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Abstract 

The strict CO2 emission targets set to tackle the global climate change associated with greenhouse gas emission 

exerts so much pressure on our cities which contribute up to 75 % of the global carbon dioxide emission level, 

with buildings being the largest contributor (UNEP, 2015). Premised on this fact, urban planners are required to 

implement proactive energy planning strategies not only to meet these targets but also ensure that future cities 

development is performed in a way that promotes energy-efficiency. This article gives an overview of the state-

of-art of energy planning and forecasting approaches for aiding physical improvement strategies in the building 

sector. Unlike previous reviews, which have only addressed the strengths as well as weaknesses of some of the 

approaches while referring to some relevant examples from the literature, this article focuses on critically 

analysing more approaches namely; 2D GIS and 3DGIS (CityGML) based energy prediction approaches, based 

on their frequent intervention scale, applicability in the building life cycle, and conventional prediction process. 

This will be followed by unravelling the gaps and issues pertaining to the reviewed approaches. Finally, based 

on the identified problems, future research prospects are recommended. 
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1. Introduction  

 
Statistics have shown that the building sector consumes approximately 40% of the world’s energy 

resources and emits around 1/3 of greenhouse gas emissions (UNEP, 2015). From this premise, 

implementing effective and proactive strategies at this sector is indispensable for achieving the 

imposed CO2 emission reduction targets (Foucquier et al., 2013). However, since buildings’ energy 

consumption depends on many interwoven factors including weather conditions, users’ behaviour, 

and buildings’ characteristics, urban energy planners require useful tools that assist their urban energy 

planning decision-making with regards;  

 Identifying potential areas that necessitate improvement.  

 Choosing the right and most effective strategy (retrofit, technology upgrade, reconstruction, 

demolition, raise users’ awareness, etc…) based on each scenario.  

 Determining the degree of change in energy consumption after certain measures have been 

applied.  
 

For these reasons, a lot of effort has been made in recent years to develop energy prediction 

approaches to support physical improvement strategies in the building sector. Each approach does not 

only address specific problem(s) but also has its frequent intervention scale (micro or macro) 



 

 

and a particular applicability in the building lifecycle (Swan and Ugursal, 2009). This has been a 

subject of great interest to many scholars from various backgrounds who made invaluable effort 

reviewing and comparing these approaches. For example, Swan and Ugursal (2009) discussed energy 

prediction models used in the residential sector within two distinct categories namely; top-down 

(techno-socioeconomic) and bottom-up (physical). This classification was hugely influenced by the 

type of envisaged measures (techno-socioeconomic or physical), the level of detail and hierarchical 

position of data inputs in reference to the whole residential sector. On the other hand, Foucquier et al. 

(2013) classified different energy prediction models into three main categories namely; physical, 

statistical, and hybrid. Furthermore, addressed them based on their characteristics, strengths, and 

limitations while providing some examples on each model. Zhao and Magoulès (2012) proposed three 

categories to energy prediction approaches supporting physical improvements in the building sector 

namely; engineering, statistical, artificial intelligence (neural networks, support vector machine), and 

grey models. Besides evaluating the strengths and weaknesses of each category, their level of 

complexity, user friendliness, inputs’ level of detail, computation speed, and accuracy were also 

addressed. Fumo (2014), however, reviewed and compare in detail previous classifications of these 

approaches, as shown in (Table.1), while focusing particularly on calibrated engineering methods. 

However, despite the vital contribution of the above authors, there is no review that has explicitly 

addressed these methods based on their frequent intervention scale, nor investigated certain prominent 

approaches which are utilised at the urban scale such as, 2D GIS and 3D GIS (CityGML) based 

energy planning forecasting methods.  

 
Table 1. Classification of different energy predictions approaches in previous reviews 

Authors Classification 

(Swan, Ugursal 2009) 

 Top Down models 

 Bottom up models: 

 Statistical (regression, Conditional demand analysis, neural 

networks) 

 Engineering methods 

(Zhao, Magoulès 2012) 

 Engineering methods 

 Statistical methods 

 Artificial intelligence 

 Support vector machine 

 Artificial neural network 

 Grey models (hybrid models) 

(Foucquier, Robert et al. 2013) 

 Physical models 

 Statistical methods (regression, artificial neural networks, 

support vector machine) 

 Hybrid models 

(Pedersen, 2007) 

 Statistical approaches/regression analyses 

 Energy simulation programs 

 Intelligent computer systems ( Artificial intelligence) 

(Fumo 2014) 

 Engineering methods 

 Calibrated  

 Forward(non-calibrated) 

 Statistical approaches 

 Artificial neural networks  

 Support vector machine 

 Regression 

 Hybrid approaches 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This paper aims to provide a comprehensive review of the current state-of- the- art of energy 

planning and forecasting approaches for aiding physical improvements strategies in the building 

sector. Please note that top-down approaches for supporting techno-socioeconomic improvements are 

outside the scope of this paper; please refer to the work of Swan and Ugursal, (2009).   

We suggest to classify the reviewed approaches based on their intervention scale into building and 

urban scale approaches as shown in (Fig.1), although sometimes there are no clear boundaries as some 

approaches can be applied at both levels. Influenced by the proposed classification, the content of this 

review has been organised into 4 sections.  

First, Section 2 addresses approaches utilised at the building scale namely; engineering, artificial 

intelligence, and hybrid but with less details since previous reviews exhaustively examined them. We 

have chosen this categorisation, which we have partially adopted from (Zhao and Magoulès, 2012) 

and adapted to match the building intervention scale, over other classifications shown in (Table.1) 

because it takes into account the nature of the involved mathematical model(s) (e.g. thermodynamic 

model). Furthermore, it acknowledges artificial neural networks (ANN) and support vector machine 

approaches (SVM) as artificial intelligence methods instead of statistical ones. Section 3, on the other 

hand, analyses in depth urban scale approaches namely; 2D GIS and 3D GIS (CityGML) based 

energy forecasting approaches, and statistical methods. The analysis of all approaches either in section 

2 or 3 is based on their structure, workflow, advantages and limitations while providing some 

examples on their applicability in the building lifecycle. Next, section 4 discusses issues and gaps 

pertaining to both categories. Moreover, recommends directions for future research.  

 

2. Building scale approaches 

 

2.1. Engineering approaches and their tools 

 

Engineering methods use physical principles and thermodynamic relationships to predict the 

energy performance of the whole building or some of its components. They can be further categorised 

into sub-groups based on the type and complexity of the used physical equations or thermodynamic 

formulas, although no clear classification is found in the literature.  For example, Zhao and Magoulès 

(2012) classify them based on the complexity of the employed physical/thermodynamic equations and 

accuracy into; detailed and simplified engineering models. Others like Maile et al. (2007) categorise 

them based on the type of heat transfer problem and its corresponding prediction accuracy into; one 

dimensional, two dimensional, and three dimensional models, as shown in (Table.2). 

Due to the potential capabilities of information technologies, a large number of computer 

simulation tools, which rely on the 3D geometry of the building, are employed to evaluate building 

energy performance through solving different physical/ thermodynamic problems (Clarke, 2001).  

Figure 1.The structure of the article which is 

influenced by our suggested classification.  



 

 

Owing to the prominence of building energy simulation tools in supporting engineering 

approaches, their structure, prediction pipeline, and applicability in the building life-cycle will 

discussed in the following sections. 

 

2.1.1. Structure and prediction process  

 

The architecture of the majority of building energy simulation tools, regardless of the type of 

engineering approach they support (e.g. one dimensional), is composed of two major components 

namely; Engine and graphical user interface, as illustrated in (Fig.2). The simulation engine 

component requires an input file, usually simple text based, to perform and write its output into one or 

several files. There are five different types of input data namely; 3D building geometry (including the 

layout of thermal zones, material physical properties, and window areas), internal loads, HVAC 

system components and controls, weather data, occupancy schedule and simulation related parameters 

(Ham and Golparvar-Fard, 2015).  

 
Table 2 examples of engineering approaches classification 

Review Classification  Main criteria of categorisation 

(Zhao and Magoulès, 2012)  Simplified 

 Elaborate 

 Complexity of physical/ thermodynamic 

functions  

 Accuracy of prediction 

(Foucquier et al., 2013)  CFD tools 

 Single zone tools 

 Multi-zones tools 

 Type of heat transfer problem 

 Availability and nature of collected data 

inside the building. 

 Accuracy of prediction 

(Maile et al., 2007)  One dimensional 

 Two dimensional 

 Three dimensional 

 Accuracy of prediction  

 Type of heat transfer problem 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Generic Architecture of energy simulation tools adapted from (Maile et al., 

2007) 



 

 

2.1.2. Applicability in the building life-cycle  

 

Table.3 below represents the life cycle usage of some widely adopted energy simulation tools and 

puts them into context by providing examples of previous studies. Traditionally, building energy 

simulation tools were developed to support the design phases through evaluating the energy 

performance of design alternatives. However, over the last few years their capabilities have been 

expanded to cover the commissioning, operation, and maintenance of building (Coakley et al., 2014). 

The difference between both categories is that the tools aiding operational and maintenance stages 

require a higher level of detail to validate the performance of HVAC systems and their controls during 

commissioning (Maile et al., 2007).  

Table 3. The applicability of some well adopted energy simulation tools in the building lifecycle 

Simulation 

tools 
Life cycle usage Example of relevant studies 

Purpose of use in the 

study 

EnergyPlus Multiple phases but 

powerful for operational 

phases 

(Attia et al., 2012) To simulate the energy 

performance of different 

design proposals. 

eQUEST Design stages ( maily 

schematic/ detailed 

design phases) 

(Yu et al., 2008) To estimate the annual 

energy consumption of a 

typical residential building 

in hot summer zones in 

china 

 

Design builder Multiple stages but weak 

in operational phase 

(Ortiz et al., 2009) To estimate the 

environmental impact of 

certain physical measures 

on a typical dwelling in 

Barcelona during the 

design and operational 

stages  

 

IES-VE Multiple stages (design, 

operation, maintenance) 

(Al-Tamimi and Fadzil, 2011) To investigate the effect of 

different shading devices 

on the thermal comfort of 

high rise buildings in hot-

climate weather   

 

BSim Design stages (Marszal et al., 2012) To calculate the hourly 

load demand of a reference 

residential multi-storey 

zero emission building in 

Denmark.  

 

ECOTECT Preliminary design stages (Sadafi et al., 2011) To investigate the impact 

of courtyards on the 

thermal performance of a 

tropical terraced house. 

  

 



 

 

2.1.3. Strengths of engineering tools and approaches 

 

 They do not rely on historical data, albeit the latter can be used to increase their accuracy (Swan 

and Ugursal, 2009). 

 They have the ability to model different onsite energy renewable sources such as solar panels. 

 Flexible, explicit, user-friendly, well integrated and highly interoperable with CAD/BIM 

systems which make their adoption widely accepted by urban planners. 

 

2.1.4. Weaknesses of engineering tools and approaches 

 

 May require more input than other methods like statistical one. 

 If certain data is unavailable, the performance of very accurate simulation results can be 

tedious and require experts’ assistance (Zhao and Magoulès, 2012). 

 The modelling of occupants’ behaviour is poor and inaccurate due to the “standardisations” as 

well as assumptions.  

 

2.2. Artificial intelligence tools and approaches   
 

Although the artificial intelligence umbrella groups a wide range of approaches, SVM (support 

vector machine) and artificial neural networks models (ANN) are the most used for energy prediction 

in the building sector (Zhao and Magoulès, 2012).  

 

2.2.1. Conventional prediction process  

 

The process of energy prediction using artificial intelligence approaches usually comprises four 

steps namely; data collection, data pre-processing, model training, and model testing as depicted in 

(Fig.3). The process begins with acquiring historical data containing correlated inputs and outputs. 

The temporal granularity of the collected data ranges from hourly to yearly depending on the project 

requirement, time, and resources. Once data is collected, the pre-processing phase, which comprises 

applying some techniques (e.g. transformation and data normalisation) to the data to improve its 

quality, occurs. This will be followed by a training phase which encompasses the selection of the 

appropriate parameters determined by the user based on the training data size and selection of input 

variables. Finally, the performance of the developed artificial intelligence algorithm is tested using 

existing data (Yilmaz et al., 2015).      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Conventional prediction 

process of Artificial intelligence tools 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2. Artificial neural networks (ANN) tools and approaches  

 

2.2.2.1. Structure and workflow 

 

ANN’s are mathematical models that mimic biological neural network (Aydinalp-Koksal and 

Ugursal, 2008). They are not programmed in the conventional way but instead trained using historical 

data representing the performance of a system. As illustrated in (Fig.4), their generic structure 

encompasses three main components namely; input layer, one or several hidden layers, and output 

layer. Every single layer encompasses several neurons in which each one is linked to other ones in the 

adjacent layer with various weights. Overall, information flows into the input layer, through the 

hidden layer(s), to the output layer. Each entering signal, which comprises a given parameter value 

such as, insulation thickness (cm), or glazing ratio (%), is then multiplied by its corresponding neuron 

weight and summed up with the bias contribution to determine the total input of hidden layer neuron 

(netj). An activation function will be applied to the latter to define the neurons output, heating energy 

consumption, for instance.  

 

2.2.2.2. Training of ANN 

 

The purpose of the training process is to apply learning algorithms to obtain a set of neuron weight 

matrices which enable the artificial neural network to map correctly outputs with inputs. There exist 

two types of training namely; supervised and unsupervised.  

 

 Supervised:  simply mean that data outputs are provided with their corresponding inputs while 

training the ANN model. So that it possible to calculate discrepancies between the predicted 

outputs and actual ones. Based on these divergences, the user can make adjustments to the 

ANN model by updating its neurons’ weights. This type is the most common in the building 

energy prediction literature (Kalogirou, 2006). 

 Unsupervised: occur when the user only provides a set of inputs to the ANN model which will 

in turn find or predict patterns in the inputs without external aid.  

 

2.2.2.3.Applicability in the building life-cycle 
 

Figure 4. Working principle and information flow of neural network models 

adopted from (Krenker et al., 2011) 



 

 

Due to their ability to represent non-linear processes, the use of ANN models since originated in 

the 1990’s has been devoted to utility load forecasting in the operational phases of the building 

lifecycle. However, there have been few attempts to utilise them in the early design stages. In general, 

the scale of those studies ranges from a single building up to few buildings except the work of 

Aydinalp et al. (2002).  

For example, Kalogirou and Bojic (2000), in an effort to assist designers in the assessment of 

passive solar design, employed 4 layers recurrent ANN model to predict the hourly energy 

consumption of a passive solar holiday home in Cyprus during summer and winter. This was achieved 

in function of the level of insulation, masonry thickness, nature of heat transfer coefficient, and time 

of the day. The author concluded that model’s prediction was satisfactory and quicker than dynamic 

simulation tools. Similarly, Mihalakakou et al. (2002) developed feed forward back propagation ANN 

model for estimating the hourly electricity consumption of a residential building in Athens based on 

several climatic parameters such as, air temperature and solar radiation. The model was trained with 

hourly energy consumption data of the building collected over 5 years.  

As for the use of ANN models in early design stages, Ekici and Aksoy (2009) developed a back 

propagation ANN model to predict the heating demand of three building designs in relation to 

orientation, insulation, walls thickness, and transparency ratio. Energy consumption data, which were 

calculated using the finite difference method of transient state one-dimensional heat conduction, were 

employed to train the model inside MATLAB ANN toolbox. Following the same process, Dombaycı 

(2010) predicted the hourly energy usage of a house during the design stage but the employed ANN 

model was trained with energy consumption data calculated by degree hour method covering the 

period from 2004-2007.    

Apart from load prediction, ANN models have been also utilised in optimising the performance of 

energy management systems. For example, to save the electricity used for water heating, Wezenberg 

and Dewe (1995) adopted some ANN models in generating an operation schedule for a residential 

water heating system based the cheapest tariffs and without compromising the thermal comfort. This 

was performed by training the models with historical tariff rates, ambient temperature, humidity rates, 

and time data (hour, day, etc...).  

 

2.2.2.4. Advantages of ANN tools and approaches 

 

 Unlike statistical approaches, the ANN ones have a higher accuracy due to their ability to 

implicitly identify all non-linear relationships between inputs and outputs.   

 In a widely cited work by Aydinalp et al. (2002) , the developed ANN models showed their ability 

in evaluating the impact of socio-economic factors on end-energy use.  

 

2.2.2.5. Disadvantages of ANN tools and approaches 

 

 ANN models have a limited ability to explicit relationships between variables and cannot directly 

deal with uncertainties (Aydinalp-Koksal and Ugursal, 2008); (Papadopoulos et al., 2001).  

 ANN modelling is not cost effective since enormous historical data and computational resources 

are required. 

 ANN models are exposed to overfitting issues in the data training process, which means that the 

trained ANN model might consider noise as part of the data pattern. As a result, predictions made 

are outside the range of the training dataset (Tu, 1996).   

 In contrast to engineering approaches, ANN models cannot be generalised to different buildings 

under different conditions (weather, occupancy, etc…). This requires a new ANN model for each 

building/ situation (Foucquier et al., 2013). 

 Therefore, they are not flexible in assessing the effect of energy conservation measures.  

 



 

 

2.2.3. Support vector machine (SVM) approaches 

 

Support vector machine (SVM) is a supervised machine learning algorithm that is well-known for 

its robustness and accuracy. Like ANN, SVM models have to be trained with historical data 

representing the behaviour of a system. Due to its ability to solve non-linear regression and 

classification problems, SVM is increasingly being employed both in research and industry since first 

implemented by Cortes and Vapnik (1995). The principle of SVM in solving a classification problem 

is based on the division of a dataset into sub categories, whose properties are specified by the user. On 

the other hand, it is premised on describing a given dataset by a particular equation whose complexity 

is defined by the user, if the main concern is to tackle a regression problem to forecast future trends in 

the data, which is the case for energy prediction. The prediction principle using SVM will be 

addressed in detail in the next section.  

 

2.2.3.1. Prediction principle using SVM regression 

 

The aim of using SVM for regression is to seek the optimal model generalisation to promote 

sparsity. Let us consider a given training dataset[(𝑥0, 𝑦0), . . . , (𝑥𝑛, 𝑦𝑛)]. 𝑥𝑖, 𝑦𝑖 represent the input 

and output space, respectively. For example,𝑥𝑖 denote household income values, whereas 𝑦𝑖  are 

energy consumption values.  To solve a non-linear problem such as, energy consumption, the non-

linearity between variables, x and y in this case, has to be transformed using linear mapping (or 

transformation) through two steps. The first step consists of projecting the non-linear problem into a 

high dimensional space known as the feature space. After that, 𝑓(𝑥) the function fitting best the 

behaviour of the problem has to be determined in the feature space.  The uniqueness of SVM is that it 

does allow an uncertainty ϵ in the regression model. This means that any error less than ϵ in the SVM 

model is tolerated. The function f(x) is defined as follows (Eq.1) (Cortes and Vapnik, 1995); 

 

 𝑓(𝑥) =< 𝜔, 𝜑(𝑥) > +𝑏 (1) 

 

Where 𝜑 is a variable in the feature space (high-dimensional space) and <, > is a scalar product. b and 

𝜔 are defined in function of an optimisation problem known as the primal objective function (Eq.2) 

and (Eq.3) (Cortes and Vapnik, 1995). 
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(3) 

 

𝐶 (known as regularisation parameter), represents the trad off between the flatness of 𝑓 and the first 

larger value than 𝜖 defined by the user . 𝜉𝑖 and 𝜉𝑖
∗
 are the slack variables enabling the constraints 

flexibility (Fig.5). Finally, the second step to make the complex non-linear map a linear problem is to 

apply a kernel function without the need to evaluate𝛷(𝑋) as follows (Eq.4) (Cortes and Vapnik, 

1995);  

 𝑘(𝑥, �́�) =< 𝜑(𝑥), 𝜑(𝑥)́ > (4) 

There are three types of Kernel functions namely; linear, polynomial, and radial. Choosing the right 

kernel is very important since it has a huge impact on the learning ability and generalizability of SVM 

algorithm which in turn affect its prediction accuracy.  



 

 

 

 

 

 

 

 

 

 
 

 

 

2.2.3.2. Applicability in the building life-cycle 

 

Since first adopted by Dong et al. (2005) for energy forecasting until now, the use of SVM models has 

been mainly confined to predicting energy consumption and temperature of individual buildings 

(mostly commercial or administrative) during their operational stages (Ahmad et al., 2014). However, 

recent work done by Son et al. (2015) used SVM regression models to predict the electricity 

consumption of government owened buildings in the early design stages. This was achieved by first 

retrieving the relevant parameters through applying a variable selection algorithm called RreliefF. 

Afterwards, the SVM model was trained with an existing dataset for 175 government owned  

buildings. The trained SVM could predict the energy consumption of government owned-buildings 

during the design stages but with Mean Absolute Percent Error (MAPE) of 35% which means that the 

SVM prediction accuracy is reasonable according to Lewis (1982) scale.  

On the other hand, a lot of  publications have addressed the prediction of electricity consumption 

in non-residential  buildings during the operational stages using SVM regression models. For 

example, Lai et al. (2008) forecasted the electricity consumption of a building for a period of three 

months after the SVM model had been trained with electricity consumption data measured over one 

year period. The authors obtained a satisfactory match between measured and predicted data. 

Similarly, Li et al. (2009) compared the prediction accuracy of a back propagation neural network 

with an SVM model while forecasting the cooling load of an office building in Guangzhou in function 

of outdoor dry-bulb temperature, humidity, and solar radiation. The results have shown that the SVM 

model had a better prediction accuracy than the ANN model. Similar findings were reported one year 

later by Li et al. (2010) after the following models namely; SVM, back propoagation neural network, 

radial function neural network, and general regression neural network, have been employed to predict 

the annual electricity consumption of 9 office buildings.  

In an attempt to address the lack of studies applying SVM to residential buildings, Jain et al. ( 

2014) questioned the applicability of SVM regression models for forecatsing the energy consumption 

of multi-family buildings. This was achieved by investigating the accuracy of the employed SVM 

regression models in function of different temporal (hourly, daily, etc...) and spatial (whole building, 

by floor, etc...) granularity of the measured electricity consumption data. Their findings suggested that 

SVM can be extend to cover energy forecasting of multi-family buildings as long as the 

measurements used to train the SVM model are perfomed at least at every floor and with a minimum 

of 1 hour interval.      

 

Figure 5. SVM regression function with slack variables, 

observed and predicted data points (tripod, 2015) 

http://www.vanguardsw.com/business-forecasting-101/mean-absolute-percent-error-mape/


 

 

2.2.3.3. Advantages of support vector machine approaches 

 

 Comparatively to existing artificial intelligence approaches, SVM for regression have shown better 

results in terms of accuracy.  

 In contrast to aritificial neural networks, SVM for regression are less prone for over-fitting issues 

due to their  regularisation parameter 𝐶.  

 

2.2.3.4.  Disadvantages of SVM tools and approaches  

 

 One of the limitations of SVM for regression is the lack of universal method for selecting the 

appropriate Kernel function (Yilmaz et al., 2015).   

 Since requiring enormous historical data and computational resources, SVM is not cost-effective  

 SVM for regression do not rely on 3D models, hence they are not flexible in assessing energy 

conservation measures and their adoption by urban planners is complex.  

 

2.3. Hybrid approaches  

 

Hybrid models were first introduced in the 1990s for the purpose of improving HVAC control 

systems efficiency. They are based on the idea of combining physical, statistical, and artificial 

intelligence models where data samples are reasonably small, incomplete, or subject to uncertainties 

(Foucquier et al., 2013).  

 

2.3.1. Hybrid approaches’ structures and prediction processes 

 

There exist three possible structures of hybrid approaches as shown in (Table.4). The first one 

involves the estimation of optimal physical parameters with the help of machine learning algorithms 

through the combination of one dimensional heat transfer models with optimisation models (Genetic 

Algorithms usually). The second approach consists of describing the dwelling behaviour by 

implementing a learning model through the use of statistics. Finally, the third approach, which is not 

referenced in building energy prediction literature according to Foucquier et al. (2013), comprises the 

employment of statistical models in areas where physical/thermodynamic models are inadequate or 

inaccurate. For example, when thermal properties of a given room are unknown or when the aim is to 

consider the variation in users’ behaviour.   

 

Table 4. Possible strategies of hybrid approaches 

 

 

Possible hybrid approach Approaches involved Common purpose of use 

1  Engineering 

 Artificial intelligence  

Estimation of optimal physical parameters  

2  Artificial intelligence  

 Statistical  

Describing the building thermal behaviour 

3  Statistics 

 Engineering  

Estimation of optimal physical / techno-

socioeconomic parameters which could have 

been missing or inaccurate. 



 

 

2.3.2. Applicability in the building life-cycle 
 

Hybrid models are mainly used for the estimation of optimal physical parameters and energy 

consumption prediction to a lesser extent. However, despite not directly linked to energy prediction 

modelling, the determination and optimisation of such parameters to achieve low-energy consumption 

certainly assist urban planners in their planning strategies. This does not only apply to the design 

stages but also the operational ones.  

To assist energy planning in the design stages Znouda et al. (2007) coupled an energy simulation 

engine, which was specifically developed for Mediterranean weather, with a genetic algorithm to 

retrieve the optimum architectural and physical parameters; consequently, improve energy efficiency 

in summer and winter. The strength of this approach lies in its simplicity as only few parameters are 

involved. Similarly, Tuhus-Dubrow and Krarti (2010) followed almost the same process using a 

different energy simulation engine (DOE-2) to determine the most efficient dwelling form(s) for 

amongst U shape, L shape, T shape, H shape, trapezoidal, and rectangular across 5 different US 

climatic zones. The findings suggested that the two latter shapes were the most efficient. 

Hygh et al. (2012) merged statistical regression methods with building simulation tools to predict 

the energy consumption of medium size rectangular shape buildings in 4 major climatic zones in the 

US. It was achieved by first, investigating the range of parameters that are frequently changed at the 

early design stages and likely to affect energy consumption through analysing the literature. These 

parameters include, building area, number of stories, aspect ratio, orientation, roof colour, glazing 

ratio, and U-values of walls and windows. Secondly, based on the possible min-max values of each 

parameter, Monte Carlo method was adopted to incorporate all possible inputs probabilities and 

replace default values in the referential thermal model. Thirdly, all the resulting iterations were 

embedded in energy plus simulation engine using Perl script before computing the annual energy 

consumption of each scenario. Afterwards, the rich database, which contains the latter and the 

randomly selected values of each parameter, is generated. This was then used to develop multivariate 

linear regression model. This approach has been also adopted by Asadi et al. (2014). 

 

2.3.3. Strengths of hybrid approaches  

 

 Hybrid models are a good alternative to ANN and statistical regression models when there is a 

limited number of parameters or data samples are reasonably small. 

 Unlike engineering methods, the hybrid ones do not require a detailed description of the building 

geometry and thermal properties of the building envelop.  

 Their outcomes can be interpreted from a physical point of view. 

 

2.3.4. Limitations of hybrid approaches  

 

 Hybrid models require a considerable amount of computation time and resources.  

 May require some support and training due to the fact that they combine two distinct approaches.   

 

3. Urban scale tools and approaches 

 

Urban energy forecasting models for aiding physical improvements are mostly bottom-up models 

(Heiple and Sailor, 2008). This implies that the energy demand or CO2 emission of the building stock 

of an urban area are forecasted in function of a representative sample usually via extrapolation.  

 

3.1. 2D GIS based urban energy prediction models 

 

3.1.1. Structure 

 



 

 

GIS (geographical information system) is a complex information system that integrates, stores, 

manages, analyses, interprets and visualises data, which are geo-spatially referenced, in different ways 

in order to understand trends, patterns, and relationships. This section will focus solely on the 

structure of urban energy forecasting approaches that utilise 2D GIS tools. In general, the majority of 

these approaches, despite their diversity, are composed of the following components;  

 

 Inputs: comprise variables which describe the physical and thermal characteristics of the 

dwellings in addition to standard occupational schedules data. (Table.5) represents a list of the 

most common variables for this approach based on some important examples from the literature 

and highlights possible sources from which these inputs are derived. 

 Assumptions: usually apply for some variables related to occupants’ behaviour as well as 

thermal characteristics of the buildings such as, household size, patterns of heating, and level of 

insulation. 

 Baseline models: The estimation of energy consumption at the urban scale (in a bottom up 

fashion) is produced with the help of baseline models which are usually physically based ones, 

such as BREDEM (the Building research establishment domestic energy model).  The inputs 

requirements and complexity of energy prediction varies from one baseline model to another 

(Kavgic et al., 2010). 

 Calculation engine: is the software in which baseline models or algorithms are incorporated to 

perform energy consumption calculations such as, SBEM (simplified building energy model).  

 Data exchange module: allows the exchange of data between the GIS platform and calculation 

engine such as, dynamic data exchange (DDE). 

 GIS platform: Although it provides certain geometric inputs, a GIS platform is mainly dedicated 

to visualising the energy consumption or CO2 emission of buildings using thematic mapping 

techniques (Jones et al., 2001); (Jones et al., 2007); (Batty, 2007).  

 

3.1.2. Conventional prediction process 

 

Generally speaking, the process begins with determining the type of the baseline model and its 

calculation engine based on the aim of prediction, availability of data inputs, envisaged accuracy, time, 

and availability of resources as shown in (Fig.6) . Once determined, although not necessary if it is 

available, data will be collected using various methods ranging from quick inspection surveys to 

detailed energy audits depending on the decisions made in the previous stage. After that, the 

geometric variables extracted from GIS (e.g. building area) along with the collected data will be 

inserted to perform the calculation. This will be followed by a validation process that will compare the 

outcomes with existing databases such as regional statistical data (top-down consumption data). If 

there is not a good agreement between both datasets, inputs will be adjusted accordingly. Finally, with 

the help of data exchange module, GIS platform will automatically geolocate and visualise the outputs 

on the 2D map of the studied urban area.   

 

3.1.3. Applicability in the building life-cycle 

 

2D GIS based tools are mainly employed in the operational phases of the building lifecycle to 

estimate and compare the energy consumption or CO2 emission of building areas before and after 

physical improvement measures (e.g. renewable resources, retrofit, etc…) have been applied. 

Furthermore, to determine building areas with potential energy savings. For example, Jones et al. 

(2001) estimated the annual energy consumption of Neath Port Talbot residential sector, UK, in 

function of a representative sample composed of 100 archetypes of dwellings. After that, certain 

physical measures included in the UK home energy conservation act (HECA) such as, water tank 

insulation, were applied to the archetypes whose energy consumption values were re-estimated 

accordingly. Finally, the archetypes were extrapolated in GIS to thematically visualise the energy 



 

 

consumption and CO2 emission of the whole residential sector before and after physical 

improvements. Similarly, Heiple and Sailor (2008) estimated the energy consumption of the building 

stock in Houston, USA in function of 30 archetypes composed of 8 dwellings and 22 commercial 

buildings. Secondary databases, more precisely residential energy consumption survey (RECS) and 

GIS lot tax database, were used to retrieve geometric parameters, thermal characteristics, and age of 

buildings. After the total energy consumption had been calculated using a building simulation tool 

eQUEST based on the retrieved parameters, the outcomes were mapped into a GIS platform to 

visualise the hourly energy consumption at 100 m grid resolution.   

2D GIS based approaches have been also highly associated with renewable energy planning in the 

literature. For instance, Aydin et al. (2013); Janke, (2010); Connolly et al. (2010) adopted 2D GIS to 

identify suitable areas for solar and wind farms, as well as pumped storage hydro plants. Kucuksari et 

al. (2014) has recently suggested a framework integrating 2D GIS, optimisation algorithms, with 

simulation engines to assist the placement and dimensioning of solar panels in dense urban areas. In 

addition to that, 2D GIS approaches played a major role in evaluating the benefit of expanding district 

heat systems in certain studies (Nielsen and Möller, 2013).  

3.1.4. Advantages of 2D GIS based approaches  

 

 Have a potential of being integrated into urban planners’ everyday life, since GIS tools are 

increasingly being adopted in urban planning.   

 They are good for analysing and communicating potential renewable energy areas. 

 

3.1.5. Disadvantages of 2D GIS based approaches 

 

 There is a lack of universal guidelines on the processes, nature, and granularity of parameters 

involved in this approach.    

 Energy forecasting using 2D GIS based approaches require a considerable amount of 

computation time of resources since they reply on building simulation tools.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.Conventional prediction process of 2D GIS based urban energy planning 

and prediction models 



 

 

Table 5. Common inputs for 2D GIS-based energy forecasting approaches and their corresponding derivation 

sources. 

Authors Inputs 
Category of 

inputs 
Source  

(Rylatt et al., 2003);  Wind speed 

Weather data 

-Data from metrological 

stations or; 

-Onsite measurements 

(Kavgic et al., 2010); 

(Heiple and Sailor, 

2008); (Rylatt et al., 

2003); 

Heating/cooling degree day 

(Kavgic et al., 2010); 

(Heiple and Sailor, 

2008); (Rylatt et al., 

2003); (Jones et al., 

2001); (Jones et al., 

2007) 

Building-age  Building-age 

-Official surveys (e.g. 

English house condition 

survey) 

-Existing maps / site 

inspection  

Building typology (e.g. detached, 

semi-detached, etc...) Typology 
-Site inspection, existing 

maps 

exposed perimeters 

Building 

geometry 

-GIS tools or; 

-Building footprints 

from existing maps and ;  

-Building typology and 

ages 

roof and wall areas 

Building volumes 

Façade orientation 

U-values for roof, external walls, 

Thermal 

characteristics 

-Assumptions 

-Official surveys based 

on Building age and 

typology or; 

-Energy audits  

Type and thickness of insulation  

Window area and glazing ratio 

Thermal zones and their U-Values  

(Kavgic et al., 2010); 

(Heiple and Sailor, 

2008); (Rylatt et al., 

2003);(Jones et al., 

2001); (Jones et al., 

2007) 

Type of boiler, number of pumps and 

fans, size and insulation of hot water 

tank, insulation of pipes, type of 

controls, solar panel area (if 

available). 

HVAC system 

specification 

-From building 

regulations based on age 

and typology of the 

building 

-Energy audits  

-Assumptions 

(Kavgic et al., 2010); 

(Heiple and Sailor, 

2008); (Rylatt et al., 

2003);(Jones et al., 

2001);(Jones et al., 

2007) 

Number of occupants, temperature of 

each building zone, heating hours, 

etc… 

Internal gain and 

occupancy 

schedules 

-Assumption  

-Official surveys 



 

 

3.2. CityGML (3D GIS) based urban energy prediction models 

 

Recently, there has been a shift in focus from conventional 2D GIS urban energy planning models 

towards CityGML (3D GIS) based ones.  This is owing to the growing interest in 3D CityGML 

models and their applications (Krüger and Kolbe, 2012); (Gröger and Plümer, 2012).CityGML is an 

XML object-oriented information modelling approach for representing, storing and sharing 3D city 

model data. It provides the standard mechanisms that govern the description of different 3D objects in 

relation to their geometry, semantics, and topology.  It is equipped with 10 core thematic modules 

including building, vegetation, relief, and others as illustrated in (Fig.7). However, other features such 

as, the ones related to energy forecasting can be added through application domain extensions (ADE). 

The building module, which is the backbone of CityGML, permits the geometric as well as 

semantic representation of buildings and their elements (Kolbe et al., 2005).  Each Building in 

CityGML possess the following  attributes namely; class, address, usage, function, roof type, building 

height, number of floors, year of construction, year of demolition, and cross-reference number, in 

which the three later attributes are shared between all types of buildings and their components. The 

cross-reference number facilitates the update of objects’ features and also the extraction of additional 

information from other databases. Apart from sematic properties, the geometric description of the 

building module is built upon the GML 3.1.1 Model (ISO 19107) developed by Cox et al. (2002). 

Therefore, buildings can be represented as solid or multisurface geometry. However, the former is 

more preferable for energy related applications since the calculation of volumes is a straightforward 

task (Gröger and Plümer, 2012).  

One advantage of CityGML over other city 3D modelling approaches is its flexible discrete level 

of detail (LOD) which is not only confined to geometric but also sematic characteristics (Chalal and 

Balbo, 2014). However, since the granularity of geometric as well as semantic information varies 

from one LOD to another, the chosen level detail(s) influence the energy prediction accuracy. For 

instance, a building with a gabled roof in LOD1 is represented as a block resulted from the extrusion 

of its footprint with a flat roof surface, whereas in LOD2, it processes a rough gabbled roof structure, 

which certainly has an impact on the building heated volume calculation. 

The wide adoption of BIM 3D models in the architecture, engineering, and construction industry in 

addition to the widespread of 3D GIS systems over last few years, have led a lot of researchers to 

investigate the interoperability between IFC ( industry foundation class) and CityGML (Hijazi et al., 

2009); (Mignard and Nicolle, 2014). This will be subsequently discussed in more detail in the 3.2.1.  

 

3.2.1. Interoperability between CityGML and IFC 

 

There exist three distinct approaches to interoperability between CityGML and IFC namely; 

unidirectional conversion, unifying approaches (Bi-directional conversion), and approaches based 

on extending the CityGML models (Table.6).  

The first one consists of exchanging information between both standards in a unidirectional 

fashion, meaning from IFC to CityGML or vice-versa. Please note that unidirectional conversion 

from CityGML to IFC is beyond the scope of this article, please refer to the work of Nagel et al. 

(2009). Unidirectional conversion from IFC to CityGML is the most addressed in the literature and 

widely supported by some commercial software packages such as FME (feature manipulation 

software) or GeoKettle. However, none of them has the ability to generate 3D building models 

which comply geometrically and/or semantically with CityGML standards (Donkers et al., 2015). 

This is owing to the structural differences between IFC and CityGML which cause a lot of loss of 

information during the conversion process. Another drawback of this approach is that the geometric 

conversion to high CityGML level of detail (mainly LOD3, LOD4) is still challenging and require 

extensive post-processing as well as users’ judgement (Delgado et al., 2013) ; (Boyes et al., 2015). 

For example, in (Fig.8), which depicts the conversion of a roof and slabs from IFC to CityGML, it is 

clear that a slab in IFC is represented as a solid object and defined by an IFC class (ifcSlab), whereas 

in CityGML, it is composed of two surfaces classified under CeillingSurface and FloorSurface, or 

GroundSurface. The upper surface is considered as floor surface for the upper building level, 

whereas the lower one, represents a ceiling surface or ground surface for the lower building level. 



 

 

As for CityGML Roof, the upper surface is a roof surface, whereas the lower one is a ceiling surface 

for the below storey (El-Mekawy et al., 2011). 

On the other hand, some researchers like El-Mekawy et al. (2011); Xu et al. (2014)  tried to 

bridge the interoperability gap of unidirectional conversion approaches by integrating BIM with 

CityGML. This approach is often referred to as unifying information model or Bi-directional 

conversion in the literature. However, it is still fairly at the conceptual stages and has not been 

implemented yet (Amirebrahimi et al., 2015).   

The third approach, which relies on extending CityGML model, can be performed in two distinct 

ways namely; 1) generic objects and attributes 2) application domain extension (ADE) mechanism. 

The first method consists of using generic objects to model and exchange features which are not 

predefined by existing CityGML thematic classes (e.g. walls). However, this method is limited due 

to the objects nomenclature conflicts it can create between CityGML users. Furthermore, the 

difficulty of validating the occurrences and layout of generic objects/ attributes by XML parsers (El-

Mekawy et al., 2011). Conversely, the second method relies on application domain extension (ADE) 

in either introducing new properties to existing CityGML classes (e.g. household size) or defining 

new object types. For example, the GeoBIM extension developed by Van Berlo (2009) does not 

only add new classes to CityGML (e.g. Stair class) but also new IFC properties such as, width and 

height, to existing CityGML classes including windows, room, building, and door.  The advantage 

of ADE over generic objects is that the former overcome the nomenclature limitation of generic 

objects as it is defined within an additional XML schema definition file with its own namespace 

(Gröger et al., 2012). However, despite this benefit, embedding information from IFC through ADE 

CityGML extension can result in large file formats as claimed by (El-Mekawy et al., 2011). 

Nevertheless, ADE is the first choice strategies for certain applications such as urban energy 

planning.  

 
Table 6. Strengths and limitations of different interoperability approaches between IFC and CityGML 

Approach 
Approach 

Principle  

Relevant 

Example 
Strengths Weaknesses 

Approach 

1 

 

 

 

- Unidirectional 

conversion from 

IFC to 

CityGML 

 

(Nagel and 

Kolbe, 

2007) 
 

(Isikdag and 

Zlatanova, 

2009) 
 

(Nagel et al., 

2009) 

-Widely Supported by 

commercial software 

packages. 
 

-Benefit urban planning 

applications. 

 

 

 

 

-Loss of information. 
 

-Conversion to lower LOD 

(LOD1, LOD2). 
 

-Focused on geometric 

transformation issues. 
 

-Extensive post-processing is 

needed. 

Approach 

2 

unifying 

approaches (Bi-

directional 

conversion) 

(El-Mekawy 

et al., 2011) 

(Xu et al., 

2014) 

-Intends to bridge the 

interoperability gap between 

IFC and CityGML. 

 

 

-Remains fairly at the 

conceptual stages. 

 

 

 

Approach 

3 

 

Extending the 

CityGML model 

by either; 

 

  

 

A. Introduction 

of generic 

city objects.   

 

(Gröger et 

al., 2012) 

-Ability to model and 

exchange new features in 

CityGML. 

- Nomenclature issues.  
 

-The validation of generic 

objects and attributes represent 

an issue for XML parsers. 
 

B. Using 

Application 

extension 

domain 

(ADE) 

(Van Berlo, 

2009) 

-Defined with an additional 

XML schema to avoid 

nomenclature conflicts. 
 

-Widely adopted for urban 

energy planning applications. 

-Massive file size 
 

-The combination of different 

ADE modules is not possible 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2. Structure of 3D GIS (CityGML) models 

 

Apart from the 3D thematic visualisation, energy ADE, the employed baseline models (described 

below), most 3D CityGML urban prediction models consist of a similar structure to the 2D GIS ones. 

 Energy prediction models: are the algorithms used in the calculation of energy consumption of 

dwellings (mainly for space heating). Beside recent studies that utilised building energy 

simulation tools such as IESVE, researchers in this field tend to frequently employ steady –state 

energy balance prediction models such as; quasi-state model (ISO/FDIS 13790) (Corrado et al., 

2007); (Nouvel et al., 2013);  or DIN V 18599 (Strzalka et al., 2011). 

 Calculation engine: unlike 2DGIS models and very recent studies in this area, Excel-based 

simulation tools incorporating steady-state energy balance algorithms such as, Fraunhofer-IBP or 

EnerCalC, are used calculate the energy consumption of dwellings.  

Figure 7.CityGML modules 

Figure 8. Unidirectional conversion of roof and slabs from IFC to CityGML (El-Mekawy et al., 2011) 



 

 

 Energy ADE: it facilitates the integration of energy indicator and indexes into CityGML models. 

In the well-known energy ADE developed by Krüger and Kolbe (2012) for instance, this 

integration is performed in two distinct ways. First, elementary indicators variables such as, 

number of accommodation units, are directly retrieved from buildings’ semantic properties. 

Secondly, complex indicators values (e.g. heated volume) are defined using complex functions. 

Further indicators such as, assignable area, can also be obtained from elementary indicators and 

other complex indicators. Recently, the international consortium of urban energy simulation has 

recently called for the development of a universal energy ADE (SIG3D, 2015). 

 

3.2.3. Conventional prediction process  

 

In contrast to studies on 2D GIS prediction models, it has been noticed that the choice of 

prediction models and data collections procedures has not been explicitly addressed. This is believed 

to be due to the influence of two studies that endeavoured to define standard or universal inputs for 

this type of models. These are the energy atlas of Berlin study conducted by Krüger and Kolbe (2012) 

and the model developed by Carrión et al. (2010). For these reasons and other related to the 

familiarity with data collection methods pertaining to these standard parameters, it is believed that a 

conventional prediction pipeline begins with acquiring data as demonstrated in (Fig.8). Dwellings 

heights, footprints, and type are usually obtained from GIS or digital cadastral databases, whereas 

energy consumption values are provided by utility companies. Year of construction, on the other hand 

is usually obtained from historical sources (e.g. raster maps). If 3D CityGML models covering the 

pilot area are not available, the next step consists of generating a sematic CityGML model following 

two possible strategies. First, different formats of 3D city models can be exported to CityGML format. 

However, due to the lack or loss of sematic information after the format conversion process occurred, 

the exported model is subject to a pre-processing phase embedding all the collected data and fixing 

issues related to geometry. The second strategy is to create a CityGML sematic model from scratch 

using one or a combination of different modelling techniques such as laser scanning and LIDAR, 

depending on the envisaged LOD and prediction’s accuracy (Nouvel et al., 2013).  This can be time 

consuming and challenging for models with LOD2 or above. After creating a CityGML model, with 

the help of ADE energy, further inputs such as, assignable area, are first obtained from the buildings 

geometry and exiting inputs, then integrated into the model. Once these parameters are embedded, 

dwellings with similar age and size are grouped into archetypes. After assumptions covering thermal 

parameters (e.g. U-values) are made based on the age and size, the calculation of energy 

consumption, in most cases the space heating demand, of these archetypes is performed. This is 

achieved with excel-base software supporting steady-state energy balance models. Afterwards, the 

outputs are validated against existing energy consumption values and if necessary certain adjustments 

to the inputs until a good match is achieved. Finally, the outputs are transferred to the 3Dcitygml 

model with the help of a data exchange module to be thematically visualised. 

 

3.2.4. Applicability in the building life-cycle 

 

CityGML based approaches have been mainly used in the operational phases of the building life-

cycle. More precisely, to target building areas with retrofits potentials through diagnosing their 

heating demand (Nouvel et al., 2014). However, recently their applicability has been extended to 

cover the identification as well as assessment of renewable energy potentials across building areas 

(Saran et al., 2015). 

For example, Carrión et al. (2010) suggested an approach to easily assess potential refurbishment 

in building areas. This was first achieved by deriving parameters such as, storey heights and building 

age from the German cadastral information system as well as scanned raster maps, respectively. Other 

parameters such as, building volume, building height, assignable area, the surface- to-volume ratio, 

were extracted from the atlas of Berlin CityGML model either directly or indirectly using functions. 

Once these parameters were obtained, the heating energy consumption of the building area has been 

statistically calculated in excel based simulation tool using a degree day model. Finally, the results 

were then compared to consumption values from existing building libraries based on the building age 



 

 

and typology. Similar methodology and process have been applied to areas in cities like Stuttgart, 

Hamburg, Ludwigsburg, and Lyon in the work of Krüger and Kolbe (2012); Nouvel et al. (2013); 

Bahu et al. (2013); Strzalka et al. (2011) with the exception of the study of Kaden and Kolbe (2013) 

who extend the capabilities of this approach to cover electricity and hot water consumption in 

residential areas. The estimation of electricity power demand was achieved by assigning the mean 

electricity values published by Vattenfall utility company to each household in the building based on 

their size while presuming that all of them possess similar appliances. 

On the other hand, few studies have focused on exploring the potential(s) of CityGML in assisting 

renewable energy planning. For instance, Alam et al. (2012) proposed a method to assess the 

performance of PV systems through simulating roof shading analysis for direct radiation inside a 

CityGML 3D model. This method, which is similar to ray tracing in CAD rendering engines, 

comprises first triangulating all roofs’ surfaces and drawing straight lines from their centroids towards 

the sun direction. The second step consists of checking intersections between the sun ray vector and 

other roof surfaces. Any triangle containing an intersection means that is shaded. After that, shaded 

triangles were combined to represent the overall shaded roof area. Conversely, Saran et al. (2015) 

addressed the evaluation of PV systems from a completely different perspective by proposing a new 

approach built upon incorporating building energy simulation tools outputs into CityGML, (Fig.9). 

This was accomplished by first, generating a 3D CAD model using conventional CAD tools, in 

function of collected geometric parameters (e.g. Footprints) using total station surveys as well as 

satellite maps. Secondly, the CAD model was converted into a CityGML model with the help of 

feature Manipulation Engine (FME) converter. Similarly, a thermal model containing thermal zones, 

external/ internal walls, windows etc… was created from the CAD model using gModeller-Energy 

Analysis Sketchup Plug-in and then exported as a gbxml file. Thirdly, the solar gain of different 

building parts (roofs and walls), was simulated using Suncast module in IESVE while considering 

shading surfaces, orientation, and seasonal changes. The outputs were then stored in a PostGIS 

database to perform semantic queries such as, where should PV systems be installed to generate 5 

MW of power per annum? With the help of query filter expression in java, CityGML displays only 

the building components with matching values.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 9.Conventional prediction process of 3D CityGML approaches 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.5. Advantages of CityGML based planning and forecasting approaches  

 

 Unlike other city 3D model formats, CityGML has the ability to model and represent objects in 

different level of detail(s) LOD geometrically and semantically.  

 CityGML approaches have shown lot potentials for the estimation of heating energy 

consumption.  

 

3.2.6. Disadvantages of CityGML based approaches  

 

 Their prediction accuracy relies heavily on the availability and quality of data obtained from 

municipalities as well as onsite measurements (Nouvel et al., 2014).    

 3D CityGML models for a particular city/region are not applicable to another since their 

development is mostly achieved using non-standardised data structure specified locally.  

 The interoperability between CityGML LOD3/ LOD4 and other standards like IFC is still 

challenging and require extensive post-processing (Zhu and Mao, 2015).   

 The potential of 3D CityGML models is not fully utilised for energy prediction applications. 

Indeed, they are mainly dedicated for visualisation purposes except providing certain geometric 

inputs.  

 

3.3. Bottom-up statistical methods 

 

Statistical bottom-up methods are based on correlating energy consumption/indexes with 

influencing factors, mostly weather parameters. This is usually achieved by applying different 

regression analyses, either linear or multivariate, to sufficient historical performance data (usually 

energy bills data), although Bayesian and Monte Carlo based approaches could be also employed  

Figure 10. The prediction process adopted by Saran 

et al. (2015) 



 

 

(Fumo and Rafe Biswas, 2015a). However, historical performance data must have a high level of 

statistical significance to meet the accuracy requirements of energy planning (Pedersen, 2007). Indeed, 

this is evident in the work of Cho et al. (2004) in which the developed regression models on the basis 

of 1day, 1 week, 3 months measurements resulted in errors in the prediction of annual energy 

consumption of 100%, 30%, and 6%, respectively. For this reason in addition to their ability to handle 

big data sets, statistical approaches are mostly employed at the urban scale. However, their 

applicability can be extended to cover the building scale as well. 

 

3.3.1. Applicability in the building life-cycle 

 

After being trained with large samples of hundreds or thousands of dwellings, statistical methods 

can be employed to estimate the energy consumption of entire dwellings or the thermal characteristics 

of their components in function of influencing parameters (Foucquier et al., 2013). Such factors are 

not only prominent for the evaluation of buildings energy performance but also the assessment of 

energy management strategies or saving potentials during commissioning (Ghiaus, 2006). For 

example, energy signature, which is best fit straight line correlating energy consumption with climatic 

variables, was adopted by Belussi and Danza (2012) for two main purposes. The first one is to check 

the conformity of certain buildings energy performance at the operational phases against the one 

estimated at the design phase as shown in (Fig.10). On the other hand, the second aim consists of 

determining potential savings through the comparison of their energy signature models in the 

operational phase with the one in accordance with building regulations.  

As for determining thermal characteristics, Jiménez and Heras (2005) for instance, compared the 

accuracy of two regression models namely; single output and a multi-output auto regression with 

extra inputs, in predicting the U- as well as G values of few buildings’ components. The results of 

latter model had a better agreement with the measured values in comparison to the former.  

Furthermore, the predicted values of windows in both models were more accurate than the ones of the 

walls. Fumo and Rafe Biswas (2015) assessed as well as compared the quality of simple linear and 

multiple regression models corresponding to the energy consumption of an unoccupied demonstration 

house in function of weather parameters.  The authors concluded that the more time interval is 

allowed between observed data, the better regression model quality is obtained, regardless of the 

nature of the employed regression model. Similarly, Richalet et al. (2001) presented an assessment 

methodology for single family dwellings which consists of deriving the thermal characteristics 

through the development of building energy signatures using continuous onsite measurements. Those 

thermal parameters are then used to determine a normalised heating annual consumption based on 

standards occupant schedule and weather conditions.  However, despite the authors’ intention to 

distinguish the impact of occupants’ behaviour from climatic influences by evaluating occupied and 

unoccupied dwellings, the potential of onsite measurement was not utilised for this purpose. Instead, 

standard EU internal gains values and occupants schedules were employed for all dwellings. 

Therefore, errors in the estimation of normalised annual energy consumption were superior to 20% for 

some occupied dwellings.  

 

3.3.2. Advantages of bottom-up statistical methods 

 

 Unlike engineering approach, the statistical one do not depend on the 3D geometry of the 

building since it is not based on thermodynamic models (Foucquier et al., 2013).  

 In comparison to other prediction methods, statistical models are the easiest to develop (Zhao and 

Magoulès, 2012).  

 Statistical methods have a great ability to recognise and model the variation in households’ 

energy behaviour (Swan and Ugursal, 2009).   

 

 



 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

3.3.3. Disadvantages of bottom-up statistical methods 

 

 Since statistical approaches rely primarily on historical data, their adoption is impractical when 

data is unavailable or cannot be measured. 

 Statistical methods are less accurate than other approaches. Furthermore, their ability to evaluate 

the impact of physical improvements is limited (Swan and Ugursal, 2009).   

 

4. Discussion  
 

This article has extensively reviewed different energy planning and forecasting approaches 

supporting physical improvement strategies in the building sector. This analysis was performed in 

accordance with their structure, conventional prediction pipeline, advantages and limitations, while 

providing some relevant examples on their applicability in the building life cycle (Table.7). 

At the building scale, Engineering methods, which rely heavily on buildings 3D models and 

energy simulations tools, are characterised by their flexibility, user-friendliness, high integration with 

the majority of CAD/BIM tools, and comprehensive outputs. However, the large number of inputs 

requirement and involvement of calibration procedures to generate accurate results in certain projects, 

represents their major drawbacks. Nevertheless, they are still first choice methods for physical 

interventions at this scale. On the other hand, artificial intelligence energy prediction models in 

general, ANN and SVM particularly, do not rely on 3D models to proceed and can generate accurate 

estimations due to their great ability to handle non-linear and complex processes. However, since 

trained with large amount of historical data, they are impractical when these datasets are unavailable 

or their size is small. Furthermore, unlike engineering models, their main disadvantage is the lack of 

generalizability of their algorithms to represent the wider sample of dwellings at the urban scale. In 

other words, even if certain changes have been applied to the same building envelop, its HVAC 

system, or even occupancy, the employed artificial intelligence model has to be re-trained from 

scratch.  Therefore, they are not time and cost effective approaches to adopt in urban energy planning 

given the imposed strict CO2 emission targets. Conversely, Grey box (Hybrid) models, which 

combine the strengths and eliminate the weaknesses of the above approaches in addition to statistical 

ones, are well known for their great ability to handle problems related to small samples and missing 

data. Thus, it could be possible to utilise them in urban energy planning when certain parameters, 

especially the thermal ones (e.g. U-values, glazing ratio, etc…), are unattainable.         

 

Figure 11 depicts a comparison between the design and real (operational) 

signature models by Belussi and Danza (2012). It is clear that behaviour of 

building during the operational stage is different from the design one since both 

curves are not overlapping. 



 

 

Table 7 Summary of the reviewed approaches 

Frequent 

Intervention 

scale 

Approaches Require 

3D 

models? 

Require 

historical 

data? 

 Easy to 

employ? 

Prediction 

accuracy 

Applicability in 

the building 

life-cycle 

Building scale  

Engineering  Yes  No   Easy to 

moderate 

depending 

on the 

complexity 

of the 

simulation 

tool. 

Fair to 

High  

Multi stages 

including 

Design, 

operational, and 

maintenance 

stages  

ANN No Yes  No  high Mostly 

operational 

stages 

Very limited for 

design phases 

SVM No Yes  No Fairly high Mainly 

operational 

stages 

Very limited for 

design phases 

Hybrid  Yes, if 

engineering 

methods 

are 

involved 

Yes, 

partially 

 No Fairly high Design and 

operational 

stages 

Urban scale 

2D GIS Yes but not 

necessarily 

No  Moderate Fair Operational 

stages 

3D 

CityGML 

Yes No  Moderate Fair to 

High 

Operational 

stages 

Bottom-up 

statistical  

No Yes  Yes Fair Operational and 

maintenance 

stages 

 

 

As for the urban scale, the analysis of the 2D GIS and 3D CityGML based energy prediction 

approaches have shown a great integration potential in the everyday’s life of urban planners since GIS 

tools are increasing being adopted in urban planning. Furthermore, it has outlined the similarities 

between both approaches’ processes and visualisation patterns, except the 3D environment, energy 

application domain extensions (ADE), and discrete level of detail for 3D CityGML. This clearly 

indicates that there is a major problem in the shift from 2DGIS to 3D GIS approaches. Indeed, what is 

the point of investing more time or maybe resources in using 3D CityGML for energy prediction if the 

2DGIS ones can perform exactly the same task? It is believed that answer to this question is related to 

the fact that the great potentials of 3D CityGML models are not fully utilised yet for energy prediction 

applications at the urban scale. This evident in the majority of work on 3D CityGML heating demand 

analysis models which exist only in LOD1 or LOD2 at most, although the minimum level of detail 

requirement for this particular purpose should be LOD3. This is simply because LOD1 and LOD2 do 



 

 

not contain openings and protruding building elements such as, shading devices, which certainly 

affects their prediction accuracy. Another problem is the independence of 3DCityGML and 2GIS 

models from energy calculation engines. In fact, both GIS and 3D CityGML models are only 

employed as visualisation platforms despite providing few geometric inputs. Finally, although 

bottom-up statistical approaches do rely on historical data to solve linear problems and have fair 

prediction accuracy, they are adequate tools for quick buildings energy performance inspection at the 

urban scale. Furthermore, they have a great ability to discern impact of occupancy on building energy 

consumption. Therefore, their adoption is indispensable in urban energy planning.  

This article has undoubtedly highlighted a lot of gaps and issues with regards energy planning and 

forecasting tools that are used both at the micro as well as macro level. Among them, it is very 

interesting to mention that despite the wide adoption of CityGML urban planning applications 

including energy planning, most of the energy simulations are performed outside a CityGML 

environment in an excel based software or building energy simulation tools (e.g. IESVE). This is a 

major problem because the forecasted energy performance of buildings at the urban scale using this 

approach does not consider the effect of buildings on each other (including shading effect, wind 

effect, etc…). Therefore, we strongly recommend the development of an energy simulation plugin 

embedded in CityGML environment. So that the full potential of 3D models in exploited and accurate 

predictions are obtained.       
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