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Abstract 

The widespread use of the organophosphorous insecticide chlorpyrifos (CPF) 

over recent decades has posed major concerns about its toxicity in humans. 

Sub-cytotoxic concentrations of CPF and its metabolite CPF-oxon (CPO) were 

known to inhibit neurite outgrowth in differentiating neural cells but little was 

known about their ability to cause neurite retraction. The main aims of this 

study were to investigate the effects of CPF and CPO on the stability of 

neurites in pre-differentiated mouse N2a neuroblastoma and human ReNcell 

CX neural stem cells, and to relate toxicity to the regulation of cytoskeletal 

proteins involved in neural differentiation.  

 

At 3 µM, both compounds reduced the numbers of axon-like processes in pre-

differentiated N2a cells, as indicated by morphometric analysis of 

carboxyfluorescein succinimidyl ester-labelled cells. Retraction of neurites was 

observed within 2 h of exposure by live cell imaging. Neurofilament disruption 

was detected in treated cells, by indirect immunofluorescence with anti-

phosphorylated neurofilament heavy chain (pNFH) monoclonal antibody 

SMI34, while the microtubule network was unaffected. Western blotting 

analysis revealed transiently increased levels of reactivity of Ta51 after 2 h 

exposure but reduced levels of reactivity following 8 h treatment with both 

compounds, whereas reactivity of anti-total NFH or anti-tubulin were 

unaffected. Altered NFH phosphorylation at 2 h exposure was associated with 

increased activation of extracellular signal-regulated protein kinase ERK 1/2. 

Increased levels of phosphatase activity were observed following 8 h treatment, 

suggesting that organophosphate-induced neurite retraction in N2a cells is 

associated with early transient increases in NFH phosphorylation and ERK1/2 

activation.    

 

High content analysis of immunofluorescently stained N2a cells showed that 

the induction of neurite retraction by both compounds was concentration-

dependent. The same concentrations of CPF and CPO also caused retraction of 

neurites in differentiating neuronal and glial populations of human ReNcells. 
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Using a cell ELISA technique changes observed in Western blot analysis were 

confirmed and found to be concentration-dependent in N2a cells. In pre-

differentiated ReNcells, reduced levels of NFH phosphorylation were 

observed, whereas total NFH, βIII-tubulin and ERK1/2 activation were 

unaffected.  Acetylcholinesterase assays suggested that inhibition was not 

required for neurite retraction but could affect the severity of such effects. 
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1 Introduction 

1.1 Basic aspects of the nervous system 

The mammalian central nervous system is composed of two common cell 

types, neuronal and glial cells. Neurons are one of the essential cells in the 

nervous system, being responsible for the perception of stimuli, responding to 

those stimuli and transmitting the cellular signals to other neighbouring 

neurons or effector cells through synaptic transmission. Neurons are known to 

be highly polarised cells in that produce axons and dendrites upon 

differentiation. The morphological features of axons play an important role in 

neurotransmission and axonal transport (Barres and Barde, 2000). Glial cells 

are the second common type of cells found in nervous system. Although glial 

cells are not involved in nervous signal transmission, nor they do not generate 

axons, these cells provide fundamental homeostatic, nutritional, structural, and 

defensive support to the neurons (Barone et al., 2000). Glial cells in the central 

nervous system are composed of a heterogeneous array of cell types of 

different origin. These include, microglia, which are derived from the immune 

system. Microglia act as specialised brain macrophages that clean up cellular 

debris and dead neurons after apoptosis (Compston et al., 1997). The other 

glial cells are known as astrocytes and oligodendrocytes, which are mainly 

developed after neurogenesis. Both cells types can be found in differentiating 

neural stem cell cultures (Compston et al., 1997, Rice and Barone, 2000).  

In the adult brain, the ultimate function of astrocytes is to maintain the ionic 

and trophic balance of the neurons and extracellular environment. Astrocytes 

also provide guidance for axons and assembly of synapses during brain 

development, and play crucial roles in neuronal proliferation, migration and 

differentiation (Aschner et al., 1999). Additionally, astrocytes help to regulate 

the formation of the blood-brain barrier and respond to neural injury by 

secreting neurotrophic factors such as glial-derived neurotrophic factor 

(GDNF), which have a protective role against neuronal damage (Barres and 
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Barde, 2000). Oligodendrocytes synthesise the myelin sheath, an insulating 

membrane around axons that provides axonal support and allows electrical 

signals to be transmitted along axons more efficiently (Compston et al., 1997). 

As a consequence, any toxicity in these cells could lead to complications in the 

development of insulated neurons in mammals (Sachana et al., 2008).  

The peripheral nervous system is also composed of two major types of glial 

cells, Schwann cells and enteric glia. Schwann cells consist of two types, 

myelinating and non-myelinating cells. The non-myelinating cells providing 

mechanical and metabolic support for neurons, while the myelinating cells, 

which have similar structure and function to those of oligodendrocytes, 

providing an insulating sheath around the axons. Enteric glia are found in the 

autonomic ganglia of the gut and have an essential role in synaptic 

transmission (Jessen, 2004). 

Development of the nervous system involves a series of sensitive and complex 

events extending from early embryonic life till adolescence. These processes 

include neuronal cell proliferation, migration, differentiation, synapse 

formation, glial cell development, and apoptosis, which are all tightly regulated 

within a specific time frame. Each developmental process has to be complete in 

a correct order. This complex structure and function of the developing brain 

increases its vulnerability and sensitivity to toxic injury by environmental 

pollutants such as organophosphorous (OPs) insecticides and others toxic insult 

(Grandjean and Landrigan, 2014). Exposure to OP toxicity can cause 

disruption in the central nervous system which may result in behavioural 

changes and neuropsychiatric disorders include learning difficulties, disrupted 

memory, confusion and fatigue (Lotti and Moretto, 2005). OP neurotoxicity 

can also have adverse effects on the peripheral nervous system such as 

weakness in the lower limbs and subsequent paralysis (Elersek and Filipic, 

2011).  
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1.2 Organophosphorous insecticides 

Pesticides are mixtures of chemicals that are used globally, predominantly in 

agriculture to protect crops from insect damage. The consumption of pesticides 

worldwide is estimated at more than five billion kilograms (kg) annually, 

amongst which organophosphorus insecticides are the most widely used 

(Gupta, 2006, FAO, 2013). Some of these commonly used OPs include 

parathion, malathion, methyl parathion, chlorpyrifos, diazinon, dichlorvos, and 

phosmet. OPs are used in many medical, residential and industrial settings (e.g. 

lubricants, solvents and fire retardants) but their main uses are as agricultural 

insecticides (Hargreaves, 2012). Each year, four billion kg of OP insecticides, 

such as chlorpyrifos, are applied in agricultural fields in different parts of the 

world, but only small amounts of these target pests, while the remainder 

pollutes the environment (Gavrilescu et al., 2015).  

 

In Europe, several products, including baby food and processed food are 

contaminated with more than 250 different OP chemicals. In addition, 

approximately 50% fruits of European origin, as well as vegetables and cereals 

have been reported to contain residues of OP agents (EC, 2005). Another study 

from the USA has also reported that around 11 million kg of OP compounds 

(primarily chlorpyrifos, diazinon and malathion) were used in the production of 

agricultural crops in 1995 alone. Residential and commercial properties also 

consumed a large quantity of insecticidal OP compounds (6 to 9 million kg) in 

the same year (Aspelin, 1997).  

 

This widespread use of OP compounds and the underlying adverse effects are 

pose potential risks to public health. Exposure to these insecticides not only 

affects agricultural workers who deal closely with OPs, but also the general 

population. Several epidemiological studies have shown that the majority of 

consumers are repeatedly exposed to low concentrations of OP compounds 

throughout the environment and food sources, which over long-term may cause 

chronic damage to the nervous system (Mearns et al., 1994, Stephens et al., 

1995). The increased rate of acute pesticide poisoning in humans due to high 

exposure to OPs is another major public health concern. Globally, around three 

http://en.wikipedia.org/wiki/Parathion
http://en.wikipedia.org/wiki/Malathion
http://en.wikipedia.org/wiki/Methyl_parathion
http://en.wikipedia.org/wiki/Chlorpyrifos
http://en.wikipedia.org/wiki/Diazinon
http://en.wikipedia.org/wiki/Dichlorvos
http://en.wikipedia.org/wiki/Phosmet
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million people endure unintentional acute pesticide poisoning and 346,000 

deaths per year are reported (WHO, 2008). The World Health Organisation 

(WHO) also reported that two million cases of intentional (suicidal) pesticide 

poisoning occurred each year and around 370,000 people each year die from 

this worldwide (Gunnell et al., 2007). According to a surveillance finding from 

the US Sentinel Event Notification System for Occupational Risks (SENSOR) 

pesticides program, OP insecticides were responsible for nearly 50% of acute 

pesticide related illnesses (Calvert et al., 2004). In the UK and other western 

countries, the incidence of acute pesticide poisoning related deaths is relatively 

low (Jamal, 1995). However, the rate in developing countries is estimated to be 

significantly higher, more than 300,000 deaths/year. This is mainly due to the 

wider use of OP pesticides, lack of strict regulations, and poor knowledge of 

safety procedures by people at risk in developing countries (Carlton et al., 

2004, WHO, 2008).  

 

The widespread use of OP compounds together with the emerging concerns 

over their potential impacts on public health has lead to the imposition of 

restrictions or bans on their uses by the regulatory authorities of some 

developed countries. For example, in 2000 the Environmental Protection 

Agency (EPA) in the USA had completely banned the domestic use of 

chlorpyrifos (CPF), which is one of the highly toxic OPs and the main focus of 

this thesis (EPA, 2000). Two years later, the United Kingdom Advisory 

Committee on Pesticides (ACP) raised concerns regarding the potential toxicity 

of CPF and its impact on food safety and public health (ACP, 2002). As a 

result of these concerns, all household uses of CPF have been stopped and the 

use of this pesticide restricted to agricultural application only in certain 

countries (Colborn, 2006). Despite these restrictions, CPF remains a popular 

pesticide and is still in use in many developing countries (Salyha, 2010).
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1.3 Chlorpyrifos 

CPF is one of the most extensively used OP pesticides worldwide. It was first 

synthesised and manufactured commercially by the Dow Elanco Company in 

1965. CPF has a potent biocide activity to control insects in agricultural fields, 

gardens and homes (Cox, 1994). Since then it has been widely distributed into 

the world market under several brand names, including Empire, Eradex, Scout, 

Brodan, Dursban, Lorsban, Reldan and others (Salyha, 2010). Around 850 

commercial CPF products were registered for use in the USA in 1997 according 

to the EPA (EPA, 1999). The use of CPF is still authorised in more than 50 

countries worldwide, such as Australia, France, Japan, US, Canada, UK, Spain, 

Italy, New Zealand and other developed countries (Salyha, 2010).  

 

CPF is used in a wide variety of applications. For example, in the home, CPF is 

used to control insect pests such as mosquitos, cockroaches, flies, fleas and lice. 

CPF products are also applied directly to sheep and turkeys, animal sites, farm 

buildings, storage bins, and on lawns and golf courses. In agricultural settings, 

CPF is used over several major crops in the world for protection. Some of these 

crops include vegetables, fruits, corn, tree nuts, soybeans, citrus fruit and wheat 

(Eaton et al., 2008, Salyha, 2010). According to the National Centre for Food 

and Agriculture Policy in the USA (2000), around 1.4 million kg of CPF were 

applied every year in the home and garden market (NCFAP, 2000). In 2011, the 

annual usage of CPF was estimated at approximately 20 million kg in China 

alone (Agronews, 2013).  

 

 

1.3.1 Chemical structure and physical properties 

Chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate, O,O-

diethyl O-3,5,6-trichloro-2-pyridyl phosphorothionate, chlorpyrifos-ethyl) is a 

colourless to white crystalline solid with a strong mercaptan-like odour (Figure 

1.1). CPF is used as the active ingredient in many chemical formulations, which 

are available in a variety of forms, such as granules, capsules, powder, 

suspensions, emulsifiable concentrates and gel-based products (Wauchope et al., 
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1992). CPF has a lipophilic nature, which is poorly soluble in water but it can 

dissolve in most organic solvents. Thus, prior to its application into animals or 

on crops, CPF is usually mixed with solvents such as benzene, acetone, diethyl 

ether, xylene, carbon disulphide and methanol (Wauchope et al., 1992, Eaton et 

al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.2 Chlorpyrifos routes of exposure  

CPF can be rapidly absorbed through skin, oral mucosa, and airways, upon 

dermal contact, ingestion, or inhalation (Munoz-Quezada et al., 2012). Humans 

and animals are exposed to CPF through breathing polluted air, inhaling dust, 

contact during preparation or application of OPs in the workplace, and eating and 

drinking of contaminated food and water (WHO, 2001).  

 

A major route of CPF dispersion is the indoor application of pesticides and other 

types of insect treatment. In the US, poison control centres received more than 

22,000 cases of CPF exposure between 1985 and 1992 (EPA, 1994). 

Additionally, surveys of hundreds of US homes have indicated the significant 

presence of CPF residues in dust samples collected from different US states 

including Florida, Indiana and Seattle. Recently, several reports have highlighted 

the detection of CPF in indoor air, floor dust and carpets (Roinestad et al., 1993).  

 

Occupational exposure is another source of CPF poisoning. CPF exposure is 

quite common among agricultural workers and their family members, sheep 

Figure 1.1. Chemical structure of chloryrifos. 
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dippers, farmers and pesticide sprayers. However, people and children living in 

homes on or near a farm that applies OP insecticides are still at risk of exposure 

to these compounds (Gupta, 2006, Munoz-Quezada et al., 2012). Treatment of 

workplaces with insecticides for termites or other insect could expose the 

employees to lethal doses of CPF. Between 1985 and 1992, more than 1300 

cases of workplace exposure to CPF were reported to the US poison control 

centre (EPA, 1994). A recent prospective cohort study was carried out to 

evaluate the level of occupational exposure on workers involved in CPF 

manufacture. The outcome of this study showed a significant increase in the 

level of CPF metabolites in urine samples (Albers et al., 2004). These figures 

raise a major concern about the implanted guidelines regarding occupational 

exposure to CPF.  

 

Another prime route of exposure to CPF is the consumption of contaminated 

water and air. Groundwater contamination with CPF residues was reported in 

nine US states (EPA, 1992). Similarly, surface water contamination with CPF 

was measured in South Africa and Spain (Thoma and Nicholson, 1989). 

Moreover, air contamination with CPF at the application sites was noted. For 

example, assessment of air samples taken from approximately 1 meter above 

cornfield showed that one-half of the applied CPF was vaporised and 

contaminated the air for more than 25 days (Whang et al., 1992). In addition, 

CPF can be carried out and transferred into the atmosphere from the application 

site. Zabik and Seiber (1993) detected CPF contamination in air samples 

collected about 24 kilometres from the application site (Zabik and Seiber, 1993). 

 

After CPF is applied in the environment, it is rapidly absorbed via all routes of 

exposure (oral, inhalation, dermal). As CPF is a lipophilic compound, it readily 

crosses biological membranes including the placenta and the blood brain barrier. 

It enters the bloodstream and distributes into tissues at concentrations that are 

able to induce neural damage by inhibiting acetylcholinesterase (AChE), one of 

the key enzymes in the nervous system (Timchalk et al., 2002). In humans, OP 

half-lives are relatively short (minute to hours) as they undergo rapid hepatic 

metabolism (mainly through conjugation and esterase-mediated hydrolysis) and 

excretion through urine, faeces, and breath (Casarett et al., 2001). 
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1.3.3 Chlorpyrifos biotransformation 

After CPF enters the body, it is metabolically converted into its oxygen form 

chlorpyrifos oxon (CPO), in which the sulphur group is replaced by oxygen. This 

biotransformation reaction is carried out primarily by the cytochrome P450 

(CYP)-dependent monooxygenase system, which mainly exists in the liver 

(Costa, 2006). CPF can also be converted into CPO directly by brain microsomal 

CYP450, although at a 100-fold lower rate  (Chambers and Chambers, 1989). 

CPO, in turn, is well absorbed, and exerts toxic effects in animals and humans, 

as it is a much more potent AChE inhibitor than the parent compound (Lotti, 

2001). In the liver, CPO undergoes further hydrolysis to form less toxic products, 

such as diethylphosphate (DEP) and 3,5,6-trichloro-2-pyridinol (TCP) by A-

esterases such as paraoxonase PON1 (Costa, 2006). In addition to CPO 

bioactivation, CPF is oxidized via CYP450 to diethylthiophosphate (DETP) and 

TCP (Figure 1.2). These metabolites are then detoxified and filtered through the 

kidneys and excreted in the urine (Eaton et al., 2008). 

 

The biotransformation of CPF is mainly mediated by CYP450, which is present 

in humans in several isoforms. It has been shown that CYP2B6 and CYP3A4 are 

the most effective enzymes in the formation of CPO, while CYP2C19 is the most 

important isoform for TCP production (Croom et al., 2010). The polymorphic 

nature of CYPs in humans results in variation in CYP isoform expression which 

in turn explains the variation in individuals’ susceptibility to OP poisoning 

(Buratti et al., 2007). In addition to the CYP enzymes, the detoxification of CPO 

to TCP and DEP metabolites also involves plasma A-esterases such as 

paraoxonase 1 (PON1). Several in vivo studies have shown that low levels of this 

enzyme can increase the susceptibility of humans and animals to OP 

neurotoxicity (Costa et al., 2013).  
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1.3.4 Chlorpyrifos toxicity mechanism 

The principle mechanism of CPF toxicity involves its ability to interact with and 

inhibit the AChE enzyme, which is the key enzyme in the nervous system that 

terminates neurotransmission at central and peripheral cholinergic synapses 

(Campbell et al., 1997, Steevens and Benson, 1999). The persistent inhibition of 

AChE activity causes decreased degradation of neurotransmitter acetylcholine 

(ACh) into choline and acetate, and subsequent accumulation of ACh in the 

synaptic cleft. ACh binds to two types of postsynaptic receptors; the muscarinic 

and nicotinic receptors. Muscarinic receptors consist of five subtypes (M1-M5) 

G-protein coupled receptors, while nicotinic receptors are ligand-gated ion 

channels in structure (Tata et al., 2014). Details of each subtypes and location are 

summarised in table 1.1. Binding of ACh to its receptors plays an important role 

in transmitting electrical information through postsynaptic muscarinic and 

nicotinic receptors from, to and within the brain and spinal cord. Excess 

accumulation of ACh can lead consequently to cholinergic overstimulation with 

various clinical symptoms according to the site at which ACh accumulates 

(Eaton et al., 2008, Flaskos, 2012) (Figure 1.3). 

Figure 1.2. Metabolic bioactivation of chlorpyrifos. 
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Table 1.1. Acetylcholine receptors, subtypes and location. 

 

ACh receptors Subtypes Location 

Nicotinic  

receptors 

N1 or Nm Neuromuscular junction 

N2 or Nn Autonomic ganglia, central nervous system 

Muscarininc  

receptors 

M1 Cortex and hippocampus regions of the brain 

M2 Heart, brain, spinal cord, exocrine gland 

M3 Exocrine glands and smooth muscles 

M4 Central nervous system 

M5 Central nervous system 

 

 

 

 

Figure 1.3. Chlorpyrifos effect on AChE 
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At the molecular interaction level, only CPO, which has a P=O moiety is a 

potent inhibitor of AChE, whereas CPF with its P=S moiety lacks this inhibitory 

effect. For CPF to become a potent inhibitor of AChE, it undergoes bioactivation 

in the liver to form CPO, which is the main cause of acute toxicity in mammals 

(Richardson, 1995, Bjorling-Poulsen et al., 2008, Eaton et al., 2008). When CPO 

binds to the active site of AChE, a covalent bond is formed between the 

phosphate group of the OP compound and the hydroxyl group of the serine 

within the active site of AChE. This bond is stable and usually persists for hours 

or weeks depending on the OP involved (Karalliedde, 1999). The 

organophosphorylation of AChE by CPO leads to the inhibition of its normal 

function in degrading the major neurotransmitter acetylcholine (ACh) at the 

cholinergic nerve endings in the central and peripheral nervous system (Koelle, 

1992).  

After inhibition by many OP compounds, reactivation of AChE usually occurs 

by spontaneous hydrolysis of the AChE-OP bond within several hours (Abou-

Donia and Lapadula, 1990). However, when AChE is inhibited by CPO, the 

AChE-CPO complex subsequently undergoes an “ageing” mechanism where it 

loses one of the two alkoxy labile groups (R1, R2) by a non-enzymatic hydrolysis 

process. When the enzyme-inhibitor conjugate has aged, inhibition of AChE is 

considered to be irreversible as the enzyme becomes more resistant to 

reactivation, permanently inhibited and its restoration can occur only by 

synthesis of new enzyme molecules (Abou-Donia and Lapadula, 1990, 

Karalliedde, 1999). Inhibition of AChE causes a build up of ACh at cholinergic 

synapses, which presents all over the body and, consequently, hyperactivation of 

both nicotinic and muscarinic cholinergic receptors (Abou-Donia, 2003, Elersek 

and Filipic, 2011). 

 

The resultant clinical manifestations of CPF poisoning can be distinguished into 

four main categories. These include acute cholinergic syndrome, intermediate 

syndrome, delayed neuropathy and other chronic neurological disorders. The 

development of a specific neurological syndrome depends on several factors, 

including extent and time of exposure, the chemical nature of the compound, and 

the onset and clinical symptoms (Abou-Donia, 2003). 



Introduction                                                                                        Chapter 1                                                   

12 

 

1.4 Chlorpyrifos associated neurotoxicity 

1.4.1 Acute cholinergic syndrome 

Excess accumulation of ACh at the synapses of the peripheral nerves after AChE 

inhibition leads to hyperstimulation of the cholinergic (nicotinic and muscarinic) 

recepetors in the central and peripheral nervous systems (Abou-Donia, 2003). 

The resulting “cholinergic syndrome” is the main mechanism underlying CPF 

intoxication, which is characterised by a variety of clinical symptoms depending 

on the site of ACh accumulation. When a toxic dose of CPF is inhaled, ingested 

or absorbed via dermal contact, excess ACh binds to muscarinic receptors. As a 

result several muscarinic effects may develop, including hypersalivation, 

increased sweating and lacrimation, bronchoconstriction, bronchorrhoea, 

hypotension, increased gastrointesinal motility, abdominal cramps, vomiting, 

diarrhoea, miosis, visual disorders and lowered heart beat (Elersek and Filipic, 

2011). 

Acute cholinergic syndrome develops very rapidly within a few minutes to 

several hours from CPF exposure although sometimes it can appear up to one 

day after (Eaton et al., 2008, Hargreaves, 2012). During this phase, the nicotinic 

receptors are stimulated causing hypertension, uncontrolled muscle contractions 

and susequent paralysis (Singh and Sharma, 2000, Elersek and Filipic, 2011). 

Clegg and van Gemert (1999) reported that severe inhibition of AChE by more 

than 70% of normal levels can lead to the well characterised symptoms of 

cholinergic crisis (Clegg and van Gemert, 1999a). In humans, severe exposure to 

such OPs results in the accumulation of excessive ACh at neuromuscular 

junctions, leading to the development of neurotoxic effects such as 

neuromuscular paralysis (i.e. neuromuscular block) throughout the body (Lauder 

and Schambra, 1999, Costa, 2006, Gupta, 2006). Death can occur within a very 

short time, and this is usually as a result of a paralysis of the respiratory muscles 

followed by respiratory failure and/or cardiac arrest (Eaton et al., 2008, Flaskos, 

2012, Hargreaves, 2012). Central nervous system symptoms may also arise 

following severe CPF intoxication. These include, headache, insomnia, spasms, 

confusion, speaking disorders, coma, ataxia, convulsion and blurred vision 
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(Clegg and van Gemert, 1999b, Lotti and Moretto, 2005, Elersek and Filipic, 

2011).  

In 1997, the EPA reported more than 17,000 cases of people affected by acute 

CPF poisoning between 1993 and 1996 (EPA, 1997). In the US alone, 2,593 

incidents of acute CPF poisoning were reported among school children between 

1998 and 2002 (Alarcon et al., 2005). According to a recent EPA report, CPF 

was found to be involved in more than 300 cases of acute toxicity between 2002 

and 2011 (EPA, 2013). 

Treatment of acute CPF toxicity has two main purposes, to block muscarinic 

receptors and to reactivate AChE activity. The first aim can be achieved by 

administering atropine, which serves as cholinergic muscarinic antagonist, and 

thus, accumulation of ACh on muscarinic receptors is prevented. In order to 

reactivate the AChE enzyme, a specific antidote, such as the oxime, pralidoxime 

is administered (Thiermann et al., 1999, Eaton et al., 2008, Eddleston et al., 

2008). However, oximes are unable to reactivate the inhibited AChE once the 

AChE-CPO complex has undergone aging (Eaton et al., 2008). Another potential 

treatment for CPF intoxication is the use of anticonvulsant drugs such as 

diazepam, which is used to relieve anxiety and convulsions caused by acute 

poisoning following CPF exposure (Thiermann et al., 1999, Eaton et al., 2008, 

Eddleston et al., 2008). 

 

 

1.4.2 Intermediate syndrome 

Another neurotoxic effect associated with CPF exposure is known as 

intermediate syndrome. Senanayake and Karalliedde (1987) defined it as an 

intermediate syndrome because it occurred after the acute cholinergic syndrome 

but before organophosphate-induced delayed neuropathy (OPIDN) (Senanayake 

and Karalliedde, 1987). In general, it was reported that approximately 20% of 

people developed manifestations of intermediate syndrome following exposure 

to OP insecticides (Karalliedde, 2006). The clinical features of intermediate 

syndrome are usually initiated by respiratory insufficiency, followed by 

weakness in respiratory, neck and proximal limb muscles (Eaton et al., 2008). 
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These symptoms usually occur within 24 to 96 h after acute CPF poisoning 

(Yang and Deng, 2007). For example, a typical case of intermediate syndrome 

was described in a 16-month old child who developed respiratory arrest and 

flaccid paralysis 27 h after CPF ingestion (Mattingly et al., 2003). 

 

Although, the precise mechanism that underlies intermediate syndrome remains 

unclear, a number of proposed mechanisms have been reported. These include, 

prolonged inhibition of AChE, damage to muscle cells (myopathy), down 

regulation of ACh receptors and failure of ACh release at neuromuscular 

junctions (Yang and Deng, 2007, Abdollahi and Karami-Mohajeri, 2012). 

 

The clinical signs of intermediate syndrome, such as severe respiratory muscle 

weakness, can be addressed by mechanical ventilation and monitoring of 

respiratory functions. Other manifestations can be treated by administration of 

oximes. In animal studies, oximes were found to prevent myopathy if 

administered immediately following CPF exposure. However, when oximes 

were not used within two hours of CPF poisoning they had no effect 

(Karalliedde, 2006).  

 

 

1.4.3 Organophosphate-induced delayed neuropathy (OPIDN) 

CPF poisoning can also cause a delayed peripheral neuropathy known as 

OPIDN. This neurological disorder is a rare neuropathic condition resulting from 

single or repeated exposure to CPF and other OP insecticides. OPIDN is well 

characterised by delayed onset of ataxia followed by degeneration in the distal 

part of long axons and large peripheral nerves with a subsequent degeneration of 

the myelin sheath in both central and peripheral nervous systems (Abou-Donia 

and Lapadula, 1990). Abou-Donia (1981) first described OPIDN as an 

irreversible demyelination syndrome, which was caused by a ‘dying back’ 

degeneration of the long myelinated nerve axons of the nervous system (Abou-

Donia, 1981). Further investigations found that this degeneration was associated 

with axonal swellings containing aggregates of cytoskeletal protein (Abou-Donia 

and Lapadula, 1990). 
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The clinical effects of OPIDN after CPF exposure are typically manifested 

following recognised cholinergic toxicity and intermediate syndrome. However, 

there can be a latent period of 6 to 14 days between CPF exposure and the 

clinical onset of OPIDN (Abou-Donia, 2003, Eaton et al., 2008, Jokanovic et al., 

2011). In humans, the early signs of developing OPIDN following exposure to 

CPF include vomiting and diarrhoea. After the latency period, this is followed by 

the development of progressive weakness of the lower limbs leading to a 

neuropathic condition called steppage gait, which involves both foot drop and 

pointing down together with toes, which drag along the floor during walking. In 

later stages, limb weakness may also extend to the hands and arms causing 

abnormal balance and reflex deterioration of certain limbs, and eventually a 

flaccid paralysis in severe cases. After several weeks, this paralysis may progress 

into spastic paralysis in which the muscles are affected by prolonged spasms as a 

result of nerve damage (Abou-Donia, 1981, Abou-Donia and Lapadula, 1990, 

Abou-Donia, 1993a, Jokanovic et al., 2011). Patients with nerve impairment may 

recover gradually following rehabilitation. However, the effects of OPIDN 

usually persist for many years even after rehabilitation, as regeneration of 

peripheral nerve function is not always reversible (Abou-Donia, 1981, Abou-

Donia, 2003, Jokanovic et al., 2011).  

The pathology and symptoms of OPIDN have been investigated in numerous 

animal models (Richardson et al., 1993). Of all animals that have been selected 

to study OPIDN, hens are the preferred model due to their sensitivity and 

development of clinical effects that resemble to a large extent those observed in 

humans (Abou-Donia, 1981, Honorato de Oliveira et al., 2002). In addition, 

treatment of hens with OP agents via dermal or oral administration and then 

screening the clinical symptoms of OPIDN is considered to be a relatively easy 

process, with a lack of complicated tests (Abou-Donia, 1981). Experiments with 

hens demonstrated that inhibition of neuropathy target esterase (NTE), a 

membrane associated enzyme of unknown function in neurons, was the primary 

cellular target of OP mediated neuropathy, and this was the first proposed 

mechanism involved in OPIDN (Johnson, 1969, Zech and Chemnitius, 1987).  

Using hens as experimental models, it was suggested that CPF was able to 

induce OPIDN if more than 50% of NTE activity was inhibited (Johnson, 1990, 
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Lotti, 1991). The previous animal studies were in agreement with CPF-induced 

OPIDN cases in humans, which are mainly based on accidental exposure to CPF 

(Eaton et al., 2008). For instance, Osterloh et al. (1983) demonstrated low levels 

of plasma cholinesterase and NTE activity in a patient who had ingested CPF. In 

that case, the patient also showed minimal acute cholinergic syndrome, but 

coma, cardiac arrhythmia and death ensued 30 hours after poisoning (Osterloh et 

al., 1983). Moreover, Lotti and colleague (1986) followed up on a male patient 

who had been accidentally poisoned by oral CPF (< 300 mg/kg) and developed a 

mild axonal neuropathy after 43 days. In this study, the authors concluded that 

CPF was able to induce OPIDN, which was associated with a lower level of NTE 

inhibition than that required in animals (Lotti et al., 1986).  

 

Previous studies on hens also revealed that the onset of clinical symptoms of 

OPIDN occurred following two main steps. The first one involves inhibition of 

the enzymatic activity of NTE by phosphorylation, which significantly decreases 

the hydrolysis of the enzyme (Glynn, 2000). Aging of phosphorylated NTE then 

follows and OPIDN is initiated. The process of NTE aging occurs when an OP 

with a negatively charged group covalently binds to the NTE active site serine 

residue. By aging of NTE, the activity of the enzyme becomes permanently 

inhibited and OPIDN occurs (Johnson, 1990, Glynn, 2000). Johnson (1969) and 

Du Toit et al (1981) demonstrated that inhibition of NTE in the spinal cord leads 

to a spinal syndrome only, but not neuropathy. However, to develop an 

axonopathy such as OPIDN, NTE aging is required (Johnson, 1969, du Toit et 

al., 1981). NTE inhibition and aging are then followed by several alterations in 

peripheral nerves. These include degeneration of long axons, myelin sheath loss, 

proliferation of Schwann cells and accumulation of macrophage in nerves (Singh 

and Sharma, 2000). Therefore, only OPs that are able to inhibit as well as age the 

enzymatic activity of NTE can induce OPIDN.  

 

It has been found that the inhibition and ageing of NTE may not represent the 

only critical early event in the pathogenesis of OPIDN. A number of studies have 

demonstrated a series of other chemical mechanisms that may be involved in this 

delayed neurodegenerative condition. These include the disruption of protein 

kinases that mediate phosphorylation of cytoskeletal proteins of microtubule and 
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neurofilament networks (Abou-Donia, 2003). In addition, activation of calcium 

activated neutral protease (CANP) occurs, which promotes axonal degeneration 

following exposure to OP mediated neuropathy (Emerick et al., 2012). 

Furthermore, increased intracellular free calcium (Ca
2+

) levels and 

phosphorylation of calcium/calmodulin-dependent protein kinase II (Ca
2+

/CaM 

kinase II) were also found to occur prior to the onset of clinical signs of OPIDN. 

In this context, an earlier study by Suwita et al. (1986) has shown that increased 

activity of calcium/calmodulin protein kinase II was related to phosphorylation 

of microtubule and neurofilament networks in the brain and spinal cord of hens 

treated with other OPs such as tri-o-cresyl-phosphate (TOCP), which was 

administered orally in a single neuropathic dose (Suwita et al., 1986). These 

findings suggest that alterations in the phosphorylation status of cytoskeletal 

proteins, destabilisation of microtubules and subsequent axonal degeneration are 

common biochemical events associated with OPIDN development (Abou-Donia, 

1993a, Gupta and Abou-Donia, 1998, Suwita et al., 1986).   

 

The clinical effects of OPIDN can be prevented by administration of NTE 

inhibitors such as carbamates, sulphonates, and phosphinates, which can inhibit 

the NTE enzyme without causing aging (Glynn, 2000). Despite having similar 

effects on NTE activity to OPs, studies have shown that pre-dosing with such 

agents can protect against the toxic effects of CPF. The basis of this protection is 

that these agents form a complex with AChE, thus preventing its interaction with 

CPF (Johnson, 1975, Johnson, 1982). Johnson and Lauwerys (1969) showed that 

the pre-treatment of chickens with these agents protected them from developing 

OPIDN when they were subsequently exposed to a neuropathic OP (Johnson and 

Lauwerys, 1969). However, these agents could potentially initiate the 

neuropathy-inducing activity of OPs, as Lotti (2000) demonstrated several toxic 

axonopathies associated with exposure to carbamate and phosphinate compounds 

(Lotti, 2000). 
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1.4.4 Other chronic neurological conditions associated with CPF 

exposure 

In addition to the above described classical neurological syndromes, CPF and 

certain other OPs are capable of causing a number of persistent, long lasting, 

chronic neurobehavioral and neuropsychiatric disorders. These deficits are 

collectively named chronic OP induced neuropsychiatric disorder (COPIND), 

and are observed following acute single dose or repeated subchronic exposure to 

CPF (Sanchez-Santed et al., 2004). COPIND is characterised by behavioural 

changes, such as drowsiness, confusion, anorexia, lethargy, anxiety, emotional 

lability, depression, insomnia, fatigue and irritability (Salvi et al., 2003). Similar 

symptoms of COPIND have been observed in agricultural workers accidentally 

exposed to a single dose of CPF, who demonstrated impaired cognitive 

functions, abnormalities in neuropsychological tests as well as memory and 

attention deficit (Savage et al., 1988, Rosenstock et al., 1991, Steenland et al., 

1994). 

 

Previous studies have described a variety of neurological changes in adults 

following long term use of OPs. Stephens et al (1995) studied farm worker 

performance after repeated exposure to OPs. They showed relatively slow speed 

of information processing in neurobehavioural tests, impaired attention, memory 

problems and greater susceptibility to psychiatric disorders (Stephens et al., 

1995). Fiedler and colleagues (1997) found dystonic reactions and schizophrenia 

amongst people exposed to large doses of CPF for long periods (Fiedler et al., 

1997). In addition, exposure to low levels of the same compound was found to 

induce neurobehavioural effects. For instance, high levels of anxiety were 

observed in insecticide sprayers but not in farmers (Levin et al., 1976). Impaired 

cognitive function of weaning rats was also reported after their exposure to sub-

acute doses of CPF (Jett et al., 2001). 

 

The impact of CPF insecticides causing cognitive deficits was also investigated 

in children. Several epidemiological studies have demonstrated that children and 

adolescents who work as pesticide applicators in agricultural fields such as 

cotton crops, have significantly more neurological symptoms and lower 
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neurobehavioural performance compared to non-OP workers (Rohlman et al., 

2001, Rohlman et al., 2005, Abdel Rasoul et al., 2008). These findings further 

confirm the previously highlighted association between the period and duration 

of applying CPF in agriculture and the extent of cognitive and developmental 

disorders. However, the precise neurological mechanisms underlying the clinical 

symptoms of COPIND in humans remain poorly understood (Kamel et al., 2003, 

Rohlman et al., 2007).  

 

 

1.5 Developmental neurotoxicity of chlorpyrifos 

During gestational development and early childhood, CPF and its metabolite 

CPO can cause severe brain deficits, abnormalities and permanent impairment, 

even if the exposure occurs at lower concentration than those required to produce 

clinical signs of acute neurotoxicity in adults (Grandjean and Landrigan, 2006). 

In humans, exposure to CPF during early brain development has been linked to 

several neurodevelopmental disorders in children, including attention deficit 

hyperactivity disorder (ADHD), autism, learning disabilities, and other 

emotional and behavioural problems. Such deficits may have considerable 

impacts on health and the economy (Grandjean and Landrigan, 2006, Engel et 

al., 2011, Rauh et al., 2012). About one in six children are diagnosed with 

developmental disorders worldwide (Schettler, 2001). Neurobehavioral problems 

affect up to 15% of all births (Grandjean and Landrigan, 2014). Children with 

these deficits may show early onset lifelong damage or delayed effects that 

appear after a period of time. The severity of the neurodevelopmental effects is 

varied and may not be clinically obvious. For that reason it can only be assessed 

in individuals by special applications such as intelligence quotient (IQ) testing 

(Flaskos and Sachana, 2011). In animals, several in vivo studies found that 

exposure to CPF during critical periods of brain development causes a variety of 

behavioural abnormalities in developing mice and rats. The neurodevelopmental 

effects include changes in locomotor skills and cognitive performance (Icenogle 

et al., 2004, Ricceri et al., 2006).  
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Developmental neurotoxicity of CPF can occur during the prenatal or postnatal 

period. Prenatal exposure to CPF occurs through the placental barrier from the 

exposed mother to the foetus or embryo. Postnatal exposure can be direct via the 

normal routes of CPF administration, for instance dermal absorption, ingestion 

or inhalation, or through an indirect exposure such as breastfeeding (Grandjean 

and Landrigan, 2006).  

 

Previous studies have shown that the developing brain is more susceptible than 

the mature brain to injury caused by the acute toxicity of CPF (Pope et al., 1991, 

Pope and Chakraborti, 1992, Whitney et al., 1995). For example, Zheng and 

colleagues (2000) found that the LD50 of CPF in 1-week-old rats is 10-fold lower 

than that in adult rats (Zheng et al., 2000). Similar differences were also 

observed between the maximum tolerated dose of CPF in 1 day old rats and 6 to 

9 day old animals (Whitney et al., 1995).  

 

The higher susceptibility of the nervous system to toxic agents during foetal life 

or the early postnatal period compared to that of the adult is due to a number of 

reasons. Firstly, the developing brain in embryos and infants is more sensitive 

than that of the mature nervous system in adults (Grandjean and Landrigan, 

2006, Flaskos and Sachana, 2011). The second reason is related to the fact that 

the foetus is not completely protected against toxic compounds by the blood-

placenta barrier. Since CPF is a lipophilic compound with low molecular weight, 

it can easily cross through the placental barrier to the foetal circulation, thus 

affecting the developing nervous system (Andersen et al., 2000). It has been 

found that OPs can rapidly cross the placenta and accumulate in umbilical cord 

blood at higher concentrations than those normally found in maternal blood 

(Sakamoto et al., 2004). Whyatt and Barr (2000) also demonstrated high levels 

of CPF metabolites in faecal samples of newborn children of exposed mothers 

(Whyatt and Barr, 2001). 

 

Another main factor that increases the susceptibility of the foetus and young 

children to OP neurotoxicity is that the blood brain barrier is not fully developed 

until 6 months after birth, so it cannot prevent the transfer of some toxic 

chemicals from the maternal blood to the foetal or infant brain in early life 
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(Costa et al., 2004). Furthermore, exposure to CPF during prenatal and neonatal 

life was found to be capable of disrupting the stability and integrity of the blood-

brain barrier (Yang et al., 2001, Parran et al., 2005).  

 

Differences in pharmacokinetic aspects such as drug absorption and metabolism 

following OP exposure, between the young and adults could also account for the 

vulnerability of the developing brain to developmental neurotoxicity (Flaskos 

and Sachana, 2011). In this context, CPF absorption in foetal brain is higher than 

that observed in the maternal brain. This is mainly because of the late 

development of epidermis keratinization and the thinner skin layers in the human 

foetus compared to infant and adults, which leads to greater toxin absorption via 

skin, lung and intestinal mucosa (Kearns et al., 2003, Vidair, 2004). By contrast, 

biotransformation of CPF is lower in neonates compared to the adult. This is due 

to the decreased levels of detoxifying enzymes in the liver and other tissues of 

developing organisms, which leads to increased concentrations of oxon 

metabolite. For example, the activity and amounts of A-esterase PON1, which is 

the major plasma enzyme that hydrolyses CPO to less toxic metabolites in 

humans and mice, is 4-fold lower in developing organisms than in adults 

(Karanth and Pope, 2000, Vidair, 2004). Karanth and Pope (2000) demonstrated 

that A-esterase PON1 activity is lower in neonatal rats than in adult rats (12-, 5-, 

8-fold lower in plasma, liver, and lung A-esterase PON1, respectively) treated 

with 1 mM CPO (Karanth and Pope, 2000). Moser et al. (1998) provided more 

evidence of the age-related differences in the activity of A-esterase PON1 in 

animals. In that study, it has been found that the activity of plasma PON1 in 1 

day old rat is 20-fold lower than that in adult rat following 1 mM CPO exposure 

(Moser et al., 1998). In humans, a 13-fold variability in PON1 status has been 

observed (Davies et al., 1996). Furlong et al. (2006) predicted a range of 131 to 

164-fold variability in CPO sensitivity among 130 pregnant women farmworkers 

and their newborns in the Latina cohort based on their PON1 status (Furlong et 

al., 2006). Therefore, the variation in PON1 level explains the higher susceptibly 

observed among mothers and newborns to CPO exposure. This finding clarifies 

the observation of severe CPO effects in some cases where mother and her 

newborn share a low level of PON1 (Furlong et al., 2006). 
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Brain developmental processes involve a sequence of events including neural 

cell proliferation, migration, differentiation, axonogenesis/neurite outgrowth, 

synaptogenesis, gliogenesis and apoptosis, which start from embryonic life and 

continue to late adolescence. Animals and humans share the same developmental 

order. However, the developmental stage at which each of these processes occurs 

is different between humans and animals (Flaskos and Sachana, 2011, Grandjean 

and Landrigan, 2014). For example, synaptogenesis and gliogenesis occur during 

pregnancy in humans, whereas these neurodevelopmental processes start after 

birth in rats. Disruption at each event of neurodevelopment provides a window of 

susceptibility to CPF toxicity (Rice and Barone, 2000). Therefore, CPF mediated 

developmental neurotoxicity is mainly dependent on the developmental stage at 

which the exposure occurs. The timing at which the exposure to CPF occurs has 

greater impact in determining the affected regions and function (Flaskos and 

Sachana, 2011).  

A number of experimental reports have demonstrated the ability of CPF and 

CPO to interfere with the normal development of the nervous system, which may 

in turn lead to developmental neurotoxicity. Interference by CPF and CPO in the 

developmental process of neurite outgrowth in neuronal and glial cells and the 

involved cytoskeletal proteins are the main focus of this thesis, which will 

discussed in the following part of this chapter. 

 

 

 

1.5.1 Neurite outgrowth as a morphological target of CPF-

induced developmental neurotoxicity 

Neurite outgrowth is an in vitro morphological marker of neural cell 

differentiation. It involves a series of complex events that occur during brain 

development, including differentiation of precursor cells into a terminal 

phenotype of neuronal cells, initiation and growth of sheet-like extensions 

(lamellipodia) and their condensation into minor processes, development of short 

dendrites and long axons with the guidance of the growth cone, and finally 

formation of the synapse (Craig and Banker, 1994b). Normal outgrowth of 

neurites is a critical process in the developing brain and nervous system as it 
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forms the basis of neuronal connectivity (Radio and Mundy, 2008). Disruption at 

any stage of this developmental pattern by a toxic agent would impair the 

neuronal differentiation process leading to developmental neurotoxicity, which 

has been linked to several neurobehavioral and neurodevelopmental disorders in 

humans (Webb et al., 2001, Ramakers, 2002).  

The ability of CPF and CPO to induce developmental neurotoxicity by 

interfering with neurite outgrowth in the developing nervous system has been 

studied in a number of animal and cellular models. For instance, Slotkin et al. 

(2006) have shown that treatment of neonatal rats with CPF at 1 mg/kg daily 

dose (subcutaneously injected for four days) inhibits neurite outgrowth as 

indicated by decreased levels of choline acetyltransferase (ChAT) activity, a 

cholinergic neuronal marker. The previous study also reported that the effect of 

CPF towards neurite outgrowth was not associated with an impact on animal 

survival and caused only 20% reduction in the activity of AChE, which is below 

the 70% inhibition level that have been shown to induce acute cholinergic 

symptoms (Slotkin et al., 2006). In this in vivo study, neurite outgrowth was 

evaluated biochemically by measuring the activity of ChAT (membrane protein) 

and its ratio to total cell protein. As the neural cell contains a single nucleus, 

measurement of DNA content reflect the numbers of cells. Thus, cell packaging 

density was assessed by measuring DNA concentration. As the neurites expand 

and developed into axon and dendrites, it requires contribution of membrane 

proteins and other cellular proteins. Therefore, the amount of total protein in 

response to cell differentiation was measured (Slotkin et al., 2006).   

The impact of CPF and CPO on neurite outgrowth has also been investigated in 

in vitro studies using different glial and neuronal cell culture models. In most of 

these reports, OP-induced effects on neurite outgrowth have been evaluated 

morphometrically by microscopy, following histological or immunostaining 

techniques, using high-resolution cameras and either manual counting or specific 

neurite outgrowth analysis software. For instance, a significant inhibition (by 

38%) in neurite outgrowth, but not cell viability, in differentiated rat PC12 

pheochromocytoma cells was detected after 24 h exposure to 3 µM CPF and 3 

nM CPO. The observed CPF-induced effect on neurite outgrowth was detected 

in the absence of AChE inhibition. However, the CPO effect on neurite 
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outgrowth was associated with 90% inhibition of AChE activity (Das and 

Barone, 1999). In addition, CPF, at a non-cytotoxic concentration of 3 µM, 

impaired neurite outgrowth significantly in cultures of differentiating mouse N2a 

neuroblastoma cells after 4 or 8 h treatment with a lack of observed effect on 

AChE activity (Sachana et al., 2001). In the same cell line, CPO, at non-

cytotoxic concentrations of 5 and 10 µM was found to impair axon outgrowth in 

differentiating N2a cells after 4 and 24 h exposure, although in this study there 

was an acute level of inhibition of AChE (˃70% of control levels) which 

persisted for 24 h (Flaskos et al., 2011). The ability of CPF and CPO to alter the 

neuronal morphogenesis in the previous in vitro studies was seen at relatively 

high doses of CPF or at CPO concentrations causing acute levels of AChE 

inhibition. However, a number of studies demonstrated that both compounds are 

also able to inhibit neurite outgrowth at much lower concentrations without 

AChE inhibition (Howard et al., 2005, Yang et al., 2008). 

 Howard et al. (2005) showed that CPF and CPO at lower doses (0.001 µM and 

0.01 nM, respectively) than those required to reduce the enzymatic activity of 

AChE or cell viability, inhibited the axonal and dendritic outgrowth in primary 

cultures of superior cervical ganglia (SCG) rat embryonic neurons after 24 h 

treatment (Howard et al., 2005). Under the same exposure conditions, CPF and 

CPO also interfered with axon outgrowth in embryonic cultures of dorsal root 

ganglia (Yang et al., 2008). At sub-cytotoxic concentrations (1-10 µM) CPF and 

CPO were also found to inhibit the extensions outgrowth in rat C6 glioma cells 

after 24 h of inducing cell differentiation and this effect was not associated with 

reduced AChE activity (Sachana et al., 2008). These findings demonstrated that 

neurite outgrowth can be more sensitive than the enzymatic activity of AChE to 

the toxic effects of CPF and CPO in these cell models. Since the reported 

alterations in neuronal morphogenesis occurred in both the absence and presence 

of changes in AChE activity, it is likely that inhibition of AChE is not in the 

main cause of the inhibition of neurite outgrowth by CPF and CPO. These 

findings suggest that additional non-cholinergic targets are involved in the 

developmental toxicity of CPF and CPO. These targets will be discussed in the 

next section to provide a better understanding as to how their disruption might 

inhibit neurite outgrowth.  
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1.5.2  Cellular proteins as molecular target of CPF-induced 

developmental neurotoxicity 

Although CPF exerts poisoning effects due to the CPO mediated inhibition of 

AChE activity, several other cellular proteins have been proposed as targets for 

the neurotoxicity of CPF and CPO, including those involved in cytoskeletal 

architecture, cell signalling pathways and growth associated protein. 

 

1.5.2.1 Cytoskeleton 

The neuronal cytoskeleton plays fundamental roles in controlling the 

developmental processes of the nervous system. These include cell proliferation, 

migration, differentiation, morphogenesis, neurite outgrowth, elongation of 

axons, branching of dendrites, steering of growth cones and apoptosis 

(Hargreaves, 1997, Flaskos, 2014). Disruption of cytoskeletal proteins results in 

serious damage in these phases of neurodevelopment (Flaskos, 2014). The 

neuronal cytoskeleton is fibrous network of proteins, which is composed of three 

main classes of filamentous proteins, microtubules (MTs), intermediate filaments 

(IFs) and microfilaments (MFs). These components of cytoskeletal proteins have 

an important role in the regulation of axon growth and stability and thus, they 

represent potential neurotoxicity targets (Hargreaves, 1997). 

 

1.5.2.1.1 Microtubules 

Microtubules (MTs) have important roles in neuron growth and physiology, 

being implicated in the regulation of neuronal morphology, intracellular 

transport, and outgrowth of axons and dendrites (Cambray-Deakin, 1991a, 

Ginzburg, 1991, Lodish et al., 2000a). MTs are straight, hollow cylinders formed 

by a ring of thirteen protofilaments that are built by the assembly of two tubulin 

heterodimers, α- and β-tubulin subunits, and MT associated proteins (MAPs) 

(Cleveland, 1993a, Hargreaves, 1997).  

MTs represent the largest type of cytoskeletal structure, with an average external 

diameter of ~ 25 nm and an internal diameter of ~ 14 nm (Figure 1.4) (Tilney et 

al., 1973). In mammalian cells, MTs originate from a specific regions called the 
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centrosomes or microtubule organising centres (MTOCs). MTs are organised in 

a polar fashion, where the centrosome-attached end is the “minus end”, while the 

other is called the “plus end” (Figure 1.4). Each end has its own growth rate, for 

example, the plus end grows fast, unlike the minus end which known as the slow 

growing end (Heidemann et al., 1981b). During cell division and movement, 

MTs undergo several rearrangements (polymerisation - depolymerisation) that 

are fuelled by the enzymatic hydrolysis of guanosine triphosphate (GTP), with 

the plus end extending towards the extremities of the cell (Lodish et al., 2000a). 

The development of elongating neurons largely depends on the orientation of 

MTs (Bamburg et al., 1986, Julien and Mushynski, 1998). For instance, in neural 

cells, the plus end of MTs extends towards the axon tip and the minus end is 

oriented at the MTOC of the axon. In contrast, in dendrites, the polarity of MTs 

is mixed, with both ends being distal to the cell body. In non neuronal cells such 

as glia, the minus end is associated with MTOCs. Each MTOC has the ability to 

nucleate and organise MTs by polymerising the tubulin subunits (Lodish et al., 

2000a).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Microtubule structure and composition. A schematic diagram of a MT 
showing the structure of 13 protofilaments packed together to form the cylindrical wall in 
cross section and a side view of a short section of a microtubule with the tubulin 

polypeptides aligned into rows (Lodish, 2000). 
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The main component of MTs is tubulin, which has α- and β- subunits. However, 

there are other subunits of tubulin such as ϒ-tubulin, which is not present in MTs 

but has an important role in MT nucleation and polar orientation (Martin et al., 

1997). Each α- and β-tubulin subunit has a molecular weight of approximately 

50 kDa. They consist of several isoforms encoded by a number of genes 

(Tischfield and Engle, 2010). Both α- and β-tubulin isoforms have an important 

role during nervous system development. For instance, class III β-tubulin isotype 

(βIII-tubulin) is almost exclusively distributed in neuronal cells and has an 

essential role in cell differentiation and neurite outgrowth. In addition, βIII-

tubulin is one of earliest cytoskeletal protein to be expressed during 

neurodevelopment (Easter et al., 1993).  

Tubulin binds a variety of MAPs due to its strongly acidic carboxyl terminal 

domain (Cleveland, 1993a, Hargreaves, 1997). The carboxyl terminal of tubulin 

subunits contains an acidic region of 40 amino acids. This peptide sequence is 

believed to harbour the target region of calcium binding, phosphorylation sites 

(serine residues) and binding sites of MT-stabilising proteins, such as MAPs 

(Table 1. 2) (Luduena, 1993). Several post-translational modifications are also 

involved in the regulation of tubulin polymer formation. The most common 

modifications include acetylation of α-tubulin at lysine at position 40 (Lys40), 

detyrosination/tyrosination of α-subunits by the removal/addition of tyrosine 

(Tyr) residues at the C-terminal. Other post-translational modifications include 

phosphorylation of β-subunits at a serine residue at position 172 (Ser172) and 

polyglutamylation of β-tubulin subunits at multiple glutamate residues (Luduena, 

1993, Fourest-Lieuvin et al., 2006) (Table 1.2). Such modifications may affect 

MT stability and locations (Janke and Kneussel, 2010). 
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Table 1.2. Major microtubule cytoskeletal proteins of the nervous system (adapted 

from (Kirkpatric and Brady, 1999) . 

 

Protein Expression pattern and distribution 
Post-translational 

modification 

α-tubulin 
In all cells, but some isoforms preferentially 

expressed in brain 

Acetylation, 

Tyrosination, 

Polyglutamylation 

β-tubulin 
In all cells, but some isoforms preferentially 

expressed in brain 

Phosphorylation, 

Polyglutamylation 

γ-tubulin In MTOC of all cells  Phosphorylation 

MAP 1a Appears late, widely distributed Phosphorylation 

MAP 1b Appears early, then declines; enriched in axons Phosphorylation 

MAP 2a 
High molecular weight; expressed in dendrites 

in mature neurons 
Phosphorylation 

MAP 2b High molecular weight; expressed in dendrites Phosphorylation 

MAP 2c 
Low molecular weight; expressed in dendrites 

in developing neurons 
Phosphorylation 

Tau Enriched in axons Phosphorylation 

 

The assembly and stability of MTs is strongly dependent upon MAPs, which 

regulate the dynamics of tubulin heterodimers (Lodish et al., 2000b, Lodish et 

al., 2000a). For instance MAPs stimulate MT assembly and are involved in the 

interaction with IF and actin filaments (Cleveland, 1993b). The main MAPs 

family members that are known to be important during central nervous system 

development include MAP 1, MAP 2, tau and stathmin. Their main function 

during neuronal development is to maintain the stabilisation of the growth cones, 

and the dynamics of axonal and dendritic MTs (Schoenfeld and Obar, 1994). 

Other groups of MAPs such as, kinesin and dynein can also function as motor 



Introduction                                                                                        Chapter 1                                                   

29 

 

proteins (ATPases) by driving the intracellular transport of organelles and 

proteins from the cell body to the extending axons and synapses (Vallee and 

Bloom, 1991).  

MAPs 1 and 2 are composed of three different phosphoproteins each (MAP 1a, 

1b, 1c, MAP 2a, 2b, 2c), which can be distinguished according to their molecular 

weights (Olmsted, 1986). While MAP 1 and MAP 2 are expressed in neuronal 

cell bodies and dendrites, tau is found primarily in axons (Table 1.2). Tau is also 

considered as an axonal marker and tau abnormalities are strongly related to the 

pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease 

(Kolarova et al., 2012).  

The role of MTs in organising axonal growth and development is well 

established. As developing neurites extend, MTs begin to be assembled and to be 

modulated by posttranslational modifications of tubulin (Cambray-Deakin, 

1991a). In this process, MAPs play essential roles, helping to maintain structure, 

orientation, and function of MTs (Heidemann et al., 1981a, Mandell and Banker, 

1995, Craig and Banker, 1994a). Given the important roles of MTs in neuron 

growth and functions, it is not surprising that MT alterations or disruption of MT 

protein phosphorylation by toxic agents lead to interference with brain 

development and may be involved in the pathophysiological mechanisms of 

several neurodegenerative diseases (Millecamps and Julien, 2013).  

The ability of CPF and CPO to cause developmental neurotoxicity via disruption 

of the microtubule cytoskeleton has been demonstrated in a number of previous 

studies. For instance, exposure of differentiating rat C6 glioma cells to sub-

cytotoxic neurite inhibitory doses (1-10 µM) of CPF and CPO were found to be 

associated with reduced protein levels of MAP 1b and α-tubulin (Sachana et al., 

2008). Furthermore, Abou-Donia (1993) demonstrated that hens exposed to OP 

exhibited increased phosphorylation of tubulin and MAPs (Abou-Donia, 1993b). 

In addition, CPO at doses range from 0.1 to 10 µM was shown to induce 

alterations in MT and MAP ultrastructure in cultured rat brain slices (Prendergast 

et al., 2007). Therefore, MTs may serve as useful biomarkers of CPF-induced 

neurodegeneration. 
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1.5.2.1.2  Intermediate filaments 

Intermediate filaments (IFs) are an important component of the eukaryotic 

cytoskeleton, and are usually identified in cellular studies as markers for neural 

cell differentiation. IFs are slightly smaller and more biochemically stable than 

MTs. Thus, they provide structural support for many different cell types 

including neurons (Omary et al., 2006). All IF proteins contain a conserved α-

helical rod domain, flanked by a hypervariable amino-terminal head domain and 

a carboxy-terminal tail (Figure 1.5). Since the central rod domain contains 310 

amino acid residues, which are highly homologous amongst the main IF types, 

the variations in amino acid sequence of the two end domains determine the 

difference in the molecular weight and molecular interactions of all IF subunits 

(Cooper, 2000). IFs are initially constructed from two polypeptide chains wound 

together in a parallel fashion to form a coiled-coil dimer, two of which then form 

a staggered tetramer (consisting of two antiparallel dimers), leading to the 

subsequent formation of octamers, protofilaments and eventually large complex 

IFs that contain 16 to 32 polypeptides (Figure 1.6) (Lodish et al., 2000b).  

 

 

 

 

 

 Figure 1.5. Structure of intermediate filament protein subunits. The 
diagram shows the generalized structure of an IF protein monomer, which contains 

an α-helical rod domain composed of around 310 amino acid residues, an amino-

terminal head domain and the carboxy-terminal domain at the tail. 
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Although there are more than 50 different IF proteins, which have been classified 

into six main groups based on their amino acid sequence homology, two classes 

of IFs that are specific to the nervous system are the focus of this dissertation. 

These include neurofilament (NF) proteins and glial fibrillary acidic protein 

(GFAP), which are mainly expressed in neuronal and astroglial cells, 

respectively (Cooper and Hausman, 2000).  

NFs are composed of three polypeptides chains termed neurofilament heavy 

(NFH), medium (NFM) and light (NFL) chains, which are categorised according 

to their molecular weights of approximately 200, 145 and 70 kDa, respectively 

(Ackerley et al., 2003). In mammals, these triplet proteins are found in mature 

neurons but are highly expressed in axons. NFs provide support during axon 

Figure 1.6. Assembly of intermediate filaments. A schematic diagram 
showing that IFs are assembled from two polypeptide chains wound together to 

form a parallel coiled-coil dimer. Dimers are staggered in an antiparallel fashion 

to form tetramers, octamers, protofilaments and eventually large complex IFs that 
contain 16 to 32 polypeptides. 
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extension and also play major roles in the complex series of interactions that 

regulate axonal growth and development (Lee and Cleveland, 1996). NFs share a 

similar structure to all other IF proteins in which each NF subunits contain head, 

central rod and tail domains. The central rod domain that comprises 310 amino 

acids plays an important role in NF polymerisation, whereas the tail domains of 

NFH and NFM are important in the formation of fine lateral projections (Yuan et 

al., 2012). The central rod domain of each NF is co-assembled with other NF 

subtypes to form a filament with 10 nm in diameter. NFL forms the central core 

of this filament, while NFM and NFH subunits are situated on its surface 

forming radial projections that interconnect NFs with other cytoskeletal elements 

(Rao et al., 2003). Therefore, cross bridges between NF extensions of the tail 

domains and other organelles in the cytoplasm stabilise the axonal outgrowth 

(Hirokawa et al., 1984). 

The axonal cytoskeleton contains MTs, NFs and microfilaments (MFs) that are 

assembled in ordered networks of filaments interconnected by cross-bridges. 

Newly synthesised NFs are transported into the axonal space in a slow non-

diffuse manner and then rapidly incorporated into the axonal cytoskeleton. The 

process of NF assembly and transport is launched within the neuronal cell body 

and continues as they are transported into and along the axons by axonal 

transport (Black and Lasek, 1980).  

During NF assembly, NFs undergo several post translational modifications 

which involve phosphorylation of the carboxyl terminal domains. 

Phosphorylation of NFs is crucial for the regulation of their axonal stability and 

transport, assembly and disassembly in the cell (Williamson et al., 1996). 

Additionally, it plays an important role in regulating the interactions between 

NFs themselves and the interaction of NFs with MTs (Hisanaga and Hirokawa, 

1989, Hisanaga et al., 1991). It has been demonstrated that increased NFH 

phosphorylation is directly related to an increase in the spacing between NF 

subunits and axonal diameter (Hirokawa et al., 1984). Moreover, aberrantly 

phosphorylated NFs accumulate in neuronal cell bodies and can be found in axon 

from patients with neurodegenerative diseases such as Alzheimer’s and 

Parkinson’s disease (Rudrabhatla et al., 2011). Abnormal NF aggregation is also 

a common histological hallmark of OP poisoning (Jensen et al., 1992).  
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Phosphorylation of NF subunits can occur at the carboxyl terminal domains, 

which contain multiple Lysine-Serine-Proline (KSP) region or phosphorylation 

sites. NFH and NFM are known to have the highest number of phosphorylatable 

sites compared to NFL, which is less phosphorylated (Perrot and Eyer, 2009). 

This is due to the extreme length of the tail domain of NFH and NFM and the 

presence of large numbers of KSP repeats compared to NFL (Yuan et al., 2012). 

It has been demonstrated that NFs can also be phosphorylated at the amino head 

domain. However, the phosphorylation sites in the latter are less abundant than 

those at the carboxyl domains (Sihag et al., 2007). Phosphoarylation of NFH and 

NFM begins after their synthesis in the cell body and continues along their 

transport into the axon towards the synapses (Nixon et al., 1982). 

Phosphorylation of the tail domain of NFH and NFM is regulated by different 

protein kinases and phosphatases. Protein kinases are sets of several enzymes 

that have the ability to phosphorylate proteins by adding a phosphate group to 

them, such as mitogen activated protein kinases/extracellular-signal-regulated 

kinase 1/2 (MAPKs/ERK1/2) (further details in section 1.4.2.2) (Veeranna et al., 

1998).  Phosphatases are a group of enzymes that removes a phosphate group 

from a protein such as protein phosphatase 1 and 2A (PP2A and PP1) (Strack et 

al., 1997). In patients with Alzheimer’s disease, NF phosphorylation was 

associated with activation status of ERK1/2 and decreased levels of PP1 and 

PP2A (Gong et al., 1993, Veeranna et al., 2004). The mechanisms underlying the 

NF phosphorylation mediated by kinases and phosphatases are not completely 

understood. 

Data from previous studies showed that exposure of differentiating N2a cells to 

sub-cytotoxic neurite outgrowth inhibitory levels of CPF (3 µM) caused a 

significant reduction in the level of total NFH (Sachana et al., 2001). In addition, 

the densitometric analysis of western blots in a study by Flaskos et al. (2011) 

reported that neurite inhibitory effects of CPO were associated with reduced 

levels of total NFH in a concentration dependent manner in N2a cells (Flaskos et 

al., 2011). However, phosphorylated levels of NFH were unaffected by CPO. 

The observed alteration of NFH was further confirmed by the aggregation 

localised in cell bodies (Flaskos et al., 2011). Other OPs have been also shown to 

affect the NF network in different ways. Hargreaves et al. (2006) showed that 



Introduction                                                                                        Chapter 1                                                   

34 

 

sub-cytotoxic neurite inhibitory concentration of phenyl saligenin phosphate 

(PSP) were associated with reduced levels of total NFH following 4 and 24 h 

exposure in differentiating N2a cells. A transient increase in NFH 

phosphorylation after 4 h exposure and a subsequent decrease after 24 h were 

also seen together with aggregates in the cell bodies in PSP-treated cells 

(Hargreaves et al., 2006). In the same cell line, inhibition of axon outgrowth was 

found to be accompanied with reduced levels of total and phosphorylated NFH 

in cells treated with trio-ortho-cresyl phosphate (TOCP) for 24 h (Fowler et al., 

2001). However, increased expression of NFH phosphorylation without 

significant changes in total NFH were detected in differentiating N2a cells 

exposed to sub-cytotoxic concentrations of diazinon oxon (DZO) for 24 h 

(Sidiropoulou et al., 2009a). In an animal study, increased phosphorylation status 

of NFH has been found in the spinal cord of hens treated with TOCP (Suwita et 

al., 1986) and PSP (Jortner et al., 1999). This alteration in NFH suggests that 

these OP compounds including CPF and CPO have the ability of to interfere with 

molecular expression of axonal cytoskeleton proteins and the arrangement of 

cytoskeletal networks within the cell (Flaskos et al., 2007, Harris et al., 2009a).  

GFAP is the major IF protein found in mature astrocytes of the nervous system. 

GFAP can also be found in other types of cells such as the glial cell of the 

digestive system, and the non-myelinating Schwann cells in the peripheral 

nervous system, which have similar function to those of astrocytes (Yang and 

Wang, 2015). GFAP has an important role in modulating the shape and motility 

of astrocytes by providing structural support for their processes (Eng et al., 

2000). Astrocytes can be activated in response to neuronal damage, brain injury, 

genetic disorder or neuronal toxicity in a process called reactive astrocytosis or 

astrogliosis. Increased astro-glial cells number and levels of GFAP expression 

were found to be the main characteristics of astrocytesʼ reaction to OP 

intoxication (O'Callaghan, 1988). During reactive astrogliosis, GFAP is 

responsible for the formation and extension of astrocytic processes. Earlier 

studies showed that generation of GFAP-deficient-mice was associated with 

neurological or behavioural abnormalities, abnormal myelination, and reduced 

myelin thickness in the spinal cord (Gomi et al., 1995, Liedtke et al., 1996). 

Other studies detected increased levels of GFAP in brains of humans suffering 
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from neurodegenerative conditions such as Alzheimer and Parkinson’s disease 

(Zhang et al., 2014). These data suggest that GFAP could be a useful protein 

marker of neurological pathophysiology (Liu et al., 2012).   

During brain development, increased expression of GFAP is an indication of 

glial differentiation from neural precursor cells into astrocytes, which usually 

reaches a peak at the second and third postnatal week. Thus, GFAP has also been 

recognised as a biomarker for astrocyte differentiation (Bramanti et al., 2010). 

Since glial development continues into adolescence, effects on developing glia 

during postnatal development due to CPF and CPO exposure could contribute to 

developmental neurotoxicity. Garcia et al. (2002) showed that subcutaneous 

administration of CPF for 4 days to developing rats at the peak of gliogenesis 

and glial differentiation results in decreased GFAP levels (Garcia et al., 2002). 

Similar findings were also observed in cultures of differentiating rat C6 glioma 

cells, when treated with sub-cytotoxic concentrations (1-10 µM) of DZO for 24 

h. The decreased GFAP expression level obtained in the previous study is 

indicative of OP direct injury on astro-glial cells (Sidiropoulou et al., 2009b). 

 

1.5.2.1.3  Microfilaments 

Microfilaments (MFs) are another class of cytoskeletal network; they are 

composed of actin protein with a molecular weight of approximately 43 kDa. 

MFs are formed by polymerisation of two globular strands of actin monomers 

(G-actin) twisted around each other like strings of pearls to form F-actin, through 

the binding of adenosine triphosphate (ATP) (Theriot, 1994, Hargreaves, 1997). 

Thus, F-actin is formed by the addition of G-actin monomers at the positive end 

of F-actin (Hargreaves, 1997). Actin is found in all glial and neuronal cells and 

enriched in presynaptic terminals, dendritic processes and growth cones 

(Kuczmarski and Rosenbaum, 1979). Actin filaments are relatively thin and 

short in length in all regions of the neuron. However, MFs are more prominent 

and much longer in the axonal branching lamellipodia and particularly in the 

filopodia of the growth cone (Pak et al., 2008, Lowery and Van Vactor, 2009). 

The growth cone is a highly motile structure that explores the extracellular 
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environment, determines the direction of growth, and then guides the extension 

of the axon in that direction. The main morphological elements of growth cones 

are lamellipodia and filopodia, which are sheet-like and finger-like protrusions, 

respectively. They are rapidly formed and later disappear from the terminal tip. 

Such movements reflect rapid, controlled rearrangement of MFs, which is 

thought to be involved in the control of axonal path finding (Cooper, 2011).  

During neuronal development, actin filaments are dynamic and undergo rapid 

assembly-disassembly cycles that enable the filopodia to extend towards and 

retract from the growth direction (Cooper and Hausman, 2000). The bundles of 

MFs in growth cone projections together with the associated actin network are 

thought to be involved in growth cone movement, myelination and cell migration 

(Sobue, 1993). MF dynamics occur through the incorporation and release of (i.e. 

the exchange) of actin monomers (G-actin) at the ends of the polymer (Zhang et 

al., 2005). This process is regulated by ATP hydrolysis and the interaction with 

actin binding protein such as growth associated protein-43 (GAP-43) and actin 

depolymerizing factor (ADF)/cofilin (McGough and Chiu, 1999). It has been 

proposed that disturbing MF regulation may be one additional target of OPs. In 

this context, Harris et al. (2009) found increased levels of cofilin in N2a cells 

induced to differentiate for 24 h in the presence of 10 µM diazinon (DZ). The 

observed alterations in the levels of cofilin might suggest a disruption in the MF 

dynamic and polymerization as well as organization of MF network (Harris et 

al., 2009b). Changes in this actin-binding protein could also disrupt the ability of 

cofilin to regulate growth cone motility and neurite outgrowth (Endo et al., 

2003).  

Other studies hypothesised that GAP-43 is another protein that plays an 

important role in the regulation of neurite outgrowth (Skene, 1989, Pekiner et al., 

1996). GAP-43 is found prominently in the growth cones and elongating axons 

in the neurons (Das et al., 2004). During neurodevelopment, GAP-43 regulates 

the formation of growth cones, interferes with the development of axons, and is 

involved in the plasticity of the synapse (Benowitz and Routtenberg, 1997). It 

has been demonstrated that GAP-43 synthesis is elevated during axonal 

outgrowth (Skene, 1989, Pekiner et al., 1996), and thus, inhibition of neurite 
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outgrowth could be reflected by altered expression level of GAP-43 (Das et al., 

2004).  

Exposure of differentiating N2a cells to neurite inhibitory concentrtaions of CPF, 

CPO and other OPs have been associated with reduced levels of GAP-43 

(Fowler et al., 2001, Sachana et al., 2001, Sachana et al., 2003, Sachana et al., 

2005, Sidiropoulou et al., 2009a, Flaskos et al., 2011). The findings of the 

previous studies indicated that disturbance in the levels of GAP-43 synthesis 

might possibly affect the transport of this protein to axon and dendrites from the 

cell body. Thus, GAP-43 could be a common molecular marker of OPs-induced 

neurite outgrowth inhibition (Sachana et al., 2005).  

 

1.5.2.2 Cell signalling pathway involved in neurite outgrowth 

The complex developmental processes of the nervous system are dependent on 

precisely controlled activation or inactivation of several signal transduction 

pathways (Bertrand et al., 2002). Mitogen activated protein kinases (MAPKs) are 

key signalling pathways that functionally regulate neural cell proliferation, 

differentiation, mitosis, survival and apoptosis (Perron and Bixby, 1999). 

MAPKs are serine/threonine kinases, which activated by extracellular stimuli 

such as OP exposure, osmotic stress or heat shock (Widmann et al., 1999). 

MAPK activation is dependent on a series of phosphorylation events at both 

threonine and tyrosine residues, whereas MAPK inactivation is mediated by a 

number of phosphatases that have the ability to hydrolyse the phosphate group 

and reduce the MAPK activity (Shaw and Filbert, 2009).  

In mammals, MAPK pathway is consists of three main signalling modules 

include the extracellular-signal regulated kinases (ERK1/2), the stress-activated 

protein kinases p38, and the JUN N-terminal kinases (JNK) (Chang and Karin, 

2001). Each MAPK signalling group is composed of three acting kinases: a 

MAPK, a MAPK kinase (MAPKK) and a MAPK kinase kinase (MAPKKK). 

MAPKKKs are phosphorylated and activated by MAPKK, which in turn 

phosphorylate and activate MAPKs (Figure 1.7). MAPKKKs activation occurs 
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through phosphorylation of Ser/Thr residues and/or interaction with small G-

protein such as Ras in response to extracellular stimuli (Cargnello and Roux, 

2011).  

The two MAPK pathways p38 and JNK activation have been linked to apoptotic 

cell death (Wang et al., 1998). They are responsive to cellular stress that could be 

induced by stress stimuli such as, inflammatory cytokines or heat shock. In the 

signalling cascades of JNK and p38, each MAPKK can be activated by multiple 

MAPKKKs for instance, MEK3 and MEK6 activates the p38 pathway whereas 

MEK4 and MEK7 activate the JNK pathway (Figure 1.7) (Robinson and Cobb, 

1997). 

ERK1/2 are among the most extensively studied kinases of the MAPK pathway 

and the MAPKs of interest in this thesis. ERK1 was first cloned in 1990s and 

consider one of the well characterised MAPK in mammals (Boulton et al., 1991). 

It was initially found to be phosphorylated at tyrosine and threonine residues in 

response to growth factors (Cooper et al., 1982). ERK1/2 have similar amino 

acid identity and are highly expressed in neurons in the mature nervous system 

(Boulton et al., 1990). The ERK pathway is controlled by mitogen activated 

extracellular receptors and growth factors that stimulate neural cell proliferation 

and differentiation, and is suppressed in many events leading to apoptosis (Jin et 

al., 2002).  

ERK1/2 are activated by several growth factors such as nerve growth factor 

(NGF), and epidermal growth factor (EGF) (Boulton et al., 1991). Additionally, 

ERK1/2 are activated by cytokine receptors, osmotic stress, microtubule 

disorganisation, and G protein-coupled receptors such as kinase suppressor of 

Ras (KSR) (Raman et al., 2007). However, the main route of activation of 

ERK1/2 mainly occurs by cell surface receptor, such as tyrosine kinase 

receptors. In the ERK1/2 signalling cascade, the growth factor receptor-bound 

protein (Grb) links the tyrosine kinase receptor to guanine nucleotide exchange 

factors, such as son of sevenless (SOS), which are proteins that can activate the 

small GTPases. Then, the signal is transduced to the small GTP binding protein 

(Ras), activating Raf, which then acts as a MAPKKK. This, in turn, activates 
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MEK1/2 which acts as MAPKK, which finally activates the terminal ERK1/2 as 

MAPK (Figure 1.7) (Johnson and Lapadat, 2002). 

ERK1/2 can phosphorylate many neuronal proteins, such as NFH and other 

substrates (Shaul and Seger, 2007). In a previous study by Veeranna et al. (1998) 

it has been found ERK1/2 are capable of phosphorylating all types of KSP 

repeats in the C-terminal tail domains of NFH and NFM in rat brain. In the same 

study, it has also been demonstrated that inhibition of the ERK1/2 by MEK 

inhibitor (PD98059) caused a decrease in neurite length in primary culture of rat 

hippocampal cells (Veeranna et al., 1998). This implies that ERK1/2 may 

regulate the axonal cytoskeletal proteins involved in neurite outgrowth.   

Numerous in vitro studies have demonstrated the effect of CPF exposure on cell 

signalling cascades. Caughlan and colleagues (2004) showed that CPF at sub-

cholinergic levels induced apoptosis in rat cortical neurons by the activation of 

ERK1/2, JNK and p38 MAPK pathways. The authors also found that embryonic 

neuronal cells were more sensitive than postnatal cells, which indicate that CPF 

is able to disrupt the activities of MAPK families involved in neuronal cell 

development and survival (Caughlan et al., 2004). Consistent with this finding, 

increased activation of ERK1/2 was also observed in primary cultures of human 

astrocytes following CPF exposure (Mense et al., 2006). Moreover, in human 

neuroblastoma SH-SY5Y cells, CPF caused induction of JNK and p38 MAPK 

activation (Ki et al., 2013).   
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Figure 1.7. Schematic diagram of the MAPK signalling pathways. The general 
mitogen-activated protein kinase (MAPK) signalling cascade includes the activation of a 
MAPK kinase kinase (MAPKKK), which then activates a MAPK kinase (MAPKK), 

which activates the terminal MAPK. MAPK pathways consists of three main signalling 

modules include the extracellular-signal regulated kinases (ERK1/2), the stress-activated 

protein kinases p38, and the JUN N-terminal kinases (JNK). In the MAPK/ERK 
pathway, the exposure to CPF and the binding of ACh to muscarinic and nicotinic ACh 

receptors activates the small GTP binding proteins Ras activates Raf, which acts as a 

MAPKKK. This in turn, activates MEK1/2, which acts as a MAPKK, which finally 
activates the terminal ERK1/2 as MAPK. ERK1/2 are linked to cell development, while 

activation of p38 and JNK has been linked to cell apoptosis. In the signalling cascades of 

JNK and p38, each MAPKK can be activated by multiple MAPKKKs; for instance, 

MEK3/6 activates p38 pathway, whereas MEK4/7 activates the JNK pathway. 
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1.6 The use of in vitro mammalian cell models for 

assessment of CPF neurotoxicity 

The high ethical and economic impact, together with complex and time 

consuming processes associated with animal experiments for neurological 

purposes have prompted investigators to identify alternative methods that could 

be used for assessing both physiological and pathological processes. Hence, in 

vitro models provide invaluable assets and a simplified tool for studying the 

neurotoxicity of OP pesticides at both cellular and molecular levels (Silva et al., 

2006). The use of in vitro cell culture models for neurotoxicity assessment has 

some intrinsic limitations, such as diminished metabolic capability, lack of cell 

to cell interaction (e.g. between neurons and glial cells), and partial involvement 

of pharmacokinetic factors, which may not accurately determine the effective in 

vivo levels (Rice and Barone, 2000, Flaskos, 2012). However, these culture 

systems have many important advantages that make them appropriate approach 

in this project.  

First, mammalian cell lines have the ability to reproduce large numbers of 

homogenous cells by simple preparation. Second, they are easy to grow, store 

and maintain for an extended periods of time (Radio and Mundy, 2008, Flaskos, 

2012). Additionally, they enable the testing of CPF and CPO at different 

concentrations on neuronal and glial cells, separately. Moreover, they also permit 

the detection of cellular alterations as well as characterisation of molecular 

changes during a specific neurodevelopmental phase, such as neurite outgrowth. 

Furthermore, the differentiated neuronal cells that express the main 

morphological features of neurites including axons and dendrites make it 

possible to control the timing and onset of development and adjust the research 

method to the needs of the study (Banker and Goslin, 1998). This advantage has 

made numerous cell lines suitable models for high throughput screening. Neural 

stem cells derived from humans also provide the potential benefit of predicting 

the neurotoxicity of CPF and CPO in a more physiologically relevant cellular 

system. However, there is a lack of published work to show that stem cells 

derived from humans are able to predict human developmental neurotoxicity any 
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better than cell lines derived from rodents (Radio and Mundy, 2008). The two 

mammalian cell lines used in this thesis to investigate the developmental 

neurotoxicity of CPF and CPO are further described below.  

 

1.6.1 Mouse N2a neuroblastoma cell line 

The N2a cell line has been widely used as a model for the study of OP toxicity 

on neuronal differentiation and neurite outgrowth (Henschler et al., 1992, 

Flaskos et al., 1998, Sachana et al., 2001, Sachana et al., 2003, Sachana et al., 

2005, Hargreaves et al., 2006, Sidiropoulou et al., 2009a, Flaskos et al., 2011, 

Sachana et al., 2014). N2a cells were derived from the mouse C1300 tumor 

(neuroblastoma) and can differentiate into a neuron-like morphology that 

expresses AChE and many neuronal markers, including adrenergic and 

cholinergic markers (Klebe and Ruddle, 1969). In mitotic conditions, N2a cells 

grow as round neuroblasts. N2a cells are differentiated by removal of serum and 

the addition of dibutyryl cyclic 3', 5'-monophosphate (dbcAMP) in serum free 

medium. Serum withdrawal results in non-dividing differentiating cells that 

extend neurites with morphological characteristics of neurons, while dbcAMP 

promotes N2a cell differentiation by mimicking the action of cAMP. Once N2a 

cells are differentiated, they undergo several morphological changes. The most 

prominent change involves the formation of axon-like processes and dendrites, 

which is accompanied by the increased perikaryon and nucleus size (Haffke and 

Seeds, 1975). The neurites produced by N2a cells are rich in cytoskeletal 

proteins such as NFs and MTs (Schubert et al., 1969).  

 

One drawback of the N2a model is that axons and dendrites generated from this 

cell line may not replicate some of the complex characteristics of neurites 

observed in original primary neurons (Radio and Mundy, 2008). However, the 

ability of N2a cells to express NFs, MTs and AChE together with their 

commercial availability makes them an attractive model for screening CPF 

neurotoxicity on neurite outgrowth in this study.  
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1.6.2 Human neural stem cells (ReNcell CX) 

ReNcell CX is human neural progenitor cell line, which was isolated by the 

ReNeuron Group (Guildford, Surrey, UK). The cell line is available 

commercially (Merck Millipore) and has the ability for self-renewal and to 

produce a co-culture of neurons and glial cell types including oligodendrocytes 

and astrocytes (Seaberg and van der Kooy, 2003). ReNcell CX cells were 

derived from the cortical region of a 14-week gestation human foetal brain, 

which has a normal male karyotype. This cell line has been immortalized by 

retroviral transduction of the c-myc oncogene to produce unlimited clonal human 

neural stem cells (Donato et al., 2007, Kornblum, 2007). ReNcell CX cell 

morphology is that of typically round neurospheres in their undifferentiated state 

when grown in uncoated tissue culture flasks. However, when cultured as a 

monolayer on laminin coated surfaces in the presence of growth factors, the cell 

line maintains its normal diploid karyotype even after prolonged passage (Jakel 

et al., 2004). After removing mitogenic growth factors from the culture medium, 

neural progenitor stem cells migrate from the neurospheres onto a laminin coated 

surface, extracellular matrix (ECM) coating protein, and can be differentiated 

into a mixed population of three main cell types of the nervous system, including 

neurons, oligodendrocytes and astrocytes (Kornblum, 2007). These differentiated 

cells are identical to those detected in the human nervous system. In addition, 

unlike the N2a cell line, the axons and dendrites elaborated from differentiated 

neuronal stem cells have the same complexity of original neurons (Bal-Price et 

al., 2008, Radio and Mundy, 2008). Therefore, using the neural progenitor 

ReNcell CX cell line in the current thesis has enabled us to investigate the effects 

of CPF and its metabolite on cell differentiation in a more human relevant 

model. 
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1.7 Aims of the thesis 

There is considerable evidence that CPF insecticide and its oxon form CPO can 

inhibit the outgrowth of extensions and disrupt the levels of cytoskeletal proteins 

in differentiating neural cell lines. It is, however, known that the toxicity may 

depend on the developmental stage at which exposure occurs. The majority of 

previous in vitro studies have involved the administration of OPs at the same 

point of induction of cell differentiation. However, little was known about the 

effects of OPs on cells that have been committed to differentiation and have 

already elaborated neurites. Such a study was performed in the current work in 

order to make an original contribution to knowledge, as the toxic effects of these 

OPs were to be examined at developmental points other than those reported in 

previous work. 

 

Earlier studies by research colleagues had shown that exposing differentiating 

mouse N2a neuroblastoma cells to a sub-lethal concentration of CPF inhibited 

the outgrowth of axons (Sachana et al., 2001). By replicating the same culture 

conditions of the previous study, the aims of this thesis were to: 

 

1. Investigate the effects of a neurite inhibitory concentration of CPF and 

CPO on cell viability, AChE and neurite retraction in pre-differentiated 

N2a cells over a range of time points.  

2. Relate the effects on neurite maintenance to the levels of expression and 

activities of cytoskeletal and associated regulatory proteins in pre-

differentiated N2a cells using quantitative Western blotting. 

3. Evaluate the sensitivity of different parameters of neurite outgrowth (e.g. 

average cell number, average neurite number, average and maximum 

neurite length, mean processes and branches per cell) and the underlying 

effects on cytoskeletal proteins following exposure to range 

concentrations of both OPs by high content analysis and cell ELISA. 

4. Apply the same high throughput approaches to test the effects of both 

compounds in a human neural progenitor stem cell model using human 

ReNcell CX stem cells that form a co-culture of neuronal and glial cells.
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2 Materials and methods 

2.1 Materials 

2.1.1 Reagents 

All reagents used in the laboratory were of the highest grade and purchased from 

Sigma-Aldrich Chemical Company, Poole, UK, unless otherwise specified. They 

are listed in tables 2.1 and 2.2. 

 
Table 2.1. List of cell culture reagents 

 

Reagents Code Supplier 

Dulbecco’s Modified Eagles Medium (DMEM) with 

4.5g/L glucose and 2mM L-glutamine 
BE12-614F 

Lonza, UK 
Penicillin/streptomycin  

(Penicillin 5,000 units/ml, Streptomycin 5,000 units/ml) 
DE17-603E 

Foetal bovine serum (FBS) South American origin FB-1001 Biosera 

3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium 

bromide (MTT) 
M2128 

Sigma-Aldrich 

N
6
,2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate 

sodium salt (dbcAMP) 
D0627 

Dimethylsulphoxide (DMSO) sterile-filtered hybridoma 

tested  
D2650 

Trypan blue solution 0.4% (w/v) T8154 

Laminin from Engelbreth-Holm-Swarm murine sarcoma 

basement membrane 
L2020 

L-glutamine   
 

Gibco, Life 

Technologies 

USA 
StemPro

® 
Accutase

® 
cell dissociation reagent A11105-01 
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StemPro
®
 Neural supplement A10508-01 

KnockOut™ DMEM/F-12 (1X) 12660-012 

Neurobasal
®
 -A medium, no L-glutamine, L-glutamic 

acid or aspartic acid 
10888-022 

Recombinant human EGF (10 µg) 1380077C 

Recombinant human FGFb (10 µg) 1424760B 

 

 
Table 2.2. List of other reagents and materials. 

 

Reagents Code Supplier 

3MM chromatography paper CJF240090 
Fisher 

Scientific 

3,3',5,5'-Tetramethylbenzidine (TMB)  
T0440 

Sigma-Aldrich 

3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium 

bromide (MTT) 
M2128 

5, 5 Dithiobis 2-nitrobenzoic acid (DTNB) D8130 

5-Carboxy fluorescein diacetate N-succinimidyl ester 

(CFSE) fluorescent cell staining dye 
87444 

AccuGel 29:1 acrylamide  

(40% (w/v) acrylamide/bisacrylamide 29:1) 
EC852 Geneflow 

Acetone 121403/0031 
Fisher 

Scientific 

Acetylthiocholine iodide (ATCh) A5751 Sigma-Aldrich 

Amersham Protran 0.2 μm pore size nitrocellulose 

membrane 
10600001 

General 

Electric 

Ammonium persulphate (APS) A3678 

Sigma-Aldrich 

Bicinchoninic acid (BCA) 23223 

Blueye prestained protein ladder  

(Approx. 0.1-0.4 mg/ml of proteins in buffer (20 mM 
Tris-phosphate pH 7.5, 2% w/v SDS, 0.2 mM 

dithiothreitol, 3.6 M urea and 15% (v/v) glycerol) 

PM007-0500 GeneDirex 

Bovine serum albumin (BSA) A1302 Melford 

http://en.wikipedia.org/wiki/Fluorescent
http://en.wikipedia.org/wiki/Staining
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Bromophenol blue 18030 Fluka 

Copper (II) phthalocyanine C2284 Sigma-Aldrich 

Dimethylsulphoxide (DMSO) CHE1854 
Fisher 

Scientific 

Enhanced chemiluminescence reagent (ECL) ME157124 
Thermo 

Scientific 

Ethanol 101076H Fisher 

Scientific 

 Glacial acetic acid 200.580-7 

Glycerol 10% (v/v) 15892001C 
ACROS 

organics 

Hydrochloric acid H1000PB17 
Fisher 

Scientific 

Hydrogen peroxide (H2O2) H1009 

Sigma-Aldrich 

Iodoacetamide 1149 

Methanol M400/17 
Fisher 

Scientific 

β-Mercaptoethanol M3148 

Sigma-Aldrich 

Mineral oil EC2324558 

N,N,N,N-tetramethylethylene diamine (TEMED) EC503 
National 

diagnostic 

Paraformaldehyde 4% (w/v)   HT501128 

Sigma-Aldrich 

p-Nitrophenyl phosphate liquid substrate system SLBC2208V 

Protogel
® 

resolving buffer (4x) 

(1.5 M Tris-HCl buffer pH 8.8, 0.4% (w/v) SDS) 
EC892 

Geneflow 
Protogel

® 
stacking buffer (4x)   

(0.5 M Tris-HCl buffer pH 6.8, 0.4% (w/v) SDS) 
EC893 

Sodium acetate S2889 Sigma-Aldrich 

Sodium azide S2002 
Fisher 

Scientific 

Sodium chloride B22297 Sigma-Aldrich 

Sodium dodecyl sulphate (SDS) 18299 Melford 

Sodium hydroxide (NaOH) 1823 Sigma-Aldrich 

Sodium phosphate dibasic 94046 
Fisher 

Scientific 
Sodium phosphate monobasic 71505 
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Sulphuric acid (H2SO4) 339741 

Sigma-Aldrich 

Tris (hydroxymethyl) aminomethane C22561 

Triton X-100 T8787 

Tween 20 P1379 

Urea U6504 

VectaShield
®
 mounting medium for fluorescence 

containing 4',6-diamidino-2-phenylindole (DAPI) 
H1400 

Vector 

Laboratories 

Ltd 

 

2.1.2 Cell culture plastic-ware 

All sterile cell culture plastic ware were supplied by Scientific Laboratory 

Supplies (Nottingham, UK). Cryotube vials (Nunc brand products), were 

purchased from Merck Ltd. Leicester, UK. Disposable Haemocytometer C-Chip 

slides, were supplied by Labtech International Ltd, UK. Eight-well 15μ-slides for 

live cell analysis (IbiTreat), were purchased from Thistle Scientific, UK. Ninety 

six-well plates (NUNC-immuno plate), were purchased from Thermo Scientific, 

UK. 

 

2.1.3 Test compounds 

Chlorpyrifos and chlorpyrifos oxon (purity 97.6%) from Chem Service Inc. 

(West Chester, PA, USA), were supplied by Greyhound Chromatography 

(Birkenhead, UK). 

 

2.1.4 Cell lines 

2.1.4.1 Mouse N2a neuroblastoma cells 

Neuro 2A (N2a) is a neuroblastoma line derived from mouse neural crest. N2a is 

a well-established cell line and has widely been used to study neuronal 

differentiation, axonal outgrowth and cell signalling pathways (Ostrea et al., 

2002). It also has the ability to differentiate into neurons within a few days. It 
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was purchased from American Type Culture Collection (ATCC
® 

- product no. 

CCL-131™, Middlesex, UK). 

 

2.1.4.2 Human ReNcell CX  

ReNcell CX human neural progenitor cell line was derived from cortical brain 

tissue of a 14-week gestating human foetus following normal terminations and in 

accordance with nationally UK approved ethical and legal guidelines. It was 

purchased from Merck Millipore (MILLIPORE
®
 - catalogue no. SCC007, UK).  

 

 

2.2 Methods 

2.2.1 Mouse N2a neuroblastoma cells 

2.2.1.1 N2a cell maintenance 

Mouse N2a cells were grown and maintained as a monolayer in DMEM 

containing 4.5g/L glucose and 2 mM L-glutamine, and supplemented with 10% 

(v/v) FBS, penicillin (100 units/ml) and streptomycin (100 units/ml). Cells were 

incubated at 37°C in a humidified atmosphere of 95% air /5% CO2.  

 

Cells were passaged or sub-cultured when growth reached 70-80% confluence 

(i.e. every 3-5 days). On reaching 80% confluence, the cell cultures were either 

used to seed monolayers on cell culture plates for assays, T75 flasks for Western 

blot analysis or passaged to maintain the cell line.  

 

2.2.1.2 N2a cell restoration from liquid nitrogen storage 

When it was needed to perform experiments, a vial of frozen cells was removed 

from liquid nitrogen storage and thawed quickly by incubation in a 37
o
C water 

bath for 2 min. The outside of the vial was sterilised with 70% (v/v) ethanol. The 

contents were diluted with 1 ml of pre warmed fresh growth medium and then 

rapidly transferred into a Sterlin tube containing 9 ml of pre warmed fresh 

growth medium. The Sterlin tube was then centrifuged at 300 g for 5 min and the 



Materials and Methods                                                                        Chapter 2                                                    

50 

 

supernatant was decanted to remove any residual cryopreservation medium 

(DMEM containing 5% (v/v) DMSO as a cryopreservation agent). The resultant 

cell pellet was resuspended in 1 ml of pre warmed growth medium and mixed 

gently by slow pipetting up and down before being transferred into a T25 flask 

containing 10 ml of fresh growth medium. Cells were allowed to recover for 24 h 

at 37
o
C in a humidified atmosphere of 95% air/5% CO2, after which the medium 

was changed. They were then cultured until the growth reached 60-80% 

confluence. Upon reaching 80% confluence, cells were passaged and transferred 

into T75 flasks and cultured until ready for experimental use. 

 

2.2.1.3 N2a cell culture 

To passage the cell cultures, half of the growth medium was carefully poured off 

the flask into a waste beaker without disturbing the attached cell monolayer. 

Cells were mechanically removed from the flask surface using a sterile Pasteur 

pipette to detach the cells by aspirating growth medium and squirting it out on 

the monolayer surface of the cell culture flask. Cell suspensions were then 

transferred into Sterilin tubes and harvested by centrifugation at 300 g at room 

temperature for 5 min. The supernatant was carefully discarded and the resultant 

pellet was resuspended in 1 ml of growth medium by passing the cell suspension 

several times through a 1000 µl Gilson pipette to break up the pellet. Using a 

Pasteur pipette, three to four drops of cell suspension were placed in a T75 flask 

containing 40 ml of fresh growth medium. In the case of T25 flasks, one to two 

drops were transferred in 10 ml of growth medium. Cells were incubated at 37°C 

in a humidified atmosphere of 95% air/5% CO2 and kept until the monolayer 

became 80% confluent. Only cells that had not yet reached passage number 20 

were used in differentiation experiments because later passages are more 

susceptible to genetic drift. 
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2.2.2 Human neural ReNcell CX stem cells 

2.2.2.1 Preparation of coated cell culture ware 

All tissue culture flasks, plates or other plastic ware that were used to culture 

ReNcell CX cells were coated with laminin for 24 h before the day that cells 

needed to be seeded. Laminin is an ECM protein, which supports and enhances 

neural progenitor stem cell adhesion, proliferation, differentiation and neurite 

elongation (Flanagan et al., 2006). For coating, 1mg/ml laminin from 

Engelbreth-Holm-Swarm murine sarcoma basement membrane (Sigma–Aldrich) 

was thawed at room temperature before use. Laminin was diluted to 20 μg/ml 

final concentration in Neurobasal
®

 medium (Gibco) that contained no L-

glutamine, L-glutamic acid, or aspartic acid. Laminin solution was added to 

cover the surface of the required tissue culture vessel. A five ml volume of this 

solution was used to coat a T75 flask and 2 ml volume for a T25 flask. Coated 

flasks were incubated at 37°C in a 5% CO2 incubator for at least 4 h if these 

flasks were going to be used on the same day that cells needed to be passaged; 

otherwise, coated flasks were stored at 4°C for 24 h or until needed. Just before 

using a coated flask for culturing ReNcell CX cells, the laminin solution was 

aspirated and flasks rinsed once with sterile PBS. 

 

2.2.2.2 Preparation of ReNcell CX maintenance medium 

ReNcell CX cells were maintained in KnockOut™ DMEM: nutrient mixture F-

12 (DMEM/F-12) low osmolality medium without HEPES buffer. The medium 

(500 ml) was supplemented with recombinant human epidermal growth factor 

(EGF) (20 ng/ml; Gibco), basic fibroblast growth factor (FGFb) (20 ng/ml; 

Gibco), StemPro
® 

neural supplement (2% by volume; Gibco), L-glutamine (0.5 

mM), penicillin (100 units/ml) and streptomycin (100 units/ml). 

 

2.2.2.3 ReNcell CX cell restoration from liquid nitrogen storage 

Cells were thawed from the liquid nitrogen when a coated laminin flask was 

ready to be used. A vial of ReNcell CX cells was removed from the liquid 

nitrogen storage and incubated in a 37
o
C water bath for 1 or 2 min until it 
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completely thawed. The outside of the vial was wiped with 70% ethanol to 

sterilise and the cells were transferred into a Sterilin tube using a 2 ml sterile 

pipette. After the cells had been transferred into the tube, 9 ml of maintenance 

medium (pre warmed to 37
o
C) were immediately added drop by drop to avoid 

osmotic shock that may result in decreased cell viability. The cell suspension 

was gently mixed by slow pipetting up and down with 1000 µl Gilson pipette 

and centrifuged at 300 g for 5 min. Following centrifugation, the supernatant was 

decanted completely to remove any residual cryopreservation medium 

(KnockOut™ DMEM/F-12 medium containing 5% (v/v) DMSO), and the 

resultant pellet was resuspended in 1 ml of pre warmed maintenance medium. 

The cell suspension was then plated onto a laminin coated T75 flask containing 

10 ml of fresh maintenance medium. Cells were allowed to recover for 24 h in a 

humidified atmosphere of 95% air/5% CO2 until the cells were approximately 

80% confluent and the medium was changed every 48 h. Upon reaching 80% 

confluence, cells were passaged or cryopreserved for later use. 

 

2.2.2.4 Culturing of ReNcell CX cells 

ReNcell CX cells were passaged or subcultured by carefully removing the 

maintenance medium from the coated flask and rinsing the detached monolayers 

with pre warmed PBS. After that, the PBS was aspirated and 1-2 ml of accutase 

(Gibco) were applied according to the size of flask (1 ml for T25 and 2 ml for 

T75 flasks) to dissociate the cells. Accutase was pre warmed at room 

temperature before use. Flasks were then immediately incubated for 2 min in a 

37°C incubator and the flask was gently tapped as cell detachment was 

monitored using a microscope. Without removing the accutase, fresh 

KnockOut™ DMEM/F-12 maintenance medium was added in the proportion of 

twice the volume of accutase to stop its activity, and the cell suspension was 

transferred into a Sterilin tube and centrifuged for 5 min at 300 × g at room 

temperature. The resultant pellet was resuspended in 1 ml of maintenance 

medium by pipetting gently back and forth to break up the pellet. Using a Pasteur 

pipette, three to four drops of cell suspension were placed in a laminin coated 

T25 flask containing 5 ml of maintenance medium. Cells were incubated at 37°C 

in a humidified atmosphere of 95% air/5% CO2 and monitored until they reached 
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70-80% confluence. For all experiments conducted in this study, ReNcell CX 

cells lower than passage 15 were used to reduce the possibility of changing cell 

features. 

 

2.2.3 Seeding and counting of cells for experiments 

To seed the cells, cell monolayers were grown to reach 60-80% confluence, then 

detached and harvested by centrifugation at 300 g for 5 min as described in 

sections 2.2.1.3 and 2.2.2.4. Cell pellets were resuspended in 1 ml of growth 

medium. Cell dilutions were then prepared and cells were counted either 

manually using a haemocytometer, or automatically using an automated cell 

counter. 

 

2.2.3.1 Manual cell counting 

Cell counting using a haemocytometer was firstly developed for the quantitation 

of blood cells but then became a common and effective tool for counting a 

variety of other cell types. However, it can be a time consuming operation and 

may result in poor counting due to low sample concentration or device misuse. 

Manual cell counting was used initially for N2a cells only. To seed the cells and 

count them manually, a 1 in 20 dilution of N2a cell suspension was prepared by 

mixing 10 μl of N2a cell suspension with 190 μl of fresh growth medium in an 

Eppendorf tube. A volume of 10 μl of cell dilution was loaded into the chamber 

of a disposable haemocytometer (Labtech International Ltd, UK) (0.1 mm depth 

under the coverslip) where cells in five squares (four corners and one centre) of 1 

mm
2
 each were counted at 100× magnification. Since each square is 1×1 mm and 

the depth is 0.1 mm, the volume correction factor for the haemocytometer is 10
4
. 

The average cell number per ml was calculated according to the following 

calculations: 

Cells/ml = average count per square × dilution factor × 10
4
 

Total cells = cells/ml × total original volume of cell suspension from which the 

sample was taken. 
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N2a cells were then seeded in new flasks/plates to yield a cell density of 50,000 

cells/ml medium and allowed to recover before treatments for 24 h at 37
o
C in a 

humidified atmosphere of 95% air/ 5% CO2 (Table 2.3). 

 

2.2.3.2 Automated cell counting 

Over recent years, automated cell counting has become the robust alternative 

process to manual haemocytometer cell counting as it can provide a total cell 

count in a fraction of the time. In addition to the rapid performance, automated 

cell counting produces an accurate, reproducible result and assesses cell viability 

in a single step. A TC20 automated cell counter (BioRad, USA) was used in this 

study. The device utilised already prepared TC20 Trypan blue dye, which was 

composed of 0.4% Trypan blue (w/v) in 0.81% (w/v) sodium chloride and 0.06% 

(w/v) potassium phosphate dibasic solution. Trypan blue is a vital stain that 

differentiates between live and dead cells. The principle of this dye is based on 

the blue acid dye chromophores which react and are taken up by the internal 

region of dead (non-viable) cells through a damaged membrane, whereas live 

(viable) cells do not take up this dye. 

 

For this, 10 μl of cell suspension were added to10 μl of Trypan blue solution in a 

test tube. The tube was thoroughly mixed by pipetting and left to stand for 4 min 

to allow for cells to be exposed to the stain. A volume of 10 μl of this mixture 

was then loaded by pipette tip into a chamber of the counting slide. The slide 

was inserted into the slide slot of the TC20 cell counter and cell counting was 

automatically initiated as soon as the cell counter detected the presence of the 

slide and Trypan blue dye. When Trypan blue was detected in a sample, the 

result was adjusted to account for the 1 to 1 cell dilution. For example, a 1 × 10
6 

cells/ml mixed 1 to 1 with Trypan blue was at a concentration of 5 × 10
5 
cells/ml. 

The TC20 takes the dilution into account and multiplies results by 2. The result 

was reported on the monitor as the estimated concentration of the undiluted 

sample: 1 × 10
6 

cells/ml. The percentage of live cells
 
also appears on the count 

screen. Once the cell counter completed the cell count, the slide was removed 

from the slide slot and screen returned to home mode ready for another slide. 

 

http://www.bio-rad.com/evportal/destination/solutions?catID=LUSOMAOZR
http://www.bio-rad.com/evportal/destination/solutions?catID=LUSOMAOZR
http://www.bio-rad.com/evportal/destination/solutions?catID=LUSOMAOZR
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Cell counts per ml were used to determine the volume necessary to seed the cells 

at a required cell density in growth medium. Cell density of 50,000 cells/ml was 

used to plate out mouse N2a cells and 100,000 cells/ml was used for ReNcell CX 

cells (Table 2.3). Flasks were then incubated at 37
o
C in a humidified atmosphere 

of 95% air/5% CO2 for 24 h to allow for cell recovery. 

 

 
Table 2.3. Loading cell density for experiments with N2a and ReNcell CX cells. 

 

Type of cell 

culture ware 

N2a ReNcell CX 

Loading 

volume 

Total cells 

number 

Loading 

volume 

Total cells 

number 

T75 flask 40 ml/flask 2,000,000 10 ml/flask 1,000,000 

T25 flask 10 ml/flask 500,000 5 ml/flask 500,000 

8 well slide 300 µl/well 15,000 200 µl/well 20,000 

24 well plate 500 µl/well 25,000 300 µl/well 30,000 

96 well plate 200 µl/well 10,000 200 µl/well 20,000 

 

 

 

2.2.4 Induction of cell differentiation 

Prior to the induction of N2a or ReNcell CX cell differentiation, mitotic cell 

monolayers were detached at 70-80% confluence and harvested by centrifugation 

as previously described in sections 2.2.1.3 and 2.2.2.4. Cell pellets were 

resuspended in 1 ml of DMEM (N2a) or KnockOut™ DMEM/F-12 medium 

(ReNcell CX) and cell density was plated out at 50,000 cell/ml for N2a or 

100,000 cells/ml for ReNcell CX according to the required size of flask. Each 

cell type was maintained at 37
o
C in a humidified atmosphere of 95% air/5% CO2 

for 24 h to allow for cell recovery. The growth medium was then carefully 

removed by aspiration from the edge of the culture-ware to avoid disturbing the 

attached cells. ReNcell CX differentiation was initiated by replacing the 

maintenance culture medium with mitogen free medium. The Removal of growth 

factors EGF and FGFb from the maintenance culture medium induces ReNcell 

CX cells differentiate by stopping cell proliferation. N2a cell differentiation was 

induced by replacing growth medium with serum free medium (i.e. growth 

medium minus FBS) containing 0.3 mM dibutyryl cyclic adenosine 
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monophosphate (dbcAMP). The addition of dbcAMP to serum free medium 

induces N2a cell differentiation by decreasing cell division and increasing 

intracellular cAMP, which stimulate the development of axon-like neurites 

(Prashad and Rosenberg, 1978). 

 

For this, dbcAMP was dissolved in sterile-filtered serum free medium from a 

stock solution 30 mM. The final concentration of 0.3 mM dbcAMP was given by 

adding 100 μl of stock solution to 10 ml of serum free medium. Both cell lines 

were induced to differentiate at 37
o
C in an atmosphere of 5% CO2, 95% air for 

20 h before being treated with or without the test OP compounds. 

 

 

2.2.5 Exposure of cells to organophosphate compounds 

CPF and CPO were prepared as 200-fold concentrated stock solutions in DMSO 

and added to the serum free medium immediately before use. Controls cells were 

treated with serum free medium containing the same concentration of DMSO 

0.5% (v/v). Both compounds were dissolved in DMSO as it provides rapid and 

complete absorption. 

 

Following induction of N2a cell differentiation, serum free medium was 

removed and replaced with an equal volume of fresh serum free medium 

containing 0.3 mM dbcAMP and various concentrations of OP compounds (1, 3 

and 10 μM final concentrations). Control cells were incubated with the same 

amount of serum free medium containing 0.3 mM dbcAMP and an appropriate 

volume of DMSO (final concentration 0.5% v/v). Cells were returned to the CO2 

incubator and exposed to the toxins for a further 2, 4 or 8 h, after which cell 

pellets or lysates were prepared according to the required assay. 

 

Similarly, ReNcell CX cells were induced to differentiate by withdrawing the 

growth factors EGF and FGFb from the maintenance medium and again various 

concentrations of test OP compounds were added to the medium just prior to its 

addition to the cells. Plates were then incubated at 37
o
C incubator for the 

required exposure time. 
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The 3 μM final concentration of both OP compounds was chosen for initial work 

on the basis that it was a sub-cytotoxic axon outgrowth inhibitory level towards 

differentiating N2a cells, as determined by a previous group study (Sachana et 

al., 2001). 

 

2.2.6 Cryopreservation of cell lines 

In order to store and preserve the cells for long term use, cells were stored in 

liquid nitrogen cryovessel until needed. Briefly, the contents of a T25 flask of 

confluent cells were detached, harvested and resuspended in 1 ml of freezing 

medium (DMEM for N2a or knockout DMEM/F-12 medium for ReNcell CX, 

supplemented with 5% (v/v) DMSO). This cell suspension was placed into 1 ml 

cryo vials and lagged in tissue paper before being incubated overnight at -80
o
C 

for a minimum of 8 h. The cryo vials were then transferred to a liquid nitrogen 

container (-196
o
C) and stored until needed.  

 

The two step freezing method is carried out instead of immersing the warm cell 

sample directly into liquid nitrogen to reduce the effects of forming a gaseous 

nitrogen layer (Leidenfrost effects), which limits heat transfer (Gottfried et al., 

1966). 

 

2.2.7 Cell viability assessment 

Measurement of cell viability is considered the cornerstone for the most in vitro 

studies of cellular response to toxic agents. The effects of CPF and CPO on the 

viability of N2a cells were determined by the MTT (3-(4,5-dimethylthiazol-2-

yl)-2,5 diphenyltetrazolium bromide) reduction assay, which was first described 

by Mosmann (1983). MTT is a colorimetric assay based on the ability of cellular 

dehydrogenase enzymes (mainly succinate dehydrogenase) from viable cells to 

cleave the tetrazolium rings of the pale yellow MTT and form purple formazan 

crystals. These crystals are largely impermeable to the cell membrane resulting 

in their accumulation within healthy cells. Solubilisation of the crystals by the 

addition of DMSO results in their liberation, which can be detected using a 

spectrophotometer. The ability of the cells to reduce MTT provides an indication 
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of metabolic activity, as the quantified level of the formazan product is directly 

proportional to the number of surviving cells. This in turn may be interpreted as 

a measure of cell viability. 

 

The MTT approach is safe, sensitive, easy to perform and provides rapid 

measurement. Moreover, its reagent yields stable colour and low background 

absorbance value in the absence of cells. Additionally, there is a linear 

relationship between MTT absorbance and cell number, which allow for an 

accurate quantification of changes in cell growth. Therefore, it is widely 

accepted among toxicity studies and considered as a reliable tool to determine 

cell viability (Mosmann, 1983). 

 

2.2.7.1 Preparation of buffers and reagents 

2.2.7.1.1  Phosphate buffered saline (PBS)  

The buffer was prepared in a total volume of 1 L containing 137 mM NaCl, 2.7 

mM KCl, 8.1 mM Na2HPO4, 2 mM KH2PO4 at pH 7.4. 

 

2.2.7.1.2  (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) 

MTT  

This was prepared by dissolving 5 mg of MTT per ml of PBS. Aliquots (1 ml) 

were stored frozen at -20 ºC until required. 

 

2.2.7.2 Assay protocol 

Cells were plated out at the required density in Corning 24 well plates and grown 

for 24 h in growth medium prior to the induction of cell differentiation. 

Differentiating cells were treated without or with different concentrations of CPF 

or CPO (1, 3, 10 μM) for 2, 4 or 8 h as described in sections 2.2.1.3, 2.2.3, 2.2.4 

and 2.2.5. Thirty minutes prior to the end of the experimental incubation time, a 

volume of 50 μl MTT was added to each well and cells were incubated at 37
o
C. 

After 30 min, serum free medium was then aspirated from the wells and 500 μl 
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of DMSO were added to each well. Treatment of the cell monolayers with 

DMSO results in the liberation of blue, water-insoluble formazan crystals. The 

plate was then agitated to dissolve this product completely. A total of 200 μl of 

each of the resulting solutions was transferred into a 96-well plate and the 

absorbance was read at a wavelength of 570 nm using a microplate reader 

(ASYS Expert 96, Biochrom, UK). The absorbance then expressed as a 

percentage of MTT reduction for the corresponding control. 

 

 

2.2.8 Measurement of N2a cell differentiation 

Differentiation of N2a cells was assessed using the 5-carboxyfluorescein 

diacetate N-succinimidyl ester (CFSE) fluorescent cell staining dye. The cell 

labelling marker has been used in a wide variety of different experimental 

applications, such as monitoring lymphocytes and bacterial proliferation, cell 

migration and tracking fibroblast division (Hoefel et al., 2003, Li et al., 2003). In 

this study, CFSE labelling was used as a new research tool for the detection of 

the neurotoxic effects of CPF and CPO on N2a cell differentiation. 

 

Visualisation of cells with fluorescent esterase substrate provides an alternative 

to Coomassie Brilliant Blue (CBB) staining, which has long been utilised in 

determination of cell differentiation (Flaskos et al., 1998, Flaskos et al., 1999, 

Sachana et al., 2001, Sachana et al., 2003, Sachana et al., 2005, Hargreaves et al., 

2006, Flaskos et al., 2007). The non-fluorescent molecules of the succinimidyl 

ester pass into viable cells through cell membranes and become converted by 

intracellular non-specific esterases into fluorescent products. This fluorescein 

derived from CFSE covalently binds to cellular components and retained inside 

the cells for several weeks. Once the cells were labelled with this dye, 

differentiated cells were monitored for the presence of neurites using 

epifluorescence or confocal microscopy. Not only is CFSE highly specific, stable 

and more sensitive than CBB, it can also provide a useful marker for visual 

identification of both fixed and living cells (Garton and Schoenwolf, 1996). 

Furthermore, CFSE dye can be used for both in vitro and in vivo experiments 

(Lyons, 1999). The only drawback of CFSE is that it can be toxic to cells at high 

http://en.wikipedia.org/wiki/Fluorescent
http://en.wikipedia.org/wiki/Staining
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concentration. However, this problem can be eliminated by determining the 

optimum loading time and concentration of the dye, which does not affect the 

normal functions of cells and yields a good fluorescent stain (Parish, 1999).    

 

2.2.8.1 Preparation of reagents 

2.2.8.1.1 5-carboxyfluorescein diacetate N-succinimidyl ester (CFSE) 

This was prepared by dissolving 50 mM CFSE stock into 0.5% (v/v) DMSO to 

give a total volume of 1 ml. 

 

2.2.8.2 Determination of optimum concentration of CFSE 

Working stock concentrations of CFSE were prepared in 0.5% (v/v) DMSO (20 

mM, 2 mM, 0.2 mM, 0.02 mM and 0.002 mM). After N2a cells were harvested 

and resuspended in 1ml of growth medium, they were loaded in a Corning 24 

well plate. The plate was incubated at 37C for 24 h and induced to differentiate 

for 20 h as previously described in section 2.2.4. The different stock 

concentrations of CFSE in 0.5% (v/v) DMSO were applied directly to each well 

at 1 to 200 dilution (5 μl/ml) to give final concentrations of (100 µM, 10 µM, 1 

µM, 100 nM, 10 nM) and re-incubated for 10 min at 37C.  Medium including 

the dye was then removed and the cell monolayer rinsed with fresh pre warmed 

serum free medium. To check the health status of differentiated cells following 

exposure to the dye, a MTT reduction assay was performed. The optimal 

concentration of CFSE was chosen on the basis that this level was not considered 

to be cytotoxic towards differentiated cells, as determined by MTT reduction 

assay (see section 2.2.7). 

 

2.2.8.3 Staining of cells with CFSE dye 

N2a cells were seeded into an 8-well cell culture slide at an original density of 

50,000 cells/ml and induced to differentiate for 20 h as indicated in sections 

2.2.1.3, 2.2.3 and 2.2.4. They were then incubated for 10 min with the optimum 

concentration of CFSE dye (10 μM) in pre warmed sterile PBS, before being 

incubated for 2, 4 or 8 h in the presence and absence of 1, 3 or 10 μM CPF or 
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CPO at 37°C. After the required length of toxin exposure, cells were fixed for 15 

min at room temperature in pre warmed 4% (w/v) paraformaldehyde followed by 

three 10-min washes in PBS. Cells were then mounted under glass cover slips 

using VectaShield mounting medium for fluorescence and viewed using an 

Olympus DP71 epifluorescence microscope. CFSE was excited with 488 nm 

fluorescein isothiocyanate (FITC) laser-line and emitted in green. From each 

well, five random fields were selected giving a total cell count of 200-300 

cells/well. In each well, the total number of axon-like processes, which are 

defined as extensions greater than two cell body diameters in length with an 

extension foot (Keilbaugh et al., 1991), were recorded and the mean number of 

axon-like processes per 100 cells was calculated (Flaskos et al., 1998). 

 

 

2.2.9 Acetylcholinesterase activity assay 

Measurement of AChE activity is routinely evaluated in cultured cell lines that 

are used to model the mechanisms associated with OP neurotoxicity in in vitro 

studies (Flaskos et al., 1994). Inhibition of the enzymatic activity of AChE by 

OPs is one of the proposed mechanisms underlying the effects on neurite 

outgrowth. The screening assay is extremely sensitive and suitable for the 

detection of the enzymatic activity of AChE in a small number of cells (Ellman 

et al., 1961). The activity of AChE enzyme in cells exposed to OP compounds 

was measured in a spectrophotometric assay developed by Ellman and 

colleagues in (1961). The method is based on the production of thiocholine by 

the action of AChE on acetylthiocholine, which forms a yellow coloured product 

with 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB). This colour intensity can be 

measured at 412 nm and it is proportional to the enzyme activity in the sample. 

 

Acetylthiocholine      AChE           thiocholine + acetic acid 

Thiocholine   +DTNB          yellow product 
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2.2.9.1 Preparation of reagents 

2.2.9.1.1 Acetylthiocholine iodide (ATCh) 

The substrate was prepared in a total volume of 20 ml containing 1.25mM ATCh 

and 200mM sodium phosphate buffer at pH 7.4 and kept on ice until required. 

 

2.2.9.1.2 5,5-dithiobis (2-nitrobenzoic acid) (DTNB)  

This reagent was freshly prepared in a total volume of 20 ml containing 1.25 mM 

DNTB and 200 mM sodium phosphate buffer at pH 7.4 and kept on ice until 

required. 

 

2.2.9.1.3 Sodium phosphate buffer  

The buffer was prepared in a total volume of 200 ml containing 200 mM sodium 

phosphate (monobasic) and 200 mM sodium phosphate (dibasic) at pH7.4. 

 

2.2.9.2 Assay protocol 

Cells were plated out at the required density in T75 or T25 culture flasks and 

cultured for 24 h prior to the induction of cell differentiation. Differentiating 

cells were treated with different concentrations of CPF or CPO (1, 3, 10 μM) for 

the required length of time as described in sections 2.2.1.3, 2.2.3, 2.2.4 and 2.2.5. 

Harvested cells were then, resuspended in 1 ml of ice cold PBS at 4°C and 

transferred into a micro centrifuge tube. Cells were micro-centrifuged at 10,000 

g for 3 min to remove traces of culture medium. PBS was then carefully removed 

from the micro centrifuge tube and cell pellets were resuspended in 1 ml of ice 

cold 200 mM sodium phosphate buffer (pH 7.4) containing 0.1% (v/v) Triton 

X100 at 4°C.  

 

A volume of 100 μl of the cell lysate was transferred into a 96-well plate in 4 

replicates. Then, 100 μl of a 1:1 mixture containing ATCh substrate and the 

colour indicator DTNB were added to each well. The activity of AChE in N2a 

cells was determined in each sample. Absorbance was immediately measured at 
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412 nm and recorded at 1 minute intervals for a total of 10 min at 25°C using a 

microplate reader (ASYS Expert 96, Biochrom, UK). The absorbance in blank 

wells (with the assay buffer only) was used as a control, and subtracted from the 

values for those wells with the AChE reactions. As the absorbance background 

was increasing with time, the absorbance intensity value of the blank wells was 

subtracted for each data point. 

 

The amount of protein was determined in the remaining cell extract by the 

bicinchoninic acid (BCA) assay as described in section 2.2.11. BSA protein 

standards were prepared in a range of 0-2 mg/ml in the same assay buffer 

(sodium phosphate buffer) as that used to lyse the cell pellets (Table 2.5). AChE 

data were plotted as absorbance at 412 nm vs. time in minutes. Specific activity 

of AChE (Absorbance change/min/mg protein) was expressed as a percentage of 

the corresponding control value ± SEM. 

 

 

2.2.10  Phosphatase assay 

The activity of alkaline phosphatase (ALP) was detected using para-Nitrophenyl 

Phosphate (pNPP) liquid substrate system (Sigma). The assay principle utilises 

pNPP that turns into a yellow coloured product (maximal absorbance at 405 nm) 

when hydrolysed by ALP. The rate of colour change is directly proportional to 

the enzyme activity. 

 

p-nitrophenyl phosphate (pNPP)    phosphatase     p -nitrophenol + phosphate 

 

N2a cells were seeded and induced to differentiate in the presence and absence 

of OPs in T75 culture flasks for 2, 4 or 8 h as described in sections 2.2.1.3, 2.2.3 

and 2.2.4. Cells were harvested by centrifugation, resuspended in 1 ml ice-cold 

PBS (pH 7.4) and transferred into micro centrifuge tubes. All tubes were then 

centrifuged at 10,000 g for 3 min. The PBS was then removed and cell pellets 

were kept on ice and resuspended in 300 μl of ice cold TBS containing 0.5% 

(v/v) Triton X100. Cell pellets were broken down by pipetting and 50 μl of each 

lysate were transferred into a 96-well microtitre plate in 4 replicates. The 
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reaction was started when 100 μl of pNPP liquid substrate system were added 

into each well. The absorbance was then recorded at regular intervals for 30 min 

at 405 nm at 25°C using a microtitre plate reader (ASYS Expert 96, Biochrom, 

UK). Protein was estimated in the retained 100 μl of cell lysate by BCA assay, 

and specific activity (Absorbance change/min/mg protein) was expressed as a 

percentage of the corresponding control value ± SEM. 

 

 

2.2.11 Protein determination assay 

Total amount of protein in samples was determined using a modified 

bicinchoninic acid (BCA) protein assay kit from Sigma-Aldrich. The assay is 

similar to the method of Lowry with minor modifications (Lowry et al., 1951), 

using bovine serum albumin (BSA) as standard . The principle of the BCA assay 

relies on the formation of a Cu
2+ 

-protein complex under alkaline conditions, 

followed by reduction of the Cu
2+ 

ions from cupric sulphate to Cu
+ 

by the peptide 

bonds in a protein. The molecules of BCA then bind with Cu
+ 

forming a purple-

blue product, which can be measured at 570 nm by spectrophotometry. The 

absorbance is proportional to the amount of protein present in the sample.  

 

Using a BCA assay kit from Sigma-Aldrich, the BCA working reagent was 

prepared by mixing 50 parts of BCA reagent A (1% (w/v) bicinchoninic acid 

sodium salt, 2% (w/v) sodium carbonate, 0.16% (w/v) sodium tartrate and 0.95% 

(w/v) sodium bicarbonate in 0.1 M sodium hydroxide at pH 11.5) with 1 part of 

reagent B (4% (w/v) copper (II) sulphate pentahydrate). A light green solution 

was obtained. The amount of reagents needed was dependent on the number of 

used wells as indicated in (Table 2.4). 

 

Table 2.4. BCA working reagent preparation. 

 

Number of wells to be used in 

a 96-well plate assay 

Amount of reagent A 

(ml) 

Amount of reagent B 

(μl) 

40 8 160 

80 16 320 

96 19 380 
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To produce a standard curve, serial dilutions of BCA standards ranging from 0 to 

2 mg/ml were prepared from a 2 mg/ml BSA stock solution in the same buffer 

that was used in preparing the cell lysates. The serial dilutions of BCA were 

prepared in 2 ml micro centrifuge tube as indicated in Table 2.5, and vortex 

mixed. The assay was performed in a 96-well plate, where 25 μl of standards or 

protein sample were mixed with 200 μl of BCA working reagent and incubated 

for 30 min at 37°C in an LEEC incubator (LSC 2933). Absorbance was then read 

at 570 nm and protein concentration of each sample was determined from the 

average of triplicates using the linear correlation obtained from the BSA standard 

curve. 

 
Table 2.5. Preparation of BSA protein standards for protein determination. 

 

Volume of 2 mg/ml 

BSA (μl) 

Volume of assay buffer 

(μl) 

Final concentration of 

BSA (mg/ml) 

0 1000 0 

200 800 0.4 

400 600 0.8 

600 400 1.2 

800 200 1.6 

1000 0 2 

 

 

 

2.2.12  One dimensional polyacrylamide gel electrophoresis (SDS-

PAGE) and Western blotting 

2.2.12.1  Preparation of buffers and reagents 

2.2.12.1.1  ×4 Laemmli sample buffer 

The buffer was prepared in a total volume of 10.2 ml containing 40% (v/v) 

glycerol, 8% (w/v) SDS, 20% (v/v) β-mercaptoethanol, 0.01% (w/v) 

Bromophenol blue and 0.1 M Tris HCl, at pH 6.8. 
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2.2.12.1.2  10% (w/v) Ammonium persulphate (APS) 

This was prepared by dissolving 5 mg of APS into 50 μl of dH2O. 

 

2.2.12.1.3  Running buffer 

The buffer was prepared in a total volume of 1 L containing 25.6 mM Tris-base, 

192 mM glycine and 0.1% (w/v) SDS at pH 8.3. 

 

2.2.12.1.4  Transfer buffer 

The buffer was prepared in a total volume of 1 L containing 48 mM Tris-base, 

39 mM glycine, 0.037% (w/v) SDS and 20% (v/v) methanol. 

 

2.2.12.1.5  Tris-buffered saline (TBS)  

The buffer was prepared in a total volume of 1 L containing 10 mM Tris and 140 

mM NaCl at pH 7.4. 

 

2.2.12.1.6  Bovine serum albumin (BSA)  

The blocking buffer was prepared in TBS containing 3% (w/v) BSA and 0.01% 

(w/v) sodium azide. 

 

 

2.2.12.2  Preparation of N2a cell lysates for SDS-PAGE 

N2a cells were plated out at a density of 50,000 cells/ml in T75 flasks (2 million 

cells/T75 flask) and differentiated for 20 h before being treated with OP 

compounds for 2, 4 or 8 h as described in sections 2.2.1.3, 2.2.3 and 2.2.4. After 

the required period of toxin exposure, serum free medium was carefully removed 

from the flasks and cell monolayers were rinsed gently with pre warmed PBS. 

Intact cell monolayers were then solubilised by boiling in 2 ml of 0.5% (w/v) 

sodium dodecyl sulphate (SDS) in 18.0 megohm-cm nanopure water 

(Barnstead™ Nanopure® Diamond™, Life science, UK). Lysates were detached 

mechanically by cell scraper and transferred to micro centrifuge tubes, boiled for 

5 min and then allowed to cool to room temperature for 10-15 min.  



Materials and Methods                                                                        Chapter 2                                                    

67 

 

 

DNA was then extracted from each lysate by placing 500 μl of cell lysate into a 

spin column (Dutscher Scientific, catalogue no. 789068) and centrifuging for 

few seconds at 10,000 g at room temperature. After centrifugation, the filter with 

the captured DNA was carefully removed and discarded. The supernatant from 

the lower chamber was placed into a clean micro centrifuge tube labelled as 

protein lysate sample minus DNA. This step was repeated few times until the 

required amount of sample was obtained. The amount of protein presented in 

each sample was then estimated by BCA assay.  

 

When the protein concentration of cell lysates was very low, the sample was 

precipitated by ice-cold acetone. In brief, 9 parts of ice cold acetone were added 

to 1 part of protein sample in a micro centrifuge tube, vortex mixed and 

incubated at −20 °C overnight. The tubes were then centrifuged at maximum 

speed of 10,000 g for 20 min at 4°C to pellet the precipitated protein. The 

acetone was then carefully decanted from the tube and discarded properly in 

non-chlorinated waste bottles, and the remaining protein pellets were left to air-

dry at room temperature for 30 min. After complete acetone evaporation, pellets 

were resuspended with 100 μl of 0.5% (w/v) SDS in TBS and mixed thoroughly 

by a 100µl Gilson pipette to dissolve the protein. BCA assay was performed 

again to estimate the amount of protein presented in each sample. Once the 

protein concentration had been determined, samples were prepared for SDS 

polyacrylamide gel electrophoresis (SDS-PAGE) by mixing 150 μl of each cell 

lysate with 50 μl of ×4 Laemmli sample buffer and boiled for 5 min prior to 

loading.  

 

2.2.12.3  SDS-PAGE assay 

The resultant proteins from cell lysates were subsequently separated according to 

their molecular weight using SDS-PAGE. 

 

2.2.12.3.1  Preparation of resolving gels 

Based on the molecular weight of the investigated proteins, a 10% (w/v) 
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acrylamide resolving gel was prepared in all the experiments (Table 2.6). The 

resolving gel is also called separating gel, which separates the proteins by size. A 

Bio-Rad mini-PROTEAN III™ electrophoresis chamber was used. Spacers, 

combs and two glass plates of 1.5 mm thickness were washed and wiped 

thoroughly with 70% (v/v) ethanol prior to assembly. One foam pad was placed 

in the casting apparatus and glass plates were assembled evenly into the plate 

holders. Once the plates were mounted on the casting stands, it was first filled 

with water and allowed to stand for 5 min to check for any leakage and the water 

was then removed before being replaced with the gel mixtures. The 10% (w/v) 

acrylamide resolving gel mixture was prepared according to the number of gels 

that were going to be used, as indicated in Table 2.6. Acrylamide polymerisation 

was then initiated by the addition of the volumes indicated of 10% (w/v) APS 

and TEMED, after which the mixture was swirled gently. Then 8 ml of resolving 

gel mixture were transferred into each cast to allow sufficient space for a 

stacking gel to be added later. Distilled water was carefully overlaid on the top 

layer of the freshly poured gel mixture to create a smooth interface and prevent 

any gel shrinkage. The gel mix was allowed to polymerise at room temperature 

for approximately 30 to 40 min. 

 
Table 2.6. Preparation of 10% (w/v) acrylamide resolving gel. 

 

10% (w/v) acrylamide resolving gel reagents Volume (for 2 gels) 

Accu gel 29:1 

40% (w/v) acrylamide:bisacrylamide (29:1) 
5.0 ml 

Protogel
® 

Resolving buffer  

(1.5 M Tris-HCl buffer pH 8.8, 0.4% (w/v) SDS) 
5.0 ml 

Distilled water 9.78 ml 

10% (w/v) Ammonium persulphate (APS) 200 μl 

TEMED 40 μl 

Total volume 20 ml 
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2.2.12.3.2  Preparation of stacking gel 

The required amount of 4% (w/v) polyacrylamide stacking gel was prepared and 

polymerised by the presence of 10% APS and TEMED as indicated in Table 2.7. 

The stacking gel solution was mixed gently and poured onto the polymerised 

resolving gel after removing the top layer of distilled water. The stacking gel is 

used because it allows proteins entry and accumulation at the interface of the 

resolving gel. After filling the chamber with stacking gel solution, a comb of the 

correct thickness was immediately inserted into the unpolymerised gel mixture to 

create the wells into which the samples would be loaded. The gel mixture was 

then allowed to polymerise for 30 min at room temperature. After this, the comb 

was carefully removed and wells were rinsed by flushing with running buffer 

using a 1000 µl Gilson pipette before loading the samples. 

 
Table 2.7. Preparation of 4% (w/v) acrylamide stacking gel. 

 

4% (w/v) acrylamide stacking gel reagents Volume (for 2 gels) 

Accu gel 29:1 

(40% (w/v) acrylamide:bisacrylamide (29:1)) 
1.0 ml 

Protogel
® 

stacking buffer 

(0.5 M Tris-HCl buffer pH 6.8, 0.4% (w/v) SDS) 
2.5 ml 

Distilled water 6.4 ml 

10% APS 100 μl 

TEMED 20 μl 

Total volume 10 ml 

 

 

2.2.12.3.3   Preparation of protein samples for loading 

Equal amounts of cell protein, as estimated by BCA assay, were loaded into the 

gel to ensure even protein loading.  A Blueye prestained protein ladder (2 μl) 

was loaded along with the protein samples to allow estimation of molecular 

weight. The Blueye prestained protein ladder (GeneDirex, UK) used in this study 

is a three colour protein standard with 12 prestained proteins, in which molecular 

weights range from 10 to 245 kDa). 
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2.2.12.3.4   Separation of proteins in cell lysates by gel electrophoresis 

To separate the proteins, gels were placed vertically in the electrophoresis 

chamber and filled with running buffer. Electrophoresis was run initially at 50 

volts using a Bio-Rad power pac 300 for 10 min. This voltage was used first to 

organise the samples in the stacking gel. After that, the voltage was increased to 

150 volts and electrophoresis allowed to continue until the dye front reached the 

base of the gel plates. As the dye reached the end of the gel, the voltage was 

switched off.  Gels were carefully removed to avoid damaging the glass plates or 

the gel. 

 

 

2.2.12.4   Western blotting 

On completion of the separation of proteins by SDS-PAGE, the gels were 

mechanically removed from the plates and the stacking gels were cut off. The 

remaining resolving gel, which contained the separated proteins, was 

electrophoretically transferred onto nitrocellulose membrane filters by wet 

blotting (Towbin et al., 1979).  

 

Briefly, gels to be blotted, nitrocellulose membranes (0.45 μM pore size) 

(Hybond C, Amersham) and 3 MM filter papers (Whatman® filter paper, from 

Sigma-Aldrich) were soaked in transfer buffer for 5 min. The presence of 

methanol in the transfer buffer is necessary to remove any non-protein-bound 

SDS and to enhance the adsorption of protein to the nitrocellulose membrane. 

Filter papers and membranes were carefully cut to the same size as the gel to 

avoid wastage. 

 

A transfer sandwich was then physically built on the side of the transfer cassette 

facing the anode (+) starting with a wet sponge and followed by three wetted 

filter papers, nitrocellulose membrane, the gel, three additional wetted filter 

papers and finally a second sponge. Any wrinkles, folds or air bubbles between 

the different layers of the sandwich were avoided by rolling a glass rod lightly 

across the components. Bubbles were removed as they can cause blank spots on 

the membrane where no protein transfer occurs. This assembled sandwich was 
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then securely fixed in the transfer cassette and immersed in the blotting chamber 

(Mini Trans-Blot® Electrophoretic Transfer cell; Bio-Rad) containing transfer 

buffer. A voltage of 30 volts was applied overnight at room temperature. 

 

 

2.2.12.5  Immunoprobing of nitrocellulose blots 

The resultant Western blots were blocked with 3% (w/v) BSA in TBS 

(BSA/TBS), containing 0.01% (w/v) sodium azide as a preservative. Blocking is 

essential to inhibit non-specific binding between protein and the membrane. For 

this, blots were placed on a shaker (Heidolph Unimax 1010) and agitated slowly 

with the blocking solution for at least 1 h at room temperature. Following the 

blocking step, blots were incubated with appropriate dilutions of primary 

antibodies made in BSA/TBS at 4°C overnight (Table 2.8). Blots were then 

washed to remove excess primary antibody that can cause high background using 

0.05% (v/v) Tween-20 in TBS detergent solution (TBS/Tween). This wash was 

performed six times (10 min/wash) with constant agitation at room temperature. 

After washing, blots were probed with horseradish peroxidase (HRP)-conjugated 

secondary antibodies for 2 h at room temperature (Table 2.9). Following 6 

further washes with TBS/Tween, the unbound secondary antibodies were 

removed from the membrane and antibody reactivity was visualized with 

enhanced chemiluminescence (ECL) reagents (Thermo Scientific, USA) in a 

G:BOX imager dark system (Syngene, Cambridge, UK). The ECL reagents were 

allowed to equilibrate at room temperature before an equal volume of ECL 

reagent A and B were mixed freshly and applied on the membrane to detect the 

band of interest. A densitometric analysis of antibody reactivity was then 

performed, where band densities on images of developed blots were determined 

using Advanced Image Data Analysis (AIDA) software (version 4.03) (Raytest 

GmbH, Straubenhardt, Germany). Using this software, each individual band was 

superimposed over the region of interest and a peak profile was constructed. An 

arbitrary value of the area beneath the peak, which represents the antibody 

reactivity, was then obtained. All band densities were measured and corrected for 

background, then normalised to band densities for B512 reactivity, which was 

used as internal control. Data are expressed as a percentage of the average value 

of the peak area compared to its corresponding control ± SEM. 



Materials and Methods                                                                        Chapter 2                                                    

72 

 

Table 2.8. List of monoclonal and polyclonal primary antibodies used in Western 

blotting. 

 

Primary antibody Clone Dilution Species 

Approx. 

molecular 

weight of 

target 

(kDa) 

Code Supplier 

Cytoskeletal proteins 

Anti-phospho 
neurofilament H 

Ta51 1:1000 Rat 200 
MAB5

448 
Chemicon 

International 

Anti-neurofilament 
200 (phos and non 

phos) 

N52 1:250 Mouse 200 N0142 

Sigma-Aldrich 

 

Anti-growth 
associated protein-43 

(GAP-43) 

GAP-

7B10 
1:1000 Mouse 43 G9264 

Anti-α-tubulin B512 1:2000 Mouse 55 T6074 

Anti-βIII-tubulin 2G10 1:1000 Mouse 55 T8578 

Anti-tubulin 
polyglutamylated 

B3 1:1000 Mouse 55 T9822 

Anti-acetylated 

tubulin 
611B1 1:1000 Mouse 55 T6793 

Anti-tyrosine tubulin 
TUB-

1A2 
1:1000 Mouse 55 T9028 

Anti-MAP-1B H130 1:1000 Rabbit 200 B1904 
Santa Cruz 

Biotechnology 
 

Anti-MAP-2 H300 1:1000 Rabbit 200-140 J1805 

Cell signalling proteins 

Anti-total ERK1/2 K-23 1:1000 Rabbit 44-42 D1906 

Santa Cruz 

Biotechnology  
Anti-phosphorylated 

ERK1/2  
E-4 1:500 Mouse 44-42 

sc-

7383 

Heat shock proteins 

Anti-HSP90 AC16 1:1000 Mouse 90 H1775 

Sigma-Aldrich 

Anti-HSP70 
BRM2

2 
1:1000 Mouse 70 H5147 
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Anti-HSP60 LK2 1:1000 Mouse 60 H3524 

 

 

Table 2.9. List of secondary antibodies used in Western blotting. 

 

Secondary Antibody Type Dilution Code Supplier 

Anti-mouse IgG HRP 1:1000 A9044 

Sigma-Aldrich 

Anti-rabbit IgG HRP 1:1000 A6154 

Anti-goat IgG (H+L) HRP 1:1000 805-035-180 
Jackson Immuno 

Research 

Anti-rat IgG HRP 1:1000 P0450 DAKO-Cytomation 

 

 

2.2.13  Indirect immunofluorescence 

Indirect immunofluorescence staining is a technique that relies on using 

fluorescently-labeled antibodies to detect specific target antigens in two steps. 

First, cells are stained with unconjugated primary antibody that binds to the 

antigen. Then a fluorescent-conjugated secondary antibody is used to detect the 

primary antibody (Odell and Cook, 2013). The fluorescent dye allows 

visualisation and study of the intracellular distribution of neurofilament and 

microtubule proteins by utilising an epifluorescence or confocal microscope.  

 

Initially, N2a cells were plated at a density of 50,000 cells/ml on an 8-well cell 

culture chamber slide (NUNC, Thermo Scientific) in a total volume of 300 μl of 

growth medium per well. Cells were induced to differentiate for 20 h before 

being treated in the presence and absence of 3 µM CPF or CPO for 2, 4 or 8 h at 

37°C as mentioned in sections 2.2.1.3, 2.2.3 and 2.2.4. After the required time of 

toxin exposure, the medium was aspirated from each well and cells were fixed to 

retain the shape and locations of all cellular proteins using 500 μl/well of pre 

warmed 4% (w/v) paraformaldehyde (Sigma-Aldrich, UK) for 15 min at room 

temperature. Cells were then washed three times with 300 μl/well of ice cold 

PBS (2 min/rinse). Cell membrane permeabilisation was then performed by 
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incubating the cells for 15 min at room temperature in 0.05% (v/v) Tween-20 in 

PBS. This detergent solution created small holes in the membrane, which 

allowed the antibody to access the cytoplasm. Following three further rinses with 

PBS, non-specific binding was prevented by blocking the fixed cells with 500 μl 

of BSA/TBS per well for 1 h at room temperature. After blocking, cells were 

incubated with 200 μl/well of primary antibodies (diluted 1 in 500 in BSA/TBS) 

against NFH (N52), phosphorylated NFH (SMI34) and tubulin (B512) overnight 

at 4°C and washed three times with TBS/Tween to remove unbound primary 

antibodies. The cells were then incubated for 1 h at room temperature with Alexa 

Fluor
® 

anti-IgG secondary antibody diluted 1/500 in BSA/TBS blocking buffer 

(Table 2.10). After 3 further washes in TBS/Tween, the chamber partitions and 

mounting silicon were carefully removed from the slide. For mounting, anti-fade 

mountant (VectaShield mounting medium for fluorescence; Vector 

Laboratories Ltd., Peterborough, UK) containing 4',6-diamidino-2-phenylindole 

(DAPI) counterstain for nuclei visualization was applied to the exposed cell 

monolayers after careful aspiration of excess TBS. A glass cover slip was then 

placed in position and air bubbles were carefully removed by gentle pressure. A 

layer of clear nail polish was then applied around the extreme edges of the cover 

slip to fix it in place. Finally, the slide was viewed using an Olympus DP71 

epifluorescence microscope system, which equipped with an argon/krypton laser 

(FITC: Excitation 493/ Emission 528; DAPI: Excitation 360/ Emission 460). 

Cell images were acquired using Cell
F
 software. Negative control was included 

in this experiment by incubating non OP-treated cells with the secondary 

antibody only to confirm the specificity of the primary antibody. 

 
Table 2.10. Secondary antibodies used in indirect immunofluorescence staining. 

 

 IF Secondary antibody 
Target 

species 
Dilution Code Supplier 

Alexa Fluor
® 

568 IgG Rabbit 1:500 A21069 
Invitrogen 

Alexa Fluor
® 

488 IgG (H+L) Mouse 1:500 A21204 
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2.2.14  Live cell imaging 

The real time changes in cell morphology following OP toxin exposure were 

determined by CFSE fluorescent dye and monitored using a Leica TCS SP5 

confocal laser scanning microscope with epifluorescence optics and in an 

environmental chamber. In this experiment, live N2a cells were labelled by 

CFSE. Since CFSE fluorescent dye is dependent on the activity of esterase, only 

live cells are labelled. 

 

N2a cells were plated out at a density of 50,000 cells/ml (10,000 cells/well) in a 

black clear 96-well treated plate (BD Bioscience, USA) and incubated overnight 

at 37 C to allow for the cells to adhere to the bottom of the plate. After 24 h of 

cell recovery, cells were differentiated for 20 h as indicated in sections 2.2.1.3, 

2.2.3 and 2.2.4. After the induction of differentiation, cells were incubated for 10 

min with 10 μM CFSE dye in pre-warmed sterile PBS at 37 °C. After CFSE 

labelling, PBS was replaced by serum free medium including 0.3 mM dbcAMP, 

and the plate was transported directly to a Leica TCS SP5 confocal laser 

scanning microscope. This system is equipped with true confocal scanner and 

five spectrophotometer channels. The N2a cells were incubated in an 

environmental chamber, which controlled the temperature at 37
o
C in a 

humidified atmosphere of 95% air/5% CO2 Following incubation, Leica 

application suite advanced fluorescence lite (LAS AF) was configured for 

fluorescence by setting the laser intensity to 25%. The live cell images were 

acquired using (xyzt) scanning mode, a frame size of 512 x 512 pixels, a 

scanning speed at 400Hz, a pixel size of 785 x 785 nm and image size of 387.5 x 

20 μm. The fluorophore was then selected from the beam path window and 

CFSE was excited with 488 nm fluorescein isothiocyanate (FITC) laser-line and 

emitted in green. Once the laser had been activated, non-treated live cells were 

first observed in order to create a time zero measurement before the addition of 

toxins. After that, a 3 μM concentration of CPF or CPO was added to each 

treatment well (see section 2.2.5) and the same positions were viewed every 30 

min for an interval of 8 h exposure time. The scanned images were shown at 

maximum intensity Z-projections of 25 slices of 1 micron thickness. After 

collecting a stack of optical sections (Z-series), the sample was reconstructed in 

http://en.wikipedia.org/wiki/Fluorescent
http://en.wikipedia.org/wiki/Fluorescent
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three dimensions, then rotated or tilted to view cells that would otherwise be 

obscured. The fixed images were then manipulated using LAS AF lite and some 

neurites were detected and labelled. A time-lapse imaging in one focal plane was 

then obtained and a play back movie was prepared using Windows Movie Maker 

software. 

 

2.2.15  Cell ELISA 

The levels of and post translational modifications to cytoskeletal proteins in both 

N2a and RenCell CX cell cultures were further determined and quantified using 

a cell-based enzyme linked immunosorbent assay (ELISA) technique, based on 

the approach of Schmuck and Ahr (1997) but with modifications (Schmuck and 

Ahr, 1997). The immunoassay uses an enzyme linked to an antibody as a marker 

for the detection of a specific antigen in a wet sample. This subsequent reaction 

forms a yellow colour product, which can be measured at 405 nm by 

spectrophotometer. The intensity of the colour change is proportional to the 

protein or antigen present in the sample. 

 

2.2.15.1 Preparation of buffer and reagents 

2.2.15.1.1    100 mM Sodium acetate buffer 

The buffer was prepared by dissolving 8.2 g of sodium acetate in 900 ml of 

distilled water at pH 6. The final volume made up to 1 L with distilled water. 

 

2.2.15.1.2    5 M Sulphuric acid (H2SO4) 

50 ml of H2SO4 were added to 200 ml of distilled water. 

 

2.2.15.1.3    3,3,5,5'-Tetramethylbenzidine (TMB) 

A total of 10 mg of TMB was dissolved in 1 ml of DMSO (stock). The 

developing substrate was prepared using TMB and 3% (v/v) hydrogen peroxide 

(H2O2) in 100 mM sodium acetate buffer at pH 6. 
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2.2.15.1.4    3% (v/v) Hydrogen peroxide (H2O2) 

A volume of 10 µl of 30% (v/v) H2O2 (stock) was added to 90 µl of distilled 

water. 

 

2.2.15.1.5    Developing buffer 

The developing substrate was prepared by the addition of 150 µl of TMB and 30 

µl of 3% (v/v) H2O2 into 20 ml of 100 mM sodium acetate pH 6. 

 

2.2.15.2   Assay protocol 

The assay was performed in a sterile flat bottom 96-well plate (Sarstedt, USA). 

Cells were plated out at the density of 50,000 cells/ml for N2a and 100,000 

cells/ml for ReNcell CX in a total volume of 200 μl growth medium per well in 

four replicates and incubated overnight at 37C in 5% CO2. After 24 h recovery, 

cells were differentiated before being treated with or without OP test compounds 

at different concentrations 1, 3, and 10 μM in fresh differentiation medium for 2 

or 8 h as indicated in sections 2.2.1.3, 2.2.2.4, 2.2.3, 2.2.4 and 2.2.5. On 

termination of toxin exposure, serum free medium was aspirated from each well 

and cell monolayers were fixed by pre warmed 4% (w/v) paraformaldehyde 

(Sigma-Aldrich, UK) (200 μl/well) for 10 min at room temperature. Fixative was 

then removed and the plate was washed twice with 200 μl/well of ice cold TBS 

(2 min/wash). Cells were then incubated in permeabilisation buffer (0.5% (v/v) 

Tween-20 in TBS) for 15 min at room temperature after which they were rinsed 

twice with TBS. A volume of 300 μl/well of BSA/TBS (blocking buffer) was 

then applied and the plate was covered and incubated overnight at 4C. The 

blocking buffer was then removed and 100 μl/well of primary antibodies diluted 

1 to 1000 in blocking solution were added and incubated overnight at 4C (Table 

2.11).  

 

After removing the primary antibodies, wells were washed again twice with 

TBS/Tween, followed by 2 h incubation in 200 μl/well of diluted HRP 

conjugated secondary antibodies (1:2000 dilution) at room temperature (Table 
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2.12). After the secondary antibodies had been removed from the plate, two final 

washes with TBS/Tween 20 were applied for 2 min each and then wash solution 

was removed completely from wells by turning the plate upside down and 

tapping gently on a paper towel to remove traces of wash buffer. The reaction 

was started by the addition of 100 μl of developing substrate buffer into each 

well. After 5 min incubation at room temperature, a blue colour product was 

developed which was then stopped by adding 100 μl of 5 N sulphuric acid. 

Absorbance was measured spectrophometrically using a micro plate reader 

(ASYS Expert 96, Biochrom, UK) at 405 nm. Results were expressed as 

antibody binding in treated cells as a percentage of that in untreated controls (set 

as 100%) ± SEM. The background level was estimated by omitting the primary 

antibodies. The specificity of antibody was confirmed by non OP-treated cells 

incubated with the secondary antibody only.   
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Table 2.11. List of primary antibodies used in cell ELISA. 

 

Primary Antibody  

Clone 

or 

batch 

Dilutio

n 
Species Code Supplier 

Anti- neurofilament 

200 
 (phos and non 

phos) 

N52 1:1000 Mouse N0142 

 

Sigma-Aldrich 

 

Anti- phospho 

neurofilament H (1) 
Ta51 1:1000 Rat MAB5448 Chemicon

®
 

Anti- phospho 
neurofilament H (2) 

SMI34 1:1000 Rabbit 14814302 Covance 

Anti- α tubulin B512 1:1000 Mouse T6074 

 

Sigma-Aldrich 
 

Anti- total ERK1/2 K-23 1:1000 Rabbit D1906 

Santa Cruz 

Biotechnology 
Anti- 

phosphorylated 
ERK1/2 

E-4 1:1000 Mouse Sc-7383 

Anti- βIII tubulin 2G10 1:1000 Mouse T8578 

Sigma-Aldrich 
 

Anti- glial fibrillary 

acidic protein 
(GFAP) 

GA5 1:1000 Mouse G3893 

 

 
Table 2.12. List of secondary antibodies used in cell ELISA. 

 

Secondary 

Antibody 
Type Dilution Code Supplier 

Anti- rabbit IgG HRP 1:2000 A6154 
Sigma-Aldrich 

Anti- mouse IgG HRP 1:2000 A9044 

Anti- rat IgG HRP 1:2000 P0450 DAKO-Cytomation 
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2.2.16  High-throughput analysis 

In the later stages of the project, the cytotoxic effects of CPF and CPO on neurite 

outgrowth of N2a and ReNcell CX cells were further determined using the 

ImageXpress Micro Widefield High Content Analysis System (Molecular 

Devices, USA). This technique permits rapid assessment of the effects of a wide 

range of chemicals at different concentrations on multiple parameters of neurite 

outgrowth. The screening system integrates an inverted epifluorescence 

microscope combined with automated image acquisition and analysis software to 

quantify different subcellular measurements of neurite outgrowth such as, cell 

count, neurite count, neurite length and cell body area (Smith and Eisenstein, 

2005, Dragunow, 2008). 

 

Typically, cells were plated out at the density of 50,000 cells/ml for N2a and 

100,000 cells/ml for ReNcell CX cells in 8-well Ibidi μ-slides. The cells were 

grown for 24 h in growth medium prior to the induction of cell differentiation for 

20 h. Differentiating cells were then treated without or with different 

concentrations of CPF or CPO (1, 3 and 10 μM) for 2 or 8 h at 37°C as 

previously described in sections 2.2.1.3, 2.2.3, 2.2.4 and 2.2.5. Following OP 

exposure, cells were fixed for 10 min using 500 μl of pre warmed 4% (w/v) 

paraformaldehyde (Sigma-Aldrich, UK) at 37C. After fixing, cells were washed 

three times with 300 μl/well of ice cold TBS (2 min/rinse) and cell membranes 

were permeabilised using 0.5% (v/v) Tween-20 in TBS for 15 min at room 

temperature. Following three further rinses with TBS, cells were blocked in 

BSA/TBS (500 μl/well) overnight at 4C. After blocking, fixed cell monolayers 

were incubated with 200 μl of primary antibodies. For N2a cells, anti-α-tubulin 

(clone B512) and anti- pNFH (SMI34 and Ta51) antibodies were used. For 

ReNcell CX cells, anti-neuronal marker (βIII tubulin and Ta51) and anti-astro-

glial marker (GFAP) antibodies were used. All primary antibodies were diluted 

1:1000 in BSA/TBS and added to each well, after which the fixed monolayers 

were then incubated overnight at 4°C. Unbound primary antibodies were 

removed by three washes in 200 μl of TBS/Tween for 5 min. Conjugated 

secondary antibodies, Alexa Fluor
® 

488 goat anti-mouse or Alexa Fluor
® 

568 

goat anti-rabbit immunoglobulins (both diluted 1:500 in BSA/TBS) (Invitrogen), 
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were added to each well for 1 h at room temperature. Three further washes were 

then applied using 300 μl of TBS/Tween, five min each. Cell nuclei were 

labelled with DAPI counterstain for 1 min, followed by a further TBS wash. In 

the final wash slides were filled with TBS containing 0.01% (w/v) sodium azide 

as a preservative and stored at 4C prior to image acquisition and analysis. 

Negative control was included in this experiment by incubating non OP-treated 

cells with the secondary antibody only to confirm the specificity of the primary 

antibody. 

 

Ibidi μ-slides were then loaded into an ImageXpress Micro Widefield High 

Content Screening System plate holder for automated image acquisition and 

analysis. The system uses a widefield automated microscope capable of 

fluorescence, transmitted light and phase-contrast imaging of fixed-cell assays. 

The system was set to automatically focus and record images from four different 

sites in each individual well. The size of each well is 9.4 × 9.4 mm, and acquired 

image is 741.6 × 587.6 µm. Fluorescence images were produced using multiple 

emission filter and matched laser excitation filters for two different channels, 

(DAPI) for nuclei (ex= 377/50 nm, em= 447/60 nm) and (FITC) for cell body 

and neurites (ex= 482/35 nm, em=536/40 nm). Images were acquired using a 

Nikon 10x objective lens and 1.4 megapixel cooled CCD camera, with a stand-

alone illuminator (Lambda LS) connected to the system, which involves a 175W 

Xenon-arc lamp, lamp housing, cold mirror and power supply (Sutter Instrument, 

USA). The 10x objective lens was used in order to acquire all neurites in one 

field of view, thus enabling more reliable analysis of neurite outgrowth. 

 

The acquired images were then segmented by multi-coloured tracing masks on 

neurites and cell bodies. Segmentation masks were generated using the 

MetaXpress imaging and analysis software (version 5.1.0.46; Molecular devices, 

USA), where each neurite segment is given the same coloured mask as that of 

their parent neuronal cell bodies. The segmentation images were then analysed 

by the neurite outgrowth module integrated within the MetaXpress imaging and 

analysis software, using neurite outgrowth configuration setting to measure a 

number of morphological parameters including average number of cells/field, 

average cell body area/field, neurite length/cell, mean processes/cell, mean 



Materials and Methods                                                                        Chapter 2                                                    

82 

 

branches/cell, percentage of cells with significant outgrowth and average 

intensity of staining within the positive cells. Particles from each image were 

identified as cells if valid nuclei width between 5 to 10 µm had been detected 

and cell body width ranged from 15 to 20 μm. Outgrowth was recorded as 

significant when minimum cell outgrowth was more than 10 μm (approximately 

half a cell body diameter in length). The measurement ranges for cell bodies and 

outgrowths were determined in preliminary studies using untreated cells from 

multiple cultures to develop settings to exclude non-cellular particles from the 

analysis. Using a 10x objective, four fields/well from four independent 

experiments were acquired for the analysis of at least 200 cells/well. The cellular 

results obtained by the analysis software were then transferred to a GraphPad 

Prism spreadsheet and results were plotted as mean ± SEM. Each OP treatment 

was compared to its corresponding control. 

 

2.2.17  Statistical analysis 

All sets of data were based on a minimum of 4 separate experiments and 

expressed as mean ± standard error of the mean (SEM). The analysis was 

conducted using GraphPad Prism (version 6.0f) (GraphPad software, California, 

USA), a statistics and scientific 2D graphing software. Average values for each 

treatment were compared to the corresponding controls or other treatment group 

by one-way or two-way analyses of variance (ANOVA). The analysis was 

followed by a Tukey post hoc test, which takes into account multiple 

comparisons, with 95% confidence interval. Results were considered to be 

significantly different when p < 0.05. 
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3  Effects of chlorpyrifos and chlorpyrifos oxon on 

neurite outgrowth in pre-differentiated mouse N2a 

neuroblastoma cells 

3.1 Introduction 

To this day, CPF remains one of the most extensively used OP insecticides 

worldwide. Despite the strict bans on its household applications, CPF is still 

widely used on corn and fruits crops, posing high risks to farm workers, 

applicators, families and children living in close proximity to agricultural areas 

where this OP is applied (EPA, 2015). Exposure to CPF can cause acute 

neurotoxicity symptoms as a result of the inhibition of AChE activity in central 

and peripheral cholinergic synapses. This inhibition prevents the breakdown of 

the neurotransmitter ACh, which plays major roles both in neurotransmission 

and in the developmental process of the brain (Barr and Angerer, 2006). As a 

result, increased ACh accumulation in the synaptic cleft and consequent over 

stimulation of muscarinic and nicotinic  receptors lead to convulsions, 

neuromuscular block and respiratory failure (Costa, 2006, Flaskos, 2012).   

 

The metabolic activation of CPF to CPO is known to be the main causative event 

behind most cases of acute neurotoxicity induced by OPs in adults (Richardson, 

1995). This is due to the fact that CPO is much more potent than CPF at 

inhibiting the activity of AChE (Monnet-Tschudi et al., 2000).  However, there is 

a large amount of epidemiological evidence demonstrating that both CPF and 

CPO are also capable of inducing developmental neurotoxicity in developing 

organisms through their interference with developmental processes in the 

nervous system, such as neurite outgrowth (Campbell et al., 1997, Crumpton et 

al., 2000, Flaskos, 2012). Several in vitro and in vivo experimental studies have 

shown that the toxic action of CPF and CPO on the developing brain is not 

limited to hyper activation of the cholinergic system, but that it involves other 

potential targets (Slotkin, 2004). For example, CPF and CPO were found to 

interfere with the unique developmental process of the brain and the nervous 
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system by causing several morphological changes in the formation of neurites. 

These neurites have an essential role in axonal plasticity (Andrieux et al., 2002, 

Wall, 2005). Clinical signs of neurological syndromes associated with CPF and 

CPO induced neurotoxicity may arise as a consequence of its effects on axon 

production, especially in the developing brain in children.  

 

To investigate the impact of OPs on neurite outgrowth in neural cell culture 

systems, several experimental protocols have been implemented. The majority of 

previous studies share a common differentiation condition, in which cells are 

treated with OPs at the same time as induction of cell differentiation (Sachana et 

al., 2008, Flaskos et al., 2011). This method, known as co-differentiation 

exposure, can be used to evaluate the ability of OP to inhibit the outgrowth of 

neurites. However, little work has been done regarding the impact of OPs on 

cells that have been committed to differentiation and have already formed 

neurites, a treatment referred to as post-differentiation exposure. Since the 

mechanisms involved in OP-induced neurotoxicity may vary depending on the 

differentiation condition used, Sachana and colleagues adopted the post-

differentiation exposure strategy to evaluate the effects of CPF on the mouse 

N2a neuroblastoma cell line (Sachana et al., 2001, Sachana et al., 2005).  

 

Initially, the neuronal cells were allowed to differentiate for 20 h by the removal 

of serum and in the presence of 0.3 mM dbcAMP to exhibit a network of axons 

and dendrites, and then treated with or without 3 µM of CPF for 4 and 8 h 

(Sachana et al., 2001). Work by Sachana et al showed that this non- cytotoxic 

concentration of CPF caused a significant reduction in the number of axon-like 

processes in pre-differentiated N2a cells by 50% compared to non-CPF treated 

controls following 4 and 8 h exposure (Sachana et al., 2001, Sachana et al., 

2005). The results obtained from these studies not only demonstrated the ability 

of CPF to inhibit neurite outgrowth but also its capability to cause a retraction of 

pre-formed neurites.  

 

Although the strategy conducted at such a developmental stage by Sachana et al 

(2001, 2005) was the least investigated among the literature, it provides valuable 

information regarding the toxic effect of OP toxins on the outgrowth of pre-
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formed neurites. Since only the effects of CPF were investigated on 

differentiated N2a cells with pre-formed axons, it was of interest to know 

whether a similar concentration of CPO acts in the same manner as CPF on 

neurite outgrowth produced in this cellular system. Additionally, it was 

important to elucidate whether the neurotoxic actions of both OPs on cell 

morphology were associated with AChE inhibition. Previously, reduced activity 

of AChE was observed in N2a cells exposed to 1-10 µM CPO for up to 24 h 

from the point of induction of cell differentiation (Flaskos et al., 2011). 

However, it was suggested that AChE inhibition was not directly related to 

neurite inhibitory effects of CPO.  

 

By applying post-differentiation exposure conditions, the aim of the current 

study was to compare the effects of CPO to that seen with CPF towards pre-

differentiated N2a cells. Therefore, both compounds at a concentration of 3 µM 

were investigated in parallel with respect to their ability to interfere with the 

outgrowth of neurites produced from differentiated N2a cells following 2, 4 and 

8 h exposure. To achieve this aim, a range of experimental techniques such as 

MTT reduction assay, CFSE fluorescence cell staining and live cell imaging 

were used in this study. A further aim was to determine whether the 

morphological effects on axon-like neurites were related to the acute toxicity 

target (AChE) using enzymatic activity assay. 
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3.2 Results 

 

3.2.1 Effects of CPF and CPO on the viability of pre-

differentiated N2a cells 

Mouse N2a neuroblastoma cells were induced to differentiate by serum 

withdrawal and the addition of 0.3 mM dbcAMP for 20 h before being treated 

without (0.5% v/v DMSO control) or with 3 µM CPF or CPO for 2, 4 and 8 h. 

To examine the viability of pre-differentiated N2a cells after being exposed to 

both OPs, MTT reduction assays were performed as described in section 2.2.7. 

The results demonstrated in figure 3.1 show no effect on the reduction of MTT 

by pre-differentiated N2a cells when compared to its corresponding control after 

2, 4, and 8 h exposure to 3 µM CPF or CPO.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Effects of 3 µM concentration of CPF and CPO on pre-

differentiated N2a cell viability. After 20 h of differentiation, N2a cells were treated 
without (0.5% v/v DMSO control) or with 3 µM CPF or CPO for 2, 4 and 8 h and the 

levels of MTT reduction were measured to evaluate cell viability. Results are expressed 
as a mean percentage of the corresponding untreated control at each time point ± SEM 

from four separate experiments. Statistical significance of data was analysed using one 

way ANOVA. When SEM bar is not apparent, this means that error is smaller than the 
symbol size. 
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3.2.2 The optimal concentration of CFSE fluorescent dye 

N2a cell differentiation was assessed in cells stained with CFSE fluorescent dye. 

Since high concentrations of CFSE can be toxic to cells and lead to impairment 

in cell division, the appropriate concentration of the dye to be used was 

determined based on its effects on MTT reduction. Various concentrations of 

CFSE ranging between 10 nM and 100 µM were tested for their ability to inhibit 

the MTT reduction assay (explained in section 2.2.8.2).  

 

In figure 3.2, it can be seen that there was no significant decrease in MTT 

reduction in pre-differentiated N2a cells incubated with 10 nM to 100 µM CFSE 

compared to control (no CFSE). On the basis of this result, 10 µM CFSE was 

considered to be non-cytotoxic towards N2a cells and was chosen to be the 

optimal concentration for staining the pre-differentiated N2a cells in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Effects of CFSE on MTT reduction in pre-differentiated N2a 

cells. After 20 h of induction cell differentiation, N2a cells were labelled with 
different concentration of CFSE and the levels of MTT reduction were measured to 

evaluate cell viability. Results are expressed as a mean percentage of the 
corresponding untreated control ± SEM from four separate experiments. Statistical 

significance of data was analysed using one way ANOVA. When SEM bar is not 

apparent, this means that error is smaller than the symbol size.
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3.2.3 Effects of CPF and CPO on cell morphology and neurite 

outgrowth in pre-differentiated N2a cells 

The previous work by Sachana et al (2001) showed that CPF at a sub-cytotoxic 

concentration of 3 µM had the ability to induce retraction of approximately 50% 

of axon-like processes formed by differentiated N2a cells following 8 h of 

exposure, as determined by CBB staining (Sachana et al., 2001). However, the 

effects of CPO on the morphology of pre-differentiated N2a cells and neurite 

outgrowth had not been previously tested. In order to achieve comparable results 

to the previous work with CPF, pre-differentiated live N2a cells were stained 

directly with 10 µM CFSE dye, exposed to OPs for 2, 4 and 8 h, then fixed. The 

cells were then viewed by using an Olympus DP71 epifluorescence microscope 

(see section 2.2.8.3). At each time point, fluorescence images of non OP-treated 

controls and treated cells were taken (Figure 3.3), and the total number of axon-

like neurites was recorded (Figure 3.4). 

 

The fluorescence images in figure 3.3 show that pre-differentiated N2a cells in 

the absence of both OP had typical neuronal cell morphology of round cell 

bodies with long extending axons-like processes. After exposure to 3 µM CPF 

and CPO, a retraction of long axons was apparent compared to control cells. 

However, this alteration in neurite outgrowth was more pronounced in CPO-

treated cells compared to CPF and control at each time point. As the exposure 

time to both OPs increased, the reduction in neurite outgrowth also increased 

compared to the non-treated controls at each time point.  

 

These findings were further confirmed by quantitative analysis of the effects of 

both OPs on neurite outgrowth formed by pre-differentiated N2a cells (Figure 

3.4), which indicated a time-dependent reduction in the outgrowth of axon-like 

processes following exposure to 3 µM CPF or CPO compared to the non OP-

treated controls. Both CPF and CPO at a concentration of 3 µM were able to 

induce a significant reduction in the number of axons per 100 cells compared to 

their corresponding controls at each time point in pre-differentiated N2a cells (p 

˂ 0.0001). Additionally, a significant difference on the inhibition of axon 
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outgrowth was also observed when the CPF treatment was compared to CPO at 

each time point (p = 0.005) (Figure 3.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.3. Effects of 3 µM concentration of CPF and CPO on the morphology 

of pre-differentiated N2a cells. Displayed are representative fluorescence images of 
N2a cells induced to differentiate for 20 h prior to being incubated in the absence 

(Control) or presence of  3 µM CPF or 3 µM CPO for 2, 4 and 8 h. Cells were stained 

with CFSE and fixed. Arrows show typical axon-like processes detected in non-OP 
treated controls. Scale bar represents 50 µm.                                                           .



 Effects of CPF and CPO on neurite outgrowth in N2a cells                   Chapter 3 

90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Quantitative analysis of the effects of CPF and CPO on neurite 
outgrowth. N2a cells were induced to differentiate for 20 h, labelled with CFSE then 

incubated with or without 3 µM CPF or CPO for 2, 4, and 8 h. Data are expressed as 

mean number of axon-like processes per 100 cells ± SEM for four independent 
experiments. Asterisks indicate where OP treated cell values were significantly 

different from the corresponding control (p ˂ 0.0001). Bars with asterisks indicate 

significant differences between CPF and CPO treatments at each time point (p = 

0.005).
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3.2.4 The real time effects of CPF and CPO on axon stability in 

pre-differentiated N2a cells 

In order to determine the time scale of the morphological changes reported in the 

previous section, the real time changes induced by CPF and CPO on axon 

outgrowth in pre-differentiated N2a cells were further studied using a live cell 

imaging approach, as described in section 2.2.14. The first images of control and 

OP-treated cell panel were taken at minute 20, whereas subsequent images were 

recorded at 1 h intervals for a period of 8 h from the point of toxin addition. 

Neurites were labelled by arrows and numbers to track the changes over time. 

Time-lapse videos of control and OP-treated cells were also prepared from a 

sequence of images at 30 min time intervals and are provided on a CD 

accompanying this thesis.  

 

As indicated in figure 3.5, there was no observed retraction of neurites in non 

OP-treated controls. Following exposure to 3 µM CPF or CPO, neurite length 

was shown to be highly affected over time compared to non OP-treated controls 

(Figure 3.6 and 3.7). Approximately 25% of neurites retracted within the first 2 

to 4 h after treatment with both OPs, suggesting that some of these changes were 

occurring at a very early stage. At 8 h treatment with CPO, the images showed 

some cell vesiculation. However, no other alterations in cell morphology were 

detected, such as changes in cell body shape or size in both controls and treated 

cells (Figure 3.5 and 3.7). 
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Figure 3.5. The real time measurements of neurites in pre-differentiated N2a 

cells determined by live cell imaging. N2a cells were induced to differentiate for 20 
h, stained with CFSE then incubated for further 8 h in the absence of OP to monitor the 

real time changes in cell morphology. Shown are digital images of a representative field 

of view for the non OP-treated control. The first image was taken at minute 20. 
Subsequent images were taken 1 h intervals, using a Leica TCS SP5 confocal laser 

scanning microscope with epifluorescence optics. Arrows-labelled 1-3 show typical 

neurites in pre-differentiated N2a cells (untreated control). Scale bar represents 50 µm. 
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Figure 3.6. The real time effects of CPF on pre-differentiated N2a cells 

determined by live cell imaging. N2a cells were induced to differentiate for 20 h, 
stained with CFSE then incubated for further 8 h in the presence of 3 µM CPF. The real 

time changes in cell morphology following OP exposure were recorded for a period of 8 
h. Shown are digital images of a representative field of CPF treated cells. The first 

image was taken at minute 20. Subsequent images were taken 1 h intervals, using a 

Leica TCS SP5 confocal laser scanning microscope with epifluorescence optics. Arrows 

labelled 1-4 show retracting neurites detected in pre-differentiated N2a cells treated with 
CPF for 8 h. Scale bar represents 50 µm. 
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Figure 3.7. The real time effects of CPO on pre-differentiated N2a cells determined 

by live cell imaging. N2a cells were induced to differentiate for 20 h, stained with 

CFSE then incubated for further 8 h in the presence of 3 µM CPO. The real time 
changes in cell morphology following OP exposure were recorded for a period of 8 h. 

Shown are digital images of a representative field of CPO treated cells. The first image 

was taken at minute 20. Subsequent images were taken 1 h intervals, using a Leica TCS 
SP5 confocal laser scanning microscope with epifluorescence optics. Arrows labelled 1-

5 show retracting neurites detected in pre-differentiated N2a cells treated with CPO for 

8 h. Scale bar represents 50 µm. 
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3.2.5 Effects of CPF and CPO exposure on AChE activity of pre-

differentiated N2a cells 

To determine whether the observed morphological changes in the outgrowth of 

neurites in pre-differentiated N2a cells could be related to the effect on the acute 

toxicity target (AChE), the impact of 3 µM CPF and CPO on the activity of 

AChE was assessed in parallel, as explained in section 2.2.9.  

 

After 2, 4, and 8 h exposure of pre-differentiated N2a cells to CPO, a sustained 

significant reduction (˃ 70%) in the specific activity of AChE was observed 

compared to the non OP-treated control (p ˂ 0.0001) (Figure 3.8). However, 

CPF-treated cells showed little or no effect on AChE activity compared to the 

untreated control at all exposure time points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Effects of 3 µM CPF and CPO on AChE activity in pre-

differentiated N2a cells. Mouse N2a cells were induced to differentiate for 20 h 
before being incubated with or without 3 µM CPF and CPO for 2, 4, and 8 h, after 

which the activity of AChE was measured. Enzyme specific activity (Absorbance 

change/min/mg protein) is expressed as a percentage of the corresponding control 
value ± SEM from four independent experiments. Asterisks indicate statistically 

significant changes compared to the non OP-treated control values at each time point 

(p ˂ 0.0001). 
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3.3 Discussion 

The non-cytotoxic effect observed towards pre-differentiated N2a cells incubated 

with 10 µM CFSE suggested that this concentration is optimal for cell staining in 

this study. The data presented on neurite outgrowth in CFSE-labelled cells 

demonstrated that both CPF and CPO caused neurite retraction when pre-

differentiated N2a cells were exposed for 2, 4, and 8 h. Although inhibition of 

neurite outgrowth from N2a cells has been previously investigated following 

CPF exposure (Sachana et al., 2001), and other OPs such as leptophos, phenyl 

saligenin phosphate (PSP), diazinon and CPO (Sachana et al., 2003, Hargreaves 

et al., 2006, Harris et al., 2009b, Flaskos et al., 2011) using CBB staining, this is 

the first time that CFSE was used to measure the development and maintenance 

of neurites by N2a cells. The current data showed that CFSE provided 

comparable results to CBB, which has been widely used to study the effects of 

OPs on neurite outgrowth previously. In addition, CFSE is highly specific, stable 

and more sensitive than CBB. Another major advantage of CFSE, is that it can 

be used as a useful marker for visual identification of both fixed and living cells 

(Garton and Schoenwolf, 1996). Therefore, CFSE labelling provides a novel and 

reliable approach to assess cell differentiation and neurite outgrowth as an 

alternative to CBB.  

 

The observed retraction of neurites induced by CPF in cultured N2a cells under 

post-differentiation conditions is in good agreement with that noted in the same 

culture system using a similar concentration of CPF under both post and co-

differentiation conditions (Sachana et al., 2001). In addition, the current study 

revealed for the first time the potential ability of CPO to induce neurite retraction 

in pre-differentiated N2a cells, an effect which appears to be even stronger than 

that of CPF. The fact that CPO was found to be more potent in reducing the 

length of axon-like neurites compared to its parent compound in the current work 

is in agreement with a number of previous studies. In pre-differentiated rat PC12 

pheochromocytoma cells, CPO at a concentration of 1 nM was 1000-times more 

potent in reducing the neurite outgrowth than 1 µM CPF following 24 h 

exposure (Das and Barone, 1999). Under co-differentiation conditions, CPO at 

the much lower concentration of 0.001 nM also showed greater ability than CPF 
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(0.001 µM) to reduce axonal length in primary cultures of sympathetic and 

sensory neurons derived from embryonic rat after 24 h (Howard et al., 2005, 

Yang et al., 2008).  

 

The inability of either compound to affect MTT reduction after 2, 4 and 8 h of 

exposure suggested that the 3 μM concentration used in this study was sub-

cytotoxic towards pre-differentiated N2a cells. Hence, it is likely that alterations 

in neurite outgrowth were not due to cell death, but were a genuine cellular 

response to OP exposure. This finding is consistent with previous studies, which 

employed similar concentrations of CPF and other OPs such as diazinon and 

diazinon oxon and found no significant effects on the viability of differentiating 

N2a cells when exposed for periods of up to 24 h (Sachana et al., 2003, Sachana 

et al., 2005, Flaskos et al., 2007, Sidiropoulou et al., 2009a).  

 

The rapid collapse of neurites observed using live cell imaging further confirms 

the neurite inhibitory effect of CPF and CPO towards pre-differentiated N2a 

cells. All neurites, irrespective of initial size, exhibited reduced lengths within 2 

h of exposure to both compounds. However, cell body shape and size were found 

to be relatively unaffected following OP exposure for the same time periods. 

This finding suggests that the retraction of pre-formed axons in N2a cells, which 

is initiated at an early time point following exposure to 3 µM CPF and CPO, is 

the first visible sign of the effects of both compounds on neurite outgrowth.   

 

The significant reduction in the specific activity of AChE observed at all time-

points following CPO exposure is in line with a previous study by Flaskos et al. 

(2011). They demonstrated sustained inhibition of AChE in N2a cells after CPO 

exposure from the point of induction of cell differentiation for 4 or 24 h (Flaskos 

et al., 2011). A reduced activity of AChE was also noted in N2a cells exposed 

for 4 h from the point of induction of differentiation to the OP diazinon oxon, 

although in that case no significant effect on enzyme activity was observed after 

24 h (Sidiropoulou et al., 2009a). However, it is unlikely that inhibition of AChE 

alone could account for the observed changes in the outgrowth of neurites in N2a 

cells, as CPF (as would be expected) had little effect on AChE in the current 

work. A number of in vivo (Slotkin et al., 2006) and in vitro (Das and Barone, 
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1999, Fowler et al., 2001, Howard et al., 2005) studies suggest that OPs that are 

weak inhibitors of AChE can also induce marked impairment in the development 

of neurites. In this respect, the OP trio-ortho-cresyl phosphate significantly 

inhibited the development of axon-like processes in N2a cells (Fowler et al., 

2001). However, it is only a weak inhibitor of AChE (Lock and Johnson, 1990).  

Therefore, inhibition of AChE enzymatic activity by CPF or CPO is unlikely to 

be the main cause of retraction of axon-like neurites in pre- differentiated N2a 

cells, although neurite outgrowth data in the current study are consistent with the 

possibility that it may contribute to the severity of the effects. 

 

As previously discussed, the post differentiation conditions may reflect a model 

of developmental toxicity. The concentration of 3 µM CPF and CPO was chosen 

due to its proven ability to induce a reduction by 50% in both neurite outgrowth 

and in the number of pre-formed neurites in differentiating N2a cells without 

affecting cell viability. CPO-induced morphological and biochemical impacts 

were also observed in vivo in the developing organism following administration 

of similar OP concentrations to those employed in this study. Using meconium 

analysis (used to estimate the foetal exposure to environmental toxicants), about 

22.8 µM CPF has been detected in meconium samples of new-born children 

(Ostrea et al., 2002) and low micromolar levels of oxon metabolites are 

attainable in the developing human foetus (Flaskos, 2012). Therefore, the applied 

OP concentration in this study has clinical relevance to human developmental 

neurotoxicity.  

 

With regard to the possible  transfer of the oxon form from the maternal tissue to 

the foetus, oxon metabolites have higher water solubility compared to their 

respective parent compounds (Sogorb and Vilanova, 2010). This would affect 

their ability to enter the foetus via the lipid membranes of the placenta. The 

detection of significant cholinesterase inhibition in the mammalian foetus 

following in vivo exposure of pregnant animals to organophosphorothionate 

pesticides suggests that foetal exposure to CPO can occur (Gupta, 1995). The 

foetus is thought to be primarily exposed to the parent compound, but may also 

encounter oxon metabolite in the maternal tissues. The relatively low expression 

of CYP2B6 (a key enzyme in the process of oxon formation in humans) in 
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human placenta suggest that the placenta does not make a major contribution to 

oxon formation (Pelkonen et al., 2006, Foxenberg et al., 2007, Croom et al., 

2010). Although CYP2B6 is present at low levels in the human foetus compared 

to later stages of development (Croom et al., 2010), paraoxonase 1 (PON 1), 

which is responsible for hydrolysing and detoxifying the oxon forms of certain 

OPs such as CPO, is also relatively low at this stage (Costa, 2006). This could 

allow some oxon formation and/or accumulation in foetal tissue. Additionally, 

reduced levels of serum PON1 due to genetic polymorphisms in the PON1 gene 

is found to be associated with increased susceptibility to the toxic effect of the 

oxon metabolite (Costa, 2006).  

 

The observed dying back of axons in this pre-differentiated N2a cell model could 

also reflect what it might occur following OP toxicity in adults. It is highly likely 

that such a concentration of CPO (3 µM), which caused severe inhibition in 

AChE levels to more than 70% would be lethal to the foetus (Heilmair et al., 

2008). However, there are numerous case studies of patients who have survived 

such levels of cholinesterase inhibition with the help of pharmacological 

intervention, such as adrenaline and/or oxime administration, only to develop 

delayed neuropathy. For example, a 19 year old male who ingested a large dose 

of CPF and was hospitalised suffering from cholinergic crisis. After he was 

treated with atropine and pralidoxime, the patient recovered partially from 

neurological symptoms (Nand et al., 2007). Administration of this combined 

treatment has an important role in reversing the respiratory muscles weakness or 

paralysis, and other parasympathetic effects associated with OP poisoning (Tush 

and Anstead, 1997). However, after 24 h of CPF exposure, he developed 

respiratory paralysis and required mechanical ventilation for 16 days. Weeks 

later, he had progressive signs of OPIDN, such as deficits in the lower limbs and 

muscular atrophy (Nand et al., 2007). Thus, survivors of acute cholinergic crisis 

can be affected by a delayed neuropathy involving dying back of axons in 

peripheral/central neurons (Clegg and van Gemert, 1999a, Nand et al., 2007, 

Thivakaran et al., 2012). Indeed, it has been shown that CPF administered at 

acute levels in animal models can lead to OPIDN (Gupta, 2006). Therefore the 

morphological changes in neurite outgrowth following CPO exposure have 

potential clinical relevance in terms of delayed neuropathy. 
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From the results presented in this chapter, it can be concluded that exposing pre-

differentiated N2a cells to a sub-cytotoxic concentration of CPF and CPO causes 

neurite retraction. The findings also demonstrate that CPO exerts more potent 

effects compared to those of CPF on neurite outgrowth and AChE. However, the 

morphological effects on axon-like neurites are not completely dependent on the 

inhibition of AChE. They could be associated with other non-cholinergic targets, 

which will be investigated in depth at the molecular level in the next chapter. 
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4 Effects of chlorpyrifos and chlorpyrifos oxon on 

cytoskeletal and associated regulatory proteins in pre-

differentiated N2a cells 

4.1 Introduction 

The previous chapter demonstrated that sub-cytotoxic concentration of 3 µM 

CPF and CPO had the capacity to induce the retraction of axon-like neurites in 

pre-differentiated N2a cells. Since the observed morphological alterations in 

neurite outgrowth were not directly related to the inhibition of the enzymatic 

activity of AChE, it was of interest to investigate whether the retraction of axon-

like processes was associated with altered expression and activities of 

cytoskeletal and associated regulatory proteins in pre-differentiated N2a cells. 

 

The neuronal cytoskeleton, and in particular the microtubule and neurofilament 

networks play an important role in neurite development and stability (Cambray-

Deakin, 1991b). Impairment of neurite outgrowth following exposure to OPs has 

been linked with disruption of the expression levels of cytoskeletal proteins 

(Fowler et al., 1997, Flaskos et al., 1998, Sachana et al., 2001, Sachana et al., 

2003, Sachana et al., 2005, Hargreaves et al., 2006, Flaskos et al., 2007, Flaskos 

et al., 2011, Sachana et al., 2014). Earlier reports evaluated the effects of CPF on 

a number of cytoskeletal and associated regulatory proteins in N2a cells under 

different differentiation and exposure conditions (Sachana et al., 2001, Sachana 

et al., 2005). N2a cells treated with CPF showed increased levels of HSP-70 

under co-differentiation exposure conditions, whereas no observed effects were 

found on HSP-70 levels in pre-differentiated cells (Sachana et al., 2001). 

Additionally, Sachana and colleagues (2005) showed reduced levels of GAP-43 

in pre-differentiated N2a cells treated with CPF. However, when N2a cells were 

exposed to CPF at the point of induction of cell differentiation, it had no impact 

on GAP-43 expression (Sachana et al., 2005). The findings of these studies 

suggest that the effects of CPF on these proteins depend to some extent on the 

differentiation stage of the cells.  
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With regard to CPO, Flaskos and colleagues (2011) investigated the CPO-related 

effects on cytoskeletal proteins in N2a cells using co-differentiation experimental 

protocols. Data obtained from that work showed reduced levels of GAP-43 and 

NFH in differentiating N2a cells following CPO exposure for 24 h (Flaskos et 

al., 2011). The effects of CPO on cytoskeletal proteins in pre-differentiated N2a 

cells have not been determined in post-differentiation experiments, and there is a 

lack of quantitative data in the case of CPF. 

 

The aim of this chapter was to assess the impacts of sub-cytotoxic concentrations 

of both CPF and CPO on cytoskeletal and associated regulatory proteins in pre-

differentiated N2a cells following 2, 4 and 8 h exposure. The study focused on 

the effects of both OPs on the levels of specific microtubule, neurofilament and 

heat shock proteins, which were determined using quantitative Western blotting.  

Subsequently, alterations in the activation status of MAP kinase ERK 1/2 and the 

enzymatic activity of phosphatase were investigated to relate them to any 

changes observed in NFH phosphorylation. Additionally, disruption of the 

intracellular distribution of microtubule and neurofilament networks was 

analysed using indirect immunofluorescence staining. This work was done in 

order to relate the alterations in neurite outgrowth observed in the chapter three 

to the levels of expression and activities of cytoskeletal and associated regulatory 

proteins in pre-differentiated N2a cells. 
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4.2 Results 

4.2.1 Effects of CPF and CPO on the expression levels of 

microtubule proteins 

The molecular changes underlying the morphological effects of 3 µM CPF and 

CPO on neurite outgrowth in pre-differentiated N2a cells were studied further by 

quantitative Western blotting. For immunoblotting, Western blots of lysates of 

pre-differentiated N2a cells exposed to 3 µM CPF or CPO for 2, 4, and 8 h were 

probed with antibodies against a range of microtubule proteins. These included 

antibodies to MAP-1B, MAP-2, acetylated and tyrosinated α-tubulin, 

polyglutamylated tubulin and βIII tubulin, as described in section 2.2.12 and 

table 2.12. 

 

As indicated in figure 4.1 and table 4.1, the reactivity of anti-α-tubulin showed 

no significant changes following exposure of cells to both CPF and CPO at any 

time point. Therefore, the band densities for all proteins were normalised to that 

for α-tubulin (using monoclonal antibody clone B512), which was used as 

internal control. Similarly, there were no significant effects on the cross 

reactivity of lysates of pre-differentiated N2a cells with antibodies that recognise 

MAP-1B, MAP-2, acetylated, tyrosinated and polyglutamylated forms of α-

tubulin and βIII-tubulin following exposure to both CPF and CPO at all time-

points compared to control.  
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Figure 4.1. Detection of microtubule proteins on Western blots of pre-

differentiated N2a cell lysates.  N2a cells were induced to differentiate for 20 h prior 
to treatment with 3 µM CPF or 3 µM CPO, or without OP (Control) for 2, 4, and 8 h. 

The N2a cell lysates were then subjected to SDS-PAGE and Western blotting as 

described in Materials and methods. Shown are typical blots probed with antibodies 
against MAP-1B, MAP-2, βIII-tubulin, acetylated, tyrosinated and polyglutamylated 

α-tubulin, followed by HRP-conjugated secondary antibodies and developed by ECL 

reagents. Blots probed with anti-α-tubulin were used as internal control. 



Effects of CPF and CPO on cytoskeletal proteins in N2a cells                Chapter 4 

105 

 

Table 4.1. Densitometric analysis of Western blots probed with antibodies to 
microtubule proteins. Western blots probed with antibodies that recognise MAP-1B, 

MAP-2, βIII-tubulin, acetylated, tyrosinated and polyglutamylated α-tubulin. The 

antibody reactivity was then visualized with ECL reagents as described in Materials and 
methods. Densitometric peak areas were quantified using AIDA software and values are 

expressed as a percentage of the corresponding time point control ± SEM for four 

separate experiments. Band densities for all proteins were normalised to blots probed 
with anti-α-tubulin. Asterisks indicate significant differences compared to the 

corresponding untreated control. 

 

Antigens 
Incubation  

time (h) 

Densitometric peak area 

 (% control  SEM) 

3 μM CPF 3 μM CPO 

MAP-1B 
2 98 ± 4 96±8 

4 106 ± 8 112±13 

8 85 ± 10 89±11 

MAP-2 
2 101±5 98±5 

4 100±4 105±5 

8 111±13 89±15 

Acetylated tubulin 

 

 

2 102±2 103±4 

4 103±4 123±19 

8 125±11 102±13 

Tyrosinated tubulin 

2 103±4 102±2 

4 102±1 105±7 

8 112±5 110±10 

Polyglutamylated 
tubulin 

2 94±6 95±5 

4 102±7 89±11 

8 88±18 87±16 

βIII tubulin 

2 107±12 96±5 

4 99±5 104±11 

8 99±6 94±10 

Total α-tubulin 

2 107±8 96±7 

4 102±4 109±7 

8 103±6 106±7 
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4.2.2 Effects of CPF and CPO on the expression levels of 

neurofilament and growth-associated proteins 

As indicated in figure 4.2 and table 4.2, a transient significant reduction was 

observed in the levels of antibody reactivity with GAP-43 on blots of lysates 

(using monoclonal antibody clone GAP7B10) after 4 h exposure of cells to CPF 

(p ˂ 0.004), and CPO (p ˂ 0.002). However, GAP-43 reactivity was unaffected 

following exposure to both OPs at the earlier time point (2 h) and seemed to 

recover following 8 h exposure. Reactivity of cell lysates with anti-total NFH 

antibody (clone N52) was similar to the corresponding control at all time-points. 

In contrast, reactivity with anti-pNFH (clone Ta51) was considerably higher than 

the reactivity level of lysates from non OP-treated controls following 2 h 

exposure to both CPF (p ˂ 0.02), and CPO (p ˂ 0.0006). This increase in the 

levels of pNFH at 2 h was then followed by a significant decline in comparison 

to control values after 8 h exposure to both CPF (p ˂ 0.004) and CPO (p ˂ 

0.0002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Detection of neurofilaments and growth associated proteins on 

Western blots of pre-differentiated N2a cell lysates. N2a cells were induced to 

differentiate for 20 h before treatment with or without 3 µM CPF or CPO for 2, 4, 
and 8 h. N2a cell lysates were then subjected to SDS-PAGE and Western blotting as 

described in Materials and methods. Shown are typical blots probed with antibodies 

to NFH, pNFH and GAP-43 followed by HRP-conjugated secondary antibodies and 

developed by ECL reagents. Blots probed with anti-α-tubulin were used as internal 
control. 
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Table 4.2. Densitometric analysis of Western blots probed with antibodies to 
neurofilaments and growth associated proteins.  Western blots of cell lysates were 

probed with antibodies that recognise NFH, pNFH and GAP-43, followed by 

visualisation of antibody reactivity with ECL reagents as described in Materials and 
methods. Densitometric peak areas were quantified using AIDA software and values are 

expressed as a percentage of the corresponding time point control ± SEM for four 

separate experiments. Band densities for all proteins were normalised to blots probed 
with anti-α-tubulin. Asterisks indicate values that were statistically significant from their 

corresponding non OP-treated control; *p ˂ 0.02, **p < 0.004, ***p < 0.002, 
▲

p < 

0.0002, 
■
p < 0.0006. 

 

Antigens 
Incubation  

time (h) 

Densitometric peak area 

 (% control  SEM) 

3μM CPF 3μM CPO 

NFH 
2              107 ± 9              101 ± 8 

4              102 ± 18     81 ± 22 

8              120 ± 12              105 ± 16 

pNFH  
2             214 ± 16*             444 ± 90

■
 

4               84 ± 7  93 ± 12 

8               36 ± 13**  30 ± 7
▲ 

GAP-43 
2             107 ± 12               96 ± 5 

4      75 ± 10**         60 ± 10*** 

8             106 ± 11             117 ± 17 

 

 

 

In order to confirm the observed alteration in the phosphorylation status of NFH, 

the phosphorylation ratio was calculated (pNFH:NFH) at all time-points. As can 

be seen in table 4.3, there was a significant increase in the phosphorylation ratio 

following exposure to both CPF and CPO (p < 0.01) for 2 h. Although the level 

returned to normal at the 4 h time point, it showed a significant reduction to 29% 

and 27% of normal levels with CPF and CPO treatment for 8 h, respectively (p < 

0.001). 
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Table 4.3. The phosphorylation ratio of the change in pNFH:NFH following OP 
exposure over time.  Band intensities of pNFH relative to control were calculated as a 

ratio to that of NFH. A value of 1 represents normal level of phosphorylation of NFH. 

Asterisks indicate changes that were statistically significant compared to normal levels; 
*p ˂ 0.01, **p < 0.001. 

 

 

Phosphorylation 

ratio 

Incubation  

time (h) 
3μM CPF 3μM CPO 

pNFH:NFH 
2   2.02 ± 0.23*   4.19 ± 0.80* 

4 1.03 ± 0.21 1.53 ± 0.22 

8     0.29 ± 0.08**     0.27 ± 0.03** 

 

 

 

 

4.2.3 Effects of CPF and CPO on the expression levels of heat 

shock proteins 

In order to determine whether altered levels of HSPs could be indicative of 

cellular injury induced by OP exposure, the effects of both CPF and CPO on the 

expression levels of three families of HSPs (HSP-90, HSP-70 and HSP-60) were 

investigated by quantitative Western blotting, as described in section 2.2.12. 

 

As illustrated in figure 4.3 and table 4.4, the densitometric analysis of probed 

Western blots of pre-differentiated N2a cell lysates treated with 3 µM CPO for 4 

h revealed transient significant reduction in the levels of HSP-90 compared to 

controls (p ˂ 0.003). However, reactivity with HSP-90 antibody was unaffected 

at the earlier time point (2 h) and seemed to recover following 8 h exposure to 

CPO.  

 

Although exposure of lysates of pre-differentiated N2a cells treated with CPO 

for 4 h had reduced levels of the HSP-70 and HSP-60, the effects were not 

statistically significant at that time point, nor at 2 or 8 h. In CPF-treated cells, no 

significant change in reactivity levels was detected with all three anti-HSP 

antibodies at all time-points. 
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Table 4.4. Densitometric analysis of Western blots probed with antibodies to heat 

shock proteins. Western blots of cell lysates were probed with antibodies that recognise 

HSP-90, HSP-70 and HSP-60, after which antibody reactivity was visualised with ECL 

reagents, as described in Materials and methods. Densitometric peak areas were 
quantified using AIDA software and values are expressed as a percentage of the 

corresponding time point control ± SEM for four separate experiments. Band densities 

for all proteins were normalised to blots probed with anti-α-tubulin. Asterisks indicate 
values that were statistically significant changes from their corresponding non OP-

treated control; *p < 0.003. 

 

Antigens 
Incubation  

time (h) 

Densitometric peak area 

 (% control  SEM) 

3μM CPF 3μM CPO 

HSP-90 
2  97 ± 4 96 ± 7 

4              101 ± 8            77 ± 3* 

8   97 ± 4 94 ± 2 

HSP-70 
2                95 ± 6 96 ± 5 

4  92 ± 5   90 ± 11 

8              109 ± 6         106 ±  9 

HSP-60 
2 102 ± 3 97 ± 3 

4 106 ± 6 89 ± 5 

8   100 ± 12   90 ± 26 

 

Figure 4.3. Detection of heat shock proteins on Western blots of pre-

differentiated N2a cell lysates. N2a cells were induced to differentiate for 20 h 

before treatment with or without 3 µM CPF or CPO for 2, 4, and 8 h. N2a cell lysates 

were then subjected to SDS-PAGE and Western blotting as described in Materials and 
methods. Shown are typical blots probed with monoclonal antibodies to HSP-90 

(clone AC16), HSP-70 (clone BRM22) and HSP-60 (clone LK2) followed by HRP-

conjugated secondary antibodies and developed by ECL reagents. Blots probed with 
anti-α-tubulin were used as internal control. 
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4.2.4 Effects of CPF and CPO on activation status of MAP 

kinase ERK1/2 

Further analyses were performed to determine whether the altered levels of 

reactivity of lysates with antibody to pNFH could be attributed to changes in the 

activation status of MAP kinase ERK 1/2, which is known to be a convergence 

point of signalling pathways involved in neurite outgrowth and to play an 

important role in the phosphorylation of NFH (Veeranna et al., 1998, Perron and 

Bixby, 1999). 

 

As indicated in figure 4.4 and table 4.5, data from Western blotting analyses 

using anti-total ERK antibody showed no significant changes in reactivity levels 

with lysates from pre-differentiated N2a cells treated with either CPF or CPO 

compared to non OP-treated controls at any time-point. In contrast, anti-pERK 

antibodies showed increased reactivity compared to the corresponding control at 

all time-points but the changes were only statistically significant at the early time 

point (2 h). The data in table 4.6, showed that there was a significant increase in 

the phosphorylation ratio following exposure to both CPF and CPO (p < 0.05) at 

2 h exposure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Detection of the activation status of MAP kinase ERK 1/2 on Western 

blots of lysates from pre-differentiated N2a cells. N2a cells were induced to 

differentiate for 20 h before treatment with or without 3 µM CPF or CPO for 2, 4, and 
8 h. N2a cell lysates were then subjected to SDS-PAGE and Western blotting as 

described in Materials and methods. Shown are typical blots probed with antibodies to 

total ERK (K-23) and phosphorylated ERK (E-4) followed by HRP-conjugated 

secondary antibodies and developed by ECL reagents. Blots probed with anti-α-tubulin 
were used as internal control. 
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Table 4.5. Densitometric analysis of Western blots probed with antibodies to MAP 
kinase ERK1/2. Western blots of cell lysates were probed with antibodies that 

recognise total ERK and phosphorylated ERK, after which antibody reactivity was 

visualised with ECL reagents, as described in Materials and methods. Densitometric 
peak areas were quantified using AIDA software and values are expressed as a 

percentage of the corresponding time point control ± SEM for four separate 

experiments. Band densities for all proteins were normalised to blots probed with anti-α-
tubulin Asterisks indicate values that showed statistically significant differences from 

their corresponding non OP-treated control; *p ˂ 0.02, **p < 0.001. 

 

Antigens 
Incubation 

time (h) 

Densitometric peak area 

 (%control  S.E.M.) 

3μM CPF 3μM CPO 

Total ERK 

2 106 ± 7  95 ± 11 

4   111 ± 14     115 ± 20 

8 107 ± 7     107 ± 8 

pERK  

2    147 ± 21*
 

    128 ± 6** 

4  149 ± 33     142 ± 34 

8  113 ± 15       91 ± 2 

 

 

 

 
Table 4.6. The phosphorylation ratio of the change in pERK:total ERK following 
OP exposure over time. Band intensities of pERK relative to control were calculated as 

a ratio to that of total ERK. A value of 1 represents normal level of phosphorylation of 

ERK. Asterisks indicate changes that were statistically significant compared to normal 
levels; *p ˂ 0.05. 

 

Phosphorylation 

ratio 

Incubation  

time (h) 
3μM CPF 3μM CPO 

pERK: tERK 
2   1.3 ± 0.02*   1.3 ± 0.02* 

4 1.3 ± 0.21 1.2 ± 0.22 

8 1.0 ± 0.08 0.8 ± 0.03 

 

 

 

 

 

 

 

 



Effects of CPF and CPO on cytoskeletal proteins in N2a cells                Chapter 4 

112 

 

4.2.5 Effects of CPF and CPO on phosphatase activity in pre-

differentiated N2a cells  

Since there was a clear relationship between the early changes in reactivity of 

antibodies against pNFH and pERK in OP-treated cell lysates at 2 h, further 

experiments were carried out to detect the possible cause for the subsequently 

significant reductions in NFH phosphorylation following 8 h exposure. For this, 

phosphatase activity was detected using the pNPP liquid substrate system with 

lysates prepared from cells incubated with or without OPs under the same post 

differentiation exposure conditions, as described in section 2.2.10. 

 

As demonstrated in figure 4.5, there was an observed increase relative to the 

controls in the level of phosphatase activity in pre-differentiated N2a cell lysates 

treated with either CPF or CPO for 2 and 8 h. However, this effect appeared to 

be statistically significant only at 8 h exposure (p ˂ 0.002) when analysed by 

two-way ANOVA. At 4 h treatment, no noticeable changes in phosphatase 

activity were detected in OP-treated cells compared to untreated control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Effects of CPF and CPO on phosphatase activity in pre-

differentiated N2a cells.  Mouse N2a cells were induced to differentiate for 20 
h before being incubated with or without 3 µM CPF or CPO for 2, 4, and 8 h, 

after which the activity of phosphatase was measured as described in Materials 

and methods. Enzyme specific activity is expressed as percentage of the 

corresponding control value ± SEM from four separate experiments. Asterisks 
in the 8 h treatment indicate changes that are statistically significantly different 

from the non OP-treated corresponding control (p ˂ 0.002). 
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4.2.6 Effects of CPF and CPO on the intracellular distribution of 

cytoskeletal proteins 

Since 3 µM CPF and CPO were able to cause retraction of pre-formed neurites 

and interfere with the expression levels of cytoskeletal proteins, it was of interest 

to determine whether they were also capable of disrupting the intracellular 

distribution of neuronal cytoskeleton proteins. The neurotoxic effects of both 

OPs on microtubule and neurofilament protein distribution were studied by 

indirect immunofluorescence staining of pre-differentiated N2a cells following 2 

and 8 h exposure. As previously explained in section 2.2.13, pre-differentiated 

N2a cells were stained with antibodies against total NFH (clone N52), pNFH 

(clone SMI34) and βIII-tubulin (clone 2G10). 

 

As shown in figures 4.6 and 4.7, anti-βIII-tubulin antibody demonstrated intense 

staining in neurites and cell bodies of treated and non OP-treated cells at both 

exposure time points. In the case of anti-total NFH, it can be seen that there was 

relatively strong staining of axons in control cells, as shown by horizontal 

arrows, but weak neurite staining was observed in CPF and CPO treated cells at 

both 2 and 8 h exposure. The staining intensity of anti-pNFH in axons was 

similar to that of anti-total NFH in non OP-treated controls. However, much less 

neurite staining was observed and more aggregates were detected in cell bodies 

(vertical arrows) with anti-pNFH in OP treated cells at both time-points. 
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Figure 4.6. Effects of 2 h exposure to CPF and CPO on the intracellular 

distribution of cytoskeletal proteins in pre-differentiated N2a cells. Following 20 h 
of cell differentiation, N2a cells were treated without (control) or with 3 µM CPF or 

CPO for 2 h. N2a cells were then fixed and stained by indirect immunofluorescence as 

described in Materials and methods. Shown are digital images of non OP-treated 
controls and cells exposed to 3 µM CPF or CPO stained with anti-total NFH (N52), 

anti-pNFH (SMI34) and anti-βIII-tubulin (2G10). Horizontal arrows highlight typical 

axon-like neurites and vertical arrows indicate the presence of aggregates in cell 

bodies. Scale bar represents 30 µM. 
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Figure 4.7. Effects of 8 h exposure to CPF and CPO on the intracellular 
distribution of cytoskeletal proteins in pre-differentiated N2a cells. Following 20 h 

of cell differentiation, N2a cells were treated without (control) or with 3 µM CPF or 

CPO for 2 h, after which, cells were fixed and stained by indirect immunofluorescence 
as described in Materials and methods. Shown are digital images of non OP-treated 

controls and cells exposed to 3 µM CPF or CPO stained with anti-total NFH (N52), 

anti-pNFH (SMI34) and anti-βIII-tubulin (2G10). Horizontal arrows highlight typical 

axon-like neurites and vertical arrows indicate the presence of aggregates in cell 
bodies. Scale bar represents 30 µM. 

 



Effects of CPF and CPO on cytoskeletal proteins in N2a cells                Chapter 4 

116 

 

4.3 Discussion 

The neurite retraction observed in pre-differentiated N2a cells following 

exposure to a sub-cytotoxic neurite inhibitory concentration of CPF and CPO 

indicated that these effects were not related to AChE inhibition (Chapter three). 

The aim of this chapter was to reveal whether retraction of neurite outgrowth 

was associated with disruption of cytoskeletal and associated regulatory proteins 

and whether the effects on these non-cholinergic targets could underlie the 

morphological changes in neurite outgrowth produced from pre-differentiated 

N2a cells. 

 

Microtubule proteins such as tubulin and MAPs are mainly involved in neuronal 

cell differentiation and neurite development (Cambray-Deakin, 1991b). The fact 

that densitometric analysis in the current study revealed a lack of detectable 

changes in the reactivity of N2a cell lysates with antibodies against α-tubulin, 

tubulin posttranslational modifications, βIII-tubulin and MAPs following 

treatment with CPF and CPO together with the lack of effect in indirect 

immunofluorescence staining with anti-tubulin, suggested that the levels of 

microtubule proteins were unaffected under our experimental conditions. Similar 

findings were observed in previous studies, which found that the same 

concentration of CPF and CPO had no effect on the levels of α-tubulin when 

applied to pre-differentiated N2a cells (Sachana et al., 2005) or at the point of 

induction of cell differentiation (Flaskos et al., 2011). Unchanged levels of α-

tubulin have also been observed following exposure to other OPs such as PSP, 

diazinon and the pyrethroid cypermethrin (Hargreaves et al., 2006, Flaskos et al., 

2007). The previous data together with the current findings suggest that the 

microtubule network is not a primary target of these OPs. 

 

Neurofilaments, in particular NFH, play a key role in regulating axon growth and 

stability (Williamson et al., 1996) and are increasingly expressed and 

phosphorylated as axons develop (Lee and Cleveland, 1994, Veeranna et al., 

1998). The importance of NFH phosphorylation is that it regulates the transport 

of neurofilaments within axons, which plays an essential role in axonal growth 

and stability (Shaw, 1991, Sihag et al., 2007). Extensive phosphorylation of NFH 
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results in a slower rate of axonal transport (Yuan et al., 2006). Thus, it was of 

interest to determine whether neurite retraction could be reflected at the 

molecular level by altered levels of phosphorylation of NFH. The observed 

increase in the reactivity of antibodies against pNFH and the calculated 

phosphorylation ratios in OP-treated cell lysates at 2 h and the following decline 

at 8 h exposure, together with the lack of statistically significant effects of OPs 

on the reactivity of antibodies that recognise total NFH at all time-points are 

consistent with an early transient hyperphosphorylation followed by a reduced 

phosphorylation state of NFH, with no overall effect on the total levels of NFH 

protein. The transient increase in NFH phosphorylation in pre-differentiated N2a 

cells treated with CPF and CPO mirrored the effect of other OPs such as phenyl 

saligenin phosphate (PSP) and trio-ortho-cresyl phosphate (TOCP) in N2a cells 

under co-differentiation conditions (Fowler et al., 2001, Hargreaves et al., 2006). 

In animal studies, altered phosphorylation status of NFH has also been found in 

the spinal cord of hens treated with TOCP (Suwita et al., 1986) and PSP (Jortner 

et al., 1999). Taken together, these findings suggest that several OPs may be able 

to disrupt the phosphorylation status of NFH. 

 

The data for CPF are in agreement with the study of Sachana et al. (2001), which 

revealed little or no effect on the levels of NFH from N2a cells following 

exposure to CPF under similar post differentiation conditions (Sachana et al., 

2001). However, in a study by Flaskos et al. (2011), where CPO was added to 

N2a cells at the same time as induction of differentiation, immunoblot analysis 

indicated significant reduction in NFH protein but the level of NFH 

phosphorylation remained close to the control values (Flaskos et al., 2011), 

suggesting that the effect of CPO observed in the current work was specific for 

pre-differentiated cells. Thus, the toxicity response appears to be related to the 

developmental stage of cell differentiation at which the exposure to OPs occurs, 

although the possibility that the longer exposure time (24 h) in the latter study 

may have affected the outcome cannot be discounted. 

 

Results obtained from immunoblot analysis using monoclonal antibody 

GAP7B10, which recognises GAP-43, suggested that CPF and CPO induced a 

transient reduction in GAP-43 after 4 h exposure. GAP-43 is a cytoskeleton 



Effects of CPF and CPO on cytoskeletal proteins in N2a cells                Chapter 4 

118 

 

membrane linker that is highly expressed in the growth cones and extending 

axons in neuronal cells (Skene, 1989, Das et al., 2004). During 

neurodevelopment, GAP-43 regulates the formation of growth cones, and 

modulates the development and stability of axons (Meiri et al., 1986, Benowitz 

and Routtenberg, 1997, Meiri et al., 1998). It has been demonstrated that GAP-

43 synthesis is elevated during axonal outgrowth (Skene, 1989, Pekiner et al., 

1996) and thus, inhibition of neurite outgrowth could be associated with altered 

expression level of GAP-43 (Das et al., 2004). Since reduced levels of GAP-43 

in the current study occurred in parallel with the collapse in axon outgrowth 

observed by live cell imaging following exposure of pre-differentiated N2a cells 

to CPF and CPO (chapter three), it could also have contributed to the detachment 

of the growth cones. This finding is consistent with previous studies, which 

showed reduced levels of GAP-43 in pre-differentiated N2a cells exposed to 

similar concentration of CPF and other OPs (i.e. CPF-methyl) for 4 h (Sachana et 

al., 2005) and in N2a cells induced to differentiate for 24 h in the presence of 

CPO (Flaskos et al., 2011). However, this is the first time that reduced level of 

GAP-43 was observed under post-differentiation exposure conditions for CPO.  

 

The decreased levels of GAP-43 were also associated with impaired axon 

outgrowth in N2a cells treated for 4-24 h from the point of induction of 

differentiation with different OPs such as TOCP, leptophos, diazinon and the 

carbamate ester carbaryl (Fowler et al., 2001, Sachana et al., 2003, Harris et al., 

2009b). Taken together, the current and previous findings suggest that reduced 

levels of GAP-43 can be considered as a common molecular marker for the 

neurite inhibitory effects caused by these OPs. Interestingly, the observed 

recovery in the level of GAP-43 at 8 h after its significant reduction in 4 h time 

point suggested the ability of the expression of this protein to recover to equal 

levels to that of controls. The transient reduction in the levels of GAP-43 may 

further suggest that this could be due to changes in proteolytic degradation 

and/or gene expression, which was then subsequently recovered by increase 

synthesis. 

 

The chaperone role played by HSPs is important in maintaining the integrity of 

neuronal proteins against abnormal protein folding, which may also be related to 
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their protective role against apoptosis induced by OP toxicity (Hartl and Hayer-

Hartl, 2002, Bukau et al., 2006). Elevated levels of these proteins were detected 

in brains affected by neurodegenerative disease (Hamos et al., 1991, Anthony et 

al., 2003). In addition, it has been demonstrated that increased levels of HSP-70 

could provide a potential marker of toxic injury in mammalian brain (Gonzalez 

et al., 1989). In the current study, the lack of detectable changes in the 

expression levels of HSP-70 in CPF and CPO-treated cells at all exposure time 

points is compatible with an earlier study conducted under similar experimental 

and differentiation conditions, which also showed no effect on the levels of HSP-

70 in CPF-treated pre-differentiated N2a cells (Sachana et al., 2001). The 

observation that CPO had no effects on the levels of HSP-70 in the current study 

indicated that CPO is acting in a similar manner as CPF with respect to this HSP 

under the post-differentiation exposure conditions used. However, under co-

differentiation exposure conditions, raised levels of HSP-70 compared to control 

were detected in N2a cells following exposure to 3 µM CPF for 4 and 8 h 

(Sachana et al., 2001), and diazinon oxon (1 to 10 µM) for 24 h (Sidiropoulou et 

al., 2009a). Interestingly, reduced levels of HSP-70 were found in N2a cells 

exposed for 24 h to 10 µM diazinon under co-differentiation conditions (Flaskos 

et al., 2007). Taken together, these findings suggest that, with respect to HSP 

expression, the effects of CPF and CPO could involve distinct mechanisms that 

are dependent on the developmental stage at which exposure occurs. 

 

HSP-60 is a mitochondrial stress protein, which is mainly found in the 

mitochondria (Anthony et al., 2003). The current study showed that the levels of 

HSP-60 were not altered in pre-differentiated N2a cells exposed to 3 µM CPF 

and CPO compared to non OP-treated controls. Previously, increased 

immunoreactivity of HSP-60 in brain epithelial cells was detected in patients 

with Alzheimer’s disease compared to normal subjects, which indicated that 

mitochondrial damage was associated with this neurodegenerative condition 

(Anthony et al., 2003). However, the lack of noticeable differences on the 

expression of HSP-60 presented in this study suggested that mitochondrial stress 

proteins were not a major target for CPF and CPO toxicity in pre-differentiated 

N2a cells under our experimental conditions.  
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HSP-90 is another chaperone protein that is found abundantly in the cytosol and 

highly expressed in mammalian brain cells (Gupta et al., 2010). HSP-90 binds to 

cytoskeletal proteins such as tubulin and actin, and is thought to have a role in 

stabilising the neuronal cytoskeleton (Csermely, 2001). It also interacts with 

protein kinases that are important in regulating the cell death and survival 

(Sreedhar et al., 2004). Under stress conditions such as pesticide exposure, HSP-

90 with the assistance of HSP-70 plays an important role in degradation of 

misfolded, damaged or denatured proteins (Gupta et al., 2010). The transient 

reduction observed in levels of HSP-90 in CPO-treated cells but not CPF-treated 

cells in the current study could reflect the ability of CPO to disrupt the functions 

of HSP-90, as it has been reported that decreased levels of HSP-90 could affect 

many cellular processes and increase the mortality of mammalian cells upon 

thermal stress (Bansal et al., 1991, Gopinath et al., 2014). 

 

On the other hand, the lack of alterations in the expression of HSP-90 in CPF-

treated cells is inconsistent with previous work, in which a much lower 

concentration of CPF (50-200 nM) induced synthesis of HSP-90 in 

undifferentiated rat pheochromocytoma PC12 neuronal cells following 24 h 

exposure (Bagchi et al., 1996). This discrepancy could be explained by several 

experimental differences in the cell lines, differentiation conditions, sub-

cytotoxic OP concentrations, and/or exposure times used. With respect to the 

latter, the shorter exposure time in the current study, may not have been 

sufficient for the threshold levels required to induce expression of HSP-90 to be 

reached. It is important to mention that the total cellular HSP content was 

measured this study. It would be beneficial for future work to measure these 

proteins in the cytosolic and mitochondrial fractions separately after OP 

exposure. 

  

The observed alterations in NFH phosphorylation were consistent with the 

possible disruption of cell signalling pathways involved in cytoskeletal 

regulation. In the current study, it was important to relate these changes to the 

activation status of the MAP kinase ERK 1/2, since it known as a convergence 

point for cell signalling pathways involved in neuronal cell differentiation 

(Perron and Bixby, 1999). This protein kinase is activated in N2a cells following 
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induction of cell differentiation by serum withdrawal (Hargreaves et al., 2006) 

and such activation is required for the development of neurites (Singleton et al. 

2000; Lopez-Maderuelo et al. 2001). Moreover, it is known to be important in 

the phosphorylation of NFH (Perron and Bixby, 1999). In the current study, the 

increase in reactivity of anti-pERK and the calculated phosphorylation ratios 

with a lack of detectable changes in anti-total ERK reactivity after 2 h exposure 

to both compounds suggested that OP treatment lead to increased activation of 

ERK, which may account for the changes in NFH phosphorylation at that time 

point. However, the lack of significant changes in anti-pERK in OP-treated cells 

compared to the control after 4 and 8 h exposure suggested that the OP-induced 

activation was short-lived. The finding of the current study, with respect to the 

activation status of the MAP kinase ERK1/2, is compatible with a previous study 

conducted under co-differentiation conditions, which also showed transient 

increased reactivity of anti-pERK but not anti-total ERK in N2a cells exposed to 

PSP for 4 h (Hargreaves et al., 2006). These data together suggest that several 

OPs are capable of inducing transient changes in ERK activation that might 

disrupt NFH phosphorylation in treated cells. 

 

Interestingly, the data obtained from the measurement of phosphatase activity 

were consistent with the possibility that increased phosphatase activity could 

account for the observed reduction in NFH phosphorylation at the later time 

point. Previously, it has been reported that protein phosphatase 2A from both rat 

spinal cord and rabbit skeletal muscle can reduce the phosphorylation of NFH 

following hyperphosphorylation by cyclin-dependent kinase-5 (cdk5) in 

neurodegenerative disease (Veeranna et al., 1995). In addition, reduced levels of 

protein phosphatase 2A and other phosphatases were found to be associated with 

altered NFH phosphorylation in protein aggregates found in Alzheimer’s disease 

(Vogelsberg-Ragaglia et al., 2001) and amyotrophic lateral sclerosis brain 

(Kesavapany et al., 2007). Therefore, protein phosphatase 2A might be one 

potential NF-associated phosphatase involved in the reduced phosphorylation of 

NFH following 8 h exposure to both CPF and CPO. However, further 

investigation is needed to identify specific phosphatases involved in the 

regulation of NFH phosphorylation in OP treated cells. 

 



Effects of CPF and CPO on cytoskeletal proteins in N2a cells                Chapter 4 

122 

 

Indirect immunofluorescence findings further confirmed the idea that both 

compounds used in the current study can impair neurite development and 

interfere with the expression levels of cytoskeletal proteins. The relatively strong 

staining of axon-like neurites for total NFH in control cells, and in cell body-

located aggregates with weaker staining of the axon-like neurites that remained 

in OP-treated cells, may reflect disruption of the neurofilament network in 

treated cells. This was even more apparent from changes in the staining pattern 

with anti-p-NFH from clear axonal staining in the control cells to mainly 

aggregates in the cell bodies of treated cells suggested that the phosphorylated 

NFH was more highly affected by CPF and CPO treatment at both time points (2 

and 8 h). This disruption in the intracellular distribution of neurofilaments is 

consistent with that observed in previous studies, in which cells were induced to 

differentiate for 24 h in the presence and absence of sub-lethal neurite inhibitory 

concentrations of PSP (Hargreaves et al., 2006), diazinon (Flaskos et al., 2007) 

and CPO (Flaskos et al., 2011).  

 

On the other hand, strong staining patterns with β-tubulin antibody obtained by 

indirect immunofluorescence further confirm the observation of the 

densitometric analysis which revealed no changes in the reactivity of pre-

differentiated N2a cell lysates with antibodies against β-tubulin following 

treatment with 3 µM concentration of either compound. The similar distribution 

of tubulin in cell bodies and neurites of treated and non-treated cells indicated no 

major disruption of the microtubule network, suggesting that microtubules are 

not the main target for OP pesticides in pre-differentiated N2a cells. 

 

In summary, the results presented in this chapter suggest that OP-induced neurite 

retraction in pre-differentiated N2a cells is associated with early transient 

increases in NFH phosphorylation, which is then followed by a decline at 8 h, 

and a transient reduction in GAP-43 but that the level of total NFH and 

microtubules was unaffected.  Increased activation of the ERK1/2 MAP kinase 

signalling pathway accounts for the observed alterations in pNFH at 2 h, whereas 

increased levels of phosphatase activity mediate the dephosphorylation at 8 h. 

Although neither compound was able to affect the levels of HSP-70 and HSP-60, 

CPO seemed to cause a transient inhibition in levels of HSP-90. These findings 
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together demonstrate that, at a molecular level, sub-cytotoxic concentrations of 

CPO induce a similar pattern of effects to those of CPF in pre-differentiated N2a 

cells with respect to the levels and intracellular distribution of cytoskeletal 

proteins and on the levels of growth associated proteins, activation status of 

ERK1/2 and phosphatase activity.  
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5 Development of medium to high throughput assays of 

organophosphate toxicity in pre-differentiated N2a 

cells 

5.1 Introduction 

Neurite outgrowth is one of the main morphological features of 

neurodevelopment, and has been investigated in numerous in vitro studies. 

Extension of neurites (axons and dendrites) during brain development is a crucial 

factor that determines neuronal connectivity (Radio et al., 2008). Thus, 

disruption of this critical cellular process as a result of OP exposure could lead to 

neurodegenerative effects in developing organisms (Rice and Barone, 2000, 

Costa, 2006, Grandjean and Landrigan, 2006). As neurite outgrowth in vitro 

exhibits many of the morphological and molecular changes that occur in axon 

outgrowth during nerve regeneration in vivo, neurotoxin-induced changes in this 

phenomenon may also reflect the ability of xenobiotics to cause axon retraction 

and/or inhibit nerve regeneration in adult animals (Burgoyne, 1991, Berger-

Sweeney and Hohmann, 1997). 

 

The neurotoxic effects of CPF and CPO on neurite outgrowth in pre-

differentiated N2a cells observed in chapter three were assessed using manual 

laboratory techniques, by which the number of axon-like processes was 

quantified per 100 cells following CFSE staining. Although this method 

demonstrated the ability of both compounds to induce changes in the process of 

neurite outgrowth, the acquisition of microscopic images and the subsequent 

quantitative analyses were time-consuming and gave information only about 

neurites that were longer than two cell body diameters in length only (i.e. axon-

like). In addition, the assessment of neurite outgrowth was based on a single 

concentration of both compounds. Although this concentration (3 µM) for CPF 

was previously demonstrated to induce 50% inhibition in the outgrowth of axon-

like processes in pre-differentiated N2a cells without affecting cell viability 
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(Sachana et al., 2001), it provides no information about the concentration-effect 

relationship of these OPs on the cellular model. 

  

Therefore, high throughput/high content screening has been developed using 

fully automated integrated systems for cell imaging and data analysis (Abraham 

et al., 2004, Smith and Eisenstein, 2005). This advanced technology provides 

reliable, time efficient and rapid measurements of neurite outgrowth overcoming 

the common limitations of manual methods used in this study. Additionally, high 

throughput/high content screening can assess the effects of a wide range of 

chemicals and neurotoxicants on multiple parameters of neurite outgrowth such 

as neurite number, neurite length, cell body area and the extent of neurite 

branching. Changes in each endpoint can be analysed and presented as average 

or total count per each individual cell in the captured image (Radio and Mundy, 

2008). Moreover, high throughput/high content assays can be used with different 

cellular models in order to compare and characterise the effects of several OPs or 

other chemicals on neurite outgrowth in multiple cell types (Mundy et al., 2010). 

Earlier reports have validated the feasibility of this approach for evaluating the 

neurotoxicity potential of various chemicals on neurite outgrowth in neural cell 

lines under post- differentiation (Wilson et al., 2014) and co-differentiation 

exposure conditions (Radio et al., 2008, Radio et al., 2010, Harrill et al., 2011, 

Harrill and Mundy, 2011). 

 

As previously mentioned, the molecular basis of the OP-induced effects on 

neurite outgrowth in pre-differentiated N2a cells observed in chapter four were 

examined using immunoblotting techniques. However, the procedure was time 

consuming and effects of both OPs on cytoskeletal proteins and their regulatory 

pathways in pre-differentiated N2a cells was again based on only one 

concentration of both compounds. In order to provide rapid, quantitative dose-

response analysis for the effects of CPF and CPO at different time points, a 

medium to high throughput method such as cell ELISA was developed as part of 

the current study. This idea was first described by Schmuck and Ahr (1997), who 

showed that cells can be differentiated in the presence and absence of OPs and 

the levels of neurite enriched cytoskeletal proteins can be determined by the aid 

of cell ELISA (Schmuck and Ahr, 1997). Some of the advantages of this 
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technique when used as an alternative to Western blotting approach used in the 

previous chapter is the ability to apply several concentrations of both CPF and 

CPO simultaneously on a single microtitre plate and thus, reducing the amount 

of reagents, materials, costs and processing time.  

 

The key aims of this chapter were to develop medium to high throughput assays 

in order to examine the effects of multiple concentrations of CPF and CPO at 

different time points on neurite outgrowth, cytoskeletal proteins and their 

regulatory pathways in pre-differentiated N2a cells in a rapid quantitative 

analysis. This would, in turn, validate the previous findings obtained from 

analysis of CFSE staining and antibody reactivity with Western blots of cell 

lysates treated with a single concentration (3 µM) of both compounds, and help 

to determine the concentration dependence of the response.  
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5.2 Results 

5.2.1 Development of high throughput assays of neurite 

outgrowth    

To quantitatively analyse multiple parameters of neurite outgrowth in pre-

differentiated N2a cells following CPF and CPO treatment, cells were fixed and 

stained by indirect immunofluorescence with antibodies against α-tubulin (clone 

B512) and pNFH (clones Ta51 and SMI34). Monoclonal antibody B512 was 

expected to stain microtubules in axons, dendrites and cell bodies, whereas the 

anti-pNFH antibodies were expected to preferentially stain mainly 

neurofilaments in axons of neuronal cells. These particular antibodies were used 

because they are neurite-enriched cytoskeletal proteins and thus, allowing for the 

OP-induced effects on multiple parameters of neurite outgrowth in pre-

differentiated N2a cells to be investigated. Images of stained monolayers were 

acquired using the ImageXpress Micro Widefield High Content Screening 

System and neurite outgrowth analysis was performed using MetaXpress 

imaging and analysis software, as described in section 2.2.16. 

 

Figure 5.1 demonstrates the segmentation of acquired images obtained by high 

throughput assays used in this part of the current study. All representative images 

shown are from non OP-treated controls stained with B512, Ta51 and SMI34. 

Image acquisition was performed using two wavelengths; FITC to detect cell 

body and neurites (green) and DAPI to identify nucleus of all cells in a field 

(blue). The resultant merged images showed staining distribution of FITC and 

DAPI within each neuronal cell. Image segmentation was then performed using 

MetaXpress imaging and analysis software and displayed as multicoloured 

masks tracing the neurites and cell bodies in the acquired image. For accurate 

image segmentation, the analysis settings of the integrated neurite outgrowth 

application module were optimised and configured to catch maximum relevant 

detail with minimal background noise. The following parameters of neurite 

outgrowth were chosen for the analysis and measurements were provided in 

mathematical algorithms: 
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 Average number of cells/field (total number of neural cell bodies 

averaged by the number of fields) 

 Average cell body area/field (total area of cell bodies in square micron 

averaged by the number of fields) 

 Average number of neurites (total number of neurites produced from the 

cell bodies averaged by the number of fields ) 

 Maximum neurite length/cell (the length in microns of the longest neurite 

from the neuronal cell body to an extreme segment per cell)  

 Average neurite length/cell (the total length in microns of all significant 

outgrowths averaged by the number of cells) 

 Mean processes/cell (average number of neurites longer than 10 µm/cell). 

 Mean branches/cell (average number of branches originating from 

neurites produced by each cell) 

 Significant outgrowth (neurites longer than 10 µm in length) 

 Percentage of cells with significant outgrowth (cells with at least one 

neurite ˃ 10 µm in length). 
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Figure 5.1. Segmentation of stained pre-differentiated N2a cells using high 

throughput screening assays. Cells were fixed and stained with antibodies recognising 

α-tubulin (B512) and pNFH (Ta51 and SMI34) followed by Alexa Fluor
® 

conjugated 
anti-IgG secondary antibodies. All Images shown are from non OP-treated controls from 

a single field of view. Acquired images were obtained using ImageXpress Micro system 

(10x objective) with two wavelengths; FITC for cell body and neurites detection and 
DAPI for nucleus counting. Segmented images with multicoloured tracing masks on 

neurites and cell bodies were generated using the Neurite Outgrowth Module within the 

MetaXpress imaging and analysis software for monitoring different parameters of 
neurite outgrowth. 
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5.2.2 Monitoring multi-parameters of neurite outgrowth in pre-

differentiated N2a cells 

The concentration-range (1, 3, 10 µM) effects of CPF and CPO on neurite 

outgrowth in pre-differentiated N2a cells were investigated following 2 and 8 h 

exposure using high throughput assay. Data of multi-parametric analysis of 

neurite outgrowth obtained by quantitation of B512 and pNFH (clone Ta51) 

staining are shown in this chapter. Confirmatory data using another anti-pNFH 

antibody (clone SMI34) are displayed in appendix (Figure 8.1-8.4). The current 

study focused on the effects of CPF and CPO at 2 and 8 h time points because 

most alterations in neurite outgrowth and associated protein changes were 

observed at these two exposure times in earlier chapters. 

 

Figure 5.2 shows the high throughput data for cell number and cell body area 

obtained by analysis of B512 and Ta51 staining at 2 and 8 h exposure. The 

presented data show that all concentrations of CPF and CPO had no effects on 

the average neuronal cell number/field after 2 and 8 h exposure compared to the 

untreated controls (Figure 5.2A1-A4). Similarly, both B512 and Ta51 staining 

showed no effects on the measurements of cell body area/field of pre-

differentiated N2a cells following 2 h exposure to both OPs (Figure 5.2B1 and 

B2). After 8 h treatment, staining with both antibodies showed slight but not 

significant decreases in the average cell body area/field following exposure to 1 

and 3 µM CPF and CPO compared to non OP-treated control (Figure 5.2B3 and 

B4). However, the highest concentration (10 µM) of both OPs significantly 

reduced this parameter as indicated with B512 (p ˂ 0.01) and Ta51 (p ˂ 0.0001) 

staining (Figure 5.2B3 and B4).   
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Figure 5.2. Effects of CPF and CPO on cell number and cell body area in pre-differentiated N2a cells as assessed by high throughput assays.  Cell 

were then fixed and stained with B512 and Ta51, after which data were acquired using the ImageXpress Micro system and the cell number and cell body 
area were measured using MetaXpress imaging and analysis software. Data show dose-related effects of both CPF and CPO on the average cell number/field 

(A) and the average cell body area (µm
2
)/field (B) with B512 and Ta51 staining at 2 h and 8 h. High throughput data are represented as mean values ± SEM 

from four independent experiments. Data were analysed using two-way ANOVA. The CPF effects are presented as blue solid lines with circles; the CPO 
effects are presented as red dashed lines with triangles. Asterisks indicate changes that are statistically different from the non OP-treated controls with B512 

(*p ˂ 0.01) and Ta51 (*p ˂ 0.0001) staining. When SEM bars are not apparent, this means that error is smaller than the symbol size.  
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The effects of multiple concentrations of CPF and CPO on the average number 

of neurites/field and the percentage of cells with significant outgrowth (neurites 

˃ 10 µm in length) are shown in figure 5.3. As indicated in figure 5.3A1-A4, no 

effects were observed on the average neurite number/field in cells treated with 1 

µM CPF and CPO, but significant decreases (p ˂ 0.001) were detected with 

B512 and Ta51 staining at 3 and 10 µM of both compounds at both time points. 

Following 2 h exposure, the quantitative analysis of both stains for the average 

number of neurites/field in pre-differentiated N2a cells showed that the treatment 

of 3 µM CPF and CPO caused 13% and 18% decline, respectively, compared to 

the corresponding non OP-treated control (Figure 5.3A1 and A2). In addition, 

exposing the cells to a higher concentration of 10 µM reduced the average 

neurite number/field to 30% with CPF and 40% with CPO using both stains 

(Figure 5.3A1 and A2).  

 

When pre-differentiated N2a cells were exposed to both OPs for 8 h, the 

reduction in the average neurite number/field detected by Ta51 staining was 

greater than those obtained with B512 (Figure 5.3A3 and A4). The quantitative 

analysis of B512 staining for the average number of neurites/field in pre-

differentiated N2a cells showed that 3 and 10 µM CPO resulted in 30% and 36% 

decline, respectively (Figure 5.3A3). However, Ta51 analysis demonstrated 33% 

and 55% fall in the average number of axon-like neurite compared to the non 

OP-treated controls at 3 and 10 µM CPO, respectively (Figure 5.3A4). 

 

Figure 5.3B illustrates the number of cells with neurites length above 10 µm (i.e 

significant outgrowth) as quantified by B512 and Ta51 staining following OP 

treatment for 2 and 8 h. Quantitation of B512 staining showed lack of detectable 

changes on the number of cells with significant outgrowth in pre-differentiated 

N2a cells treated with multiple concentrations of CPF and CPO for 2 and 8 h 

(Figure 5.3B1 and B3). In contrast, Ta51 staining showed dose and time-

dependent decreases in this parameter in OP-treated cells at both time points. 

The observed reduction in the number of cells with long neurites was statistically 

significant at 3 and 10 µM CPF and CPO in compare to the non OP-treated 

controls (p ˂0.05). The reduction in number of cells with significant outgrowth 
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was greater at 8 than at 2 h for CPO at both 3 and 10 µM concentrations (Figure 

5.3B2 and B4). 
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Figure 5.3. Effects of CPF and CPO on neurite number and percentage of cells with significant outgrowth in pre-differentiated N2a cells as 

assessed by high throughput analysis.  Cells were stained with B512 and Ta51, after which data were acquired using ImageXpress Micro system and 

measured using MetaXpress imaging and analysis software. Data show dose-related effects of both CPF and CPO on the average neurite number/field (A) 
and the percentage of cells with significant outgrowth (B) at 2 and 8 h with B512 and Ta51 staining. Data are presented as mean values ± SEM from four 

independent experiments for both time points. Data were analysed using two-way ANOVA. The CPF effects are presented as blue solid lines with circles; 

the CPO effects are presented as red dashed lines with triangles. Asterisks indicate changes that are statistically different from the non OP-treated controls    

(p ˂ 0.05). When SEM bars are not apparent, this means that error is smaller than the symbol size. 
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Further parameters of neurite outgrowth such as the maximum and average 

neurite length per neuronal cell were also assessed using high throughput assays. 

Following 2 and 8 h exposure, there was a dose-dependent decrease in both 

parameters of neurite outgrowth in OP-treated cells compared to the non OP-

treated controls. A significant dose-related reduction (p ˂ 0.05) was observed at 

two concentrations (3 and 10 µM) of both CPF and CPO (Figure 5.4A and B).  

 

With regard to the measurement of maximum neurite length per neuronal cell, 

Ta51 staining was more sensitive in detecting long neurites than B512 staining 

(Figure 5.4A1-A4). It can be seen that the maximum neurite length/cell in non 

OP-treated controls obtained by B512 stain ranged from 30 to 37 µm, whereas, 

those measured with Ta51 stain were 46 to 58 µm. Figure 5.4A1 and A3 shows 

the quantitative analyses of B512 for the dose-related effects of both CPF and 

CPO on maximum neurite length/cell; CPF exposure for 2 h had no significant 

effects on this parameter at all concentrations (Figure 5.4A1). However, 8 h 

exposure to 10 µM CPF significantly decreased the maximum length of B512-

positive neurites/cell by 53% compared to the control (p ˂ 0.0001) (Figure 

5.4A3). On the other hand, Ta51 staining exhibited a dose-dependent decline in 

the maximum neurite length/cell following CPO treatment for 2 and 8 h. The 

treatment of pre-differentiated N2a cells with 3 and 10 µM CPO caused a 

significant reduction in maximum neurite length/cell when compared to the non 

OP-treated control (p = 0.005 at 2 h, and p ˂ 0.0001 at 8 h) (Figure 5.4A1 and 

A3). Figure 5.4A2 and A4 shows the measurements of maximum neurite 

length/cell obtained by the analysis of Ta51 staining. This indicated that both 

CPF and CPO at concentrations of 3 and 10 µM were able to induce significant 

reductions in the maximum length of neurites per cell compared to controls at 

both time points in pre-differentiated N2a cells (p ˂ 0.007 at 2 h; p ˂ 0.0001 at 8 

h). 

 

As illustrated in figure 5.4B1-B4, both B512 and Ta51 staining generated similar 

trends for the impacts of multiple concentrations of CPF and CPO on the average 

neurite length per cell at both time points. Following 2 h exposure of both 

compounds, both staining showed that the average neurite length per cell 

measurements were significantly reduced by approximately 25% and 40% at 3 
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and 10 µM, respectively (p ˂0.0001) (Figure 5.4B1 and B2). A further reduction 

in average neurite length per cell was observed following 8 h exposure to CPF 

and CPO. The treatment of 3 µM of both OPs resulted in 30% decrease (p ˂ 

0.0001) in this parameter, while a higher concentration of 10 µM significantly 

reduced the average length of neurites per cell to 45% (p ˂ 0.0001) (Figure 

5.4B3 and B4).  
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Figure 5.4. Effects of CPF and CPO on maximum and average neurite length/cell in pre-differentiated N2a cells as assessed by high throughput 
analysis. Cells were stained with B512 and Ta51, after which data were acquired using ImageXpress Micro system and measured using MetaXpress 

imaging and analysis software. Data show dose-related effects of both CPF and CPO on the maximum neurite length/cell (A) and the average neurite 

length/cell (B) at 2 and 8 h with B512 and Ta51 staining. Data are presented as mean values ± SEM from four independent experiments for both time 
points. Data were analysed using two-way ANOVA. The CPF effects are presented as blue solid lines with circles; the CPO effects are presented as red 

dashed lines with triangles. Asterisks indicate changes that are statistically different from the non OP-treated controls (*p ˂ 0.05). When SEM bars are not 

apparent, this means that error is smaller than the symbol size. 
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Further parameters of neurite outgrowth such as the mean number of processes 

and branches per neuronal cell were also assessed using high throughput assay. 

As demonstrated in figure 5.5A and B, measurements with both B512 and Ta51 

staining show that there was a concentration-dependent decline in the number of 

processes and branches/cell in pre-differentiated N2a cells treated with both CPF 

and CPO for 2 and 8 h compared to non OP-treated controls. A significant dose-

related decrease (p ˂ 0.01) was observed at 3 and 10 µM CPF and CPO at both 

exposure time points. Staining neurites with B512 revealed a higher number of 

processes and branches/cell than those detected by Ta51 staining.   

 

Similar data on the effects of CPF and CPO on neurite outgrowth parameters 

were obtained when another anti-pNFH antibody (SMI34) was used (see 

appendix; Figure 8.1-8.4). 
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Figure 5.5. Effects of CPF and CPO on the mean number of processes and branches/cell in pre-differentiated N2a cells as assessed by high 

throughput analysis. Cells were stained with B512 and Ta51, after which data were acquired using ImageXpress Micro system and measured using 
MetaXpress imaging and analysis software. Data show dose-related effects of both CPF and CPO on the mean processes/cell (A) and the mean branches/cell 

(B) at 2 and 8 h with B512 and Ta51 staining. Data are presented as mean values ± SEM from four independent experiments for both time points. Data were 

analysed using two-way ANOVA. The CPF effects are presented as blue solid lines with circles; the CPO effects are presented as red dashed lines with 

triangles. Asterisks indicate changes that are statistically different from the non OP-treated controls (*p ˂ 0.05). When SEM bars are not apparent, this means 
that error is smaller than the symbol size. 
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5.2.3 Effects of CPF and CPO on the viability of pre-

differentiated N2a cells 

To ensure that the 1-10 µM dose-range of CPF and CPO used in this study was 

non-cytotoxic towards pre-differentiated N2a cells, MTT reduction assays were 

carried out, as described earlier in section 2.2.7. The results demonstrated in 

figure 5.6A and B show that all concentrations of CPF and CPO had no effect on 

the reduction of MTT in OP-treated cells at either time point when compared to 

their corresponding non OP-treated controls. The results obtained from 

traditional MTT viability assay was compatible with high throughput data on cell 

count, which showed that treatment of pre-differentiated N2a cells with 1, 3 and 

10 µM CPF and CPO had no inhibitory effects on cell number. 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Effects of CPF and CPO on MTT reduction in pre-differentiated N2a 

cells. After 20 h of differentiation, N2a cells were treated without (0.5% v/v DMSO 

control) or with 1, 3 and 10 µM CPF or CPO for 2 and 8 h. The effects of both OPs on 
MTT reduction were measured to evaluate cell viability after 2 h (A) and 8 h (B) 

exposure. Data are expressed as a percentage of the non-OP treated control ± SEM 

from four separate experiments. Data were analysed using one way ANOVA. The CPF 
effects are presented as blue solid lines with circles; the CPO effects are presented as 

red dashed lines with triangles. The lack of asterisks reflect the fact that no statistically 

significant changes were found in MTT reduction in OP-treated cells compared to the 

untreated controls at both time points. When SEM bars are not apparent, this means 
that the error is smaller than the symbol size. 
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5.2.4 Determination of concentration-response effects of CPF 

and CPO on cytoskeletal and associated regulatory 

proteins using cell ELISA 

The effects of multiple concentrations of CPF and CPO on cytoskeletal proteins 

and cell signalling pathway associated with their regulation in neurite outgrowth 

were further assessed in pre-differentiated N2a cells using cell ELISA technique 

for rapid quantification. The changes in the binding levels of these proteins using 

monoclonal antibodies against α-tubulin (clone B512), NFH (clone N52), pNFH 

(clones Ta51 and SMI34), and ERK1/2 MAP kinase were determined and 

quantified in controls and OP-treated cells following 2 and 8 h exposure, as 

described in section 2.2.15. These time points were chosen to focus on 

conditions under which both OPs induced significant changes in Western 

blotting analysis of lysates from cells exposed to a single concentration (3 µM) 

of each compound (Chapter 4). 

 

Quantification of B512 reactivity (which detects total α-tubulin) by cell ELISA 

showed that it was not affected under any of the exposure conditions tested 

(Figure 5.7A1 and A2). Similarly, treatment of pre-differentiated N2a cells with 

all concentrations of both compounds had no effect at either time point on the 

binding levels of N52 (which recognises total NFH) when compared to controls 

(Figure 5.7B1 and B2). 

 

Figure 5.7C1-D2 shows data from cell ELISAs using monoclonal antibodies 

Ta51 and SMI34, which both recognise pNFH. In figure 5.7C1, a dose-

dependent increase was seen in the levels of Ta51 binding in pre-differentiated 

N2a cells treated with both CPF and CPO for 2 h. The elevation in Ta51 levels 

was statistically significant at 3 and 10 µM concentrations of CPF (p = 0.007) 

and CPO (p ˂ 0.0001) compared to that of non OP-treated controls (Figure 

5.7C1). After 8 h incubation with 3 and 10 µM CPF and CPO, a significant 

decline (p ˂ 0.05) was observed in the levels of Ta51 binding in OP-treated cells 

in compare to controls (Figure 5.7C2). A different epitope of pNFH (recognised 

by SMI34) showed no significant changes in the levels of antibody binding to 
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pre-differentiated N2a cells exposed to all concentrations of CPF and CPO 

compared to non OP-treated controls at both time points (Figure 5.7D1 and D2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Effects of CPF and CPO on cytoskeletal proteins in pre-

differentiated N2a cells as determined by cell ELISA.  N2a cells were induced to 

differentiate for 20 h before being incubated without (0) or with 1, 3 and 10 µM 
concentrations of CPF or CPO for 2 and 8 h. Changes in the binding levels of 

antibodies that recognise α-tubulin (B512) (panel A), NFH (N52) (panel B) and 

pNFH (Ta51 in panel C and SMI34 in panel D) were quantified in controls and OP-
treated cells following 2 and 8 h exposure using cell ELISA. Data are presented as a 

percentage of the non OP-treated control ± SEM (from four independent 

experiments at both time points). Data were analysed using one-way ANOVA. The 

CPF effects are presented as blue solid lines with circles; the CPO effects are 
presented as red dashed lines with triangles. Asterisks indicate changes that are 

statistically different from the non OP-treated controls (p ˂ 0.05). 
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Since there dose-dependent changes were observed in the levels of binding Ta51 

antibody to pre-differentiated N2a cells treated with CPF or CPO for 2 and 8 h, it 

was of interest to investigate whether these alterations in pNFH could be 

associated with changes in ERK 1/2 MAP kinase activation.  

 

Figure 5.8A1 shows dose-dependent decreases in the binding levels of total ERK 

(tERK) to pre-differentiated N2a cells following 2 h exposure to both CPF and 

CPO. However, this reduction was only statistically significant (p ˂ 0.0001) at 

10 µM concentrations of both compounds when compared to the non OP-treated 

controls. After 8 h exposure (Figure 5.8A2), treatment of pre-differentiated N2a 

cells with up to 10 µM of both OPs showed no effects on the binding levels of 

total ERK. 

 

Figure 5.8B1 and B2 demonstrates the dose-response effects of both CPF and 

CPO on the levels of anti-phosphorylated ERK (pERK) binding to pre-

differentiated N2a cells. Exposure to both compounds for 2 h caused similar 

concentration-dependent increases in the binding levels of pERK antibody, 

which was statistically significant at 3 (p ˂ 0.001) and 10 µM (p ˂ 0.0001) 

compared to non OP-treated controls (Figure 5.8B1). By contrast, compared to 

the control, no changes were observed in anti-pERK reactivity with monolayers 

of pre-differentiated N2a cells exposed to either OP for 8 h (Figure 5.8B2). 
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Figure 5.8. Effects of CPF and CPO on the activation status of ERK1/2 MAP 

kinase on pre-differentiated N2a cells as determined by cell ELISA.  N2a cells 

were induced to differentiate for 20 h before being incubated without (0) or with 1, 3 
and 10 µM concentrations of CPF or CPO for 2 and 8 h. Changes in the binding levels 

of antibodies that recognise total ERK (K-23) (panel A) and phosphorylated ERK (K-

4) (panel B) were quantified in controls and OP-treated cells following 2 and 8 h 
exposure using cell ELISA. Data are presented as a percentage of the non OP-treated 

control ± SEM (from four independent experiments at both time points). Data were 

analysed using one-way ANOVA. The CPF effects are presented as blue solid lines 

with circles; the CPO effects are presented as red dashed lines with triangles. Asterisks 
indicate changes that are statistically different from the non OP-treated controls (p ˂ 

0.05). When SEM bars are not apparent, this means that error is smaller than the 

symbol size. 
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5.3 Discussion 

The main aim of the current chapter was to develop medium to high throughput 

assays to examine the effects of several doses of CPF and CPO on multiple 

parameters of neurite outgrowth in pre-differentiated N2a cells over two time 

points. The amount of data obtained using the high throughput assays represents 

the sensitivity and feasibility of this technique to detect and quantify OP-induced 

changes in neurite outgrowth in a pre-differentiated cell model. The use of a 

fully automated approach in this part of the current study provided rapid analysis 

for the effects of both OPs on neurite outgrowth compared to the manual 

approach of measuring neurite outgrowth (CFSE staining) used in chapter three, 

which gave robust data but was time consuming and gave information restricted 

to longer neurites only. Additionally, the instrumentation of high throughput 

analysis validated the data obtained from the use of a single sub-cytotoxic 

concentration (3 µM) of CPF and CPO at the beginning of this thesis (chapter 3) 

and in previous work (Sachana et al., 2001, Sachana et al., 2005, Flaskos et al., 

2011). 

 

In this study, both anti-α-tubulin (B512) and anti-pNFH (Ta51 and SMI34) 

staining were utilised in order to compare and evaluate the potential of each 

marker in detecting the neurotoxic effects of both OPs on neurite outgrowth. 

B512 staining was expressed in cell bodies and neurites that were both dendrite-

like and axon-like, whereas Ta51 and SMI34 staining was more specific for 

axon-like neurites. As indicated in data of neurite outgrowth parameters obtained 

by high throughput analysis (Figure 5.2), B512 staining detected more cells and 

a large cell body area compared to those quantified with Ta51 staining. 

However, Ta51 was more selective than B512 staining in detecting long neurites. 

Thus, B512 staining was more effective than Ta51 for the quantitative analysis 

of cell number and cell body area parameters, while Ta51 was more suitable for 

axon-like neurite related analysis such as neurite length and number.  

 

The high throughput quantification of pre-differentiated N2a cell number 

indicated that 1-10 µM CPF and CPO had no significant effect on the average 

cell number per field at both exposure time points. The data from the automated 
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high throughput agreed with the dose-response effects of CPF and CPO in MTT 

reduction assays both in the current study and in previous work in our laboratory 

(Sachana et al., 2001, Sachana et al., 2005, Flaskos et al., 2011). Thus, findings 

from both assays confirmed that all concentrations of CPF and CPO used in this 

study were non-cytotoxic towards pre-differentiated N2a cells after 2 and 8 h 

exposure. Similarly, measurements of the average cell body area per field, which 

indicate the circular shape of N2a cell bodies, revealed that both compounds at 1 

and 3 µM had no effect on this parameter. However, the automated system 

detected a reduction in the average cell body area in pre-differentiated N2a cells 

exposed for 8 h to the highest concentration (10 µM) of both CPF and CPO, 

which may suggest that treated cells could becoming more compact in shape at 

that time point. 

 

The quantitative assessment of the average number of neurites per field, 

maximum and average neurite length per cell, number of processes and branches 

per cell, and cells with significant outgrowth all indicate that pre-differentiated 

N2a cells respond to both CPF and CPO in a dose- and time-dependent manner. 

This suggests that the neurite length and branching decrease as the 

concentrations of both OPs and the exposure time increase. The observation that 

these parameters of neurite outgrowth were reduced at concentrations of CPF 

and CPO that have no effects on cell number and viability confirms the sub-

cytotoxic neurite inhibitory effect of both compounds towards pre-differentiated 

N2a cells.  

 

The analysis of neurite outgrowth using high throughput assays in the current 

study can provides a valuable comparison between data generated from this 

automated system and those obtained using manual approaches at the beginning 

of this thesis. In this context, high throughput measurements of maximum and 

average neurite length per each neuronal cell corresponds most closely to the 

determination of axon-like neurites previously measured with the aid of CFSE 

stain following 3 µM CPF and CPO (Chapter 3). Although automated neurite 

length measurements were performed in a rapid and more sensitive way 

compared to the manual gross assessment of long neurites by CFSE staining, 

both approaches were in a good agreement showing that there was a dose-
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dependent decrease in the neurite length and/or long neurite number in pre-

differentiated N2a cells treated with both CPF and CPO for 2 and 8 h. The 

presented data also suggest that both automated and manual assays are suitable 

for assessing neurite outgrowth number and/or neurite length. However, the 

former facilitates rapid generation of more complex datasets for multiple 

compounds, concentrations and parameter measurements.  

 

As axons extend and are guided to their synaptic targets, they form a number of 

branches, which play an essential role in connecting single neuron with multiple 

neurons (Hjorth et al., 2014). Utilisation of high throughput assays for neurite 

outgrowth was sensitive enough to support this study with additional information 

on neurite branching. Such a parameter could not be achieved previously using 

the manual measurement approach due to time constraints. In the current study, 

the data show changes in the actual branching of neurites as another sensitive 

parameter of neurite outgrowth, which was affected by both OPs in a similar 

concentration-dependent manner as other measures of neurite outgrowth in pre-

differentiated N2a cells at both time points. In humans, alterations in the 

formation of axonal branches have been reported in brains affected by 

neurodegenerative diseases (Larner, 1995, Kwon et al., 2006). The observed 

inhibition in the mean branches per cell might indicate a disruption in 

cytoskeletal proteins involved in the formation of neurite branches. For instance, 

increased MAP1B was found to be associated with decreased axonal branching 

in adult dorsal root ganglia neurons (Bouquet et al., 2004). Altered expression of 

GAP-43 in response to neurite branching has been also demonstrated in rat 

hippocampal mossy fibres (Bendotti et al., 1997). Earlier studies also linked the 

accumulation of actin filaments in axons with the formation of neurite branches 

in cultured neurons (Gallo, 2006, Ketschek and Gallo, 2010). Therefore, it would 

be of interest to extend this work to investigate the molecular basis underlying 

the observed effects of CPF and CPO on neurite branching.   

 

The current study has shown that cell-based ELISA is a rapid and simple method 

to study the molecular basis of the observed OP-induced effects on neurite 

outgrowth. Quantification of anti-tubulin and anti-NFH antibody binding in pre-

differentiated N2a cells by cell-based ELISA revealed that both CPF and CPO at 
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neurite inhibitory concentrations (3 and 10 µM) had no effects on the levels of α-

tubulin and total NFH at any time point (Figure 5.5A and B). These data 

suggested that disruption of the expression levels of these proteins was not 

responsible for the observed inhibition in multiple parameters of neurite 

outgrowth in pre-differentiated N2a cells. Although these findings are 

completely compatible with the data presented in chapter four of this thesis in 

which 3 µM concentration CPF and CPO had no effects on the reactivity of the 

same antibodies with Western blots of cell lysates, the cell-based ELISA assay 

demonstrated that even higher concentration (10 µM) of both compounds 

similarly had no effect.  

 

Inhibition of neurite outgrowth was not associated with significant alterations in 

α-tubulin, whilst further analysis using anti-pNFH suggested that there may be a 

change in NFH phosphorylation. In this high throughput part of the study, the 

employed pNFH antibodies (Ta51 and SMI34), which interact with different 

phosphorylated epitopes on the c-terminal Lys-Ser-Pro (KSP) repetitive region 

of NFH, demonstrated different results in the cell ELISA (Shaw, 1991, 

Lichtenberg-Kraag et al., 1992, Sihag et al., 2007). Using cell-based ELISA, the 

binding of anti-SMI34 antibody showed that the levels of phosphorylation at the 

epitope of NFH it recognises were unaffected in pre-differentiated N2a cells after 

CPF and CPO exposure. However, the binding levels of Ta51 antibody 

demonstrated a significant increase in NFH phosphorylation at 2 h and a 

subsequent decrease at 8 h in pre-differentiated N2a cells treated with 3 and 10 

µM CPF and CPO. The quantitative changes on cell ELISA for this antibody are 

consistent with previously observed results (chapter 4) where Western blots 

probed with Ta51 antibody were used to evaluate the effects of 3 µM 

concentration of both OPs on pNFH in pre-differentiated N2a cells. These 

findings suggest that the amount of phosphorylation at the Ta51 epitope changed 

much more than that at the SMI34 epitope. 

 

The discrepancy between the SMI34 and Ta51 antibodies demonstrated in the 

cell ELISA may be due to different effects, possibly by different kinases, at 

different phosphorylation sites on NFH. However, this finding cannot alter the 

fact that there were detectable alterations in NFH phosphorylation at both time 
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points as indicated by Ta51 antibody using two different approaches. Although 

no significant changes in NFH phosphorylation were observed with SMI34 

antibody using cell ELISA, the fact that SMI34 antibody revealed decreases in 

neurite outgrowth parameters in high throughput studies (Appendix; Figure 8.1-

8.4) in the same manner as Ta51 strongly suggests that the retraction of axon-

like neurites has occurred in OP-treated cultures.  

 

The observed alterations in pNFH together with the lack of effects on total NFH 

and α-tubulin at both time points suggest that altered phosphorylation state of 

NFH is dose dependent and represents a specific target for the inhibitory effects 

of CPF and CPO on neurite outgrowth in pre-differentiated N2a cells. The 

observed increase in the reactivity of antibody against pNFH at 2 h and the 

subsequent decline at 8 h exposure to both OPs suggest that the 

hyperphosphorylation of NFH at early time point is transient and followed by a 

reduced phosphorylation state of NFH. This disruption in NFH phosphorylation 

is similar to those found in N2a cells treated with PSP for 24 h under co-

differentiation conditions (Hargreaves et al., 2006). Moreover, the reduction in 

NFH phosphorylation at 8 h is in agreement with a previous study, which 

showed reduced levels of pNFH in N2a cells induced to differentiate for 24 h in 

the presence of TOCP (Fowler et al., 2001). These findings together indicate that 

neurite inhibitory effects of some OPs are associated with their ability to disrupt 

the NFH phosphorylation. 

 

As NF subunits accumulate in the axon, they become extensively phosphorylated 

on the c-terminal domain of NFH. Since phosphorylation of NFH has an 

important role in axon maturity and stability (Sihag et al., 2007), the changes 

observed in NFH phosphorylation at 2 and 8 h could indicate a transient 

hyperphosphorylation of NFH causing disruption in the neurofilament networks 

or a breakdown in their stability and consequently affecting axon stability. It has 

also been demonstrated that extensive phosphorylation of KSP regions in NFH 

results in the formation of sidearm projections, which subsequently affect the 

interactions of NFs with other NFs (Eyer and Leterrier, 1988) and/or other 

cytoskeletal elements such as MTs (Hisanaga and Hirokawa, 1990). 

Additionally, phosphorylation of KSP sites found to decrease the rate of slow 
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axonal transport and increase the axonal diameter (Hirokawa et al., 1984, de 

Waegh et al., 1992). Of particular interest is the fact that disruption of the 

phosphorylation status of NFH has been linked with the axonal degeneration that 

leads to the development of OPIDN following OP exposure (Suwita et al., 1986, 

Abou-Donia and Lapadula, 1990, Abou-Donia, 1993a). In this context, Suwita et 

al. (1986) detected increased phosphorylation of NFH in spinal cord 

neurofilaments isolated from chicken treated with TOCP as an early event in 

OPIDN pathogenesis (Suwita et al., 1986). Furthermore, Jortner et al. (1999) 

demonstrated reduced NFH phosphorylation using a different antibody to pNFH 

(SMI31) in spinal cords of PSP-treated chickens between 4 days of exposure and 

the appearance of OPIDN lesions such as degeneration of myelinated nerve 

fibers (Jortner et al., 1999).  The fact that altered NFH phosphorylation has also 

been described in vivo for other OP treatment underlines the capability of the 

pre-differentiated N2a cell model to predict the in vivo delayed toxicity 

following OP exposure. These findings also suggest that several OPs may be 

able to disrupt the phosphorylation status of NFH.  

 

The observed alterations in NFH phosphorylation confirmed by the data 

presented in this chapter are consistent with the possible disruption of MAPK 

signalling pathways. Thus, the effects of both CPF and CPO on the activation of 

the MAP kinase ERK1/2, one of the MAP kinase family responsible for NFH 

phosphorylation during neurite outgrowth in healthy neurons, were further 

investigated in this study. This is due to that fact that ERK1/2 is activated in N2a 

cells following induction of cell differentiation by serum withdrawal (Hargreaves 

et al., 2006) and this activation is essential for neurite outgrowth (Singleton et 

al., 2000, Lopez-Maderuelo et al., 2001). Additionally, activated ERK1/2 is 

thought to have a role in NFH phosphorylation, by phosphorylating the KSP 

repeats located in NFH protein (Veeranna et al., 1998). In the current study, 2 h 

exposure to 3 and 10 µM concentrations of both CPF and CPO was found to 

increase the levels of anti-pERK antibody with either no detectable change or a 

slight decrease in the levels of anti-total ERK antibody binding to pre-

differentiated N2a cells. These findings suggested that both OP treatments lead 

to increased activation of ERK, which may explain the observed increase in NFH 

phosphorylation at the early time point. The lack of significant changes in the 
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activation of MAP kinase ERK1/2 compared to the control in pre-differentiated 

N2a cells exposed to the same dose-range CPF and CPO for 8 h indicates that 

OP-induced activation of ERK was short-lived. The reduced levels of NFH 

phosphorylation at 8 h with a corresponding decline in the activation ERK 1/2 to 

control levels at the same time could be due at least partly to a transiently 

increased activation of ERK 1/2 at 2 h. The fact that increased levels of protein 

phosphatase activity were found to be associated with decreased NFH 

phosphorylation in pre-differentiated N2a cells treated with 3 µM concentration 

of both compounds for 8 h (chapter 4), suggests that increased phosphatase 

activity could also contribute to the reduced phosphorylation of NFH following 8 

h exposure to both CPF and CPO. However, due to a limited supply of 

phosphatase reagents, the effects of 10 µM CPF and CPO on phosphatase 

activity at 8 h exposure were not investigated and further work would be needed 

to identify the specific phosphatases involved in the modulation of NFH 

phosphorylation in OP-treated cells. 

 

In summary, this chapter demonstrates that high throughput assays can be 

successfully applied to assess the dose-response effects of CPF and CPO on 

multiple parameters of neurite outgrowth in pre-differentiated N2a cells. This 

approach shows that concentration dependent inhibitory effects of both CPF and 

CPO on neurite number and length, processes and branches occur at 

concentrations that have no effects on cell number, the latter being in good 

agreement with the lack of effect on cell viability as determined by MTT 

reduction.  The automated system not only provides rapid analysis but also 

provides other novel information on neurite outgrowth parameters, not easily 

detected manually, showing that both compounds inhibit the branching of neurite 

in a concentration-dependent manner. Consistency with data obtained from MTT 

reduction and CFSE assays in chapter three, further confirms that manual 

counting techniques were useful and reliable in detecting the neurite inhibitory 

neurotoxic effects of both OPs in pre-differentiated N2a cells. The study 

presented in this chapter also illustrates the value of B512, Ta51 and SMI34 

antibodies to detect biomarkers of neurite outgrowth via high throughput assays 

in the N2a cell model. At a molecular level, the cell-based ELISA developed in 

this chapter represents a useful alternative and sensitive approach to detect the 
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dose-response changes in cytoskeletal proteins and associated signalling 

pathways disrupted by OPs in pre-differentiated N2a cells. Findings from this 

approach correlate well with Western blot results, showing that neurite 

outgrowth inhibitory effects of both CPF and CPO are accompanied by 

significant alterations in the levels of NFH phosphorylation and disruption in the 

activation status of ERK 1/2. In order to examine whether neurite outgrowth and 

the cytoskeleton are affected in a similar manner in a more human relevant cell 

model, the effects of both CPF and CPO on a human neural progenitor cell line 

are examined in the next chapter.                        .                             
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6 Testing the effects of chlorpyrifos and chlorpyrifos 

oxon in a human neural progenitor stem cell model 

6.1 Introduction 

Although the work presented in this thesis has focused mainly on the toxic 

effects of CPF and CPO on pre-differentiated N2a cell line of mouse origin, it 

was also of interest to test the effects of these toxins on cell differentiation in a 

more human relevant cell model. The benefits of using neural progenitor stem 

cells derived from human is that measuring neurite outgrowth in a cellular model 

that more closely resembles the complexity of the human nervous system 

neurons in situ, can be more effective at predicting the chemical-related changes 

in vivo (Radio and Mundy, 2008).  

 

Neural stem cells were first isolated from different regions of embryonic human 

brain (Vescovi et al., 1999). Recent advances have also led to the isolation of 

human neural progenitor stem cells from the neocortex region in adult nervous 

system (Richardson et al., 2006). Since then the human neural progenitor stem 

cells have become valuable tools for neuroscience research. Evaluating the 

toxicity of xenobiotics on human neural cells can reduce the level of uncertainty 

associated with cells derived from animal models (Donato et al., 2007). Earlier 

research using human neural progenitor stem cells was restricted because of the 

short life span in culture and the limited capacity to maintain a stable phenotype 

and genotype across passages (Wright et al., 2006, Donato et al., 2007). 

Development of immortalised human neural progenitor stem cells using the myc 

oncogenic transcription factor was highly effective at overcoming these 

limitations (Dang et al., 1999, Kim, 2004). The ability of these cells to 

accommodate self-renewal, which generates large numbers of cells, together 

with their genomic stability is the key advantage of immortalisation using myc 

technology. These features have facilitated the utilisation of these cells for 

toxicity screening (Klemm and Schrattenholz, 2004).  
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An example of such immortalised human neural progenitor stem cell line is the 

commercially available ReNcell CX cell line (Merck Millipore), which was 

derived from a 14-week human foetal brain cortex. ReNcell CX cells can 

differentiate into a mixed population of neurons, astrocytes and oligodendrocytes 

upon mitogen withdrawal (Donato et al., 2007, Kornblum, 2007). Due to their 

immortalisation with myc oncogene transduction, these cells have the capacity 

for self-renewing as they are multipotent, as well as phenotypically and 

genetically stable (Donato et al., 2007). Thus, ReNcell CX is a useful model for 

assessing neurotoxicity in vitro (Breier et al., 2008). Using high throughput 

assays, Breier et al. (2008) used ReNcell CX cells in an undifferentiated state to 

evaluate the effects of chemicals such as lead acetate and methyl mercury 

chloride on neural stem cell proliferation and viability (Breier et al., 2008). 

However, chemical-induced changes in neurite outgrowth in differentiated 

ReNcell CX cells are yet to be investigated. Despite the large number of 

potential neurotoxicants investigated on ReNcell CX and other human neural 

progenitor stem cells, to date the effects of CPF and CPO on these cell lines have 

not been evaluated. Therefore, it was of interest to study the effects of CPF and 

CPO on a human relevant cell model. It was of further interest to determine 

whether this human neural progenitor stem cell line, which contains mixture of 

neuronal and glial cells at early differentiation stage was affected by both 

compounds in a similar manner as pre-differentiated N2a cells.  

 

To achieve these aims, ReNcell CX cells were utilised as a cell model in the 

current study. Under post differentiation exposure conditions similar to those 

applied to N2a cells, cells were exposed to multiple concentrations of CPF and 

CPO for 2 and 8 h. High throughput screening assays were used to assess the 

effects of OPs on multiple parameters of neurite outgrowth, and to confirm the 

expression of mature neural stem cell markers βIII-tubulin, pNFH and GFAP. 

MTT reduction assays were also used to assess the viability of cells following 

OP exposure. Additionally, the effects of both compounds on the enzymatic 

activity of AChE of pre-differentiated ReNcell CX cells were tested at both time 

points. Finally, cell ELISA assays were carried out to study the molecular 

mechanism underlying the neurotoxic effects of both CPF and CPO on neurite 

outgrowth in pre-differentiated ReNcell CX cells. 
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6.2 Results 

6.2.1 Characterisation of differentiated ReNcell CX cells  

ReNcell CX cells were induced to differentiate for 20 h before being treated 

without (0.5% v/v DMSO control) or with 1, 3 and 10 µM CPF or CPO for 2 and 

8 h (section 2.2.2). Upon the removal of growth factors from culture medium, 

ReNcell CX cells are capable of differentiation into a co-culture of neurons, 

astrocytes and oligodendrocytes (Donato et al., 2007, Kornblum, 2007). To 

confirm the phenotypes of differentiated ReNcell CX cells, these cells were 

immunostained with DAPI nuclear counterstain, anti-βIII- tubulin, anti-pNFH 

(clone Ta51) and anti-GFAP primary antibodies. These antibodies were chosen 

because βIII-tubulin and pNFH are neuronal-specific markers, which stain the 

neuronal cell body and neurites (axon and/or dendrites) effectively. GFAP was 

also selected as it is highly expressed by astrocytes and is considered as a useful 

marker of astroglial neurotoxicity (Harry et al., 1998). Utilising high throughput 

screening, the expression of neuronal and glial-specific markers was examined 

and viewed prior commencing the analysis of neurite outgrowth (section 2.2.16). 

 

Figure 6.1 demonstrated representative images of pre-differentiated ReNcell CX 

cells. Following 20 h of induction of cell differentiation, ReNcell CX cells were 

successfully differentiated into subpopulations of developing neuronal and glial 

cells as indicated by their ability to express neuronal markers βIII-tubulin (Figure 

6.1A) and pNFH (Figure 6.1B), and the astroglial-marker GFAP (Figure 6.1C). 

Pre-differentiated ReNcell CX cells were positive for all neural cell markers. 
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Figure 6.1. Characterisation of differentiated ReNcell CX cell line. Cells were induced 
to differentiate for 20 h by mitogen removal before being fixed and stained with 

antibodies recognising the neuronal markers βIII-tubulin (A) and pNFH (B), and the glial 

marker GFAP (C) followed by Alexa Fluor
® 

488 conjugated anti-IgG secondary 
antibodies. The representative images shown are from untreated control cells from a 

single field of view, with FITC excitation wavelength for neurites and cell bodies (green). 

Images were acquired using ImageXpress Micro Widefield High Content Screening 

system and captured using a 10x objective lens and Nikon camera system. Arrows show 
typical axon-like processes detected in neuronal cells (A and B) and astrocyte extensions 

(C) in pre-differentiated ReNcell CX cells. Scale bar represents 100 µm. 
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6.2.2 Effects of CPF and CPO on multiple parameters of neurite 

outgrowth in pre-differentiated ReNcell CX cells 

Using high throughput analysis, the effects of CPF and CPO were assessed over 

a concentration range of 1-10 µM on multi-parameters of neurite outgrowth in 

pre-differentiated ReNcell CX cells after 2 and 8 h exposure. The parameters 

used to determine the effects of both compounds on ReNcell CX cells were 

similar to those applied in N2a cells experiments, which included cell number, 

cell body area, neurite number, percentages of cells with significant outgrowth, 

maximum and average neurite length and mean processes/cell. Additionally, the 

average intensity of βIII-tubulin, pNFH and GFAP staining within neurites and 

cell bodies of each antibody-positive cell were evaluated by high throughput 

assay, as described in section 2.2.16. 

 

Figure 6.2 demonstrates the segmentation of acquired images obtained by high 

throughput assay employed in this part of the current study. All representative 

images shown are from untreated control ReNcell CX cells from a single field of 

view. Image acquisition was performed using two wavelengths; FITC to detect 

cell body and neurites (green) and DAPI to identify the nucleus of all cells in a 

field (blue). The resultant merged images showed staining distribution of FITC 

and DAPI within each cell type. Image segmentation was then performed using 

MetaXpress offline analysis software and displayed as multicoloured masks 

tracing the neurites and cell bodies in the acquired image. It can be seen that the 

staining patterns of antibodies to βIII-tubulin, pNFH and GFAP were accurately 

detected allowing for the OP-induced effects on multiple parameters of neurite 

outgrowth in pre-differentiated ReNcell CX cells to be evaluated.  
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Figure 6.2. Segmentation of stained pre-differentiated ReNcell CX cells using high 
throughput screening assay.  Cells were induced to differentiate for 20 h before being 

incubated with or without 1, 3 and 10 µM CPF or CPO for 2 and 8 h. Cells were fixed and 

stained with antibodies recognising the neuronal marker βIII-tubulin and pNFH, and the 
glial marker GFAP followed by Alexa Fluor

® 
conjugated anti-IgG secondary antibodies. 

All Images shown were from untreated controls from a single field of view. Acquired 

images were obtained using ImageXpress Micro system (10x objective) with two 
wavelengths; FITC for detecting cell bodies and neurites and DAPI for nucleus counting. 

Segmented images with multicoloured tracing masks on neurites and cell bodies were 

generated using the Neurite Outgrowth Module within the MetaXpress analysis software 

for monitoring different parameters of neurite outgrowth including cell number, cell body 
area and outgrowth length for each identified cell. 
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Figure 6.3 shows the dose-related effects of CPF and CPO following 2 and 8 h 

exposure on the average cell number/field and the average cell body area/field in 

pre-differentiated ReNcell CX cells. The presented high throughput data show 

that all concentrations of CPF and CPO had no effects on either the average 

number of both neuronal and glial cells/field or on the average area of cell 

bodies/field after 2 and 8 h exposure compared to untreated controls, as indicated 

by the analysis of anti-βIII-tubulin, anti-pNFH and anti-GFAP staining (Figure 

6.3A and B).  

 

The average number of non OP-treated neuronal cells/field after 20 h 

differentiation was between 295 and 271 cells as detected with βIII-tubulin 

marker and between 225 and 200 cells with Ta51 staining (Figure 6.3A1-A2, 

A4-A5). The average count of differentiated glial cells ranged between 303 to 

246 cells/field in controls, as indicated by anti-GFAP staining (Figure 6.3A3 and 

A6). Exposure of pre-differentiated ReNcell CX cells to CPF and CPO at all 

doses had no significant effect on the average number of neuronal or glial 

cells/field compared to the non OP-treated controls (Figure 6.3A).  

 

Figure 6.3B displays the high throughput measurement of the average cell body 

area/filed in both neuronal and glial cell populations. It can be seen that the 

average neuronal cell body area/field is greater than glial cell body area, as 

indicated by antibody staining of βIII-tubulin and GFAP markers, respectively. 

The average neuronal cell body area/field measured with Ta51 staining was 

smaller than that obtained by βIII-tubulin. This is probably due to the fact that 

Ta51 preferentially stains axons. The data also demonstrated that CPF and CPO 

at all concentrations had no effect on this parameter following 2 and 8 h 

exposure compared to non OP-treated controls. 
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Figure 6.3. Effects of CPF and CPO on cell number and cell body area of pre-

differentiated ReNcells CX cells as assessed by high throughput assay.  Cells were 
fixed and stained with antibodies recognising the neuronal markers βIII-tubulin and 

pNFH, and the glial marker GFAP followed by Alexa Fluor
® 

488 conjugated anti-IgG 

secondary antibodies. OP-induced effects on multiple parameters of neurite outgrowth 
were measured using MetaXpress imaging and analysis software. Data show the dose-

related effects of both CPF and CPO on the average cell number/field (A), and the 

average cells body area/field (B) with βIII-tubulin, pNFH and GFAP staining. The CPF 

effects are presented as blue solid lines with circles; the CPO effects are presented as red 
dashed lines with triangles. Data are represented as mean values ± SEM from four 

independent experiments. Both sets of data were analysed using two-way ANOVA. When 

SEM bars are not apparent, this means that error is smaller than the symbol size 
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Specific parameters of neurite outgrowth such as the average number of 

neurites/field and the percentage of cells with significant outgrowth (cells with 

neurites longer than 10 µm in length) were also obtained using high throughput 

assay (Figure 6.4). As demonstrated in figure 6.4A, the data of the average 

number of neurites/field (dendrites and axons-like processes) suggest that, while 

the number of neuronal and glial cells/field was unaffected, the average number 

of neurites in both cells/field was significantly (p ˂ 0.05) decreased in OP-treated 

cells after 8 h exposure compared to controls.  

 

In neuronal cells, the average number of neurites/field (dendrites and axons) in 

untreated control ranged between 40 and 25 neurites/field as obtained with βIII-

tubulin marker (Figure 6.4A1 and A4). The quantitative analysis of Ta51 showed 

that at least 18 of the detected neurites were axon-like processes in the controls 

(Figure 6.4A2 and A5). In glial cells, GFAP staining demonstrated 18 to 17 

glial-extensions in the non OP-treated controls (Figure 6.4A3 and A6).  

 

Exposure of pre-differentiated ReNcell CX cells to all concentrations of CPF and 

CPO for 2 h had no effect on the average number of neurites/field generated 

from neuronal or glial cells when compared to the untreated control (Figure 

6.4.A1, A2 and A3). After 8 h treatment, no change was observed in the average 

number of neurites/field in cells treated with 1 and 3 µM CPF and 1 µM CPO 

compared to the non OP-treated control as indicated with βIII-tubulin staining. 

However, the same staining detected a significant (p ˂ 0.005) reduction in the 

average neurite number/field by 24% and 42% in cell treated with 10 µM CPF 

and CPO, respectively compared to the untreated control (Figure 6.4A4). 

 

As indicated in figure 6.4A5, pNFH staining showed no effects on the average 

number of axon-like processes/field following 8 h treatment with 1 µM CPF and 

CPO. However, significant decreases (p ˂ 0.05) in the average number of axon-

like processes/field were detected with Ta51 staining at 3 and 10 µM 

concentrations of both compounds after 8 h exposure. The quantitative analysis 

of Ta51 staining showed that 8 h treatment with 3 µM CPF and CPO caused 

20% and 29% decline, respectively compared to the non OP-treated control. In 

addition, exposing the cells to 10 µM of both compounds for 8 h reduced the 
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number of axon-like processes/field to 35% with CPF and 52% with CPO when 

compared to non OP-treated control (Figure 6.4A5).  

 

The quantitative analysis of GFAP presented in figure 6.4A6 showed that CPF 

and CPO exposure for 8 h cause a significant (p ˂ 0.01), concentration-

dependent reduction in the number of glial-extensions/field in pre-differentiated 

ReNcell CX cells compared to the non OP-treated control. At concentrations of 3 

and 10 µM CPF, a fall in the average glial-extensions number/field was observed 

of 26% and 39%, respectively, compared to non OP-treated controls. The 

average number of glial extensions/field was further reduced compared to non 

OP-treated controls by 34% and 55% in cells treated with 3 and 10 µM CPO, 

respectively (p ˂ 0.05) (Figure 6.4A6).  

 

Quantification of cells with outgrowths greater than 10 µm in length showed that 

CPF and CPO are capable of inducing neurite retraction (Figure 6.4B). In the 

non OP-treated control, βIII-tubulin staining showed 65% to 70% of neuronal 

cells with significant outgrowth (outgrowth length ˃10 µm) including dendrites 

and axon-like processes. However, only 40% of neuronal cells contain axon-like 

processes as indicated with Ta51 staining. After 2 h exposure to both 

compounds, the percentage of βIII-tubulin-positive neuronal cells with 

outgrowth greater than 10 µm fell significantly (p ˂ 0.05) by 8% and 16% of 

control value at 3 and 10 µM, respectively (Figure 6.4B1). This percentage was 

further significantly (p ˂ 0.05) reduced by 15% and 23% of control value 

following 8 h treatment with 3 and 10 µM concentrations of both compounds, 

respectively (Figure 6.4B4). The quantitative analysis of Ta51 staining 

demonstrated that CPF and CPO induced a significant, dose-dependent decrease 

in the number of neuronal cells with axon-like processes in cultures of pre-

differentiated ReNcell CX cells, although the observed reduction after 2 h 

exposure to both compounds was similar to that detected at 8 h. As indicated in 

figure 6.4B2 and B5, no effect was observed in the percentages of cells with 

significant outgrowth after exposure to 1 µM CPF. However, CPF at 3 and 10 

µM caused significant (p ˂ 0.05) reduction by 24% and 33% of untreated control 

value, respectively. Similarly, exposure to CPO at 1, 3 and 10 µM resulted in 

12%, 25% and 39% inhibition, respectively (p ˂ 0.05)  (Figure 6.4B2 and B5).     
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The quantitative analysis of GFAP staining in figure 6.4B3 and B6 showed that 

CPO at all doses and CPF at 3 and 10µM had the ability to interfere with the 

length of glial cell extensions in cultures of pre-differentiated ReNcell CX cells. 

As indicated in figure 6.4B3, exposure to 10 µM CPF and CPO significantly (p 

˂0.0001) reduced the percentage of glial cells with extensions ˃ 10µm by 23% 

and 40%, respectively compared to the non OP-treated control at 2 h. Increasing 

the exposure time to 8 h, resulted in 44% and 50% decrease in the percentage of 

glial cells with significant extensions compared to untreated controls (Figure 

6.4B6).  
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Figure 6.4. Effects of CPF and CPO on neurite number and percentage of cells with 

significant outgrowth in pre-differentiated ReNcells CX cells as assessed by high 

throughput assay.  Cells were fixed and stained with antibodies recognising the neuronal 

markers βIII-tubulin and pNFH, and the glial marker GFAP followed by Alexa Fluor
® 

488 conjugated anti-IgG secondary antibodies. OP-induced effects on multiple 

parameters of neurite outgrowth were measured using MetaXpress imaging and analysis 

software. Data show the dose-related effects of both CPF and CPO on the average neurite 
number/field (A), and the number of cells with significant outgrowth (%) (B) with βIII-

tubulin, pNFH and GFAP staining. The CPF effects are presented as blue solid lines with 

circles; the CPO effects are presented as red dashed lines with triangles. Data are 

represented as mean values ± SEM from four independent experiments. Both sets of data 
were analysed using two-way ANOVA. Asterisks demonstrate changes that are 

statistically different from the non OP-treated controls (*p ˂ 0.05). When SEM bars are 

not apparent, this means that error is smaller than the symbol size. 
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High throughput analysis further revealed the maximum length of neurites per 

each neuronal and glial cell after 20 h of differentiation. With βIII-tubulin 

staining, the maximum length of neurites in non OP-treated control ranged 

between 10 to 14 µm (Figure 6.5A1 and A4), whereas the maximum length of 

Ta51-positive-neurites was 22 µm (Figure 6.5A2 and A5). In GFAP positive 

cells, the maximum length of glial extensions ranged between 17-22 µm in 

untreated controls (Figure 6.5A3 and A6). 

 

As illustrated in figure 6.5A, there was a significant dose and time-dependent 

reduction in the maximum neurite length per cell for both neurons and glia in 

cultures of pre-differentiated ReNcell CX cells following CPF and CPO 

exposure for 2 and 8 h. The analysis of βIII-tubulin staining demonstrated that 

after 2 h treatment, the maximum length of neurites per neuronal cell was 

significantly reduced by approximately 16% and 33% at 3 and 10 µM CPF, 

respectively, and by 18% and 28% at 3 and 10 CPO, respectively (p ˂0.0001) 

(Figure 6.5A1). A greater reduction in the maximum neurite length per neuronal 

cell was observed following 8 h exposure to CPF and CPO. Treatment with 3 

and 10 µM CPF resulted in 20% and 39% decrease, respectively (p ˂ 0.0001), 

while CPO exposure at 3 and 10 µM concentrations caused 33% and 49% 

decline, respectively (p ˂ 0.0001) (Figure 6.5A4). However, both compounds at 

1 µM had no significant effects upon this parameter at either time points (Figure 

6.5A1 and A4). 

 

Similar effects of CPF and CPO on the maximum length of Ta51-positive (axon-

like) neurites was also observed. At concentrations of 1, 3 and 10 µM, CPO was 

found to induce a significant inhibitory effect on the maximum length of 

axons/neuronal cells in pre-differentiated ReNcell CX cells after both 2 and 8 h 

exposure, with 10 µM CPO causing 39% and 43% reduction, respectively (p ˂ 

0.0001) compared to the non OP-treated control (Figure 6.5A2 and A5). 

Although CPF at 1 µM had no effect on the maximum length of such neurites 

after 2 and 8 h exposure, concentrations of 3 and 10 µM caused significant 

reductions of 11% (p ˂ 0.05) and 20% (p ˂ 0.0001) compared to controls at both 

time points (Figure 6.5A2 and A5).  
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Measurements of glial cells extension length were also obtained using high 

throughput with the aid of GFAP staining. As demonstrated in figure 6.5A3 and 

A6, the maximum length of astrocyte extensions/cell ranged between 17 to 22 

µm in untreated controls. Exposure of pre-differentiated ReNcell CX cells to 

CPF and CPO for 2 and 8 h caused a significant (p ˂ 0.05), dose- and time-

dependent decrease in the maximum neurite length per glial cell compared to 

non OP-treated controls (Figure 6.5A3 and A6). The data in figure 6.5A3 

indicated that 2 h exposure to CPF at 1 and 3 µM, and CPO at 1 µM 

concentrations caused a slight but not significant reduction in the maximum 

neurite length/cell compared to the untreated controls. However, a significant (p 

˂ 0.05) decline was observed at 10 µM CPF (24% decrease), 3 and 10 µM CPO 

(28% and 36% decline, respectively) compared to the maximum neurite 

length/cell in the non OP-treated controls (Figure 6.5A3).  

 

Figure 6.5A6 show that, after 8 h treatment, the maximum neurite length/glial 

cell was further decreased compared to untreated controls, with 3 and 10 µM 

CPF causing 20% and 27% reduction, respectively. In addition, it can be seen 

that all concentrations of CPO (1, 3 and 10 µM) significantly (p ˂ 0.0001) 

reduced the length of GFAP-positive extension outgrowth by 13%, 29% and 

42%, respectively compared to the non OP-treated control (Figure 6.5A6). 

  

The data in figure 6.5B demonstrated that both compounds significantly (p ˂ 

0.05) decreased the average neurite length per cell in pre-differentiated ReNcell 

CX cells in a similar manner as the maximum neurite length per cell at both time 

points. With βIII-tubulin staining, the average length of neurites/cell in non OP-

treated control ranged between 8 to 5 µm (Figure 6.5B1 and B4). After 2 h 

treatment, this parameter was significantly reduced by approximately 12.5% and 

25% at 3 and 10 µM CPF, respectively and by 20%, 36% and 47% at 1, 3 and 10 

CPO, respectively (p ˂0.05) (Figure 6.5B1). However, no effect was observed on 

the average neurite length per cell after 2 h exposure with 1 µM CPF (Figure 

6.5B1). A greater reduction in the average neurite length per neuronal cell was 

observed following 8 h exposure to CPF and CPO. Treatment with 10 µM CPF 

resulted in 41% decrease (p ˂ 0.001), while CPO exposure at 3 and 10 µM 

concentrations caused 36% and 50% decline (p ˂ 0.0001), respectively compared 



The effects of CPF and CPO on ReNcell CX cells                                  Chapter 6 

167 

 

to the non OP-treated controls (Figure 6.5B4). However, both compounds at 1 

µM and CPF at 3 µM had no significant effects upon this parameter at 8 h 

exposure (Figure 6.5B4). 

 

The analysis of Ta51 staining demonstrated that CPF at 1 and 3 µM had no 

effects on the average length of neurites per neuronal cell after 2 h exposure 

(Figure 6.5B2). However, this parameter was significantly reduced by 

approximately 20% at 10 µM CPF (p ˂0.01), and by 14% (p ˂0.02), 24% (p 

˂0.001), and 38% (p ˂0.0001) at 1, 3 and 10 CPO, respectively compared to the 

non OP-treated control (Figure 6.5B2). After 8 h treatment, the average length of 

neurites per neuronal cell was significantly decreased by approximately 17% and 

37.5% at 3 and 10 µM CPF, respectively, and by 26%, 38% and 47% at 1, 3 and 

10 CPO, respectively (p ˂0.0001) (Figure 6.5B5). However, no significant 

change was observed on the average neurite length per cell after 8 h exposure 

with 1 µM CPF (Figure 6.5B5).  

 

Figure 6.5B3 and B6 show that the average length of astrocyte extensions/cell 

ranged between 10 to 12 µm in the non OP-treated controls. Exposure of pre-

differentiated ReNcell CX cells to CPF and CPO for 2 and 8 h caused a 

significant (p ˂ 0.05), concentration-dependent decrease in the average neurite 

length per glial cell compared to the non OP-treated controls. As indicated in 

figure 6.5B3, CPF exposure at 3 and 10 µM concentrations significantly (p 

˂0.0001) reduced this parameter by 16% and 27%, respectively compared to the 

non OP-treated control at 2 h. In addition, exposure of cells to all concentrations 

of CPO (1, 3 and 10 µM) significantly (p ˂ 0.0001) decreased the average length 

of GFAP-positive neurite by 12.5%, 25% and 35%, respectively compared to the 

non OP-treated control at the same time point (Figure 6.5B3). Similar levels of 

reduction in the average neurite length per neuronal cell were also observed 

following CPF and CPO exposure for 8 h (Figure 6.5B6). Treatment with 3 and 

10 µM CPF resulted in 11% and 29% decrease (p ˂ 0.01), respectively, while 

CPO exposure at 1, 3 and 10 µM concentrations caused 9%, 25.5%, and 40% 

decline (p ˂ 0.01), respectively compared to the non OP-treated controls (Figure 

6.5B6). However, CPF at 1 µM had no significant effects upon this parameter at 

both time points (Figure 6.5B3 and B6). 
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Figure 6.5. Effects of CPF and CPO on the maximum and average neurite length 

per cell in pre-differentiated ReNcells CX cells as assessed by high throughput 

assay.  Cells were fixed and stained with antibodies recognising the neuronal markers 
βIII-tubulin and pNFH, and the glial marker GFAP followed by Alexa Fluor

® 
488 

conjugated anti-IgG secondary antibodies. OP-induced effects on multiple parameters of 

neurite outgrowth were measured using MetaXpress imaging and analysis software. Data 

show dose-related effects of both CPF and CPO on maximum neurite length/cell (A), and 
average neurite length/cell (B) with βIII-tubulin, pNFH and GFAP staining. The CPF 

effects are presented as blue solid lines with circles; the CPO effects are presented as red 

dashed lines with triangles. Data are represented as mean values ± SEM from four 
independent experiments. Both sets of data were analysed using two-way ANOVA. 

Asterisks indicate changes that are statistically different from the non OP-treated controls 

(*p ˂ 0.05). When SEM bars are not apparent, this means that error is smaller than the 

symbol size. 
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The impacts of multiple concentrations of CPF and CPO on the mean number of 

processes per cell were also evaluated using high throughput analysis. As 

indicated in figure 6.6A, staining of pre-differentiated ReNcell CX cells with 

βIII-tubulin, pNFH and GFAP showed that there were no overall changes on this 

parameter of neurite outgrowth following exposure to all doses of CPF and CPO 

for 2 or 8 h. Approximately 3 processes/cell were detected with anti-βIII-tubulin.  

However, only one per cell was detected by Ta51 staining. This observation 

indicates that there were more dendrites than axons, which is a typical 

characteristic of differentiated neuronal cells. GFAP staining detected one 

extension per glial cell, which remained the same after 2 and 8 h exposure to 

both OPs. 

 

Data in figure 6.6B1 and B4 show that there was no significant change in the 

average intensity of βIII-tubulin staining within neuronal cells after CPF and 

CPO treatment for 2 and 8 h compared to untreated controls. The data in figure 

6.6B3 and B6 demonstrate that the average intensity of GFAP staining within 

glial cells was slightly but not significantly increased after both OP treatment for 

2 and 8 h compared to control. By contrast, a dose-dependent decrease in the 

average intensity of Ta51 within neuronal cells was observed in OP-treated cells 

following 2 and 8 h exposure compared to untreated control (Figure 6.6B2 and 

B5). After 2 h exposure to both compounds, this reduction was statistically 

significant (p ˂ 0.0001) at 3 and 10 µM causing 18% and 28% decline, 

respectively compared to untreated control (Figure 6.6B2). Further reduction was 

also observed in the average intensity of Ta51 staining after 8 h, which was 

significant (p ˂ 0.0001) at 3 and 10 µM CPF (11% and 19.5%, respectively) and 

1, 3, 10 µM CPO causing 8.5%, 19% and 28% decrease, respectively (Figure 

6.6B5).  
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Figure 6.6. Effects of CPF and CPO on the mean number of processes per cell and 

staining intensity in pre-differentiated ReNcells CX cells as assessed by high 
throughput assay.  Cells were fixed and stained with antibodies recognising the neuronal 

markers βIII-tubulin and pNFH, and the glial marker GFAP followed by Alexa Fluor
® 

488 conjugated anti-IgG secondary antibodies. OP-induced effects on multiple 

parameters of neurite outgrowth were measured using MetaXpress imaging and analysis 
software. Data show dose-related effects of both CPF and CPO on mean processes/cell 

(A), and average staining intensity (B) with βIII-tubulin, pNFH and GFAP staining. The 

CPF effects are presented as blue solid lines with circles; the CPO effects are presented as 
red dashed lines with triangles. Data are represented as mean values ± SEM from four 

independent experiments. Both sets of data were analysed using two-way ANOVA. 

Asterisks indicate changes that are statistically different from the non OP-treated controls 
(*p ˂ 0.0001). When SEM bars are not apparent; it means that the error is smaller than 

the symbol size. 
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6.2.3 Effects of CPF and CPO on the viability of pre-

differentiated ReNcell CX cells 

To examine the viability of pre-differentiated ReNcell CX cells after being 

exposed to both OPs, MTT reduction assays were performed, as described in 

section 2.2.7. Figure 6.7 shows the concentration-related effects of CPF and CPO 

after 2 and 8 h exposure in pre-differentiated ReNcell CX cells. The data 

indicated that all concentrations of CPF and CPO tested had no significant effect 

on MTT reduction in pre-differentiated ReNcell CX cells when compared to the 

untreated controls at both time points (Figure 6.7A and B).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Effects of CPF and CPO on MTT reduction in pre-differentiated 
ReNcell CX cell. After 20 h of differentiation, ReNcell CX cells were treated without 

(0.5% v/v DMSO control) or with 1, 3 and 10 µM CPF or CPO for 2 and 8 h. The 

effects of both compounds on MTT reduction were measured to evaluate cell viability 
after 2 h (A) and 8 h (B) exposure. Data are expressed as a percentage of the non-OP 

treated control ± SEM from four separate experiments. Data were analysed using one 

way ANOVA. The CPF effects are presented as blue solid lines with circles; the CPO 

effects are presented as red dashed lines with triangles. The lack of asterisks reflect the 
fact that no statistically significant changes were found in MTT reduction in OP-treated 

cells compared to the untreated controls at both time points. When SEM bars are not 

apparent, this means that the error is smaller than the symbol size. 
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6.2.4 Effects of CPF and CPO exposure on AChE activity in pre-

differentiated ReNcell CX cells 

 

To determine whether the observed morphological changes in pre-differentiated 

ReNcell CX cells could be related to an effect on the acute toxicity target AChE, 

the impact of CPF and CPO on the activity of AChE was assessed, as explained 

in section 2.2.9.  

 

After 2 and 8 h exposure, it can be seen that CPF at 1 and 3 µM had no 

significant effect on AChE activity of pre-differentiated ReNcell CX cells 

compared to non OP-treated controls (Figure 6.8A and B). In contrast, CPF at 

higher concentration (10 µM) significantly decreased the specific activity of 

AChE of pre-differentiated RenCell CX cells by 24% and 20% following 2 and 8 

h exposure, respectively compared to the control value (p = 0.01). Exposure of 

pre-differentiated ReNcell CX cells to CPO was also found to cause a 

considerable dose-dependent inhibition in the AChE activity, with 1, 3, and 10 

µM causing 47%, 58.5%, and 67% reduction after 2 h and 35.5%, 50%, and 

62.5% inhibition after 8 h exposure compared to the untreated controls (p ˂ 

0.0001). As expected, CPO was found to be more potent in inhibiting the AChE 

activity compared to CPF, with an IC50 value (concentration that caused 50% 

inhibition in AChE) of approximately 1-2 µM at 2 and 8 h exposure.  
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Figure 6.8. Effects of CPF and CPO on AChE activity in pre-differentiated ReNcell 

CX cells. Cells were induced to differentiate for 20 h before being incubated without (0) 

or with or 1, 3 and 10 µM concentration of CPF and CPO for 2 and 8 h, after which, 

AChE activity was measured. Enzyme specific activity is expressed as a percentage of 
the absorbance change/mg protein/min value of the corresponding control ± SEM from 

four separate experiments. The CPF effects are presented as blue solid lines with circles; 

the CPO effects are presented as red dashed lines with triangle. Asterisks indicate 
statistically significant changes compared to the corresponding non OP-treated controls 

(*p = 0.01 with CPF) (*p ˂ 0.0001 with CPO). 
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6.2.5 Effects of CPF and CPO on cytoskeletal proteins and 

associated cell signaling pathways in pre-differentiated 

ReNcell CX cells 

 

The neurotoxic effects of CPF and CPO on neurite outgrowth parameters in pre-

differentiated ReNcell CX were further studied by evaluating the molecular 

changes in cytoskeletal proteins and developmentally related cell signalling 

pathways. Cell ELISAs were employed to determine and quantify OP-induced 

changes in the binding of antibodies recognising total βIII-tubulin (clone 2G10), 

GFAP (clone GA5), pNFH (clone Ta51), total NFH (clone N52), total ERK (K-

23) and pERK (clone E-4) after 2 and 8 h exposure, as described in section 

2.2.15. Results with anti-GFAP antibody were omitted from this study as poor 

absorbance values were detected in untreated controls. The very low values were 

considered unreliable to perform accurate qualitative analysis for the effects of 

CPF and CPO on GFAP protein. 

 

As demonstrated in figure 6.9A and C, there were no significant changes in 

antibody binding to βIII-tubulin and total NFH in pre-differentiated ReNcell CX 

cells treated with all three concentrations of CPF or CPO at 2 and 8 h compared 

to the non OP-treated controls. In contrast to the unchanged levels of total NFH 

reactivity, the binding level of pNFH was significantly decreased in OP-treated 

cells compared to the untreated control (Figure 6.9B1 and B2; p ˂ 0.05). After 2 

h treatment, it was demonstrated that 1 µM CPF and CPO had no effect on the 

binding level of pNFH compared to the level in the non OP-treated control. 

However, both compounds at 3 and 10 µM caused a significant decline in NFH 

phosphorylation levels compared to the non OP-treated control at 2 h exposure 

(Figure 6.9B1). The 8 h exposure of pre-differentiated ReNcell CX cells to all 

concentrations of CPO and 3 and 10 µM CPF was also found to cause a 

significant reduction in pNFH levels compared to the level in untreated control 

(Figure 6.9B2). However, no significant change was observed on the levels of 

pNFH compared to non OP-treated control after 8 h exposure with 1 µM CPF 

(Figure 6.9B2). 
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Figure 6.9. Effects of CPF and CPO on cytoskeletal proteins in pre-differentiated 

ReNcell CX cells as determined by cell ELISA.  Cells were induced to differentiate 

for 20 h before being incubated without (0) or with 1, 3 and 10 µM concentrations of 

CPF or CPO for 2 and 8 h. Changes in the binding levels of antibodies recognising 
βIII-tubulin (panel A), pNFH (panel B) and total NFH (panel C) were quantified in 

fixed monolayers using cell ELISA. Data are presented as a percentage of the non OP-

treated control ± SEM from four independent experiments at both time points. Data 
were analysed using one way ANOVA. The CPF effects are presented as blue solid 

lines with circles; the CPO effects are presented as red dashed lines with triangles. 

Asterisks indicate changes that are statistically different from the non OP-treated 
controls (p ˂ 0.05). When SEM bars are not apparent, this means that the error is 

smaller than the symbol size. 
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With regard to the effects of OPs on the ERK1/2 MAP kinase signalling 

transduction pathway, it can be seen that dose-range CPF and CPO had no effect 

on the binding of antibodies recognising total ERK nor pERK in pre-

differentiated ReNcell CX cells treated for 2 or 8 h (Figure 6.10A and B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. Effects of CPF and CPO on the activation status of ERK1/2 MAP 

kinase in pre-differentiated ReNcell CX cells as determined by cell ELISA.  
Cells were induced to differentiate for 20 h before being incubated without (0) or 

with 1, 3 and 10 µM concentrations of CPF or CPO for 2 and 8 h. Changes in the 
binding levels of antibodies recognising total ERK (K-23) (panel A) and 

phosphorylated ERK (K-4) (panel B) were quantified in controls and OP-treated 

cells using cell ELISA. Data are presented as a percentage of the non OP-treated 
control ± SEM from four independent experiments at both time points. Data were 

analysed using one way ANOVA. The CPF effects are presented as blue solid lines 

with circles; the CPO effects are presented as red dashed lines with triangles.When 

SEM bars are not apparent, this means that the error is smaller than the symbol size. 
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6.3 Discussion 

The utilisation of human neural stem cells for neurotoxicity screening has been 

demonstrated in a number of earlier studies (Breier et al., 2008, Mundy et al., 

2010, Krug et al., 2013, Wilson et al., 2014). The majority of these reports used 

undifferentiated human-derived neural progenitor cells (Breier et al., 2008) or 

differentiated human-derived neuronal cells only (Wilson et al., 2014). In 

contrast, the current study utilised human ReNcell CX cells, which differentiate 

into a co-culture of neuronal and glial cells providing a more relevant model of 

the central nervous system. Simulating the same differentiation conditions and 

OP exposure as the N2a cell model (Chapters 3, 4 and 5), the current work 

provided novel information to the literature in terms of the effects of CPF and 

CPO on pre-formed neurites in ReNcell CX cells.  

 

The current study indicated that ReNcell CX cells were successfully 

differentiated into a mixed population of neuronal and glial cells, which 

exhibited extensive developing neurite network upon 20 h of growth factor 

removal. The characterisation of pre-differentiated ReNcell CX cell morphology 

was confirmed by the expression of βIII-tubulin, pNFH and GFAP neural cell 

markers using high throughput assay. Induction of ReNcell CX cells 

differentiation by mitogen withdrawal is in agreement with previous studies, 

which identified the neuronal and glial cell population using βIII-tubulin and 

GFAP as biomarkers (Donato et al., 2007). 

 

The high throughput data presented in this study showed that both CPF and CPO 

at all concentrations had no effect on the average cell number or cell body area 

of neuronal and glial cells per field following 2 and 8 h of exposure. This result 

was further supported by MTT reduction assay, which clearly showed that the 

dose-range used of both compounds had no effect on pre-differentiated ReNcell 

CX cell viability at both time points. The observed lack of both compounds on 

cell number, cell body area and viability suggested that the range of CPF and 

CPO concentrations employed, as for N2a experiments, was sub-cytotoxic 

towards pre-differentiated ReNcell CX cells and that impacts on neurite 
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outgrowth was a direct response to their neurotoxicity rather than a consequence 

of cytotoxicity.  

 

The concentration-dependent reduction in neurite length in pre-differentiated 

ReNcell CX cells induced by treatment with sub-cytotoxic concentrations of 

both CPF and CPO was seen as early as 2 and 8 h after exposure. The observed 

changes in maximum and average neurite length, and number of neurites via 

analysis of antibody reactivity with βIII-tubulin, pNFH and GFAP suggested that 

both compounds caused a significant and rapid retraction of dendrites, axon-like 

processes and extensions in neuronal and glial cells in this co-culture system. 

This possibility was further confirmed by the observation that there were fewer 

cells with significant outgrowth under the same conditions. Collectively, high-

throughput analysis indicated that exposure to sub-cytotoxic concentrations of 

both compounds has the ability to induce a retraction of neurites in both neuronal 

and glial cells.  

 

The observed reduction in neurite outgrowth in pre-differentiated ReNcell CX 

cells is consistent with those reported earlier in pre-differentiated N2a cells 

(Chapter 5) using similar experimental conditions and data analysis techniques. 

The current finding is also in agreement with the study of Sachana et al. (2001), 

who found a 50% impairment in the outgrowth of axon-like processes in pre-

differentiated N2a cell model following 4 and 8 h exposure to 3 µM CPF 

(Sachana et al., 2001, Sachana et al., 2005). Additionally, Flaskos et al. (2011) 

used similar CPO concentrations to those applied in the current study and found 

that, when added at the point of induction of N2a cell differentiation, CPO 

reduced the outgrowth of axon-like processes in a dose-dependent manner after 

24 h exposure (Flaskos et al., 2011). The demonstrated inhibitory effect of CPF 

and CPO in glial-extensions were also determined in a previous study by 

Sachana et al. (2008), in which a similar concentration range of both compounds 

(1-10 µM) was able to inhibit the extension outgrowth produced from 

differentiating rat C6 glioma cells after 24 h exposure (Sachana et al., 2008). 

However, this is the first time that the effect of CPF and CPO towards neurite 

outgrowth was investigated in a human neural stem cell based model that 

contains a mixed population of neuronal and glial cells.    
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The high throughput data analysis also showed that 2 and 8 h exposure to both 

compounds had no effect on the staining intensity of anti-βIII-tubulin and anti-

GFAP, which is consistent with the lack of effect observed on neuronal and glial 

cell numbers and cell body area. This suggests that there was no change in the 

synthesis of these antigens or in the way they were distributed in their 

corresponding cell types. However, the staining intensity with Ta51, which 

recognises pNFH was reduced in OP-treated cells. Since neuronal cell count and 

cell body area were unaffected, the reduced intensity of Ta51 staining may have 

reflected a decrease in pNFH localisation in neurites, which is consistent with the 

observed reduction in neurite length following CPF and CPO treatment at both 

time points.  

 

Quantification of OP-induced changes in cytoskeletal proteins obtained by cell 

ELISA showed unchanged levels of βIII-tubulin in pre-differentiated ReNcell 

CX cells after CPF and CPO exposure for 2 and 8 h. The lack of an effect on 

βIII-tubulin level again suggested no overall changes in the synthesis of this 

neuron specific tubulin isoform. This finding was consistent with high 

throughput screening data using anti-βIII-tubulin staining which showed no 

change in neuronal cell number, cell body area or staining intensity in cells 

incubated with antibody to this isoform. In pre-differentiated N2a cells, the 

levels of both α and β-tubulin were also found to be unaltered after 2 and 8 h 

treatment with similar concentrations of CPF and CPO (Chapter 4 and 5). 

Evidence of unchanged level of α and β-tubulin subunits in pre-differentiated 

N2a cells and C6 glial cell lines following similar exposure time with CPF and 

CPO was also demonstrated in a number of previous studies (Sachana et al., 

2001, Sachana et al., 2005, Sachana et al., 2008). Moreover, exposure of cells to 

other OPs such as PSP, diazinon and to the pyrethroid cypermethrin under both 

co- and post-differentiation exposure conditions were found to have no effect on 

tubulin levels (Hargreaves et al., 2006, Flaskos et al., 2007). 

 

During neuronal development, α and β-tubulin are the main constituents of MT 

structure, which have an essential role in cell differentiation and neurite 

outgrowth (Easter et al., 1993). Reduction in the levels of tubulin subunits after 

CPF and CPO exposure could indicate a disruption in the MT network due to 
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reduced subunit and/or polymer levels. Thus, the unchanged levels of α and β-

tubulin found in this study together with previous data suggested that CPF and 

CPO exposure were not associated with tubulin synthesis alterations or MT 

network disruption.    

 

With regard to NFs, data from cell ELISA’s suggest that CPF and CPO exposure 

reduced the level of pNFH (Ta51 reactivity) with no overall effect on the level of 

total NFH (N52) after 2 and 8 h exposure. The reduction in the level of Ta51 

presumably reflects a decreased phosphorylation status of NFH protein, which is 

in accordance with the observed retraction of axon-like processes and the lower 

staining intensity detected with Ta51 staining via high throughput analysis. The 

observed decline in pNFH together with the lack of effects on total NFH and 

βIII-tubulin at both time points suggested that decreased phosphorylation state of 

NFH is a specific target for the inhibitory effects of CPF and CPO on neurite 

outgrowth in pre-differentiated ReNcell CX cells. This finding is also consistent 

with previous studies, which showed reduced levels of pNFH in N2a cells 

induced to differentiate for 24 h in the presence of TOCP (Fowler et al., 2001) or 

PSP (Hargreaves et al., 2006). The fact that CPF and CPO decreased the level of 

NFH phosphorylation in a similar manner as other OPs suggests that several OPs 

are able to induce a neurite retraction and this effect is associated with reduced 

levels of pNFH as an early neurotoxic marker.  

 

The observation of decreased levels of NFH phosphorylation in pre-

differentiated ReNcell CX cells treated with CPF and CPO is also in agreement 

with the significant decrease in the reactivity of SMI31 antibody with spinal cord 

NFH phosphorylation in chickens treated with PSP (Jortner et al., 1999).  The 

altered NFH phosphorylation described in vivo for PSP and the subsequent 

observed degeneration of myelinated nerve fibre indicated early effects in the 

clinical lesions of OPIDN (Jortner et al., 1999). The fact that altered NFH 

phosphorylation has also been found in vivo for other OP treatments highlights 

the potential ability of pre-differentiated ReNcell CX cells to predict the in vivo 

delayed toxicity following OP exposure.  

 



The effects of CPF and CPO on ReNcell CX cells                                  Chapter 6 

181 

 

 As NFs accumulate in the axon, they become extensively phosphorylated on the 

C-terminal domain of NFH. This phosphorylation of NFH has an important role 

in axon maturity and stability (Shaw, 1991, Sihag et al., 2007). Thus, the 

observed sustained reduction in NFH phosphorylation could indicate a change in 

the NF networks or a breakdown in NF subunit stability and a consequent 

decrease in axon stability. In addition, the imbalance in the phosphorylation 

status of NFH could cause disruption in the interactions of NFH side arms with 

other macromolecules in axons (Nixon and Marotta, 1984, Eyer and Leterrier, 

1988, Hisanaga and Hirokawa, 1990). 

 

The lack of CPF and CPO effects on the levels of NFH in pre-differentiated 

ReNcell CX cells is in agreement with the earlier works on pre-differentiated 

N2a cells (Chapter 5), which revealed no effect on the levels of NFH in OP-

treated cells compared to control at both time points under similar post 

differentiation exposure conditions. However, treatment of pre-differentiated 

ReNcell CX cells with CPF and CPO led to a reduction in pNFH at both time 

points which was not the case in pre-differentiated N2a cells where a rise in 

pNFH level was initially observed at 2 h followed by a significant decline at 8 h. 

This could be explained by the fact that N2a cells is a mono-culture cell model 

while ReNcell CX cells is a co-culture of mixed neuronal and glial cell types 

which could influence the outcome. For example, glial cells produce and secrete 

neurotrophins such as glial derived neurotrophic factor (Lin, 1996). In a study by 

the host laboratory, it was found that conditioned medium from glial cells 

protected differentiating N2a cells from the neurite inhibitory effects of OPs 

(Harris et al., 2009a). They also play a role in guiding neurite growth during 

neural development (Deumens et al., 2004). Another reason that could clarify the 

observed diversity is the origin of both cells where N2a cells are derived from 

the mouse C1300 tumour (neuroblastoma) (Klebe and Ruddle, 1969) whereas 

ReNcell CXs were produced from human foetal cortex (Donato et al., 2007). 

Different neuronal cell types from distinct species may respond differently to OP 

exposure due to differences in maturation times and/or activities of signalling 

pathways and receptors during development. It could also be that a small sub-

population of neurons in RenCell CX cultures does actually respond in the same 

manner as N2a cells with respect to hyperphosphorylation of NFH. 
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The observed reductions in NFH phosphorylation in both cell models indicated 

that disruption of signalling pathways could arise following CPF and CPO 

exposure. However, in the current study on ReNcell CX cells, both OPs had no 

detectable effects on the levels of ERK1/2 phosphorylation using the specified 

concentrations and exposure time. This could be due to the fact that ReNcell CX 

cells differentiate into mixed populations of neuronal and glial cells with each 

having a different response with respect to ERK1/2 activation during neural cell 

differentiation. The different rate of neuronal and glial cell maturation could also 

correspond to different level of expression of signalling pathway and receptors 

that activate these pathways. Thus, it may be that this system is not fully in place 

in ReNcell CX cells at this early stage of differentiation. It may also be that the 

changes in ERK1/2 activation are occurring in this co-culture model but in a very 

small population of neurons, and thus, the increased ERK1/2 using cell ELISA 

could not be observed. Furthermore, regulatory phosphatases could have a key 

role in the observed reduction in NFH phosphorylation. Therefore, an extension 

of this work could be conducted to measure phosphatase activity and, if altered, 

identify specific phosphatases involved in the regulation of NFH 

phosphorylation following CPF and CPO exposure. Additionally, future work 

could investigate whether the OP-associated reduction in NFH phosphorylation 

is a result of the influence of other protein kinases such as cyclin dependent 

kinase 5 (Cdk5) and p38 MAP kinase.  

 

Exposure of pre-differentiated ReNcell CX cells to CPF and CPO induced 

concentration-dependent decrease in the activity of AChE. Despite being classed 

as a weak inhibitor of AChE, the highest concentration of CPF resulted in a 

significant reduction in AChE activity. This suggests that CPF may partially bio-

activated to CPO by some metabolic activity of pre-differentiated ReNcell CX 

cells. However, the observed inhibition in AChE following CPF treatment would 

not reflect acute toxicity in vivo, since AChE inhibition did not reach the levels 

(70% AChE inhibition) that have been shown to induce acute cholinergic 

syndrome (Clegg and van Gemert, 1999b). In this study, it was also apparent that 

the extent of inhibition of AChE following the exposure of pre-differentiated 

ReNcell CX cells to CPO was lower than the sustained reductions of AChE 

observed in pre-differentiated N2a cells (Chapter 3). However, exposure of pre-
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differentiated ReNcell CX cells to CPO at higher concentration caused 60-70% 

AChE inhibition, which is bordering on acute toxicity. The data also showed that 

there is a sign of less inhibition at 8 h than at 2 h, which may suggest acute 

toxicity at early time and a recovery of AChE at the later time. This finding 

indicates that co-culture of neuronal and glial cells could be more resistant to 

acute toxicity than neuronal cells alone. This could be due to the possibility that 

CPO is detoxified by the populations of glial cells or undifferentiated stem cells 

in ReNcell CX model. The ability of glial cells to hydrolyse CPO was previously 

demonstrated in the study of Sachana et al. (2008), who found lack of significant 

AChE inhibition in rat C6 glioma cells following 4 h exposure to CPO at similar 

concentrations to those employed in the current study (Sachana et al., 2008). It is 

well known that xenobiotic metabolism is mainly located in the liver. However, 

there is evidence suggesting the presence of some CYP450 isoforms, which are 

involved in the metabolism of oxons in different brain region in humans (Dutheil 

et al., 2008). For example, CYP2B6 was present in neuronal and astrocyte cells 

of the cerebral cortex as identified by Western blot and immunoblot techniques 

(Miksys et al., 2003, Miksys and Tyndale, 2004). In addition, CYP3A4 and 

CYP1A2 mRNA has been detected in both neuronal and glial cell types in the 

cortical tissue of the brain using real time polymerase chain reaction (RT-PCR) 

(Farin and Omiecinski, 1993). Human CYP2D6 associated with neurological 

disorders such as Parkinson`s disease was also mainly present in cortical 

neurons, glial cells of the cortex, and other brain regions (Gilham et al., 1997, 

Riedl et al., 1998). The presence of such CYP450s in the glial cells demonstrated 

in the previous studies might explain the discrepancies found between pre-

differentiated N2a and ReNcells CX cells in their potential ability for CPO 

detoxification. Future work on the identification of these CYP450 isoforms in 

human pre-differentiated ReNcell CX cells would be worthwhile. 

 

The current observation that CPO induced significant reduction in the enzymatic 

activity of AChE in pre-differentiated ReNcell CX cells at both time points has 

been demonstrated in a number of previous studies. For example, sustained 

inhibition of AChE was detected in N2a cells induced to differentiate for 4 and 

24 h in the presence of CPO (Flaskos et al., 2011). More than 70% AChE 

inhibition was also noted in aggregating culture of rat brain cells (Monnet-
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Tschudi et al., 2000) and PC12 cells (Das and Barone, 1999) treated with CPO. 

The finding of this study together with the previous data indicate that the 

significant reduction in the specific activity of AChE observed following CPO 

exposure could possibly contribute to the observed neurite retraction and the 

underlying molecular effects on cytoskeletal proteins. However, it is unlikely 

that inhibition of AChE alone could be related to the observed changes in the 

outgrowth of neurites in pre-differentiated ReNcell CX cells, as other studies 

suggest that lower concentration of CPO that had no effect on AChE can also 

induce marked impairment in the development of neurites. Indeed, the fall in 

AChE activity could simply accompany rather than cause the retraction of 

neurites. In this respect, CPO was found to cause significant inhibition in neurite 

outgrowth in cultures of embryonic sympathetic (Howard et al., 2005) and 

sensory neurons (Yang et al., 2008) without affecting the enzymatic activity of 

AChE. The notion that the neurodevelopmental effects of CPO is not directly 

caused by AChE inhibition could be explained by the fact that CPO can directly 

interfere with the morphogenic activity of AChE, which is known to be 

displayed during the normal process of neurodevelopment, rather than enzymatic 

activity of AChE protein (Howard et al., 2005, Yang et al., 2008). For example, 

many types of neurons have been found to transiently express AChE along axons 

and in growth cones during the period of axonal outgrowth (Robertson, 1987, 

Bigbee et al., 1999). This expression of AChE has been linked to its 

morphogenic role during neural development (Yang et al., 2008). 

 

Thus, AChE inhibition may not be the main cause for the CPO-induced 

morphological and biochemical effects in pre-differentiated ReNcell CX. 

However, the fact that CPO caused a more severe effect on several parameters 

suggests that AChE inhibition has at least some influence in the severity of its 

effect. 

 

In conclusion, this part of the current study investigated the effects of CPF and 

CPO in a differentiating human neural ReNcell CX stem cell model at an early 

stage of neuronal differentiation. At sub-cytotoxic concentrations, CPF and CPO 

were found to cause retraction of neurites in both neuronal and glial cell 

population, and in neuronal cells these alterations were associated with reduced 
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level of NFH phosphorylation without affecting the levels of total NFH, βIII-

tubulin or MAP kinase ERK1/2. The obtained data also suggested that AChE 

inhibition may not be directly involved in the process by which CPF induces 

developmental toxicity in pre-differentiated ReNcell CX cells. However, slightly 

stronger CPO-induced changes were related to concentrations that inhibit the 

acute toxicity target by 60-70% of control levels.                              
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7 General discussion 

7.1 Summary of findings 

In this thesis, I aimed to evaluate the ability of CPF and CPO to induce neurite 

retraction and cytoskeletal disruption in pre-differentiated mouse N2a cells and 

the human neural progenitor ReNcell CX stem cell line. Initially, the ability of 

both compounds to interfere with the outgrowth of pre-formed neurites produced 

by differentiating N2a cells following 2, 4 and 8 h exposure was evaluated using 

single concentration (3 µM). MTT reduction assays showed that the specified 

concentration of CPF and CPO was non-cytotoxic towards pre-differentiated 

N2a cells. Morphometric analysis of fixed monolayers of OP-treated cells 

labelled with CFSE showed reduced numbers of axon-like processes compared 

to the untreated control. Additionally, retraction of neurites was observed within 

2 h of exposure by live cell imaging.  The enzymatic activity of AChE assay data 

suggested that the morphological effects on axon-like neurites were not 

dependent on the inhibition of AChE in case of CPF. However, greater CPO-

induced effects were seen at doses that caused severe inhibition of AChE and, 

thus, may influence the severity of its effects compared to CPF. 

 

The next part of this thesis focused on relating the observed morphological 

alterations on neurite outgrowth to the levels of expression and activities of 

cytoskeletal and associated regulatory proteins in pre-differentiated N2a cells. 

Using indirect immunofluorescence, neurofilament disruption was observed in 

OP-treated cells stained with anti-pNFH monoclonal antibody SMI34, while the 

microtubule network was apparently unaffected, suggesting that neurofilaments 

were specifically targeted by these agents. The lack of effect on microtubules 

was further confirmed by western blotting analysis with anti-tubulin antibodies, 

which showed no changes in reactivity. The transiently increased levels of 

reactivity of Ta51 after 2 h exposure and reduced levels of reactivity of the same 

antibody following 8 h treatment with both compounds, in the absence of altered 

reactivity with antibodies to total NFH, suggested that there was a transient 

hyperphosphorylation of NFH leading to subsequent hypophoshporylation of 
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NFH in OP-treated cells. The fact that the observed increase in anti-pNFH 

reactivity at 2 h exposure was associated with increased activation of ERK1/2, 

suggest that this MAPK was disrupted by OP exposure. The observation of 

increased levels of phosphatase activity following 8 h OP treatment, could 

account for the reduction in NFH phosphorylation at the later time point. These 

findings suggest that OP-induced neurite retraction in N2a cells is associated 

with early transient increase in NFH phosphorylation and ERK1/2 activation 

followed by protein phosphatase mediated dephosphorylation. Moreover, the 

immunoblot analysis using monoclonal antibody GAP7B10 that recognises 

GAP-43 suggested that CPF and CPO induced a transient reduction in GAP-43 

after 4 h exposure. The transiently reduced expression level of GAP-43 could 

account for the collapse in axon outgrowth observed by live cell imaging 

following exposure of pre-differentiated N2a cells to both compounds. It will be 

interesting in future work to determine whether these alterations in cell signalling 

and reduced levels of GAP-43 are directly related. The precise nature of the 

phosphatase activities involved in NFH dephosphorylation would also be worth 

investigating. 

 

The development of high throughput platforms has enabled researchers to 

evaluate and quantify the neurotoxin exposure effects in a variety of neural cell 

lines. In this study, a high throughput assay was developed to investigate the 

effects of several CPF and CPO concentrations on multiple parameters of neurite 

outgrowth in pre-differentiated N2a cells after 2 and 8 h exposure. Utilising the 

fully automated approach, measurements of neurite outgrowth were provided 

based on staining with three different cytoskeleton-specific antibodies used in 

earlier work (B512, Ta51 and SMI34). The high throughput data indicated that 

CPF and CPO at sub-cytotoxic doses (1-10 µM) reduced the number of 

outgrowth, neurite length/cell, number of processes and branches/cell in a 

concentration-dependent manner, without affecting the cell count or cell body 

area in pre-differentiated N2a cells at both time points. The data obtained using 

this technique provide further confirmation for the effects observed for both OPs 

on neurite outgrowth monitored by manual approaches (e.g. CFSE staining) in 

previous chapters. Additionally, a cell ELISA approach was conducted to 

determine the dose-response changes of both compounds on the binding levels of 
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cytoskeletal proteins and the relevant ERK1/2 MAP kinase signalling pathway. 

The data showed that treatment of pre-differentiated N2a cells with 3 and 10 µM 

CPF and CPO resulted in significant increases in NFH phosphorylation at 2 h 

and a subsequent decrease after 8 h with lack of effects on total NFH and α-

tubulin levels at both time points. This observed alteration in NFH 

phosphorylation at early time point was found to be associated with an increase 

level of anti-pERK antibody. However, the levels anti-total ERK were 

unaffected.  

Using the same experimental protocol used on N2a cells, the last part of this 

thesis evaluated the effects of both CPF and CPO in ReNcell CX cells, which is 

more relevant to the complexities of the developing human nervous system. The 

neuronal and glial subpopulations of ReNcell CX cells were characterised using 

the neuronal-specific marker (βIII-tubulin and pNFH) and the astrocyte-specific 

marker GFAP. Data generated using high throughput assay showed that CPF at 3 

and 10 µM and CPO at 1, 3 and 10 µM concentrations were able to reduce the 

outgrowth of neurites in both cell types following 2 and 8 h exposure. However, 

the doses used of both OPs had no effects on cell number or cell body area. 

Moreover, viability of ReNcell CX cells was found not to be affected following 

treatment with all concentrations of CPF and CPO, as indicated by MTT 

reduction assay. The molecular changes underlying the neurite inhibitory effects 

of CPF and CPO in differentiating human neuronal and glial cells were further 

investigated using cell ELISA. The results obtained suggested a selective 

inhibition in the levels of NFH phosphorylation with no detectable effects on 

total NFH, βIII-tubulin and ERK1/2 MAPK transduction pathway after 2 and 8 h 

exposure to both compounds. Unfortunately, it was unable to assess the effect of 

both OPs on the binding level of GFAP, as the anti-GFAP antibody reactivity 

was too weak. This very low expression of GFAP may reflect the early 

differentiation stage of astro-glial cells at this time point. 

In this study, it is also important to mention that the neurotoxic actions of CPF 

towards pre-differentiated ReNcell CX cells was not related to significant levels 

of AChE inhibition. However, the fact that, as for N2a cells, CPO-induced 

morphological and biochemical alterations were greater than those of CPF 
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suggests that the level of AChE inhibition may affect the severity of the 

morphological effects.  

 

Figure 7.1 illustrates the common neurotoxic impact of CPF and CPO on pre-

differentiated N2a and ReNcell CX-derived neuronal cells. At sub-cytotoxic 

concentrations, both compounds were able to induce a retraction of neurite 

outgrowth in both cell models without affecting the microtubule network. The 

neurite inhibitory effect was associated with decreased level of NFH 

phosphorylation, which mediated by increased phosphatase activity in pre-

differentiated N2a cells. However, further work need to be carried to know if 

increased phosphatase activity could account for the NFH hypophosphorylation 

observed in pre-differentiated ReNcell CX cells following CPF and CPO 

exposure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Schematic diagram of common CPF and CPO effects in pre-

differentiated N2a cells and and ReNcell CX-derived neuronal cells. 
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The findings obtained in this study may also reflect the potential impacts of both 

CPF and CPO on memory, since information acquisition and memory storage in 

the mammalian nervous system are mainly dependent on changes in the synapses 

and their protein contents. For example, increased levels of GAP43 are important 

for axonal outgrowth and neuronal connectivity by facilitating the formation of 

new synapses. GAP43 also plays an essential role in synaptic transmission and 

plasticity (Holtmaat et al., 1995). Previously, it has been demonstrated that 

decreased levels of GAP43 were associated with memory impairment in animals 

(Rekart et al., 2005). Thus, the protein changes observed in the current work 

could have induced functional and structural alterations in synaptic plasticity, 

which represents a cellular mechanism of learning and memory processes 

(Mansuy and Shenolikar, 2006). Therefore, the cytoskeletal disruption observed 

in both N2a cells and human neural progenitor stem cells following CPF and 

CPO exposure in this study could reflect a potential to induce memory disorders 

and cognitive deficits associated with aging, dementias or neurodegenerative 

disease. 

 

 

7.2 Correlations between in vitro concentrations and in vivo 

exposure 

 

It is difficult to estimate the correlation between in vivo exposure and the 

experimental concentrations used in the current work. However, CPF-induced 

neurite retraction and cytoskeletal disruption were observed at concentrations 

similar to those detected in vivo in the developing humans. For instance, using 

meconium analysis (used to estimate the foetal exposure to environmental 

toxicants), about 22.8 µM of CPF has been detected in samples taken from new-

born children (Ostrea et al., 2002). It is important to mention that this cohort 

study was based on 200 pregnant women who were continuously exposed to 

CPF via inhalation and dermal absorption. Exposure to CPF via these routes 

reduced the chance of bio-activating CPF to CPO in the mother`s liver. 

However, it allowed high concentrations of CPF to reach the foetus without 

causing maternal toxicity symptoms (Ostrea et al., 2002). In a further study, 
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Estevan et al. (2013) suggested that CPF at non-cytotoxic concentrations of 10 

and 20 µM can cause developmental neurotoxicity in vivo if the exposure occurs 

via skin, which allowed low transformation of CPF to CPO (Estevan et al., 

2013). Therefore, the applied CPF concentrations in this study have clinical 

relevance to human developmental neurotoxicity only if it occurs under similar 

exposure scenarios to those mentioned above.    

 

With regard to CPO, a previous study indicated that CPO-induced effects on 

neurite outgrowth and cytoskeletal proteins at similar concentrations (1-10 µM) 

to those used in this study are clinically relevant to human developmental 

neurotoxicity (Flaskos et al., 2011). The research group suggested that low 

micromolar concentrations of CPO were attainable in developing organisms 

since micromolar levels of CPF (22.8 µM) were detectable in the above-

mentioned meconium samples of new-born children (Ostrea et al., 2002). It is 

well established that CPO has high water solubility compared to CPF, which 

might reduce its ability to enter the foetus through the lipid membrane of the 

placenta (Sogorb and Vilanova, 2010). However, the detection of significant 

cholinesterase inhibition in the mammalian foetus following in vivo exposure of 

pregnant animals to CPF and other OPs (Gupta, 1995) provide further support to 

the suggestion of Flaskos et al. (2011) findings that foetal exposure to CPO can 

occur .  

 

Moreover, the foetus is likely to be exposed mainly to the parent compound but 

possibly also to the oxon metabolite in the maternal tissues. The main enzyme 

responsible for oxon formation in humans (CYP2B6) is present at relatively low 

levels in human placenta, suggesting that the placenta does not make a major 

contribution to oxon formation (Pelkonen et al., 2006, Foxenberg et al., 2007, 

Croom et al., 2010). However, although CYP2B6 is expressed at low levels in 

the human foetus compared to later stages of development (Croom et al., 2009, 

Croom et al., 2010), the level of PON 1, which is responsible for hydrolysing 

and detoxifying the oxon forms of certain OPs such as CPO, is also relatively 

low at this stage (Costa et al., 2005). This could allow some oxon formation 

and/or accumulation in foetal tissue. Additionally, reduced levels of serum PON 

1 due to genetic polymorphisms in the PON1 gene is associated with increased 
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susceptibility to the toxic effect of the oxon metabolite (Costa et al., 2005). 

Therefore, the presence of CPO at low micromolar concentrations in developing 

animals is clinically relevant to developmental neurotoxicity.  

 

There is another possible scenario regarding the potential clinical relevance of 

CPO concentrations employed in this study. This scenario can be related to 

OPIDN since the pre-differentiated cell system could also simulate what might 

occur following OP toxicity in adults. The observed dying back of axons in pre-

differentiated N2a and ReNcell CX cells could reflect events following OP acute 

toxicity in adults. It is highly likely that such a concentration of CPO (1-10 µM), 

which caused severe inhibition in AChE levels to more than 70% would be lethal 

to the foetus (Solomon and Moodley, 2007, Heilmair et al., 2008). However, 

there are numerous case studies of patients who have survived such levels of 

cholinesterase inhibition with the help of pharmacological intervention, such as 

adrenaline and/or oximes administration, which develop delayed neuropathy. For 

example, 19 year old male who ingested a large dose of CPF, was hospitalised 

suffering from cholinergic crisis. After he was treated with atropine and 

pralidoxime, he developed respiratory paralysis and required mechanical 

ventilation for 16 days. Weeks later, he had progressive signs of OPIDN, such as 

deficits in the lower limbs and muscular atrophy (Nand et al., 2007). Thus, 

survivors of acute cholinergic crisis can be affected by a delayed neuropathy 

involving dying back of axons in peripheral/central neurons (Clegg and van 

Gemert, 1999a, Nand et al., 2007, Thivakaran et al., 2012). Indeed, it has been 

shown that CPF administered at acute levels in animal models can lead to 

OPIDN (Gupta, 2006). Therefore the morphological changes in neurite 

outgrowth following CPO exposure may have potential clinical relevance in 

terms of delayed neuropathy. 

 

It is important to mention that previous studies by other researchers reported 

significant AChE inhibition following exposure to CPO at nanomolar levels. For 

instance, CPO at 2 and 4 nM was reported to cause 50% AChE inhibition (IC50) 

after 30 min exposure in chicken brain homogenate and SH-SY5Y human 

neuroblastoma cells, respectively (Sogorb et al., 2010). In vivo, Eyer et al. (2009) 

demonstrated that the ratio of CPO/CPF in blood samples of self-intoxicated 
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patients was in the range of 0.004-0.025. In this context, cases with 0.3-5 µM 

CPF were causing 7-200 nM concentration of CPO with about 100% AChE 

inhibition and very severe toxicity (Eyer et al., 2009). Therefore, if we take the 

CPO/CPF ratio into consideration, the CPO doses used in the current study may 

not be easily compatible with life or physiologically relevant. However, it is not 

known exactly how much of the CPO applied in the current study actually 

entered the cells, nor the rate at which it was destabilised or degraded in vitro. 

 

 

7.3 Limitations and future work 

This study evaluated the effects of pure CPF and CPO compounds (97.6% 

purity) at similar concentration ranges on neurite outgrowth, cytoskeletal and 

associated regulatory proteins in two pre-differentiated cellular models. 

However, exposure of the foetus to levels of CPO causing severe AChE 

inhibition would be lethal. Therefore, it would be of interest for future work to 

investigate the ability of CPO at lower concentrations to cause dying back of 

axon-like process without affecting AChE activity. Additionally, the effects of 

combined exposure to a mixture of a similar concentration of CPF and a much 

smaller amount of CPO, together with longer exposure times on neurite 

outgrowth are merit investigation. This could be carried out using a ratio of 1:20 

CPO:CPF because it has been estimated that about 5% of CPF is converting to 

CPO in humans (Eyer et al., 2009).  

 

In the current study, cells were induced to differentiate for 20 h to reflect the 

early stages of neurite outgrowth in neural development or nerve regeneration. 

Longer differentiation times could be applied to obtain a more representative 

model of OPIDN. Extending the exposure time or using repeat exposures could 

also have an impact on the extent of neurotoxicity both in vitro and in vivo.  

 

Cytoskeletal related molecular studies were conducted using Western blotting 

and cell ELISA approaches. For the most part, data generated from both assays 

were comparable. However, with the cell ELISA approach, it was not possible to 

determine the effects of CPF and CPO on the binding level of GFAP in pre-

differentiated ReNcell CX cells, due to poor reactivity of GFAP antibody with 
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fixed cell monolayers. Thus, a more sensitive method is required to repeat to 

quantify the protein, such as Western blotting. One approach could be to use 

other anti-GFAP antibodies to determine whether they are more suited to the 

ELISA approach. Alternatively, the same primary antibody used in the current 

work could be detected by biotin-labelled secondary antibodies followed by 

HRP-Extravidin to amplify the signal further. 

 

Cell signalling studies indicated that ERK1/2 MAP kinase activation was 

increased in pre-differentiated N2a cells treated with both CPF and CPO for 2 h. 

As NFH is a known substrate for ERK1/2 (Veeranna et al., 1998), the activation 

status of this MAP kinase could account for the increased levels of NFH 

phosphorylation. The detrimental effect on this signaling pathway could be 

further expanded by using ERK 1/2 inhibitors prior to OP exposure. Additional 

work could also examine the effects of CPF and CPO on upstream regulators of 

ERK1/2 by using specific MEK1/2 antibodies. Moreover, the exact mechanism 

underlying the impact of CPF and CPO on pre-differentiated ReNcell CX cells 

would also be of interest. 

 

In pre-differentiated N2a cells, the increased phosphatase activity could account 

for the observed reduction in NFH phosphorylation at 8 h. However, this 

observation was seen using single concentration (3 µM) of CPF and CPO. 

Therefore, it would be of value to re-evaluate the effect of both OPs on 

phosphatase activity using the dose range of each toxin. Additionally, an 

extension of this work could include the assessment of phosphatase activity in 

ReNcell CX cells following CPF and CPO exposure. Furthermore, future work 

will also aim to identify specific phosphatases associated with NFH 

phosphorylation in OP treated cells. For example, protein phosphatase 2A was 

previously found to reduce NFH phosphorylation following hyper-

phosphorylation by cyclin-dependent kinase-5 (cdk5) in animal models 

(Veeranna et al., 1995). In addition, protein aggregation studies in Alzheimer’s 

disease patients highlighted the association of increased NFH phosphorylation 

with a decrease in protein phosphatases 2A activity (Vogelsberg-Ragaglia et al., 

2001). 
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High throughput analysis of ReNcell CX cells could be extended to study the 

effects of OP exposure on individual neuronal and glial cell types in more detail. 

This would involve the use of additional image analysis software packages to 

determine the effects of exposure on the proportions of cell expressing specific 

biomarkers (e.g. myelin basic proteins for oligodendrocytes, choline acetyl 

transferase for cholinergic neurons, tyrosine hydroxylase for dopaminergic 

neurons, etc) above the levels found in non-differentiated neural stem cells, 

which could be further identified by counter-staining monolayers with antibodies 

to nestin.    

                                                       

 

7.4 Conclusion 

In conclusion, the present study used several morphological and biochemical 

approaches to study the effects of sub-cytotoxic concentration of CPF and CPO 

on neurite outgrowth and cytoskeletal proteins in differentiating neural cellular 

models. Indeed the findings show that pre-differentiated N2a cells represent a 

useful cellular system for neurotoxicity screening. However, the fact that N2a 

cells provide a mono-culture cell model, and are derived from a rodent tumour, 

they may not give a true reflection of the complexity of the human nervous 

system and its response to OP exposure. The current study also highlights that 

evaluating the toxicity on human neural progenitor ReNcell CX stem cells 

reduced the level of uncertainty associated with cells derived from animal 

models. A further advantage of using such human-derived neural progenitor stem 

cells is that they differentiate into a co-culture incorporating both neuronal and 

glial cell types. As such, with further development, it should be more effective at 

predicting the toxin-related changes in vivo.  
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Figure 8.1. Effects of CPF and CPO on cell number and cell body area in pre-differentiated N2a cells as assessed by high throughput 

assays.  Cell were then fixed and stained with SMI34 and Ta51, after which data were acquired using the ImageXpress Micro system and the 

average cell number/field and the average cell body area/field were measured using MetaXpress imaging and analysis software. Data show dose-

related effects of both CPF and CPO on cell number (A) and cell body area (µm) (B) with SMI34 and Ta51 staining at 2 h and 8 h. High throughput 
data are represented as mean values ± SEM from four independent experiments. Data were analysed using two-way ANOVA. The CPF effects are 

presented as blue solid lines with circles; the CPO effects are presented as red dashed lines with triangles. Asterisks indicate changes that are 

statistically different from the non OP-treated controls (*p ˂ 0.05). When SEM bars are not apparent, this means that error is smaller than the 
symbol size.   
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Figure 8.2. Effects of CPF and CPO on neurite number and percentage of cells with significant outgrowth in pre-differentiated N2a 

cells as assessed by high throughput analysis. Cells were stained with SMI34 and Ta51, after which data were acquired using ImageXpress 
Micro system and measured using MetaXpress imaging and analysis software. Data show dose-related effects of both CPF and CPO on the 

average neurite number/field (A) and the percentage of cells with significant outgrowth (B) at 2 and 8 h with SMI34 and Ta51 staining. Data are 

presented as mean values ± SEM from four independent experiments for both time points. Data were analysed using two-way ANOVA. The 

CPF effects are presented as blue solid lines with circles; the CPO effects are presented as red dashed lines with triangles. Asterisks indicate 
changes that are statistically different from the non OP-treated controls (p ˂ 0.05). When SEM bars are not apparent, this means that error is 

smaller than the symbol size. 
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Figure 8.3. Effects of CPF and CPO on maximum and average neurite length/cell in pre-differentiated N2a cells as assessed by high 

throughput analysis. Cells were stained with SMI34 and Ta51, after which data were acquired using ImageXpress Micro system and measured 
using MetaXpress imaging and analysis software. Data show dose-related effects of both CPF and CPO on the maximum neurite length/cell (A) 

and the average neurite length/cell (B) at 2 and 8 h with SMI34 and Ta51 staining. Data are presented as mean values ± SEM from four 

independent experiments for both time points. Data were analysed using two-way ANOVA. The CPF effects are presented as blue solid lines with 
circles; the CPO effects are presented as red dashed lines with triangles. Asterisks indicate changes that are statistically different from the non 

OP-treated controls (*p ˂ 0.05). When SEM bars are not apparent, this means that error is smaller than the symbol size. 
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Figure 8.4. Effects of CPF and CPO on the mean number of processes and branches/cell in pre-differentiated N2a cells as assessed by 

high throughput analysis.  Cells were stained with SMI34 and Ta51, after which data were acquired using ImageXpress Micro system and 
measured using MetaXpress imaging and analysis software. Data show dose-related effects of both CPF and CPO on the mean processes/cell (A) 

and the mean branches/cell (B) at 2 and 8 h with SMI342 and Ta51 staining. Data are presented as mean values ± SEM from four independent 

experiments for both time points. Data were analysed using two-way ANOVA. The CPF effects are presented as blue solid lines with circles; the 
CPO effects are presented as red dashed lines with triangles. Asterisks indicate changes that are statistically different from the non OP-treated 

controls (*p ˂ 0.05). When SEM bars are not apparent, this means that error is smaller than the symbol size. 

 


