
1 

Influence of zeta potential on the flocculation of cyanobacteria cells using 1 

chitosan modified soil 2 

Liang Li, Honggang Zhang, Gang Pan* 3 

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 4 

Beijing 100085, China. E-mail: ironlee@sina.com 5 

 6 

Abstract: Using chitosan modified soil to flocculate and sediment algal cells has been 7 

considered as a promising strategy to combat cyanobacteria blooms in natural waters. 8 

However, the flocculation efficiency often varies with algal cells with different zeta 9 

potential (ZP) attributed to different growth phase or water conditions. This paper 10 

investigated the relationship between ZP of microcystis aeruginosa and its influence 11 

to the flocculation efficiency using chitosan modified soil. Results suggested that the 12 

optimal removal efficiency was obtained when the ZP was between -20.7 mV and -6.7 13 

mV with a removal efficiency of more than 80% in 30 min and large floc size of > 14 

350 μm. When the algal cells were more negatively charged than -20.7 mV, the effect 15 

of chitosan modified soil was depressed (< 60%) due to the insufficient charge density 16 

of chitosan to neutralize and destabilize the algae suspension. When the algal cells 17 

were less negative than -6.7 mV or even positively charged, small floc size (< 120 μm) 18 

were formed, which may be difficult to sink under natural water conditions. Therefore, 19 

manipulation of ZP provided a viable tool to improve the flocculation efficiency of 20 

chitosan modified soil and an important guidance for practical engineering of 21 

cyanobacteria blooms control. 22 
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Introduction 27 

Excess qualities of nutrients have been discharged into fresh waters, inducing a 28 

global environmental epidemic of cyanobacteria blooms (Paerl and Huisman, 2008). 29 

Such blooms pose serious threats to aquatic life, fish industry, local tourism, and 30 
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water quality in lakes, rivers and reservoirs (Beaulieu et al., 2005). They also threaten 31 

drinking water safety, such as the drinking water crisis in Wuxi City, China in 2007 32 

(Guo, 2007). 33 

Over the past several decades, many efforts have been done to combat the 34 

cyanobacteria blooms (HABs). Among the technologies of mechanical, biological, 35 

chemical, genetic and environmental control (Anderson, 2009), significant attention 36 

has been focused on the use of clay to flocculate and settle the cyanobacteria cells in 37 

natural waters (Anderson, 1997; Sengco et al., 2001; Yu et al., 1994). However, the 38 

efficiency of clay alone was low and high loads of caly (0.25--2.5 g/L) (Pan et al., 39 

2006; Sengco et al., 2001; Sun et al., 2004) often lead to various ecological concerns 40 

(Lee et al., 2008). Pan et al (2006) found that local soil/sand collected from lake shore 41 

after modified by chitosan could be turned into effective flocculants to remove 42 

cyanobacteria blooms and improve water quality, which greatly reduced the dosage to 43 

11 mg/L and hence minimized the costs and the use of exogenous materials to the 44 

aquatic environments. Chitosan, a commercially available product of edible food 45 

additives, is derived from the alkaline deacetylation of crustacean chitin and known to 46 

be a biodegradable and non-toxic natural polymer. A field application of chitosan 47 

modified soil in Lake Taihu and the study of ecological response in time scale of 48 

months to year proved its efficiency and ecological safety, 0.1 km2 of the HAB layer 49 

was disappeared in 10 hours after the dispersion of the chitosan modified soil and the 50 

submerged vegetation was successfully restored after 4 months due to the improved 51 

water quality (Pan et al., 2011b). 52 

The key mechanism of chitosan modified soil/sand to remove cayanobacteria 53 

blooms was that the chitosan with long polymer chain and positively charged groups 54 

(-NH3
+) captured and linked the negatively charged algal cells and other particles, the 55 

soils then provided the mass or ballast to carry the flocs to the water sediment (Zou et 56 

al., 2006). Therefore, the charge interaction between chitosan and algal cells was 57 

critical important for the flocculation process. However, the zeta potential, which 58 

gives a measurement of the apparent surface charge of algal cells, often changed 59 

because of different growth phase (Henderson et al., 2008a) or water conditions (Zou 60 



3 

et al., 2005), which caused the flocculation efficiency of chitosan modified soil 61 

variable. For example, when the microcystis aeruginosa (M.A.), the main species 62 

forming cyanobacteria blooms in Lake Taihu was firstly harvested from the culture 63 

medium by centrifuge and then re-dispersed into 0.5% NaCl solution, Zou et al (2006) 64 

reported that 80% of the algal cells was removed by 1 mg/L chitosan modified 10 65 

mg/L soil in 30 min. However, if directly flocculated in the culture medium, 66 

maximally 60% was achieved in 4 hours with the same dosage (Li and Pan, 2013). 67 

Further studies proved that after the pretreatment, the magnitude of zeta potential (ZP), 68 

which gives a measurement of the apparent surface charge, was significantly reduced 69 

from -67.9 mV to -30 mV, which greatly increased the flocculation potential of M.A. 70 

cells and hence achieved higher removal efficiency (Li and Pan, 2013). 71 

Reducing the magnitude of negative zeta potential means charge neutralization 72 

and destabilization, which established the polymer flocculation mechanism (Hjorth 73 

and Jorgensen, 2012). Although the ZP as an influence factor affecting the 74 

flocculation ability of chitosan has been proposed (Renault et al., 2009), little progress 75 

has been done to quantify the effects and study the mechanism how it affected the 76 

flocculation efficiency. The use of ZP for monitoring and controlling the coagulation 77 

of algal cells using aluminium sulphate has been well researched and found to be of 78 

great benefit (Henderson et al., 2008b), it was reported that the optimum removal was 79 

measured when the ZP of algal cells was controlled to between -8 mV and +2 mV. 80 

However, the main mechanism of chitosan to remove particles in water was the long 81 

polymer chain with netting and bridging function (Huang and Chen, 1996; Zou et al., 82 

2006), which was significantly different from the aluminium sulphate functioned 83 

mainly as charge neutralizer, the results and mechanism how the ZP affect the 84 

removal efficiency of chitosan may be also different. Therefore, if the influence of ZP 85 

of cyanobacteria cells on the flocculation ability of chitosan modified soil can be 86 

quantified, for example, in which ZP range ideal removal efficiency can be achieved 87 

or in which range the algal cells failed to be flocculated, it will give an insight for 88 

understanding the flocculation mechanism and provide a useful guidance for practical 89 

engineering of cyanobacteria blooms control.  90 
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Here, the microcystis aeruginosa (M.A.), main species forming cyanobacteria 91 

blooms was selected in different growth phase and adjusted to possess different ZP by 92 

a positively charged protein, moringa oleifera seed extract (MO). The relationship 93 

between ZP of algal cells and flocculation ability of chitosan was studied. The main 94 

objective of this research was to find how the ZP of particles affects the flocculation 95 

behavior of chitosan, including removal efficiency, sedimentation kinetics, floc 96 

structure and floc size growth. According to these results, an optimized ZP range for 97 

algae flocculation using chitosan modified soil was proposed. 98 

1 Materials and methods 99 

1.1 Algae culture 100 

The M.A cells were obtained from Freshwater Algae Culture Collection at the 101 

Institute of Hydrobiology (FACHB), Chinese Academy of Sciences. The culture 102 

medium, BG11, was adjusted to pH = 8.0 by adding either 0.1 mol/L HCl solution or 103 

0.1 mol/L NaOH solution before autoclaving. The sterilized 500 mL glass flasks 104 

containing 300 mL aqueous M. aeruginosa medium were maintained at 25 ± 1 °C 105 

under cool white fluorescent light of 2000−3000 lx on a 12 h light and 12 h darkness 106 

regimen in the illuminating incubator (LRH-250-G, Guangdong Medical Apparatus 107 

Co.Ltd., China). 108 

1.2 MO, chitosan, soil and modification 109 

Moringa oleifera seed extract (MO) was cationic proteins with molecular mass of 110 

6.5−13 kDa and isoelectric points in the range of pH 9.6−11 (Ghebremichael et al., 111 

2005). It was chosen as the ZP adjuster for M.A. cells since as reported, it can 112 

significantly reduce ZP of particles (Ndabigengesere et al., 1995). MO seeds were 113 

purchased from Shaoguan city (South China) in dry form, having already been 114 

removed from the pod. The healthy seeds (about 1.0 cm) were selected and deshelled. 115 

The kernels were grounded in a coffee grinder to become particles of ∼300 μm and 116 

stored at room temperature in an airtight container and used in one month (Katayon et 117 

al., 2006). To extract the active proteins, 5 g of the seed powder was suspended in 100 118 

mL of 1.0 mol/L NaCl solution and the suspension was stirred using a magnetic stirrer 119 

for 30 min (Okuda et al., 2001). The solution was then filtered through a glass 120 
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microfibre filter of 0.45 μm pore size (Whatman GF/C) and the filtrate was used as 121 

the ZP adjuster. 122 

Chitosan was purchased from Qingdao Yunzhou Bioengineering Co. Ltd. The 123 

chitosan flakes were dissolved by adding 500 mg chitosan to 100 mL of 0.5% HAc 124 

and stirred until all the chitosan was dissolved. This solution was then diluted with 125 

deionized water to obtain a final concentration of 1 g/L before use. The MO and 126 

chitosan was prepared freshly for each experiment. 127 

The soil was collected from lakeshore of Meiliang Bay, Lake Taihu, washed with 128 

deionized water, dried at 100 ℃ for 10 h, and then grounded and sieved through 180 129 

mesh (< 90 μm). 130 

To modify the soil, a certain volume of chitosan solution (1 mg/L) was added to a 131 

clay suspension (10 mg/L). The mixture was well stirred and then ready for use in the 132 

flocculation experiment. As the Al13-modified montmorillonite reported by Zhao et al 133 

(2012), the chitosan modification also changed the physic-chemical characteristics of 134 

soil and hence affected the flocculation behavior, more detailed information can be 135 

obtained from our previous publications (i.e., Pan et al (2006) and Zou et al (2006)). 136 

1.3 Algae suspension preparation 137 

M.A. cells with different ZP were obtained by two ways: (1) Algal cells in 138 

different growth phase (mid- to late-exponential growth phase and mid- to 139 

late-stationary phase) possess different ZP were selected, and then diluted to optical 140 

density of 0.150 ± 0.002 at the wavelength of 680 nm (OD680 nm) (Pan et al., 2006) 141 

using BG11 culture medium; (2) M.A. cells in the mid- to late-stationary phase were 142 

chosen and diluted to OD680 nm = 0.150 ± 0.002 using BG11 culture medium, then 1 143 

mL, 2 mL, 3 mL, 4 mL and 5 mL of MO was added to 200 mL algae suspension, 144 

respectively. The pH of all the solutions were adjusted to 8.0 by adding either 0.1 145 

mol/L NaOH or 0.1 mol/L HCl solutions and the ZP of M.A. cells was then 146 

determined by Zetasizer 2000 (Malvern Co. Ltd., United Kingdom). 147 

1.4 Algae flocculation 148 

200 mL of each prepared algae suspension was transferred into 300 mL beaker, 149 

respectively. According to the pre-experiment (Fig. 1), the optimal dosage of 2 mg/L 150 
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chitosan modified 10 mg/L soil was added to the algae solution and stirred (six-head 151 

stirrer ZR3-6, made in Shenzhen, China) at 300 r/min for 1 min, then 120 r/min for 2 152 

min, followed by 40 r/min for another 10 min. The solution running without adding 153 

any MO, chitosan or soil was set as blank control and only the addition of ZP adjuster 154 

(MO) was set as MO control. The solutions were kept standing when the stirrer 155 

stopped. Samples (1 mL) from 2 cm below the water surface were collected after 156 

sedimentation for 0, 2, 5, 10, 15, 20, 30, 60, 90, 120, 180, 240, 300, 360 and 420 min. 157 

The cells were enumerated in a counting chamber of an electromotive microscope 158 

(Axioskop 2 mot plus, Carl ZEISS, Germany) after being fixed by Lugol solution. All 159 

the flocculation experiments were conducted in triplicate and the results were 160 

presented as the mean values. The removal rate of M. A. cells was calculated as 161 

(initial cell concentration − sample cell concentration)/initial cell concentration 162 

×100%. 163 

To study the flocs formation and floc size growth of M.A. cells with different ZP 164 

after the addition of chitosan modified soil, the floc size during flocculation process 165 

was quantitatively monitored with a laser particle size analyzer (Mastersizer 2000, 166 

Malvern Co. Ltd., United Kingdom). Samples were drawn into the analyzer and back 167 

to the jar by a peristaltic pump (BT00−300M, Baoding Longer Precision Pump Co. 168 

Ltd., China) at a flow rate of 35 mL/min (Jarvis et al., 2005). The floc size of samples 169 

was determined firstly before going through the pump head, which avoid the flocs 170 

breakage. The size was denoted by the measured mean diameter (D0.5). After 171 

flocculation and sedimentation, the flocs formed by M.A. cells with different ZP were 172 

carefully transferred on a glass slide and then photographed by the electromotive 173 

microscope (Axioskop 2 mot plus, Carl ZEISS, Germany) for floc structure study. 174 

2 Results and discussion 175 

2.1 Algae removal in different growth phase 176 

The chitosan modified soil showed different flocculation ability to the M.A. cells 177 

in different growth phase (Fig. 2). Maximally about 70% of algal cells in the mid- to 178 

late-exponential growth phase and 50% in the mid- to late-stationary phase were 179 

removed at the optimized dosage of 2 mg/L chitosan modified 10 mg/L soil, 180 
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respectively. The change of ZP associated with algae proliferation process probably 181 

caused the different removal efficiency. When in the mid- to late-exponential growth 182 

phase, the ZP of M.A. cells was -26.3 mV, whereas in the mid- to late-stationary phase, 183 

it was more negatively charged (-67.9 mV) (Fig. 2). This was probably because of the 184 

more generation of extracellular organic matter (EOM) in the stationary phase which 185 

attached to the algal cells and changed the surface properties (Wang et al., 2013).  186 

EOM in appropriate concentration acted as flocculation aid to increase the 187 

removal efficiency (Henderson et al., 2008a), however, the increased EOM might 188 

increase the magnitude of ZP and thus inhibited the flocculation process (Wang et al., 189 

2013). Compared to some coagulants with strong charge density (e.g. aluminium and 190 

ferric), chitosan is a relatively weaker surface charge modifier, which was less 191 

effective in reducing the magnitude of ZP and destabilizing algae suspension (Huang 192 

and Chen, 1996). Therefore, more negatively charged algal cells often leaded to lower 193 

removal efficiency when using chitosan modified soil. 194 

2.2 Removal efficiency of M.A. cells with different ZP 195 

To study the flocculation of M.A. cells less negatively charged when using 196 

chitosan modified soil, the cationic protein, MO was used to adjust the ZP of algal 197 

cells in the mid- to late-stationary growth phase. The initial ZP of M.A. cells in the 198 

BG11 culture medium was highly negatively charged (-67.9 mV). After the addition 199 

of MO of 1 mL, 2 mL, 3 mL, 4 mL and 5 mL, the magnitude of ZP was reduced to 200 

-20.7 mV, -6.7 mV, -3.7 mV, +0.4 mV and +2.7 mV, respectively (Fig. 3A). Due to the 201 

reduction of repulsive force, MO itself can remove some algal cells (Fig. 3B). As the 202 

reduction of the magnitude of ZP, the removal efficiency was increased and achieved 203 

the maximum removal efficiency of 58.7% at the ZP of -6.7 mV, then slightly 204 

decreased to 54.5% when the ZP was +2.7 mV after sedimentation for 30 min. The 205 

chitosan modified soil showed different flocculation ability to M.A. cells with 206 

different ZP (Fig. 3B). When directly flocculated in the culture medium without ZP 207 

adjusting, only 40% of algal cells were removed in 30 min, whereas the removal 208 

efficiency of 80% and 93% was achieved at the ZP of -20.7 mV and -6.7 mV, 209 

respectively. 210 
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Unlike the coagulants, the magnitude of ZP should be reduced to a certain level to 211 

help the algal cells overcome the repulsive force and make them self-aggregation and 212 

sedimentation, such as the optimal removal rate was obtained at the ZP range between 213 

-8 mV and +2 mV when aluminium sulfate was used (Henderson et al., 2008b). 214 

Reduction of the magnitude of ZP to -20.7 mV was sufficient for the chitosan to 215 

flocculate the M.A. cells (Fig. 3B). However, if over-reduced the magnitude of ZP, i.e. 216 

less negatively charged than -6.7 mV, the attractive force between positive charged 217 

groups of chitosan (-NH3
+) and the algal cells was weakened, which inhibited the 218 

netting and bridging process of chitosan. Although the removal efficiency was still 219 

higher than 90% due to reduced repulsive force between algal cells at the ZP range 220 

between -3.7 and +2.7 mV (Fig 3B), the floc size became small (as discussed below) 221 

and hence the overall removal efficiency was decreased. 222 

2.3 Algal flocs formation, size growth and sedimentation 223 

The flocs formation and floc size growth of M.A. cells with different ZP after the 224 

addition of chitosan modified soil was directly monitored during flocculation process 225 

(Fig. 4). The size of algal flocs was limited improved from 2 μm to 30 μm at the ZP of 226 

-67.9 mV, which suggested that chitosan cannot capture and link these highly 227 

negatively charged cells effectively. As the reduction of the magnitude of the ZP, the 228 

floc size was significantly increased to about 360 μm at the ZP of -20.7 mV. The 229 

netting and bridging function of chitosan played best when the ZP of M.A. cells was 230 

-6.7 mV, the maximum floc size of about 700 μm was achieved. However, if the ZP 231 

was less negatively charged than -6.7 mV, as explained above, the weakened attractive 232 

force between chitosan and cells leaded to the decrease of floc size. When the ZP was 233 

turned to positive, the floc size was almost the same as MO control (120 μm), which 234 

suggested that the netting and bridging function of chitosan was lost under this 235 

condition. According to the images of floc structure of M.A cells at the ZP of -6.7 mV 236 

and +2.7 mV (Fig. 5), the latter was much more fragile and smaller than the former, 237 

which directly proved the effect of ZP to the netting and bridging process of chitosan. 238 

Algal floc size directly affected the sedimentation kinetics of M.A. cells after 239 

flocculation (Fig. 6). The maximum removal efficiency of 90% was achieved in 30 240 
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min for the M.A. cells at the ZP of -6.7 mV due to the rapid formation and size 241 

growth of algal flocs (Fig. 4), whereas 240 min was needed to obtain the same 242 

removal efficiency when the ZP was +2.7 mV and only about 50% of alga cells were 243 

removed as long as 480 min when the ZP was -67.9 mV. After adjusting ZP to -6.7 mV, 244 

the MO alone can remove algal cells due to the reduction of repulsive force between 245 

particles, however, if without the netting and bridging function of chitosan, 120 min 246 

was needed to sediment the small MO-flocs (Fig. 6). 247 

Sedimentation was regarded as a major challenge for chemical coagulation and 248 

flocculation treatment of cyanobacteria cells because of the buoyant properties 249 

(Ghernaout et al., 2010) and low density of algal flocs (Pieterse and Cloot, 1997). 250 

Unlike in the constructed water treatment systems, sufficient sedimentation time can 251 

be provided to allow the small flocs to settle by creating static water condition and/or 252 

appropriate water retention time, or dissolved air bubbles can be generated to float the 253 

flocs with low density (Edzwald, 1993). For flocculating cyanobacteria blooms in 254 

natural waters, since the small and fluffy flocs were often hard to settle or easy to 255 

re-suspend into the water column with the disturbance of water flow and 256 

wind-induced waves (Beaulieu et al., 2005). Improving algal floc size and combining 257 

with soil particles to increase the floc density was a key process for algae removal 258 

when using the chitosan modified soil technology. To this end, manipulating the ZP of 259 

M.A. cells to create an optimized condition for chitosan linking and bridging the algal 260 

cells and soil particles (Fig. 4) is crucial for flocculating cyanobacteria blooms 261 

successfully in natural waters. According to the removal efficiency (Fig. 2 and Fig. 3), 262 

floc size growth process (Fig. 4 and Fig. 5) and sedimentation kinetics (Fig. 6), the 263 

optimized ZP range for chitosan modified soil to flocculate M.A. cells was suggested 264 

to be between -20.7 mV and -6.7 mV, in which the removal efficiency of more than 265 

80% in 30 min and floc size larger than 350 μm can be achieved. 266 

2.4 Environmental implications 267 

Cyanobacteria blooms pose a serious threat to aquatic eco-systems and public 268 

health (Guo, 2007; Paerl and Huisman, 2008), flocculating them using chitosan 269 

modified soil not only removed the harmful algal cells and reduced the risk level, but 270 
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more importantly, the water quality including water transparency was also improved 271 

and excess nutrients in the algal cells were transferred to the sediment, which created 272 

a better condition for subsequently submerged macrophytes restoration in shallow 273 

lakes (Pan et al., 2011b). Besides the biodegradable, nontoxic and natural properties 274 

(Pan et al., 2011a), chitosan was also reported to be beneficial for the submerged 275 

macrophytes growth in aquatic environment (Xu et al., 2005). 276 

However, both exciting and unsatisfactory results of the algae removal using 277 

chitosan modified soil has been reported (Li and Pan, 2013; Zou et al., 2006). The 278 

changes of algal surface charge attributed to the different algae growth phase (Chen et 279 

al., 2004) or water condition (Pan et al., 2011a) often leaded to the flocculation 280 

efficiency variable. Our results demonstrated the relationship between ZP of algal 281 

cells and its influence on the flocculation efficiency using chitosan modified soil. The 282 

optimized ZP range between -20.7 mV and -6.7 mV thus provided a manipulating 283 

strategy for practical engineering of cyanobacteria blooms control. For example, since 284 

algal cells in different growth phase possess different ZP, the optimized range can 285 

guide the researchers or engineers to choose the right time to carry out the 286 

cyanobacteria blooms removal, or for the highly negatively charged algal cells, some 287 

charge modifiers (e.g. the coagulants) can be dosed first to create a better condition 288 

for chitosan to capture and link the particles and increase floc size. Therefore, 289 

manipulating the ZP of algal cells as a tool to improve the flocculation efficiency and 290 

floc size greatly increased the probability of successful control of cyanobacteria 291 

blooms in natural waters when using this chitosan modified soil technology. 292 

Since chitosan alone cannot destabilize and capture highly negatively charged 293 

algal cells, pre-charge modification was hence important for the successful algae 294 

removal. Besides MO, there are some other widely existed proteins with high 295 

isoelectric point which possess net positive charge in natural waters shows promise to 296 

achieve this goal. Ghebremichael et al (2005) has proved that there are many other 297 

small, basic peptides from plants and animals can be used to reduce the surface charge 298 

of particles. Therefore, a new bi-component modification method using locally 299 

available, biodegradable and nontoxic materials with high charge density and chitosan 300 



11 

could be developed, which combines multi mechanism of charge neutralization to 301 

manipulate the ZP and netting and bridging function to improve the floc size. If so, 302 

the uncertain impact of ZP attributed to different algal growth phase could be 303 

overcome and high removal efficiency could be achieved under different water 304 

conditions. 305 

Finally, it is important to note that besides ZP or some factors directly affected ZP 306 

and thus further affected the flocculation ability of chitosan, some other factors 307 

irrelevant to ZP also show the control of the performance in flocculation process, such 308 

as the origin and the nature of the chitosan (i.e., its intrinsic characteristics such as 309 

degree of deacetylation and molecular weight, and the activation conditions of the raw 310 

biopolymer), the type of acid used to dissolve the chitosan, the reaction time and 311 

temperature, etc (Renault et al., 2009), the quantitative relationship between algae 312 

removal efficiency and these factors needs to be further studied. 313 

3 Conclusions 314 

The ZP of algal cells directly affected the flocculation ability of chitosan 315 

modified soil. According the removal efficiency, floc size and sedimentation kinetics, 316 

an optimized ZP range between -20.7 mV and -6.7 mV was proposed, in which the 317 

removal efficiency of more than 80% in 30 min and floc size of larger than 350 μm 318 

can be achieved. The quantification of the ZP effect to chitosan flocculation behavior 319 

provided a viable tool to increase the probability of successful control of 320 

cyanobacteria blooms in natural waters when using this technology. With some 321 

additional research, a bi-component modification method combing ZP manipulation 322 

and netting and bridging function can be developed. 323 
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