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We propose wave and ray approaches for modelling mid- and high-frequency structural
vibrations through smoothed joints on thin shell cylindrical ridges. The models both
emerge from a simplified classical shell theory setting. The ray model is analysed via an
appropriate phase-plane analysis, from which the fixed points can be interpreted in terms

model is studied using the finite difference method to investigate the scattering properties
of an incident plane wave. Through both models we uncover the scattering properties of
smoothed joints in the interesting mid-frequency region close to the ring frequency,
where there is a qualitative change in the dynamics from anisotropic to simple geodesic
propagation.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Thin shell components can be found in many large built-up mechanical structures such as cars, ships, and aeroplanes.
The prediction of the mid- and high- frequency vibrational properties of these structures becomes computationally pro-
hibitive for standard element-based methods, such as the finite element method [1]. The main reasons for this limitation
are: firstly, very fine meshes are required for an adequate representation of the highly oscillatory wave solutions and the
computational complexity grows with frequency raised to the power of the dimension of the space being modelled. Sec-
ondly, small uncertainties originating from the manufacturing process lead to a much larger variability in vibro-acoustic
responses in the high frequency range [2], meaning that the response of any individual manufactured structure is of less
interest to computer aided engineering practitioners than the average responses.

Methods such as statistical energy analysis (SEA) [2] and ray tracing [3] are more commonly applied for modelling wave
problems at high frequencies. SEA has traditionally proved more popular for structural vibration problems with low
damping [4], whereas ray tracing has found its niche in applications where relatively few reflections need to be tracked in
computer graphics [3], room acoustics [5] and seismology [6]. Ray tracing has also been applied to elastic wave transmission
problems on shells and plates [7]. In this context the ring frequency, that is the frequency above which longitudinal waves in
a curved shell behave as they would in a flat plate, provides a useful point of reference. Beyond the ring frequency the ray
dynamics in a curved shell are relatively simple following geodesic paths, but below the ring frequency one finds that
asymptotic ray theories show richer features. The dispersion relations become highly anisotropic with likewise anisotropic
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propagation [8]. An SEA treatment would fail to capture the non-trivial way in which the curved shell geometry influences
the wave and ray propagation below the ring frequency [9], and hence ray methods can provide useful insight [7].

Wave scattering from discontinuous line joints below the ring frequency has been considered in [9,10]. However,
manufacturers of large built-up mechanical structures are increasingly developing larger and lighter sub-components,
whereby large thin shell structures are replacing more traditional plate-beam and multi-plate assemblies. The manu-
facturing process for such thin shells often entails casting molten metal (for example aluminium), which gives rise to curved
components with smooth transitions between flat and curved regions. This raises the question of how the ray and wave
scattering, and hence the vibrational properties of the structure, are modified in these smooth designs. In this work we
study the case of a singly curved shell, chosen here as an assembly of two plates joined smoothly with a quarter of a cylinder.
This simplified assembly represents a typical curved region within one of the larger sub-structures described above. We
shall go beyond plane waves and ray tracing calculations by solving the full wave scattering problem numerically.

The numerical solution to the full wave scattering problem will be discussed in comparison with the corresponding ray
tracing calculations. In both cases we find effective laws for the scattering properties, which may be inserted into ray or
wave propagation modelling techniques such as dynamical energy analysis (DEA) [11,12] or the wave and finite element
method [13,14]. In particular, combining these local scattering models within a larger model of a built-up structure will lead
to a hybrid method for structures including curved thin shell components in the mid-frequency regime. Here, the natural
definition of the mid-frequency regime is given by the range of frequencies that are high enough for a pure FEM analysis to
be impractical, but low enough so that a simple geodesic description of the trajectory evolution is invalid. In the high-
frequency case, DEA [11] can be applied to model the vibrational energy transport of a built-up structure along geodesic
paths using the mesh data from a FEM analysis [12]. In fact, DEA presents a link between ray tracing and SEA by casting the
wave or ray problem into the language of evolution operators. We note that an equivalent operator formalism has also been
long known in computer graphics [15], although the theory underlying DEA arose from the more general setting of evo-
lution operators for transporting flows in dynamical systems [16,17].

The organisation of the article is as follows: we introduce the necessary shell theory and derive a wave scattering model
for a singly curved shell in Section 2. We then present two approaches for solving the wave scattering model; a short
wavelength asymptotic ray tracing model based on this shell theory is detailed in Section 3, and a finite difference dis-
cretisation of the full wave model is described in Section 4. We then discuss and compare numerical results for both the
wave and ray scattering models, and the resulting reflection and transmission laws in Section 5.
2. Thin shell wave theory

2.1. Governing equations of Donnell's shell theory

The thin shell theory of Donnell is one of the simplest and widely adopted models [7,18]. In this theory, moments and
transverse forces are expressed by the displacement w of the middle surface as known from the theory of laterally loaded
plates. As with other theories of continuum mechanics, shell theory is formulated in tensor form [19]. Some properties of
tensors are summarised in Appendix A. We assume an isotropic shell of thickness h, Young's modulus E, density ρ and with
Poisson ratio ν. The displacement vector of a point originally on the mid-surface of the shell is decomposed into tangential
and normal components thus u¼ ½u1 u2 w�T.

The following tensor equation for the normal displacement w may be derived [7]

ρh
∂2w
∂t2

¼ �DαDβ B 1�νð ÞDαDβw
� ��DαD

α BνDβD
βw

� �
�Cðð1�νÞdαβϵβαþνdααϵ

β
βÞ;

(1)

where

B¼ Eh3

12ð1�ν2Þ and C ¼ Eh
1�ν2

(2)

are the bending and extensional stiffness, respectively. All Greek alphabet indices take values from the set f1; 2g. Also, the
membrane strain is

ϵαβ ¼
1
2

DαuβþDβuα

� �þdαβw: (3)

with dαβ the second fundamental form and Dα the covariant derivative. These are discussed further in the next section,
where they are simplified for a singly curved shell. The tangential displacements ðu1; u2Þ in the directions ðx1; x2Þ,
respectively, satisfy [7]

ρh
∂2uα

∂t2
¼Dβ C 1�νð Þϵαβþνϵγγg

αβ
� �� �

: (4)



 x1

 x2

Fig. 1. The problem setting for which we derive a simplified set of shell equations: a cylindrical ridge connected to flat plates on either side.
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The term gαβ represents the inverse of the first fundamental form as explained in Appendix A. Note that the above for-
mulation is stated for a shell in vacuo and, although beyond the scope of the present study, coupling to an acoustic fluid may
be included via an additional term in equation (1) to express the pressure difference on either side of the shell; see for
example Ref. [7]. In addition, structural damping may be incorporated in the usual way by replacing the Young's modulus E
in the equations above with Eð1þ iηÞ, where η is the damping loss factor. However, we proceed with the lossless case η¼ 0 in
order to isolate the effect of curvature on the reflection and transmission properties of the shell, whilst also allowing us to
check that our results conserve energy in the correct manner.

2.2. Simplified model for a singly curved shell

In this Sectionwe simplify the shell theory presented above for thes case of a cylindrical ridge as shown in Fig. 1. The only
simplifying assumption is that the shell is not curved with respect to the direction x2. We define the principal curvature κ1
(in the direction x1) as

κ1 x1
� �¼ f ðx1Þ

f ð0Þ κmax; (5)

where κmax is a constant corresponding to the maximum curvature in the cylindrical region. A smoothly varying curvature
with respect to x1 is obtained via the interpolation function f given by

f x1
� �¼ 1

2
erf

x1þx�

δx

� �
�erf

x1�x�

δx

� �� �
; (6)

where x1 ¼ 7 x� are the centres of the transitions between the two flat regions where κ1 ¼ 0 and the cylindrical region
where κ1 ¼ κmax, see Fig. 2. Also, δx is the width of the transition region. Note that the case of a non-smooth joint between a
cylindrical ridge and a pair of connecting plates is obtained in the limit δx-0.

A cylindrical ridge with a prescribed bending angle ψ can be designed by integrating the angular increment

dψ ¼ κ1dx1 (7)

to find the total length L of the curved section of the geometry such that

ψ ¼
Z L=2

� L=2
κ1dx1 (8)

for the desired angle. The length L is then found by numerically solving the implicit Eq. (8). In this work we take a quarter
cylinder with ψ ¼ π=2 as shown in Fig. 1.

In the above described geometrical setting, the shell theory presented in the last section is simplified considerably if we
choose an orthonormal basis ða1; a2Þ along the axes x1; x2. We then measure all tensor fields relative to this basis, that is, we
work in physical components. The metric becomes

ds2 ¼ ðdx1Þ2þðdx2Þ2 (9)
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Fig. 2. The subdivision of the cylindrical ridge geometry into interior (Ω�) and exterior (Ωþ) regions for the scattering problem. The interfaces betweenΩ�
and Ωþ lie with the flat regions where κðxÞ � 0. For xAΩ� , the curvature increases smoothly to κðxÞ ¼ κmax at x¼0. The incident, reflected and transmitted
waves in Ωþ are also indicated.
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and so the first fundamental form and its dual both reduce to the identity matrix

gαβ ≔ aα � aβ ¼ δαβ ¼ gαβ: (10)

Therefore the raising and lowering of indices becomes trivial. The second fundamental form dαβ in the basis ða1; a2Þ is simply

d11 ¼ κ1; (11)

and zero for all other combinations of α and β.
The covariant derivative (see Appendix A), likewise reduces considerably since all derivatives vanish for the metric Eq.

(10). Hence, all Christoffel symbols vanish and the covariant derivative is identical to the directional derivative, i.e. Dα ¼ ∂α.
Applying the above simplifications in the shell equation for the normal displacement (1) and assuming that material
constants and the thickness are constant yields the following equation

ρh
∂2w
∂t2

¼ �BΔ2w�Cκ
∂u1

∂x
þν

∂u2

∂y
þκw

� �
; (12)

where we write ðx1; x2Þ � ðx; yÞ and κ1ðx1Þ � κðxÞ for simplicity of notation. We adopt this notation for the remainder of the
paper since we are no longer considering differential equations written in tensor form. Repeating the simplification process
for the in-plane wave equation system (4) gives

ρh
C
∂2u1

∂t2
¼ ∂2u1

∂x2
þð1þνÞ

2
∂2u2

∂x∂y
þð1�νÞ

2
∂2u1

∂y2
þ ∂
∂x

κwð Þ; (13)

ρh
C
∂2u2

∂t2
¼ ∂2u2

∂y2
þð1þνÞ

2
∂2u1

∂x∂y
þð1�νÞ

2
∂2u2

∂x2
þνκ

∂w
∂y

: (14)

Hence, a simplified set of partial differential equations (PDEs) describe the wave motion in the cylindrical ridge shell
geometry under consideration here. In the next section we discuss how under certain modelling assumptions, this system
can be reduced further to a set of ordinary differential equations (ODEs).

2.3. Reduction to a system of ordinary differential equations

In this work we are primarily interested in how the scattering properties of a thin shell cylindrical ridge depend on the
frequency and the direction of a prescribed incident plane wave originating in the flat region (where κ� 0). As such it makes
sense to consider time-harmonic waves with angular frequency ω. Further, we can extract scattering properties that are
independent of the position along the ridge by exploiting the translational symmetry and assuming that the ridge is of
infinite extent in the y� direction. Under these assumptions we may write

uðx; y; tÞ ¼ ûðxÞeiðkyy�ωtÞ; (15)

where ky is the component of the wavenumber in the y� direction and û ¼ ½u v ŵ�T are the coefficients of (15) in the in-
plane directions x and y, and the normal direction, respectively. Substitution of the ansatz (15) into the PDE system (12)–
(14) yields the following fourth-order ODE system in the variable x:

c2p
d2u
dx2

þ ω2�c2s k
2
y

� �
uþ iky c2p�c2s

� �dv
dx

þc2p
d
dx

κŵ
� �¼ 0; (16)

c2s
d2v
dx2

þ ω2�c2pk
2
y

� �
vþ iky c2p�c2s

� �du
dx

þνc2pκŵ
� �

¼ 0; (17)
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B
ρh

d4ŵ
dx4

�2k2y
d2ŵ
dx2

þk4yŵ

 !
þ c2pκ

2�ω2
� �

ŵþc2pκ
du
dx

þ iνkyv
� �

¼ 0: (18)

Note that the constants in the above system have been simplified by writing them in terms of the pressure and shear wave
velocities,

cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
ρð1�ν2Þ

s
and cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2ρð1þνÞ

s
;

respectively. In particular, we have made use of the following easily verified relations

c2p ¼
C
ρh

;
c2s
c2p

¼ ð1�νÞ
2

and c2p�c2s ¼
ð1þνÞc2p

2
:

Later in the paper we will write the above ODE system in the shorthand form

Dû ¼ 0; (19)

for brevity of exposition.

2.4. Formulation of the scattering problem

We connect the curved region to flat plates on each side using interfaces. Imposing a set of conditions at these interfaces
will enable us to formulate the set of ODEs (19) as a boundary value problem, and then by considering the flux of the
incoming and outgoing wave fields at these interfaces we are able to formulate a scattering problem. We assume that the
interfaces reside in the asymptotically flat regions and as such the interfaces themselves do not give rise to reflection/
transmission phenomena, only the interior region between the interfaces governs the scattering properties.

Each interface is assumed to satisfy the continuity conditions given in Ref. [10], that is, continuity of displacement,
rotation, traction, moment, and normal shear stress. Since the material properties are constant throughout the entire
geometry, then the interface conditions may be written simply as

û� ¼ ûþ
; (20)

dû
dx

�
¼ dû

dx

þ
; (21)

d2ŵ
dx2

�
¼ d2ŵ

dx2

þ
; (22)

d3ŵ
dx3

�
¼ d3ŵ

dx3

þ
: (23)

The superscripts specify the value of the quantity as we approach the interface from either the interior region (–)
containing the ridge, or the exterior flat region (þ) beyond the interfaces on either side of the ridge. In the sequel we will
refer to the interior region as Ω� , and the union of the exterior regions as Ωþ (see Fig. 2).

The waves in Ωþ are precisely those of classical plate theory and therefore the wave modes in Ωþ that are scattered by
Ω� will be one (or more) of bending, pressure, shear or evanescent bending type. In relation to the vector û we have that ŵ
describes the sum of the bending wave contributions and that the in-plane wave types will each be given by a linear
combination of u and v. In this work we consider only incident bending modes ŵinc originating in the exterior Ωþ and being
scattered by the ridge in Ω� . However, the extension to other incident wave types is straightforward. For the purpose of
investigating directional properties we consider plane wave scattering. We introduce the notation that the interface to the
left of Ω� is located at x¼ xl and the interface to the right is correspondingly at x¼ xr . Then an incident wave of unit
amplitude travelling in from the left of Ω� can be written in the form

ŵincðxÞ ¼ expðikbxðx�xlÞÞ; (24)

where kbx is the wave-number associated with the incident bending mode in the x-direction. In order to write the resulting
scattered waves in a concise manner we introduce xτ ¼ x�xr and xR ¼ x�xl. Then the scattered waves in Ωþ may be written

φα
βðxÞ ¼ Aα

βexpð7 ikαxxβÞ; (25)

where αAfb; e; p; sg designates the scattered wave type as either bending (b), evanescent bending (e), pressure (p) or shear
(s). The symbol βAfR; τg designates whether the scattered wave is reflected (R) or transmitted (τ). That is, whether the
scattered wave emerges in Ωþ on the same side of the ridge as the incident wave is sent in, or on the other side. The value of
β also prescribes the sign in the7as negative for β¼ R and positive for β¼ τ. The coefficient Aα

β denotes the corresponding
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wave amplitude, which are related to û via the following relations

uβðxÞ ¼ 7Ap
βexpð7 ikpxxβÞ cos θ�As

βexpð7 iksxxβÞ sin θ; (26)

vβðxÞ ¼ Ap
βexpð7 ikpxxβÞ sin θ7As

βexpð7 iksxxβÞ cos θ; (27)

ŵβðxÞ ¼ Ab
βexpð7 ikbxxβÞþAe

βexpð�kbx jxβjÞ: (28)

Here θA ð�π=2; π=2Þ is the angle between the scattered wave directions and the x� axis (positive or negatively oriented
depending on the direction of propagation). Hence, the total wave field in Ωþ to the left of Ω- is given by

û l ¼ ½uR vR ŵRþŵinc�T; (29)

and the total wave field to the right of Ω- may be written

ûr ¼ ½uτ vτ ŵτ�T: (30)

The scattering problem is then formed by connecting the interior problem for û ¼ û� in Ω- with the plane wave ansatz in
the exterior regions for ûl and ûr described above, via the interface conditions (20) to (23). Here ûl and ûr take the role of
ûþ on the left and right interfaces, respectively. When this scattering problem is solved, we can extract the scattering
solutions ûl and ûr and the scattering coefficients Aα

β , the latter of which are of primary interest for this study.
3. From waves to rays: short wavelength asymptotics

One obtains a ray tracing model from the PDE model (12) – (14) by moving to short wavelength asymptotics using the
ansatz

uðx; y; tÞ ¼ uðεÞðx; y; tÞexp iε� λϕðx; y; εμtÞ� �
;

where ϕ is a phase function and ε is a small parameter. The choice of the parameters λZ0 and 0rμrλ determines the wave
type, bending or in-plane. Then we define the frequency ω¼ �∂tϕðx; y; εμtÞ and the wavenumber vector k¼∇ϕ. Note that
the pre-factors of t vanish after applying the asymptotic scaling and setting λ¼ μ¼ 0. Assuming that k¼ jkj is large in
comparison to the curvature, Pierce derived a general dispersion relation [18] that was later presented in a simpler form by
Norris and Rebinsky [7]. In the next section we apply this dispersion relation to generate the Hamiltonian dynamics for our
ray tracing model on a singly curved shell.

3.1. Below the ring frequency

The ring frequency for the cylinder is defined relative to the pressure mode and corresponds to the frequency above
which a longitudinal wave can traverse around the cylinder. This extensional motion gives rise to radial motion, which also
results in breathing modes in cylinders. In the vicinity of the ring frequency, approximate forms of the dispersion relations
are obtained for the in-plane and bending modes using different scalings. These dispersion relations each reduce to those for
a flat plate when the frequency sufficiently exceeds the ring frequency. Hence in this study, we refer to the mid-frequency
case as the the frequency range in the vicinity of the ring frequency and the high frequency regime as the frequencies that
are sufficiently large for the dispersion relations to reduce to those of a flat plate. Defining the longitudinal wavenumber to
be Ω¼ ω=cp, with cp the longitudinal plate wave speed as before, and denoting the corresponding wavenumber at the ring
frequency as Ω�, we find that Ω� ¼ κ for the singly curved shell configuration shown in Fig. 1.

Below the ring frequency, the full dispersion relationship is usually considered. For the configuration in Fig. 1 with zero
curvature in the y� direction we obtain the following expression from Ref. [7] in physical coordinates:

~H x; k;ωð Þ ¼ Ω2�1
2
k2 1�νð Þ

� �
Ω2�k2
� �

Ω2�h2k4

12

 !
�Ω2Ω2

�

 !
(31)

þ 1�ν2
� �

Ω2κ2k2y�
1
2
1�νð Þκ2k4y

� �
:

Two extreme cases of the dispersion curve are depicted in Fig. 3, which shows the respective dispersion relations for a
cylinder and for a flat plate using the parameters given in Appendix B. The outer part of the cylinder dispersion curve has
also been observed experimentally [8].



Fig. 3. Dispersion relations represented by plotting Ωðkx ; kyÞ at zeros of the Hamiltonian ~H . (a) Anisotropic dispersion relation for a cylinder. (b) Isotropic
dispersion relation for a flat plate.
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3.2. Hamiltonian system

The Hamiltonian ~H (31) gives rise to the following ODE system, which governs the ray dynamics on a singly curved shell

_x ¼ ∂ ~H
∂kx

; (32)

_y ¼ ∂ ~H
∂ky

; (33)

_kx ¼ �∂ ~H
∂x

; (34)

_ky ¼ �∂ ~H
∂y

: (35)

In a full time-domain simulation one would also have two additional equations

_t ¼ �∂ ~H
∂ω

; (36)

_ω ¼ ∂ ~H
∂t

: (37)

In this work however, the frequency is constant due to the fact our Hamiltonian ~H is time-independent. Furthermore, since
we also take the material parameters to be constants throughout the shell, equation (36) simply represents a re-
parametrisation of time to the fictitious time used here. Eqs. (36) and (37) are therefore not needed in the time-harmonic
description. Finally, due to the translational invariance in the y-direction, ky is constant and it suffices to study the above
Hamiltonian system in the ðx; kxÞ phase-plane only.
4. Discretisation of the wave scattering problem

In order to solve the full wave scattering problem we discretise the ODE system in Ω� using finite difference methods
and couple this to the scattering of incoming and outgoing waves in Ωþ using the interface coupling conditions as
described below.
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4.1. Finite difference method in Ω-

The differential operator D in the ODE system (19) includes both bending and in-plane waves, along with the coupling
between them. Each of the equations in the system is discretised using second order accurate centered finite difference (FD)
formulae on a set of equi-spaced grid points fxjg with j¼ 0;…;N. We denote the centered finite difference matrices for
approximating derivatives of order n by Dn

0 and define

κ¼ ½κðxiÞδij� with i; j¼ 0;…;N; (38)

to be a diagonal matrix containing the curvature values.
To create a vectorial ODE discretisation we use the Kronecker product 	 , see for example Ref. [20], along with the

following 3
 3 projector matrices:

Eij ¼ ½δiaδjb� for a; b¼ 1;2;3; (39)

Πi ¼ Eii; (40)

H23 ¼
0 0 0
0 0 i
0 � i 0

2
64

3
75: (41)

Using the above notation we canwrite the various operators of our ODE in a compact way. The in-plane Eqs. (16) and (17)
will have a diagonal (self-interaction) and frequency independent part

Mdiag ¼ ðc2pD2
0�c2s k

2
yIÞ 	 Π1þðc2sD2

0�c2pk
2
yIÞ 	 Π2; (42)

where I is the 3
 3 identity matrix. The coupling between the u and v components is symmetric and is given by

Moff ¼ ikyðc2p�c2s ÞD1
0 	 E12þE21ð Þ: (43)

The bending wave Eq. (18) has a diagonal (self-interaction) and frequency independent part

B¼ � B
ρh

D4
0�2k2yD

2
0þk4yI

� �
þc2pκ

2
� �

	 Π3; (44)

and the coupling between the bending and in-plane components is given by

C¼ c2pðD1
0κ 	 E13�κD1

0 	 E31þkyνκ 	 H23Þ: (45)

The shell operator D then has the following discrete representation:

D¼MdiagþMoff þBþCþω2I: (46)

The FD operators will extend beyond the grid over Ω� as the stencil reaches into the scattering region. This leads to a
coupling between the degrees of freedom in the finite difference approximation and the unknown scattering amplitudes Aα

β .
Conversely, the incident wave in Ωþ will produce a forcing term which drives the finite difference calculation in Ω� . This
coupling of the FD solution in Ω� and the plane wave description in Ωþ is discussed further below.

4.2. Coupling of the interior and exterior regions

The scattering solution and its derivatives in Ωþ are matched to the FD solution in Ω� at the interfaces between Ω� and
Ωþ according to the conditions (20) to (23). The incident wave gives rise to inhomogeneous terms for the excitation of the
FD model at the left interface. The derivatives appearing in the coupling conditions are implemented in the FD-solution in
Ω� using one-sided finite difference operators with second order accuracy. Forward difference formulae are employed at
the left interface and backward difference formulae are employed at the right interface so that the stencils extend only into
Ω� . The extremal points of these stencils are taken at the scattering boundaries, where the value of the scattering solution is
applied as a boundary condition. The interfaces are thus taken to be at positions Δx away from the extremal inner grid
points, where Δx is the discretisation step in the FD approximation.

As an illustrative example we consider the condition on d3ŵ=dx3 (23) at the interface receiving the incident wave (24).
The reflected bending modes include both a propagative contribution Ab

Rexp � ikbxxR
� �

and an evanescent contribution
Ae
Rexp �kbx jxRj

� �
as shown in equation (28). The forward difference formula for the third derivative takes the form

V fð Þ ≔ D3
þ f 0 ¼

1
Δx3

�5
2
f 0þ9f 1�12f 2þ7f 3�

3
2
f 4

� �
: (47)

Matching the scattering and finite difference solutions using the interface condition (23) leads to

d3

dx3
ŵincþAb

Rexp � ikbxxR
� �

þAe
Rexp �kbx jxRj

� �� �
¼ V ŵ

� �
: (48)



N. Søndergaard, D.J. Chappell / Journal of Sound and Vibration 377 (2016) 155–168 163
Splitting the discretised boundary operator V into a part that acts only on the left-most entry at the interface and one that
acts on the remaining nodes in Ω� , we obtain

V ¼ δi0Vþð1�δi0ÞV ≔ V0þV ; i¼ 0;…;4: (49)

At x¼ xl ¼ x0, the left hand side of (48) evaluates to

�ðkbxÞ3ðiþ iAb
RþAe

RÞ; (50)

and using the splitting described above, the right hand side may be written as

V0 1þAb
RþAe

R

� �
þV ðŵÞ: (51)

Writing ŵi � ŵðxiÞ for i¼ 1;2;3;4 and using the definition of V yields a linear equation

ðkbxÞ3 iþ iAb
RþAe

R

� �
¼ 5ð1þAb

RþAe
RÞ�18ŵ1þ24ŵ2�14ŵ3þ3ŵ4

2Δx3
(52)

in terms of the unknowns Ab
R, Ae

R and ŵi, i¼ 1;2;3;4. Continuing for the remaining boundary conditions at the left interface
x¼ x0 yields similar relations, all following the same pattern as in (52). The boundary conditions at the right interface give
similar results for the transmitted terms, but without the incident wave terms. Finally, we combine the discretised interface
coupling conditions with the interior finite difference equations. This leads to the matrix problem:

� � 0
� D �
0 � �

2
64

3
75

R
ûΔ

T

2
64

3
75¼

�
0
0

2
64
3
75 (53)

with scattering coefficients

R¼ ½Ab
R Ae

R Ap
R As

R�T; (54)

and

T¼ ½Ab
τ Ae

τ Ap
τ As

τ�T: (55)

Here, the finite difference solution in the interior of Ω- is represented by

ûΔ ¼ ui vi ŵi
	 
T

; i¼ 1;…;N�1: (56)

Note that the stencil for the second derivative FD operator within D takes boundary data from the plane wave terms at the
interface points x0 and xN, whereas the fourth derivative operator extends beyond this and also takes boundary data from
within the scattering region at x¼ x0�Δx and x¼ xNþΔx.
5. Numerical results

In this section we discuss the numerical solution of the full wave scattering problem derived in Section 2 and compare the
results to those obtained using an ODE time-stepper for the Hamiltonian system presented in Section 3. The parameters chosen
for all calculations are summarised in Appendix B. For the cylindrical region, these parameters correspond to a circularly
cylindrical steel shell as considered in Refs. [8,21]. Note that whilst the width of the cylindrical ridge studied here is on the
millimeter scale, it only represents a small region of the larger structures and components that serve to motivate this study.

An incident bending mode in the left part of Ωþ is used to excite the system and is sent in to the interface with Ω� at
various angles, corresponding to a variation in the trace wave number kby. The latter is chosen according to the values given
by the dispersion curve. In all cases we set ω¼ 9742π Rad/s, which is large enough so that waves will always transmit
straight through the cylindrical region (as though it were a flat plate) when kby ¼ 0, that is when waves approach the
cylindrical region directed parallel to the x-axis. We note that in the high frequency regime this behaviour will be preserved
for almost all incident waves when both kx

b
and ky

b
are positive. However, the choice of ω here corresponds to the more

interesting mid-frequency case where reflections are also possible for a range of sufficiently large kby40.

5.1. Ray tracing calculations

In this section we consider the reflection/ transmission behaviour of rays corresponding to an incident bending mode
(see Fig. 4). A range of incoming wavenumbers (directions) are used corresponding to the strip in the upper left corner of the
figure. We find that the rays transmit for sufficiently large kbx, whereas for smaller positive values of kbx the rays reflect. Note
that the symmetry of the problem means that rays also transmit for kbx negative when the incoming ray is from the right
hand side and jkbx j is large enough. The threshold value of ðkbx ; kbyÞ for the change from reflectance to transmittance corre-
sponds to a hyperbolic fixed point and its location can be found conveniently by considering the sizes of the dispersion
curves as discussed in [22]. The upper fixed point shown in both parts of Fig. 4 gives a threshold value of



Fig. 4. (a) Ray trajectories represented in the ðx; kbx Þ phase-plane showing two fixed points at x¼0 and the separatrix (solid bold curve) which connects
them as it traverses the cylindrical ridge. (b) A close up view of the upper fixed point and separatrix region. The upper fixed point divides the incoming rays
from the left hand side (dashed lines) into reflecting or transmitting trajectories. The bold dashed line depicts the extremal transmitting trajectory closest
to the set of reflecting rays. In both subplots, the solid line trajectories are those which are trapped inside the ridge.
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ðkbx ; kbyÞ ¼ ð143m�1;80:5m�1Þ. We will also investigate the existence and location of such a threshold incoming wave
direction in the finite difference solution of the full wave problem described in the next section.

Depending on the angle of incidence, Fig. 4 shows that the point of reflection varies from the centre of the ridge at x¼0
to slightly towards the flat region to the left. The smooth curvature model here therefore differs from the discontinuous
curvature models considered in Refs. [9,10], for which the reflection takes place off-centre at a fixed location only. That is, for
the models presented in Refs. [9,10] the reflection would take place at the location of the jump in the curvature between the
flat region and the cylindrical region. This would be off-centre in the example here, since the centre point x¼0 corresponds
to the centre of the cylindrical region.

In the next section we consider an equivalent scattering problem to the one above, but instead using the finite difference
model described in the previous section to numerically solve the full wave problem. The full wave model will include the
phase information omitted in the pure ray approximation applied in this section, but at the cost of a computational expense
which scales with frequency. Such a study is feasible up to reasonably high frequencies due to the one-dimensional setup of
the problem derived in Section 2. However, the high frequency purely transmissive behaviour for the problem here is
relatively straightforward to predict, and we find that both methods may be used for the more interesting mid-frequency
case studied here.

5.2. Wave scattering finite difference solution

We restrict the study to bending excitations as in the previous section. For smooth joints this means that only the
bending mode is active, with negligible conversion to in-plane modes. That is, the scattering probabilities become

PðTransmitÞ ¼ jAb
τ j2 and PðReflectÞ ¼ jAb

Rj2 (57)

using the scattering amplitudes for bending only. However, for rapidly changing curvature functions (5) with very small δx
in the interpolation function (6), mode conversions appeared in the numerics at almost normal incidence. We defer the
study of this case to future work and note the possibility of using discontinuous joints instead for this case. Note that we use
the term probabilities to describe the coefficients defined in (57) since for an incoming bending wave of unit amplitude (24),
conservation of energy gives that PðTransmitÞþPðReflectÞ ¼ 1. In the full wave picture considered here these coefficients (57)
actually give the proportions of reflected and transmitted wave energy. However, for comparison with the ray tracing results
in the last section, they give the probabilities of reflection and transmission for a particular incoming trajectory.

The dependence of the reflection and transmission probabilities on the value of the trace wave number ky
b
is shown in

Fig. 5. The transmission and reflection probabilities have been computed using the finite difference discretisation described
in Section 4 for both N¼500 and N¼1000 grid points in Ω� , corresponding to Δx¼ 0:0048384 m and Δx¼ 0:0024192 m,
respectively. The ratio of wavelength to Δx is 6.65 for the case N¼500 and hence the rule of thumb requiring 6 points per
wavelength for reliable results suggests that in both cases our results should be reasonably well converged. This con-
vergence is also evident from Fig. 5, since it is difficult to detect differences between the plots for N¼500 and N¼1000.
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Fig. 5 shows that the scattering coefficients of the full wave problem include discrete anti-resonance points (points of
perfect reflection) that were not present in the ray tracing calculation. In addition, the threshold behaviour from trans-
mission to reflection has been smoothed in the full wave calculations, whereas for the ray tracing solution there is a sudden
jump from transmission to reflection corresponding to the location of the hyperbolic fixed point. Hence, for the calculations
in this section there is a region of ky

b
values where both reflection and transmission take place at the same time. This region

lies roughly between kby ¼ 73m�1 and kby ¼ 95m�1, but one observes an obvious switch from dominant transmission
behaviour to dominant reflection behaviour at a threshold value around kby ¼ 78m�1, which is close to the threshold esti-
mate (kby ¼ 80:5m�1) from the corresponding ray tracing calculation. It appears therefore that the asymptotic ray model
slightly over predicts the transmission/reflection threshold compared with the full wave solution, but still produces a
reliable estimate within around 1% of the total ky

b
range.

A more complete picture appears when the scattering coefficients are plotted on a logarithmic scale, see Fig. 6. We can
then clearly identify the discrete reflection points in the region of perfect transmission. The dips or peaks can be arbitrarily
close to zero, or unity, depending on the resolution of the plot. The discrepancy between the finite difference solution for the
reflection coefficient with N¼500 and N¼1000 is also more evident in this figure since the logarithmic scaling amplifies the
differences at very small values of PðReflectÞ below 10�4. However, the positions of the anti-resonances and the switch from
transmission to reflection remain in excellent agreement for both N¼500 and N¼1000. Note also that the values of
PðtransmitÞ computed with N¼500 and N¼1000 are in good agreement with one another, even for very small values.

Fig. 7 shows the behaviour of the wave function solutions û ¼ u v ŵ
	 
T for various values of the trace wavenumber ky

b
. The

finite difference computations for these plots were all carried out using N¼1000 grid points. Note that there is no mode
conversion and so the in-plane contributions u and v only have support on the curved region and vanish in Ωþ . In the case



Fig. 7. Wave function solutions û ¼ ½u v ŵ� for kby ¼ 40m�1 (plots (a) to (c)), kby ¼ 61:7 m�1 (plots (d) to (f)), kby ¼ 76 m�1 (plots (g) to (i)) and kby ¼ 90 m�1

(plots (j) to (l)). Each plot shows a displacement in metres against its corresponding x-coordinate, also in metres. Plots (c), (f), (i) and (l) show the bending
mode ŵ which exhibits transmission in plot (c), anti-resonance in plot (f), mixed reflection and transmission for the threshold region in plot (i) and
reflection in plot (l). The remaining plots show the in-plane wave solution, which remains confined inside the cylindrical region in all cases. Solid and
dashed lines show the real and imaginary parts, respectively.
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of reflection (kby ¼ 90m�1) and transmission (kby ¼ 40m�1) the expected behaviour is observed. That is, for the reflective case
the bending wave function ŵðxÞ localises to the left as shown in plot (l) of Fig. 7. In the ray tracing model one can pinpoint an
exact reflection point, but for the wave problem one observes a decay in amplitude as the wave enters the cylindrical region
rather than a hard wall reflection.

In the case of transmission shown in plot (c) of Fig. 7, the bending wave continues through the ridge without significant
deformation from the shape of the initial plane wave excitation. This is equivalent to the corresponding ray tracing result.
However, if ky

b
is chosen coincide with one of the anti-resonance peaks in the transmission region that were not present in

the ray tracing result, then the bending wave field is localised in the central cylindrical region; for example, at kby ¼ 61:7m�1

as shown in plot (f) of Fig. 7. The bending wave function ŵðxÞ also localises in the cylindrical region when ky
b
is chosen in the

threshold region as shown in plot (i) of Fig. 7, which shows a plot of ŵðxÞ at kby ¼ 76 m�1.
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6. Conclusions

We have investigated bending wave scattering across a smoothed plate and quarter cylinder configuration in the
interesting mid-frequency case, close to the ring frequency for the cylinder. Results have been obtained in a simplified and
effectively one-dimensional setting using both a high-frequency ray-tracing approximation and a finite difference dis-
cretisation of the equivalent full-wave problem. Previous studies on plate and cylinder connections have concentrated on
joints having discontinuous curvature where reflections can occur, however the smoothed joints considered here also give
rise to reflections within the cylindrical part of the structure. Furthermore, the ray tracing calculations suggest the existence
of a threshold incident wave direction which separates waves or rays that exhibit reflective or transmissive behaviour. This
threshold direction is also evident from the smoothed transition between reflection and transmission observed in the full
wave calculations. Hence, relatively simple scattering laws can be employed to model the propagation of structure-borne
noise in shells, and ultimately in built-up structures containing thin shell components. The full wave solution shows that in
addition to the switch from transmission to reflection as the incident wave direction becomes increasingly oblique, there are
also anti-resonances giving rise to perfect reflection at a discrete set of directions where transmission would typically be
expected. In these cases the wave functions appear as trapped modes that localise in the cylindrical part of the
configuration.

There are several avenues for further research, including extensions to multiply-curved and fluid-loaded shells. In
addition, the scattering laws could be incorporated within computed aided engineering simulations of built-up structures
via wave methods, such as the wave and finite element method or dynamical energy analysis.
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Appendix A. Tensors and differential geometry

Several physical theories are concisely written in tensor form [19]. The tensor formalism has also proved to be useful in
continuum mechanics. The components of tensors are with respect to a given choice of coordinates ðxiÞ. A change of
coordinates from ðxiÞ to ð ~xiÞ leads to expressions for components in the new coordinates in relation to those of the old. For
example, given a tensor of type ð1;2Þ (that is, with one superscript and two subscript indices) the transformation takes the
form

~T
c
ab ¼

∂ ~xc

∂xc0
∂xa0

∂ ~xa
∂xb

0

∂ ~xb
Tc0
a0b0 (A.1)

where Jacobians and inverse Jacobians have been used for the change of coordinates. We have adopted the important
summation convention for repeated indices; this indicates that a summation is to take place over the repeated index (unless
otherwise stated).

The metric tensor gαβ , known as the first fundamental form, measures distances via

ds2 ¼ gαβdx
αdxβ: (A.2)

The inverse of the metric tensor gαβ obeys

δβα ¼ gαγg
γβ (A.3)

and is used to alter the type of a tensor. For example, we can introduce a new tensor of type (1,1)

Tγ
α ¼ Tαβgβγ (A.4)

from a tensor of type (0,2) by raising the indices of the latter tensor. Likewise gαβ lowers indices.
The directional derivative in arbitrary coordinates is generalized to the covariant derivative Dα. This derivative may be

introduced from an embedding using projection of gradients [10,23] or intrinsically with quantities only related to the
curved space itself [24]. For example, in a coordinate basis, the covariant derivative of a tensor of type (1,1) becomes

Dαuϵ
β ¼ ∂αuϵ

β�Γγ
αβu

ϵ
γþΓϵ

αγu
γ
β (A.5)

with

Γi
kl ¼

1
2
gm ∂lgmkþ∂kgml�∂mgkl
� �

(A.6)

the Christoffel symbols.
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Appendix B. Parameter values for the numerical studies

The computations throughout this work were done using the following parameter choices [8,21]:
� R¼0.055 m
� h¼ 5:3
 10�4 m
� x� ¼ 0:0432 m
� δx¼ 0:0144 m
� E¼ 1:95
 1011 Pa
� ρ¼ 7700 kg=m3

� ν¼ 0:28
� ω¼ 9742π Rad/s
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