAK767_03818 hypothetial protein   CSAK6_03596 Transglycosylase SLT domain protein 

CSAK767_03821 hypothetial protein   CSAK6_00934 Transposase 

CSAK767_03823 hypothetial protein   CSAK6_03560 Transposase 

CSAK767_03824 hypothetial protein   CSAK6_03561 Transposase 

CSAK767_03831 hypothetial protein   CSAK6_03698 Transposase 

CSAK767_03832 hypothetial protein   CSAK6_03699 Transposase 

CSAK767_03833 hypothetial protein   CSAK6_03700 Transposase 

CSAK767_03834 hypothetial protein   CSAK6_03768 Transposase DDE domain protein 

CSAK767_03846 hypothetial protein   CSAK6_03703 Transposase IS116/IS110/IS902 family protein 

CSAK767_03849 hypothetial protein   CSAK6_00944 Transposase, TnpA family 

CSAK767_03861 hypothetial protein   CSAK6_02632 

Type I restriction-modification system 

methyltransferase subunit 

CSAK767_03944 hypothetial protein   CSAK6_03589 type II secretion system protein F 

CSAK767_04423 hypothetial protein   epsE_3 Type II traffic warden ATPase 

CSAK767_03827 Integrase ore domain protein   CSAK6_03592 Type IV leader peptidase family protein 

CSAK767_03868 Integrase ore domain protein   CSAK6_03587 type IV pilus biogenesis protein PilP 

CSAK767_03862 Integrase ore domain protein   CSAK6_03611 Type IV secretory pathway, VirB4 components 
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CSAK767_00886 invasion protein IagB   CSAK6_03600 Type IV secretory pathway, VirD4 components 

iutA_1 Iron-regulated outer membrane proteins   CSAK6_03628 tyrosine recombinase XerC 

treZ_3 Malto-oligosyltrehalose trehalohydrolase   xerD_3 Tyrosine recombinase XerD 

CSAK767_03126 modulator of post-segregation killing protein   cpsD Tyrosine-protein kinase CpsD 

CSAK767_02282 Mu-like prophage protein gp   CSAK6_03866 YfdX protein 

CSAK767_01959 Mu-like prophage protein gpG   CSAK6_03867 YfdX protein 

traI_1 Multifuntional onjugation protein TraI   CSAK6_00945 Zinc-type alcohol dehydrogenase-like protein 

CSAK767_02255 NinB protein     

cpo Non-heme hloroperoxidase     

CSAK767_03848 conjugal transfer mating pair stabilization protein TraG     

CSAK767_03532 conjugal transfer mating pair stabilization protein TraN     

CSAK767_03945 conjugal transfer pilus aetylation protein TraX     

CSAK767_03544 conjugal transfer pilus assembly protein TraB     

CSAK767_03847 conjugal transfer pilus assembly protein TraH     

CSAK767_00887 conjugal transfer protein TraM     

CSAK767_03850 conjugal transfer surfae exlusion protein TraT     

CSAK767_01950 Phage apsid saffolding protein (GPO) serine peptidase     

CSAK767_02299 phage head morphogenesis protein, SPP gp family     

CSAK767_01953 Phage head ompletion protein (GPL)     

CSAK767_01957 phage lysis regulatory protein, LysB family     

CSAK767_01951 phage major apsid protein, Pfamily     

CSAK767_01968 phage major tail tube protein     

CSAK767_01961 Phage Pbaseplate assembly protein gpV     

CSAK767_01947 phage portal protein, PBSX family     

CSAK767_01973 Phage protein D     

CSAK767_01972 Phage protein U     

CSAK767_01938 Phage regulatory protein II (P)     

CSAK767_01256 Phage regulatory protein Rha (Phage_pRha)     
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CSAK767_01952 Phage small terminase subunit     

CSAK767_02277 phage Tail ollar Domain protein     

CSAK767_01969 Phage tail protein E     

CSAK767_01954 Phage Tail Protein X     

CSAK767_01967 Phage tail sheath protein     

CSAK767_01970 phage tail tape measure protein, TP family, ore region     

CSAK767_02300 phage-assoiated protein, family     

CSAK767_01956 Phage-related lysozyme (muraminidase)     

CSAK767_02233 Phage-related lysozyme (muraminidase)     

CSAK767_01971 Phage-related minor tail protein     

CSAK767_03816 Plasmid stability protein     

pstP PP2-family Ser/Thr phosphatase     

CSAK767_01958 Pphage tail ompletion protein R (GpR)     

intA_2 Prophage P- integrase     

intA_3 Prophage P- integrase     

parB putative hromosome-partitioning protein parB     

CSAK767_02264 putative HTH-type transriptional regulator     

CSAK767_02235 putative phage-enoded protein     

CSAK767_03838 putative rown gall tumor protein Vir     

CSAK767_01945 ribose-phosphate pyrophosphokinase     

CSAK767_04125 Siphovirus Gp     

CSAK767_02239 Terminase small subunit     

CSAK767_02371 Transposase     

CSAK767_03128 Transposase     
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Appendix text 1. 1 Mugsy whole genome alignment and algorithms used to extract the 
core genome  

(The comment in red font within curly brackets describes each command) 

Whole genome alignment using Mugsy 

To run Mugsy, all the files must be in the fasta format (e.g. 1.fasta) and in the Mugsy folder 

Navigate to the Mugsy folder from the terminal 

To run mugsy use the following command  

./mugsy 1.fasta 2.fasta 3.fasta {if we have 3 genomes} 

Output file will be a multiple alignment file in the form of tmp file rename it (*.maf)and 

run through the following scripts before running the raxML ($1 is the *.maf so replace it) 

Core genome extraction  

python maf_to_fasta.py < $1 > temp.fasta {generates a temporary fasta file} 

python get_record_ids.py temp.fasta > tmp {generates a temporary file used to make 

record} 

sort -u -k 1,1 tmp > record_ids.txt {generates a text file containing the records} 

python maf_thread_for_species_list.py record_ids.txt < $1 > new.maf {creates a new maf 

file} 

python maf_to_concat_fasta_list.py record_ids.txt < new.maf > concat.fasta {generates a 

concatenated fasta file from new maf file} 

mothur "#filter.seqs(fasta=concat.fasta, vertical=F, trump=-)" {filters the concatenated 

fasta file} 

mothur "#filter.seqs(fasta=concat.filter.fasta, vertical=F, trump=.)" {again filters the 

concatenated fasta file} 

mv concat.filter.filter.fasta concat_alignment.fas {creates a double filtered concatenated 

alignment file} 
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Visualise the concat_alignment.fas file using the seaview and save as phylip file (*.phy) as 

raxML only accepts the phy files 

Phylogeny estimation by RAxML 

To run RaxML move the *.phy file to the Mugsy folder 

Navigate to the Mugsy folder from the terminal and run the following command line 

ramlHPC –f a –m GTRGAMMA –x12345 -# 100 –s *.phy –n *tree {where –s is the name of 

the phylip file generated before and the –n is the name of the output file o raxML} 

The RAxML best tree can then be viewed and annotated using FigTree.  

Appendix text 1. 2 Commands used for SNP calls using SMALT, SAMtools and BCFtools  

(The comment in red font within curly brackets describes each command) 

./smalt_x86_64 index -k 17 -s 2 Refindex Csak.fasta {builds a hash table for the reference 
genome in file Csak.fasta} 
 
./smalt_x86_64 map -f sam -o 1.sam Refindex 1_read1.fastq 1_read2.fastq {loads the hash 
table created by the previous step into memory and maps paired-end reads in the 
files1_read1.fastq 1_read2.fastq} 
 
samtools faidx Csak.fasta {Index reference sequence Csak.fasta in the FASTA format or 
extract subsequence from indexed reference sequence} 
 
samtools view -bS -t Csak.fasta.fai -o 1.bam 1.sam {Extract all or sub alignments in SAM or 
BAM format. Since, no regions were specified it extracted all the alignments} 
 
samtools sort 1.bam 1.sort {sorts the alignment by the leftmost coordinates} 
 
samtools rmdup 1.sort.bam 1.out.bam {remove potential duplicates to retain the highest 
quality variant calls} 
 
samtools mpileup -ugf Csak.fasta 1.out.bam | bcftools view -bvcg - > var.raw.bcf {Produce 
a BCF for the BAM file. The records of the alignment are grouped by sample identifiers in 
@RG header lines} 
 
bcftools view var.raw.bcf | perl Vcfutils.pl varFilter -D 100 > 1var.vcf {converts BCF file to 
VCF file} 
 
bgzip 1var.vcf {produce and compress the TAB-delimited VCF file} 
 
tabix -p vcf 1var.vcf.gz {indexes the TBA-delimited genome position file from the 
compressed and sorted VCF file} 
samtools index 1.out.bam {index the sorted alignment for the fast and random access, index 
file 1.out.bam.bai will also be created} 
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