
	

	
	

School	of	Science	and	Technology	
Nottingham	Trent	University	

Clifton	Lane	
Nottingham,	NG11	8FN	

	
	
	
	

Baldwinian‐based	meta‐heuristic	for	robust	
engineering	optimisation	

	
	
	

Ralph	Krause	
May	2015	

	
	
	
	
	
	
	
	
	

	
	
	

	
	
	

A	dissertation	submitted	in	partial	fulfillment	of	the	requirements	for	the	
degree	of	Master	of	Philosophy.	

Abstract	

i	
	

Abstract	

The	aim	of	this	research	was	to	identify	problems	in	engineering	optimisation	and	then	to	

develop	novel	solutions	to	the	identified	problems.	First,	principles	of	computational	

optimisation	were	studied	and	a	literature	review	was	conducted.	It	emerged	that	the	latest	

research	in	the	area	of	automated	engineering	design	optimisation	tends	to	combine	different	

optimisation	algorithms	to	improve	either	effectiveness	or	efficiency.	Three	basic	types	of	such	

hybrid	configurations	were	identified:	nested	algorithms,	sequential	algorithms	and	meta‐

optimiser.	Two	problems	were	then	identified	that	inexperienced	practitioners	encounter	when	

trying	to	apply	computational	optimisation	to	real‐world	engineering	problems.	The	first	is	the	

problem	of	parameter	tuning	and	the	second	is	the	problem	of	finding	robust	solutions.	A	well‐

known	engineering	design	problem,	the	pressure	vessel	problem,	was	selected	as	a	case	study.	A	

problem	of	engineering	optimisation	is	that	the	theoretical	solutions	have	to	be	implemented	in	

the	physical	world	using	manufacturing	processes,	which	have	a	limited	accuracy.	If	an	optimum	

is	too	narrow	or	located	too	close	to	a	constraint,	slight	deviations	from	that	location	will	result	

in	a	dramatic	drop	in	fitness.	In	the	real‐world	this	could	have	catastrophic	consequences	for	

practical	engineering	applications,	such	as	designing	a	bridge.		To	overcome	these	problems,	a	

Baldwinian‐based	meta‐heuristic	(BMH)	was	proposed.	As	well	as	identifying	the	fitness	of	a	

solution,	it	also	probes	its	neighbourhood	in	order	to	estimate	the	goodness	of	the	region	of	the	

solution.	This	meta‐heuristic	can	be	combined	with	any	arbitrary	optimisation	algorithm.		SASS	

was	chosen	because	it	only	has	one	control	parameter	to	tune,	which	makes	it	most	suitable	to	

overcome	the	problems	with	parameter	tuning.	It	was	shown	that	BMH/SASS	was	able	to	

outperform	standard	SASS	as	well	as	particle	swarm	optimisation	(PSO)	and	hybrid	particle	

swarm	branch‐and‐bound	(HPB).	In	conclusion,	it	can	be	said	that	the	new	method	proposed	in	

this	work	has	the	potential	to	find	more	robust	solutions	for	engineering	optimisation	

applications.		

Table	of	content	

ii	
	

Table	of	content	

ABSTRACT .. I

TABLE OF CONTENT ... II

TABLE OF FIGURES ... IV

ABBREVIATIONS .. VI

1 INTRODUCTION ... 1

1.1 ENGINEERING DESIGN .. 1

1.2 OPTIMAL DESIGN .. 3

1.3 CONSTRAINT OPTIMISATION .. 4

1.4 AUTOMATED DESIGN ... 6

1.5 AIMS OF RESEARCH ... 8

1.6 METHODOLOGY ... 8

1.7 DISSERTATION OUTLINE ... 8

2 PRACTICAL LIMITATIONS OF AUTOMATED ENGINEERING DESIGN .. 10

2.1 CURRENT RESEARCH .. 10

2.2 TRENDS IDENTIFIED ... 14

2.3 PRACTICAL PROBLEMS ... 21

2.4 SUMMARY ... 24

3 CASE STUDY: PRESSURE VESSEL PROBLEM ... 25

3.1 PRESSURE VESSEL PROBLEM .. 25

3.2 PROBLEMS WITH OPTIMAL SOLUTIONS .. 29

3.3 SUMMARY ... 34

	

Table	of	content	

iii	
	

4 META‐METHOD OF ROBUST DESIGN OPTIMISATION .. 35

4.1 NARROW PEAKS ... 35

4.2 CONSTRAINT OPTIMISATION .. 37

4.3 A META‐HEURISTIC FOR ROBUST OPTIMISATION. ... 40

4.4 BASIC PSO .. 42

4.5 BASIC SASS... 44

4.6 COMPARISON OF BMH/PSO AND BMH/SASS ... 46

4.7 SUMMARY ... 49

5 EXPERIMENTS ... 51

5.1 EXPERIMENTAL SET‐UP .. 51

5.2 DETERMINING THE CONTROL PARAMETERS .. 53

5.3 EXPERIMENTAL RESULTS .. 57

5.4 COMPARISON OF RESULTS .. 59

5.5 DISCUSSION ... 60

5.6 SUMMARY ... 62

6 CONCLUSIONS AND FUTURE WORK ... 63

6.1 CONCLUSIONS .. 63

6.2 FUTURE WORK ... 65

REFERENCES .. 66

APPENDIX – PUBLISHED PAPER .. 72

	

	

	

	

Table	of	figures	

iv	
	

Table	of	figures	

FIGURE 1 – REQUIRED FUNCTION AND PRACTICAL IMPLEMENTATION. ... 2

FIGURE 2 – THE DESIGN PROCESS. ... 4

FIGURE 3 – OPTIMISATION LOOP FOR OPTIMAL DESIGN. .. 7

FIGURE 4 – BASIC DIRECT SEARCH ALGORITHM FOR OPTIMISATION. .. 15

FIGURE 5 – NESTED SEARCH ALGORITHM. ... 16

FIGURE 6 – SEQUENTIAL CONFIGURATION OF SEARCH ALGORITHM. .. 19

FIGURE 7 – META‐OPTIMISATION APPROACH FOR PARAMETER TUNING. ... 20

FIGURE 8 – PRESSURE VESSEL DESIGN PROBLEM. .. 26

FIGURE 9 – OPTIMISATION LOOP FOR PRESSURE VESSEL. .. 28

FIGURE 10 – EXAMPLE OF A FITNESS LANDSCAPE FOR A ONE‐DIMENSIONAL OPTIMISATION PROBLEM. .. 31

FIGURE 11 – EXAMPLE OF AN INPUT SPACE FOR A TWO‐DIMENSIONAL CONSTRAINT OPTIMISATION PROBLEM. 32

FIGURE 12 – EXAMPLE OF A FITNESS LANDSCAPE FOR A ONE‐DIMENSIONAL CONSTRAINED OPTIMISATION PROBLEM. 33

FIGURE 13 – MULTIMODAL FITNESS LANDSCAPE FOR TWO‐DIMENSIONAL UNCONSTRAINED OPTIMISATION PROBLEM. 36

FIGURE 14 – CONTOUR PLOT OF THE MULTIMODAL FITNESS LANDSCAPE IN FIGURE 13. ... 37

FIGURE 15 – TWO DIFFERENT SOLUTIONS IN A CONSTRAINED SEARCH SPACE. ... 38

FIGURE 16 – FITNESS BARRIER TO PROTECT SOLUTIONS FROM DROPPING INTO THE FORBIDDEN AREA. .. 39

FIGURE 17 – BALDWINIAN‐BASED META‐HEURISTIC FOR ENGINEERING OPTIMISATION. .. 40

FIGURE 18 – OPTIMISATION LOOP FOR BALDWINIAN‐BASED META‐HEURISTIC. .. 41

FIGURE 19 – PSEUDO‐CODE FOR PSO. .. 44

FIGURE 20 – PSEUDO‐CODE FOR SASS. ... 46

FIGURE 21 – INFLUENCE OF OMEGA ON FITNESS FOR PSO. .. 47

FIGURE 22 –COMPARISON OF PSO AND BMH/PSO. ... 48

FIGURE 23 – COMPARISON OF SASS AND BMH/SASS. ... 49

FIGURE 24 – OPTIMISATION LOOP FOR THE PRESSURE VESSEL EXPERIMENTS. ... 52

FIGURE 25 – SAMPLE SIZE VERSUS FITNESS FOR EPSILON = 1.0%. .. 53

FIGURE 26 – SAMPLE SIZE VERSUS STANDARD DEVIATION OF THE FITNESS FOR EPSILON = 1.0%. ... 54

FIGURE 27 – SAMPLE SIZE VERSUS FITNESS FOR EPSILON = 0.1%. .. 55

Table	of	figures	

v	
	

FIGURE 28 – SAMPLE SIZE VERSUS STANDARD DEVIATION OF FITNESS FOR EPSILON = 0.1%. ... 55

FIGURE 29 – SAMPLE SIZE VERSUS FITNESS FOR EPSILON = 0.01%. .. 56

FIGURE 30 – SAMPLE SIZE VERSUS STANDARD DEVIATION OF FITNESS FOR EPSILON = 0.01%. ... 56

FIGURE 31 – ITERATIONS VERSUS AVERAGE FITNESS. ... 57

FIGURE 32 – MAXIMUM NUMBER OF ITERATIONS VERSUS AVERAGE ITERATION NEEDED. ... 58

FIGURE 33 – CONVERSION PLOT FOR A TYPICAL RUN OF BMH. ... 59

FIGURE 34 – MAP SHOWING HOW THE POSITIONS HAVE CHANGED IN RELATION TO THE OTHER METHODS. 61

	

	

	

Abbreviations	

vi	
	

Abbreviations	

ACO		 	 	 	 ant	colony	optimisation		

ACS	 	 	 	 ant	colony	system	

AIS	 	 	 	 artificial	immune	system		

AS	 	 	 	 ant	system	

BB	 	 	 	 branch	and	bound		

BMH	 	 	 	 Baldwinian‐based	meta‐heuristic	

CI	 	 	 	 computational	intelligence		

CNC	 	 	 	 computerized	numerical	control	

CRO	 	 	 	 chemical	reaction	optimization	

DE	 	 	 	 differential	evolution	method	

EP		 	 	 	 evolutionary	programming		

FSA	 	 	 	 fish	school	algorithm	

GA	 	 	 	 genetic	algorithm		

GSA	 	 	 	 gravitational	search	algorithm		

HC		 	 	 	 hill	climbing	algorithm	

HGSO	 	 	 	 hybrid	glow	worm	swarm	optimization	algorithm	

HPB		 	 	 	 hybrid	particle	swarm	branch‐and‐bound	

IGSO	 	 	 	 improved	glow‐worm	swarm	optimization	

L‐GPS	 	 	 	 genetic	particle	swarm	with	enhanced	local	search	ability	

MDNLP	 	 	 mixed	discrete	nonlinear	programming		

MMAS			 	 	 max‐min	ant	system		

PCE		 	 	 	 polynomial	chaos	expansion		

PSO	 	 	 	 particle	swarm	optimization	

PSOGSA‐E	 	 	 PSO‐GSA	with	enhanced	local	search	ability	

RBAS		 	 	 	 rank‐based	ant	system		

RO	 	 	 	 robust	optimization	

Abbreviations	

vii	
	

RQP	 	 	 	 recursive	quadratic	programming	

SA		 	 	 	 simulated	annealing		

SACO		 	 	 	 simple	ant	colony	optimisation	algorithm	

SASS		 	 	 	 self‐adaptive	step	size	search		

SFS	 	 	 	 stochastic	fractal	search	

SSC		 	 	 	 simplex	stochastic	collocation		

S2M		 	 	 	 simplex2	method		

TLBO	 	 	 	 teaching	learning	based	optimization		

TSP	 	 	 	 travelling	salesman	problem	

	

	

Introduction	

1	
	

1 Introduction	

The	Oxford	English	Dictionary	defines	engineering	as	the	“…	branch	of	science	and	technology	

concerned	with	the	development	and	modification	of	engines		[…],	machines,	structures,	or	other	

complicated	systems	and	processes	using	specialized	knowledge	or	skills	…“	(OED,	2015).	In	

other	words,	engineering	uses	sound	scientific	methods	and	technologies	to	solve	real‐world	

problems	and	develop	new	products	and	services.		This	chapter	introduces	the	design	aspect	of	

engineering	using	a	simple	example.	It	then	discusses	the	process	of	finding	the	optimal	design	

and	constraint	optimisation	before	providing	the	principles	of	automated	optimal	design.	It	then	

states	the	research	aims	and	objectives	of	this	research	project.	

1.1 Engineering	design	

A	typical	task	for	an	engineer	is	to	design	a	system	that	is	capable	of	fulfilling	a	desired	function.	

This	could	be,	for	example,	a	bridge	that	spans	over	a	defined	distance	that	can	resist	a	

predefined	maximum	load.	There	is	not	one	‘right’	design	that	solves	the	problem.	Instead	many	

different	designs	are	feasible.	However,	some	designs	are	preferable	to	others,	for	example	

because	they	are	cheaper	to	build	or	easier	to	manufacture.	The	challenge	for	the	engineer	is	to	

choose	the	‘best’	design	from	all	of	the	feasible	designs,	where	'best'	is	defined	in	relation	to	the	

specific	case	by	interested	parties,	i.e.	stakeholders.	

Figure	1	shows	a	simple	yet	typical	example	of	an	engineering	design	problem:	point	 B

has	to	withstand	a	force	 F at	distance	 1l 	from	point	 A 	without	exceeding	a	maximum	

displacement .	This	can	be	achieved	by	putting	a	beam,	also	called	a	member,	between	points	

A 	and	 B 	(Figure	1a).	Such	a	design,	however,	could	be	prone	to	plastic	deformation	under	load	

if	the	cross‐sectional	area	of	the	beam	is	not	sufficiently	large	enough.	On	the	other	hand,	if	the	

cross‐sectional	area	is	large	enough,	the	beam	uses	a	lot	of	material	and	hence	is	very	expensive	

and	heavy.	In	order	to	save	material	and	thus	make	the	structure	lighter,	usually	the	load	is	

distributed	by	adding	additional	supporting	beams	(Figure	1b).	In	structural	engineering,	it	is	

Introduction	

2	
	

common	to	treat	such	structures	as	trusses,	which	consist	of	two‐force	members	only		

(Costanzo,	2013).	This	means	that	forces	apply	only	to	the	endpoints	of	a	member	and	the	joints	

between	the	members	are	treated	as	revolutes,	i.e.	they	do	not	carry	moments	(torques).	

Therefore,	at	least	one	more	member,	member	2	in	Figure	1b,	is	necessary	to	hold	point	 B in	

position.	

l1, x1

F

1A B

ε

	 	

a)	Functional	requirement	 b)	Practical	implementation	

Figure	1	–	Required	function	and	practical	implementation.	

The	length	 1l of	member	1	is	defined	by	the	problem	and	therefore	fixed	but	length	 2l 	of	member	

2	can	be	chosen	freely	by	the	designer	within	limits.	This	length	then	determines	the	position	of	

point	C 	and	therewith	the	length	 3l 	(Figure	1b).	The	material	used	has	a	specific	Young’s	

module	 E 	and	a	density  .		The	volume	of	a	member,	which	is	given	by	its	length	 l 	multiplied	

by	its	cross‐section x ,	and	its	density	  ,determines	the	weight	of	the	member.	Each	design	can	

be	fully	described	by	its	design	vector	d

.	Equation	1	shows	the	design	vector	for	the	example	

above:	
































E
x

x

l

l

d
2

1

2

1


	 (1)

Some	of	the	design	variables	are	predetermined	by	the	problem	(,,1 El 	in	the	example)	and	

hence	are	called	the	preassigned	parameters	(Rao,	2009).		They	cannot	be	changed.	However,	

Introduction	

3	
	

others	can	be	chosen	freely	by	the	designer	(212 ,, xxl in	the	example)	and	these	are	called	design	

or	decision	variables.	

A	system	described	by	its	design	vector	can	be	judged	in	terms	of	goodness	using	a	so‐called	

objective	function)(df

.		In	structural	engineering,	this	objective	function	usually	relates	to	the	

costs	of	a	particular	design,	which	is	reflected	in	the	weight	of	the	resulting	structure	(Shanley,	

1949).	For	example,	the	weight	of	the	truss	in	Figure	1	can	be	calculated	as	follows:	

 2211)(xlxldf 


	 (2)

If	better	designs	are	associated	with	smaller	function	values,	the	objective	function	is	usually	

referred	to	as	the	cost	function.	If,	on	the	contrary,	better	designs	are	associated	with	larger	

objective	function	values,	the	objective	function	is	usually	referred	to	as	the	fitness	function.		

1.2 Optimal	design	

As	mentioned	before,	the	challenge	for	the	engineer	is	to	find	the	optimal	design.	The	objective	

function	can	be	used	to	compare	candidate	designs	with	the	aim	of	selecting	the	best	one,	i.e.	the	

lightest	one	in	the	example.	The	optimal	design	is	the	design	 'd

	that	minimises	the	objective	

function)(df

:	

)(minarg'
'

dfd
Cd





 	 (3)

In	Equation	3,	C denotes	the	space	of	all	feasible	designs.	If	the	objective	function	is	

differentiable	twice	and	the	design	spaceC 	is	unconstrained,	calculus	based	methods	

(Christensen	and	Klarbring,	2008)	can	be	applied	to	calculate	the	optimal	solution.	However,	

often,	this	is	not	the	case,	for	example	because	of	the	complexity	of	the	system	and	hence	the	

complexity	of	the	objective	function.	In	such	a	case,	a	common	approach	to	design	optimisation	

is	stepwise	refinement:	based	on	an	initial	feasible	design,	a	human	expert,	i.e.	the	engineer,	

makes	small	adjustments	to	the	design	and	evaluates	its	fitness.	If	the	fitness	increases	the	

Introduction	

4	
	

adjustments	are	kept;	otherwise	the	adjustments	are	discarded.	This	is	then	carried	out	

iteratively	until	a	design	is	arrived	at	that	satisfies	the	requirements	(Figure	2).	

	

Start

initial design

requirements
satisfied?

refine design

evaluate design

Stop

yes

no

	

Figure	2	–	The	design	process.	

1.3 Constraint	optimisation	

However,	not	every	design	is	actually	feasible;	the	objective	function	in	Equation	2	would	return	

the	lowest	objective	value	if	both	 1x and 2x were	equal	to	or	smaller	than	zero.	Obviously,	such	a	

design	is	impossible.	Therefore,	the	cross‐sections	have	to	be	chosen	to	be	as	small	as	possible.	

But	if	the	cross‐sections	are	too	small,	the	members	cannot	withstand	external	load	and	the	

structure	will	fail.	Hence,	the	design	space,	i.e.	the	collection	of	all	possible	designs,	is	limited	by	

constraints.	Thus,	the	optimisation	problem	can	be	re‐formulated	as	follows	(Rao,	2009):	

Introduction	

5	
	

Find	





























nx

x

x

x

d




3

2

1

	that	minimises	or	maximises)(df

	

subject	to	the	following	constraints:	

pidh

midg

i

i

,,2,1,0)(

,,2,1,0)(










	

(4)

In	Equation	4,)(dgi


denotes	inequality	constraints	and)(dhi


denotes	equality	constraints.	The	

number	of	decision	variables	 n 	of	a	design	and	the	number	of	inequality	or	equality	constraints	

(m 	respectively p)	are	usually	not	related	to	each	other	for	a	given	problem.	If	one	or	more	

inequality	constraints	or	equality	constraints	are	violated	the	design	is	not	feasible.		In	order	to	

accommodate	constraints	in	the	optimisation	process,	equalities	are	usually	handled	by	

converting	them	into	inequality	constraints	(Deb,	2000):	

0)( dhh iim


 	 (5)

In	equation	5,	 is	a	small	positive	value.	This	conversion	increases	the	total	number	of	

inequalities	to pmq  ,	and	allows	for	handling	inequalities	and	equalities	using	the	same	

process.	For	constraint	optimisation	problems,	a	penalty	term)(dp

	is	added	to	the	objective	

function)(df

:	

)()()(dpdfdF


 	 (6)

Instead	of	using	the	objective	function	value,	the	value	returned	by)(dF

is	used	in	the	

optimisation	process.	In	equation	6,	the	penalty	term	is	computed	as	follows:	





m

i
ii dgRdp

1

))(()(


	 (7)

Introduction	

6	
	

Here,))((dgR ii


is	a	penalty	function	for	the	i‐th	constraint,	i.e.	a	function	that	returns	a	non‐zero	

value	if	the	i‐th	constraint	is	violated	or	otherwise	zero.	This	has	the	effect	that	a	design	that	

violates	a	constraint	is	penalised	by	its	fitness	decreasing	in	the	case	of	maximising	or	its	costs	

increasing	in	the	case	of	minimising.	

Choosing	a	suitable	penalty	function	for	a	particular	optimisation	problem	is	not	a	

straightforward	task.	In	the	simplest	case,	the	penalty	function	adds	a	constant	number	to	the	

objective	function	for	each	constraint	violated.	However,	many	researchers	have	developed	

more	sophisticated	methods	for	calculating	penalty	values.	For	example,	Deb	(2000)	proposed	a	

constraint	handling	method	that	does	not	require	any	fixed	penalty	parameter.	Runarsson	and	

Yao	(2000)	developed	stochastic	ranking	for	constraint	handling.	Li	and	Zhang	(2013)	

introduced	the	minimum	penalty	coefficient	method.	A	comprehensive	survey	of	the	most	

popular	constraint‐handling	techniques	can	be	found	in	Coello	(2002).	

By	using	a	penalty	function,	a	constraint	optimisation	problem	is	transformed	into	an	

unconstraint	problem,	and	hence	can	be	solved	automatically	as	explained	in	the	next	section.	

1.4 Automated	design	

The	drawback	of	the	design	process	outlined	in	Section	1.2	is	that	it	relies	on	human	expertise	

and	experience.	For	example,	if	the	engineer	is	inexperienced,	they	might	limit	themselves	

subconsciously	to	a	certain	area	of	the	design	space	due	to	their	personal	biases.	Therefore,	an	

automated	approach	to	the	optimisation	problem	that	removes	this	bias	would	be	of	benefit.	

Figure	3a	shows	the	manual	approach	to	design	optimisations	whereas	Figure	3b	

presents	a	computerised	automated	optimisation	approach;	a	computational	optimisation	

algorithm	is	used	instead	of	a	human	engineer	in	a	closed	optimisation	loop	to	experiment	

iteratively	on	the	system	in	order	to	find	the	best	solution	(Nolle,	2006).	

Introduction	

7	
	

	 	

a)	Manual	design	process	 b)	Automated	design	process	

Figure	3	–	Optimisation	loop	for	optimal	design.	

Starting	with	an	initial	design	x0,	the	fitness	of	that	design	is	evaluated	using	an	objective	

function.	Based	on	the	fitness,	an	optimisation	algorithm	makes	adjustments	to	the	decision	

variables,	resulting	in	a	new	design	vector	x1.	The	new	design	is	then	evaluated	and	the	new	

fitness	respectively	cost	information	is	used	by	the	algorithm	to	further	adjust	the	design	vector.	

Depending	on	the	algorithm	used	and	the	number	of	iterations,	the	objective	value	will	improve	

until	it	converges	towards	an	optimum	value.		

Automated	design	optimisation	appeared	in	the	early	1970s	when	computers	became	

more	readily	available	to	researchers	and	engineers.		For	examples	see	Templeman	(1970)	or	

Pappas	and	Amba‐Rao	(1971).		Since	then,	researchers	have	developed	a	large	variety	of	

optimisation	algorithms,	such	as	simulated	annealing	(Kirkpatrick	et	al.,	1984),	genetic	

algorithms	(Holland,	1975)	and	particle	swarm	optimisation	(Kennedy	and	Eberhart,	1995),	to	

name	a	few,	and	applied	them	to	engineering	design	problems.	Recent	examples	include	the	

design	of	rotor‐bearing	systems	(Lopez	et	al.,	2014)	and	the	design	of	sub‐structures	for	offshore	

wind	turbines	(Yang	et	al.,	2015).		All	of	these	applications	have	shown	that	automated	design	

optimisation	is	capable	of	solving	complex	design	optimisation	problems.	However,	these	

Introduction	

8	
	

techniques	have	not	yet	been	widely	adopted	by	the	engineering	industry	(Nolle,	2006).	The	

reasons	for	this	will	be	outlined	in	Chapter	2.	

1.5 Aims	of	research	

One	aim	of	this	research	was	to	identify	the	main	obstacles	that	practitioners	in	the	field	of	

engineering	design	are	faced	with	when	trying	to	use	automated	design	optimisation	for	

practical	applications.	The	second	aim	of	the	research	was	to	find	practical	solutions	to	the	

problems	identified.	

1.6 	Methodology	

Knowledge	of	automated	engineering	design	and	optimisation	was	obtained	by	reviewing	the	

literature.	Two	main	hurdles	that	impede	engineers	from	using	automated	design	optimisation	

were	identified:	the	problem	of	parameter	tuning	and	the	problem	of	finding	robust	solutions.	

This	led	to	the	development	of	a	novel	method	for	robust	optimisation	that	does	not	require	

parameter	tuning.	The	new	method	was	then	tested	using	a	well‐known	engineering	problem	

with	a	large	number	of	constraints,	which	is	often	used	as	a	benchmark	by	researchers	for	

comparing	optimisation	algorithms.	The	solutions	obtained	were	analysed	and	compared	with	

solutions	found	by	other	state	of	the	art	search	algorithms	using	a	Monte	Carlo	simulation	of	a	

production	process.	

1.7 Dissertation	outline	

This	chapter	introduced	the	design	aspect	of	engineering	using	a	simple	example.	It	then	

discussed	the	process	of	finding	the	optimal	design	and	constraint	optimisation	before	providing	

the	principles	of	automated	optimal	design.	It	then	stated	the	research	aims	and	objectives	of	

this	research	project.	Chapter	2	starts	with	a	review	of	the	current	literature	on	optimisation	

algorithms	for	engineering	design	problems	and	identifies	emerging	trends	within	this	body	of	

work.	It	then	identifies	problems	that	practitioners	encounter	when	trying	to	apply	

computational	optimisation	to	real‐world	problems	before	summarising	the	main	findings	of	

this	section.		

Introduction	

9	
	

Chapter	3	introduces	an	interesting	benchmark	problem	from	the	field	of	mechanical	

engineering,	the	pressure	vessel	problem.	Here,	the	aim	is	to	minimise	the	total	cost	of	the	

materials	used	as	well	as	the	production	costs.	The	required	accuracy	for	the	pressure	vessel	

problem	is	discussed	and	analysed	under	the	condition	that	the	manufacturing	process	cannot	

achieve	the	required	accuracy	and	hence	result	in	a	different	fitness	value	as	a	consequence	

when	the	parameter	values	are	slightly	different.	Chapter	4	describes	problems	caused	by	

inaccuracies	in	engineering	processes,	i.e.	manufacturing	processes,	for	real‐world	applications	

of	computational	optimisation	techniques.	The	case	study	presented	in	Chapter	3	is	used	to	

demonstrate	this	problem.		Based	on	an	analysis	of	the	problem,	a	novel	meta‐heuristic	is	

proposed,	based	on	Baldwinian	learning,	to	temporarily	shape	the	fitness	landscapes	so	that	

solutions	are	still	fit	for	purpose	even	if	the	implemented	solution	deviates	slightly	from	the	

theoretical	one	due	to	the	nature	of	the	manufacturing	processes.	The	proposed	meta‐heuristic	

is	applied	to	the	pressure	vessel	design	problem.	BMH	is	combined	with	SASS	and	the	resulting	

algorithm	is	employed	to	optimise	the	pressure	vessel	design	in	Chapter	5.	The	solutions	found	

by	BMH/SASS,	as	well	as	the	best	solutions	for	PSO,	HPB	and	SASS	reported	in	the	literature,	are	

virtually	manufactured	using	a	Monte	Carlo	simulation.	Chapter	6	revisits	the	research	question	

presented	in	Chapter	1	and	discusses	the	findings	obtained	by	applying	the	novel	Baldwinian‐

based	meta‐heuristic.	Following	a	discussion,	it	draws	the	dissertation	to	a	close	by	suggesting	

future	work	that	could	be	undertaken.	 	

Practical	limitations	of	automated	engineering	design	

10	
	

2 Practical	limitations	of	automated	engineering	design	

This	chapter	starts	with	a	review	of	the	current	literature	on	optimisation	algorithms	and	

identifies	emerging	trends	within	this	body	of	work.	It	then	identifies	problems	that	

practitioners	encounter	when	trying	to	apply	computational	optimisation	to	real‐world	

problems	before	summarising	the	main	findings	of	this	section.	

2.1 Current	research	

Many	computational	optimisation	algorithms,	or	direct	search	methods,	have	been	proposed	in	

the	past.	Early	algorithms	included,	for	example	hill	climbing	(Bach,	1969),	simulated	annealing	

(Metropolis	et	al.,	1953;	Kirkpatrick	et	al.,	1984),	the	simplex	method	(Nelder	and	Mead,	1965),	

evolutionary	strategies	(Rechenberg,	1973)	and	genetic	algorithms	(Holland,	1975).	This	was	

followed	by	particle	swarm	optimisation	(Kennedy	and	Eberhart,	1995),	ant	colony	optimisation	

(Dorigo	and	Gambardella,	1997),	differential	evolution	(Storn	and	Price,	1997)	and	self‐adaptive	

stepsize	search	(Nolle	and	Bland,	2012),	amongst	others.	Later	it	became	popular	to	combine	

these	methods	with	local	search	schemes	to	improve	the	search	capabilities	of	the	algorithms,	

especially	with	genetic	algorithms.		

Many	new	schemes	have	since	been	proposed.	For	example,	Nema	et	al.	(2008)	

introduced	a	new	hybrid	algorithm,	called	hybrid	particle	swarm	branch‐and‐bound	(HPB),	

which	uses	particle	swarm	optimisation	(PSO)	as	the	global	optimisation	technique	and	

combines	it	with	branch‐and‐bound	(BB)	to	solve	mixed	discrete	nonlinear	programming	

problems	(MDNLP)	(Kitayama	et	al.,	2006).	PSO	showed	good	global	but	slow	local	search	

abilities	and	was	therefore	combined	with	the	BB	technique,	which	features	fast	local	search	

ability.	The	combination	of	these	two	search	techniques	exhibits	improved	optimisation	

accuracy	and	reduced	demand	for	computational	resources	(Xu	et	al.,	2007).	The	HPBs	

hybridisation	phase	uses	mainly	a	selective	temporary	varying	from	PSO	to	BB	when	the	current	

optimum	could	be	improved	(Dimopoulos,	2007).	HPB	can	handle	random	and	discrete	

constraints	without the need	for	parameterising	a	penalty	function	(Jeet	and	Kutanoglu,	2007).	

Practical	limitations	of	automated	engineering	design	

11	
	

This	architecture	makes	the	HPB	simple,	generic	and	easy	to	implement.	Nema	et	al.	were	also	

able	to	show	that	the	combination	of	both	search	techniques	results	in	better	solutions	and	a	

lower	number	of	function	evaluations	than	using	BB	or	PSO	separately.			

Most	recently,	for	example,	Li	(2015)	proposed	an	improved,	chemical	reaction	

optimisation	(CRO)	method,	called	OCRO,	to	solve	global	numerical	optimisation	problems.	The	

CRO	method	mimics	the	interactions	between	the	molecules	in	chemical	reactions	to	find	a	low	

energy	stable	state.	The	proposed	algorithm	is	a	hybrid	of	two	local	search	operators	in	CRO	and	

a	quantisation	orthogonal	crossover	(QOX)	search	operator.	An	advantage	of	this	approach	is	

that	no	complicated	operators	are	necessary,	which	makes	it	easy	to	implement	in	various	real‐

world	problems.	The	experimental	results	have	shown	that	the	algorithm	is	effective	and	fast	in	

solving	common	optimisation	problems,	but	is	less	efficient	in	solving	low‐dimensional	

functions.		

Wang	(2015)	has	tried	a	different	approach	and	introduced	a	hybrid	algorithm	

combining	genetic	particle	swarm	optimisation	with	advanced	local	search	ability	(L‐GPS)	and	a	

quasi‐newton	genetic	algorithms	(GA)	with	limited	memory.	Because	of	its	wide	range	search	

ability,	GA	is	used	to	search	global	minima/maxima.	The	global	extremes	are	then	further	

investigated	in	terms	of	local	extremes	with	an	algorithm	that	shows	good	local	search	abilities	

(L‐GPS).	The	hybrid	algorithm	was	then	evaluated	using	numerical	experiments	that	showed	

that	the	hybrid	algorithm	is	much	faster	and	more	efficient	than	most	stochastic	methods.	

Another	recent	approach	has	been	published	by	Zhouab	(2015),	who	proposed	in	his	

paper	a	new	hybrid	glow‐worm	swarm	optimisation	algorithm,	named	the	Hybrid	Glow	Worm	

Swarm	Optimization	Algorithm	(HGSO),	to	solve	constrained	optimisation	problems.	A	fish	

school	algorithm	(FSA))	in	which	predatory	behaviour	is	exhibited	is	integrated	with	a	glow‐

worm	swarm	optimisation	to	obtain	the	improved	glow‐worm	swarm	optimisation	(IGSO).	Here,	

the	IGSO	algorithm	is	integrated	with	the	differential	evolution	method	(DE)	to	establish	the	

HGSO.	The	local	search	strategy	used	to	escape	from	the	local	minimum	is	based	on	simulated	

Practical	limitations	of	automated	engineering	design	

12	
	

annealing	(SA)	and	is	applied	to	the	best	solution	found	by	the	IGSO.	The	experimental	results	

have	shown	that	the	HGSO	is	very	effective	in	terms	of	efficiency,	reliability	and	precision.	

In	their	recent	paper,	Mahia	(2015)	suggested	a	new	hybrid	method	based	on	particle	

swarm	optimisation	(PSO),	artificial	ant	colony	optimisation	(ACO)	and	3‐opt	algorithm	to	solve	

the	travelling	salesman	problem	(TSP).	In	this	approach	the	PSO	is	used	to	determine	

parameters	that	affect	the	performance	of	the	ACO.	The	3‐Opt	algorithm	is	subsequently	used	to	

remove	the	local	solution.	The	performance	of	this	method	was	investigated	by	altering	the	

average	route	length	or	the	effective	number	of	ants	in	the	ACO.	The	experimental	results	show	

that	the	fewer	the	number	of	ants,	the	better	the	performance	of	the	proposed	method.		

Jayaprakasam	(2015)	suggested	a	new	algorithm,	PSOGSA‐E,	which	combines	the	local	

search	ability	of	the	gravitational	search	algorithm	(GSA)	with	the	social	thinking	of	PSO.	The	

new	hybrid	algorithm	improves	the	beam‐pattern	of	collaborative	beam‐forming	to	achieve	

lower	side	lobes	by	optimising	the	weight	vector	of	the	array	elements.	By	using	exploration	and	

exploitation,	a	global	optimum	is	determined	by	the	hybrid	algorithm	and	the	problem	of	

premature	convergence	is	alleviated	compared	to	the	legacy	optimisation	methods.	

Jamshidi	(2015)	introduced	an	optimisation	method	based	on	a	set	of	performance	

indices	to	determine	the	effectiveness	and	robustness	of	a	supply	chain.	These	indices	are	

categorised	into	qualitative	and	quantitative	indices	to	optimise	supply	chain	parameters	like	

costs	or	waiting	time.	An	artificial	immune	system	(AIS)	was	utilised	as	a	meta‐heuristic	method	

and	it	was	then	combined	with	the	Taguchi	method	to	optimise	the	problem.	It	was	shown	that	

this	novel	hybrid	method	leads	to	more	accurate	minimum	average	costs	and	less	standard	

deviation.	In	computational	tests,	it	was	also	shown	that	the	procedure	was	effective	and	

efficient	and	could	be	used	for	a	variety	of	optimisation	problems.		

Another	novel	hybrid	algorithm	of	teaching–learning‐based	optimisation	(TLBO)	and	a	

DE	was	introduced	by	Pholdeea	(2015).	The	algorithm	was	used	to	optimise	a	strip	coiling	

process	and	it	has	been	shown	that	it	can	also	handle	large‐scale	design	problems	for	industrial	

Practical	limitations	of	automated	engineering	design	

13	
	

applications.	The	optimal	processing	parameters	are	determined	by	minimisation	of	the	

proposed	objective	function	with	a	limited	number	of	function	evaluations.	The	hybrid	algorithm	

was	tested	and	compared	with	ten	already	existing	EA	strategies	and	it	was	able	to	outperform	

the	other	EAs	in	terms	of	efficiency	and	computational	time.		

In	their	recent	paper,	Martínez‐Soto	(2015)	described	the	application	of	bio‐inspired	

methods	to	designing	logic	controllers	using	genetic	algorithms	(GA),	particle	swarm	methods	

(PSO),	and	hybrid	PSO‐GA	methods.	Some	of	these	optimisation	methods	are	based	on	

populations	of	solutions	and	produce	a	set	of	solutions	for	each	iteration	step.	All	of	these	

different	solutions	are	selected,	combined	and	replaced	to	find	the	optimised	solution.	This	

process	requires	much	more	computing	time	than	other	meta‐heuristic	methods	and	a	greater	

numbers	of	iterations.	Martínez‐Soto’s	aim	was	to	develop	more	aggressive	methods	by	

combining	population	based	algorithms	with	single	solution	algorithms.	The	experimental	

procedure	was	realised	for	each	method	individually	(GA,	PSO)	and	for	both	methods	combined	

(PSO‐GA).	Afterwards	the	results	obtained	using	each	method	individually	were	compared	with	

the	results	obtained	using	both	methods	combined.	

Arnaud	(2014)	proposed	a	combinatorial	optimisation	algorithm	matched	to	a	

continuous	optimisation	problem	that	is	related	to	uncertain	aero	elastic	optimisation.	The	

algorithm	optimises	the	sum	of	the	expected	value	by	stochastic	annealing	of	the	objective	

function.	Additionally	a	penalised	term	regards	the	confidence	interval	bandwidth	of	the	

estimator.	An	advantage	of	this	algorithm	is	that	it	chooses	the	number	of	samples	used	for	

estimator	construction.	By	not	using	a	fixed	number	of	samples	the	computational	efficiency	is	

improved	compared	to	a	classical	annealing	algorithm.	The	test	problem	shows	that	the	

algorithm	can	be	used	efficiently	for	low	dimension	optimisation	problems	under	uncertainty	

with	no	objective	function	gradient.	Compared	to	gradient	based	approaches,	the	computation	

time	of	the	proposed	algorithm	is	more	important	so	that	it	can	be	inefficient	for	high	dimension	

industrial	application.		

Practical	limitations	of	automated	engineering	design	

14	
	

Another	interesting	strategy	was	introduced	by	Congedo	(2013),	who	proposed	a	multi‐scale	

strategy	called	the	simplex	2	method	(S2M),	to	minimise	the	cost	of	robust	optimisation	

procedures.	It	is	based	on	simplex	tessellation	of	uncertainty	as	well	as	of	the	design	space.	The	

algorithm	coupled	the	simplex	stochastic	collocation	(SSC)	method	employed	for	uncertainty	

quantification	with	the	Nelder‐Mead	optimisation	algorithm	(Nelder	and	Mead,	1965).	The	

robustness	of	the	S2M	method	is	caused	by	using	a	coupled	stopping	criterion	and	a	high‐degree	

polynomial	interpolation	with	P‐refinement	on	the	design	space.	This	method	has	been	applied	

to	various	algebraic	benchmark	test	cases	like	the	Rosenbrock	problem,	for	which	it	was	able	to	

reduce	the	global	number	of	deterministic	evaluations	by	about	50	%.	Another	test	case	was	the	

short	column	problem,	which	was	treated	using	the	S2M	method	and	a	classical	technique	called	

polynomial	chaos	expansion	(PCE)	with	genetic	algorithms	(GA).	The	comparison	of	both	

methods	has	shown	that	S2M	is	able	to	gain	one	order	of	magnitude	in	terms	of	convergence	

order	while	maintaining	the	same	level	of	error.	

Based	on	the	review	of	the	existing	state‐of‐the‐art	optimisation	algorithms,	trends	were	

identified.	These	trends	are	outlined	below.		

2.2 Trends	identified	

All	of	the	methods	described	in	the	section	above	are	hybrid	algorithms.	That	means	that	they	

combine	two	or	more	optimisation	algorithms	to	improve	either	effectiveness	or	efficiency.	In	

the	former	case,	they	aim	at	increasing	the	quality	of	the	solutions,	i.e.	finding	solutions	with	a	

higher	fitness	value	in	the	case	of	maximisation	or	lower	cost	values	in	the	case	of	minimisation.	

In	the	latter	case	they	aim	at	minimising	the	computational	costs,	which	are	caused	by	objective	

function	evaluation.		

Hybrid	algorithms	can	be	classified	into	three	different	types:	nested	optimisation	

algorithms,	sequential	optimisation	algorithms	and	meta‐optimisation	algorithms.	These	types	

are	discussed	in	more	detail	below.	

Practical	limitations	of	automated	engineering	design	

15	
	

Figure	4	shows	the	basic	principle	of	direct	search	algorithms	for	optimisation.	Starting	with	an	

initial	solution	(or	a	set	of	initial	solutions	for	population	based	algorithms),	the	current	solution	

is	evaluated.	If	a	stopping	condition	is	not	met,	the	current	solution	is	adjusted	based	on	the	

strategy	of	the	algorithm.	The	adjusted	solution	is	then		evaluated	again	before	the	stopping	

criterion	is	tested.	This	is	done	iteratively	until	the	stopping	condition	holds.	

	
	

Figure	4	–	Basic	direct	search	algorithm	for	optimisation.	

In	the	case	of	hybrid	algorithms,	at	least	two	search	algorithms	are	combined.	The	most	common	

form	here	is	the	nested	algorithm.	Examples	can	be	found	in	Martinez‐Soto	et	al.	(2015),	Arnaud	

et	al.	(2014),	Congedo	et	al.	(2015),	Li	et	al.	(2015)	and	Nema	et	al.	(2008).	In	the	nested	

approach,	a	local	search	procedure,	for	example	hill	climbing,	is	inserted	into	the	optimisation	

loop	of	a	global	search	method	like	GA	(Figure	5).	In	every	iteration	of	the	global	search	method,	

a	complete	local	search	run	is	carried	out	that	aims	at	improving	the	current	solution	generated	

by	the	global	search	method.	The	advantage	is	that	the	outer	search	algorithm	can	be	used	to	

Practical	limitations	of	automated	engineering	design	

16	
	

explore	the	whole	search	space	whilst	the	inner	optimisation	method	is	exploiting	the	region	of	

the	search	space	that	contains	the	current	solution.	

	
	

Figure	5	–	Nested	search	algorithm.	

There	are	two	ways	of	combining	the	knowledge	acquired	through	local	search	and	global	

search,	Lamarkian	and	Baldwinean	leaning	(El	Mihoub	et	al.,	2006).		

In	genetic	algorithms,	the	process	of	Lamarckian	learning	is	connected	with	the	

inheritance	of	acquired	characteristics	reached	through	learning.	This	means	that	the	genetic	

structure	and	the	fitness	of	an	individual	are	altered	to	match	the	solution.	The	genetic	structure	

of	an	individual	is	modified	by	using	the	local	search	method,	which	acts	as	a	refinement	genetic	

operator.	The	local	search	method	modifies	the	genetic	structure	of	an	individual	and	feeds	it	

Practical	limitations	of	automated	engineering	design	

17	
	

back	into	the	genetic	population.	The	occurrence	of	this	genetic	feedback	process	has	not	yet	

been	observed	in	real‐world	biological	systems,	but	it	can	be	simulated	in	a	computational	

environment.	By	implementing	a	Lamarckian	approach	in	genetic	algorithms,	the	search	process	

can	be	improved	and	accelerated	but	this	may	lead	to	premature	convergence	in	some	cases	

(Whitley	et	al.,	1994).	To	adopt	a	Lamarckian	approach,	however,	it	is	necessary	to	invert	the	

mapping	from	phenotype	to	genotype	to	ensure	the	correct	function	of	the	method.	In	many	

simple	applications,	the	reverse	mapping	may	be	computable	but	it	is	intractable	for	most	real‐

world	problems	(Turney,	1996).	Lamarckian	approaches	have	been	widely	used	in	hybrid	

genetic	algorithms	used	for	chromosome	repair	applications	or	the	travelling	salesman	problem	

(TSP)	(Julstrom,	1999).		

In	the	Baldwin	learning	process,	on	the	other	hand,	the	genotype	remains	unchanged	

while	the	fitness	of	an	individual	is	enhanced	by	applying	a	local	search	mechanism.	This	leads	

to	an	improvement	in	the	solution’s	chances	to	pass	on	its	structure	to	the	next	generations.	In	

evolution,	learning	does	not	change	the	genetic	structure	of	an	individual	but	can	increase	its	

ability	to	survive.	With	the	use	of	local	knowledge,	the	local	search	method	produces	a	new	

fitness	score,	which	is	then	used	by	the	global	genetic	algorithm	to	decide	whether	or	not	the	

individual’s	ability	is	improved.	The	Baldwin	effect	describes	the	interactions	between	learning	

and	evolution	by	balancing	benefit	and	cost	of	learning.	The	Baldwin	effect	can	be	described	as	

follows	(Turney	et	al.,	1996).	Firstly,	the	process	of	learning	enables	individuals	to	change	their	

phenotypes	to	enhance	their	fitness.	Secondly,	the	individuals	who	improve	their	fitness	through	

learning	will	preferentially	breed	into	the	next	population.	The	cost	accompanied	with	learning	

leads	to	the	selection	of	favourable	individuals	who	have	certain	properties.	These	properties	

are	acquired	by	other	individuals	due	to	the	learning	skills	coded	into	their	genotypes.	This	

process	is	called	genetic	assimilation	and	can	indirectly	accelerate	the	genetic	acquisition	of	

learned	properties.	In	order	for	genetic	assimilation	to	occur,	a	weighty	correlation	between	

genotype	and	phenotype	space	is	mandatory	(Mayley,	1996).		Another	advantage	of	the	Baldwin	

effect	is	the	so‐called	smoothing	effect.	This	means	that	the	fitness	landscape	of	a	difficult	

optimisation	problem	can	be	simplified	into	flat	landscapes	round	about		

Practical	limitations	of	automated	engineering	design	

18	
	

the	basin	of	attraction	(Hinton	and	Nowlan,	1987).	Despite	all	that,	Baldwinian	search	can	also	

cause	an	unwanted	side	effect	called	the	hindering	effect	(Mayley,	1996).	This	effect	obscures	

genetic	differences	by	mapping	different	genotypes	to	the	same	or	similar	phenotypes,	thereby	

hindering	the	evolution	process.	

One	disadvantage	of	using	the	nested	approach	is	that	the	number	of	objective	function	

evaluations	n	increases	to	 jin  ,	where	 i 	is	the	number	of	iterations	of	the	global	method	and	

j 	is	the	number	of	iterations	of	the	local	method.	Another	disadvantage	is	that	two	sets	of	

control	parameters	have	to	be	tuned	manually.		

A	further	possible	configuration	is	the	sequential	application	of	two	or	more	

optimisation	algorithms	(Figure	6).	Here,	the	first	optimisation	algorithm	is	used	to	explore	the	

whole	search	space	in	order	to	find	the	most	promising	region.	The	solution	found	is	then	used	

as	the	initial	solution	for	the	second	algorithm,	which	then	exploits	the	region.	

Practical	limitations	of	automated	engineering	design	

19	
	

	
	

Figure	6	–	Sequential	configuration	of	search	algorithm.	

The	balance	between	exploration	and	exploitation	is	not	as	good	as	in	the	nested	approach,	but	

nevertheless	it	allows	for	combining	two	specialised	algorithms,	a	global	search	algorithm	and	a	

local	search	strategy.	The	number	of	objective	function	evaluations	n	increases	to	 jin  ,	

where	 i 	is	the	number	of	iterations	of	the	global	method	and	 j 	is	the	number	of	iterations	of	the	

local	method.	Here,	too,	there	is	the	disadvantage	that	two	sets	of	control	variables	have	to	be	

tuned	manually.	Examples	of	sequential	search	algorithms	can	be	found	in	Zhou	et	al.	(2015)	and	

Wang	et	al.	(2015).	

Practical	limitations	of	automated	engineering	design	

20	
	

A	third	configuration	is	the	meta‐optimisation	approach.	In	this,	one	optimisation	algorithm	is	

used	to	tune	the	control	parameters	of	the	second	algorithm,	which	in	turn	carries	out	the	actual	

optimisation	(Figure	7).	

	
	

Figure	7	–	Meta‐optimisation	approach	for	parameter	tuning.	

This	removes	the	need	for	manually	tuning	the	control	parameters	of	the	primary	search	

algorithm,	but	it	increases	the	number	of	objective	function	evaluations	n	to	 jin  ,	where	 i 	is	

the	number	of	iterations	of	the	parameter	optimiser	and	 j 	is	the	number	of	iterations	of	the	

primary	search	method.	This	approach	only	makes	sense	if	the	parameter	optimiser	itself	has	

fewer	control	parameters	than	the	primary	search	method.	Recent	examples	of	meta‐optimisers	

Practical	limitations	of	automated	engineering	design	

21	
	

can	be	found	in	Jayaprakasam	et	al.	(2015),	Mahia	et	al.	(2015),	Jamshidi	et	al.	(2015)	and	

Pholdee	et	al.	(2015).

 	Although	computational	optimisation	techniques	have	been	proven	to	be	very	effective,	

they	seem	to	be	neglected	by	practitioners	in	the	field	of	engineering	(Nolle,	2006).	The	next	

section	discusses	the	main	reasons	for	this.	

2.3 Practical	problems	

The	tuning	of	optimisation	algorithms,	and	hybrid	algorithms	in	particular,	presents	problems	to	

practitioners	who	want	to	use	direct	search	techniques	as	black‐box	methods	for	practical	

engineering	applications:	All	of	these	algorithms	have	a	number	of	control	parameters	that	need	

to	be	carefully	adjusted	to	the	optimisation	problem	at	hand.	This	constitutes	a	meta‐

optimisation	problem,	i.e.	the	optimum	set	of	control	parameters	has	to	be	found,	usually	

empirically,	before	the	main	optimisation	process	can	start.	This	fine‐tuning	of	the	control	

parameters	requires	a	lot	of	experience	with	optimisation	algorithms	and	usually	a	large	

number	of	experiments.	

Table	1	shows	a	selection	of	common	population	based	search	algorithms	and	lists	their	

basic	sets	of	parameters.	For	example,	the	basic	GA	has	seven	parameters	that	need	to	be	tuned	

before	the	actual	optimisation	can	be	carried	out.	Due	to	combinatorial	explosion	and	the	

continuous	nature	of	some	of	the	parameters,	not	every	combination	can	be	tried	in	an	

exhaustive	search.	Using	unsuitable	settings	can	easily	lead	to	sub‐optimal	solutions.		

Engineers	are	often	not	very	experienced	with	search	algorithms	and	hence	often	

struggle	to	find	suitable	settings	within	the	limited	time	available	for	tuning.	Ideally,	engineers	

would	like	to	use	an	algorithm	that	has	no	control	parameter	at	all.	This	has	led	to	the	

development	of	self‐adaptive	stepsize	search	(SASS),	an	algorithm	that	has	only	one	control	

parameter	(Nolle,	2006;	Nolle	and	Bland,	2012;	Azad	and	Hasancebi,	2014a;	Azad	and	

Hasancebi,	2014b).	It	has	been	demonstrated	in	practical	applications	that	SASS	can	be	used	

Practical	limitations	of	automated	engineering	design	

22	
	

without	the	need	for	tuning	control	parameters	(Nolle,	2007;	Sayol	et	al.,	2008;	Dias	Junior	and	

da	Silva	Junior,	2013).		

Table	1	–	List	of	control	parameters	for	a	selection	of	population‐based	search	methods.

Algorithm	 Parameter Type	

genetic	algorithms	

population	size	 discrete	

mutation	probability	 continuous	

crossover	probability	 continuous	

chromosome	length	 discrete	

crossover	type	 selection	

selection	type	 selection	

coding	scheme	 selection	

ant	colony	optimisation	

population	size	 discrete	

 	 continuous	

 	 continuous	

pheromone	evaporation	coefficient	 continuous	

 	 continuous	

particle	swarm	optimisation	

population	size	 discrete	

inertia	weight	 continuous	

cognitive	learning	parameter	 continuous	

social	learning	parameter	 continuous	

self‐adaptive	stepsize	search	 population	size	 discrete	

	

Although	SASS	does	not	require	parameter	tuning,	apart	from	selecting	the	number	of	particles	

in	the	population,	the	algorithm	might	take	a	longer	time	to	reach	the	global	optimum	and	hence	

Practical	limitations	of	automated	engineering	design	

23	
	

is	not	as	efficient	as	the	latest	hybrid	algorithms	outlined	above.	However,	for	practical	

applications,	this	is	compensated	for	by	the	fact	that	no	time	needs	to	be	spent	experimenting	

with	parameter	settings.	

Another	problem	for	practical	engineering	applications	is	that	the	typical	optimisation	

approach	typically	considers	only	optimal	solutions	with	a	high	sensitivity	to	small	changes	

rather	than	robust	optimisation	and	solutions	(Beyer	and	Sendhoff,	2007).	The	procedure	for	

finding	robust	solutions	is	referred	to	as	robust	design	optimisation.	The	aim	of	robust	design	

optimisation	is	to	ensure	that	the	performance,	as	well	as	the	solution	of	the	objective	function,	

will	remain	relatively	stable	even	under	uncertain	conditions	(Lee	et	al.,	1996;	Suri	et	al.,	2001).	

These	uncertainties	are	caused	by	fluctuations	of	real‐world	system	parameters	like	design	

parameters,	material	properties,	environmental	influences,	changed	parts	in	a	multi‐part	system	

or	applied	loadings	(Phadke	et	al.,	1989;	Sundaresan	et	al.,	1995).	All	of	these	uncertainties	

cause	noise,	dropouts	or	errors	in	the	objective	function’s	input	dataset.		To	assure	the	correct	

performance	of	the	algorithms	and	models	when	handling	error‐prone	data	it	is	necessary	to	

lower	the	sensitivity	of	the	objective	function	towards	the	errors	contained	in	the	dataset.	Many	

papers	and	publications	have	been	released	that	deal	with	the	implementation	of	error	

insensitive	optimisation	methods	(Du	et	al.,	2000).		

Lee	et	al.	(2001),	for	example,	suggested	an	approach	in	which	the	robustness	of	the	

objective	and	the	constraint	functions	is	defined.		His	algorithm	is	a	recursive	quadratic	

programming	(RQP)	method	developed	in	an	optimisation	system	called	IDESIGN3.	Due	to	the	

robust	design	of	the	objective	function	the	system’s	performance	becomes	insensitive	to	

variations	in	the	design	variables	(Lee	et	al.,	2001).	To	solve	real‐world	optimisation	problems,	a	

multi‐objective	function	is	introduced	and	defined	as	the	weight	in	the	structural	optimisation.	

Robustness	is	achieved	by	using	a	constraint	function	and	making	use	of	penalty	terms	with	

penalty	coefficients.	These	coefficients	are	proportional	to	the	gradients	of	the	constraints	and	

the	tolerance	of	the	design	variables.	By	considering	the	tolerance	of	the	design	variables	by	the	

Practical	limitations	of	automated	engineering	design	

24	
	

overhauled	constraint	functions,	the	original	constraints	are	satisfied.	For	larger	penalty	factors	

the	operability	of	the	constraint	rises	but	the	performance	of	the	objective	function	worsens.		

In	their	paper,	Mulvey	and	Vanderbei	(1994)	suggested		an	alternative	approach,	named	robust	

optimisation	(RO),	which	integrates	goal	programming	for	simulations	with	a	scenario‐based	

description	of	problem	data.	RO	outputs	a	series	of	solutions	that	are	gradually	less	alive	to	

realisations	of	the	data	from	a	scenario	set.	The	advantages	of	RO	are	its	good	generally	

applicability	and	its	benefit	towards	stochastic	linear	programming	(Golub	et	al.,	1994).	

2.4 Summary	

This	chapter	started	with	a	review	of	the	current	literature	on	optimisation	algorithms.	It	

emerged	that	the	latest	research	tends	to	combine	two	or	more	optimisation	algorithms	to	

improve	either	effectiveness	or	efficiency.	Three	basic	types	of	hybrid	configurations	were	

identified:	nested	algorithms,	sequential	algorithms	and	meta‐optimisers.	The	later	aim	was	to	

then	to	reduce	the	work	load	for	practitioners	by	automatically	tuning	the	control	parameters	of	

an	optimisation	algorithm.	Two	problems	were	then	identified	that	practitioners	encounter	

when	trying	to	apply	computational	optimisation	to	real‐world	engineering	problems:	

parameter	tuning	and	robust	optimisation.	The	next	chapter	presents	a	case	study,	which	is	used	

to	investigate	the	problems	of	parameter	tuning	and	robust	optimisation	in	an	engineering	

context.

Case	study:	pressure	vessel	problem	

25	
	

3 Case	study:	pressure	vessel	problem	

In	engineering,	designing	a	system	that	satisfies	all	of	the	user’s	requirements,	without	violating	

problem	specific	constraints,	usually	requires	determining	the	system’s	design	variable	values	in	

such	a	way	that	the	resulting	design	is	optimal	in	turns	of	cost	function.	Usually,	the	design	space	

is	too	vast	to	evaluate	every	possible	design	and	hence	only	a	subset	of	the	design	space	can	be	

considered.	An	interesting	standard	benchmark	problem	from	the	field	of	mechanical	

engineering,	which	was	introduced	by	Sandgren	(1990),	is	the	pressure	vessel	problem.	It	has	

been	used	as	a	standard	problem	by	many	researchers.	Current	examples	include	Liao	et	al.	

(2014),	Kanagaraj,	et	al.	(2015),	Guo	et	al.	(2015),	and	Salimi	(2015).	Although	the	problem	only	

consists	of	four	decision	variables	(see	Chapter	1),	it	is	not	a	trivial	problem,	as	it	involves	the	

optimisation	of	both	discrete	and	continuous	design	variables	under	a	relatively	large	number	of	

constraints.	The	problem	is	used	as	a	test‐bed	here	and	is	therefore	explained	in	more	detail	in	

the	next	section.	

3.1 Pressure	vessel	problem	

The	pressure	vessel	consists	of	a	simple	cylinder	(shell)	with	each	end	capped	by	a	hemi‐

spherical	head,	as	illustrated	in	Figure	8.	There	are	four	design	variables	that	can	be	chosen	by	

the	engineer:	the	thickness	 1x of	the	shell,	the	thickness	 2x of	the	heads,	the	inner	radius	 3x and	

the	length	 4x of	the	shell.	

Case	study:	pressure	vessel	problem	

26	
	

	

Figure	8	–	Pressure	vessel	design	problem.	

The	variables	 1x 	and	 2x 	are	both	discrete	and	vary	in	multiples	of	0.0625	inches	(please	note	

that	Sandgren	used	Imperial	units),	and	variables	 3x 	and	 4x 	are	both	continuous	(see	Table	2).	

Table	2	–	Design	parameter	types	and	ranges	for	the	pressure	vessel	problem.	

Design	variable	 Definition Variable	type Thickness	increments

1x 	 Thickness	of	cylinder	 discrete	 0.0625	inch	

2x 	 Thickness	of	sphere	 discrete	 0.0625	inch	

3x 	 Inner	radius	of	cylinder	 continuous	 N/A	

4x 	 Length	of	cylinder	 continuous	 N/A	

	

The	design	has	to	satisfy	four	constraint	functions	and	an	allowed	range	for	each	design	variable.	

The	design	and	constraint	functions	and	the	ranges	of	the	design	variables	are	given	in	the	

following	equations	and	inequalities:	

	

	

	

Case	study:	pressure	vessel	problem	

27	
	

00193.0)(131  xxg x

03/4000.296,1)(3
34

2
33  xxxg x

1875.60625.0 2  x

	

(7)

The	aim	is	to	minimise	the	total	cost	of	the	materials	used	and	also	the	production	costs,	which	

consist	of	the	costs	of	forming	and	welding	the	pressure	vessel.	Equation	8	provides	the	

objective	function)(xf

,	which	was	introduced	by	Sandgren	(1990).	It	comprises	the	four	

design	variables	 Txxxxx),,,(4321


.	

3
2

14
2

1
2
32431 84.191661.37781.16224.0)(xxxxxxxxxxf 


	 (8)

A	number	of	computational	optimisation	methods	have	been	used	to	find	near‐optimum	designs.	

These	methods	are	iterative	in	nature	and	use	an	optimisation	loop	(Figure	9).	Based	on	an	

initial	solution	 0x


	the	cost	value)(0xf


	is	evaluated.	If	one	or	more	constraints	are	violated,	

penalties	are	added	to	the	costs,	which	are	now)(' 0xf


.	Based	on	the	algorithm	used,	the	design	

is	altered	and	a	new	solution	 1x

	is	generated.	This	process	is	than	carried	out	iteratively	until	a	

stopping	criterion	holds.	

000954.0)(232  xxg x

0240)(44  xg x

1875.60625.0 1  x

20010 3  x

20010 4  x

Case	study:	pressure	vessel	problem	

28	
	

Txxxxx),,,(4321


)(xf


)(xf


	

Figure	9	–	Optimisation	loop	for	pressure	vessel.	

Previous	algorithms	used	are,	amongst	many	others,	BB	(Sandgren,	1990),	evolutionary	

programming	(EP)	(Cao	and	Wu,	1999),	genetic	algorithm	(Coello	and	Montes,	2001),	particle	

swarm	optimisation	(PSO)	(He	and	Prempain,	2004),	hybrid	particle	swarm	branch‐and‐bound	

(HPB)	(Nema	at	al.,	2008),	self‐adaptive	stepsize	search	(SASS)	(Nolle	and	Bland,	2012),	

stochastic	fractal	search	(SFS)	(Salimi,	2015)	and	biogeography‐based	particle	swarm	

optimisation	(BPSO)	(Gao	et	al.,	2015).	Interestingly,	the	latter	two	papers	reported	results	that	

either	showed	no	improvement	over	the	existing	methods	(Salimi,	2015)	or	were	even	worse		

(Gao	et	al.,	2015).		

		 Table	3	shows	the	best	designs,	as	found	by	the	three	best	methods,	and	the	associated	

fitness	values	(Nolle	and	Bland,	2012).	As	can	be	seen,	the	fitness	(costs)	could	be	reduced	

dramatically	compared	to	Sandgren’s	original	value	of	7982.5.	

	

	

	

	

	

Case	study:	pressure	vessel	problem	

29	
	

Table	3	–	Comparison	of	solutions.	

	 PSO	 HPB SASS	

Fitness	 6,059.7143	 6,059.6545	 6,059.7143	

1x 	 0.8125	 0.8125	 0.8125	

2x 	 0.4375	 0.4375	 0.4375	

3x 	 42.09845	 42.09893	 42.09845	

4x 	 176.6366	 176.6305	 176.5366	

	

This	example	clearly	shows	that	computational	optimisation	methods	are	capable	of	finding	very	

good	solutions	for	engineering	applications	in	terms	of	fitness	function	values.	However,	when	

implementing	optimal	designs	physically,	engineers	are	often	confronted	with	a	number	of	

problems,	which	are	outlined	below.	

3.2 Problems	with	optimal	solutions	

As	can	be	seen	from	the	example	above,	computational	optimisation	methods	are	capable	of	

finding	very	good	solutions	for	engineering	applications	in	terms	of	fitness	function	values.	

However,	the	solutions	presented	in	the	literature	often	use	design	parameter	values	that	have	

decimal	places.	This	means,	in	reality,	that	those	solutions	cannot	actually	be	manufactured	

because	of	the	tolerances	of	both	the	materials	involved	and	the	manufacturing	processes.	

		 For	the	pressure	vessel	problem,	for	example,	the	solutions	presented	in	the	literature	

show	up	to	five	places	after	the	decimal	point.	Since	the	manufacturing	process	cannot	achieve	

the	required	accuracy,	the	parameter	values	are	slightly	different	and	hence	result	in	a	different	

fitness	value.	For	example,	using	a	modern	CNC	machine,	tolerances	of	+/‐	0.005	mm	are	

common.	

Also,	controlling	the	dimensions	of	the	heads	is	especially	difficult	(Pullarcot,	2002).	

Other	unavoidable	causes	of	error	are	the	thickness	tolerances	for	plate	rolled	on	a	plate	mill	

Case	study:	pressure	vessel	problem	

30	
	

(Standards	Australia,	1995).	Table	4	shows	the	combined	upper	and	lower	tolerances	for	the	

pressure	vessel	design	problem.	

Table	4	–	Upper	and	lower	tolerances	for	the	pressure	vessel.	

Tolerance	[inches]	
1x 	 2x 	 3x 	 4x 	

Lower	limit	 ‐0.0118	 ‐0.0118	 ‐0.1969	 ‐0.2756	

Upper	limit	 0.0472	 0.0472	 0.1969	 0.2756	

	

The	upper	and	lower	tolerance	values	were	added	to	the	design	solutions	presented	in	Table	3.	

Table	5	shows	how	the	fitness	values	changed	when	the	upper	and	lower	tolerances	were	taken	

into	account.	

Table	5	–	Fitness	after	applying	upper	and	lower	tolerances	to	the	original	design.	

Method	 Original	fitness Fitness	for	lower	tolerance	
values	

Fitness	for	upper	
tolerance	values	

PSO	 6,059.7143	 N/A	(1g 	and	 3g 	violated)	 6579.68	

HPB	 6,059.6545	 N/A	(1g 	and	 3g 	violated)	 6579.60	

SASS	 6,059.7143	 N/A	(1g 	and	 3g 	violated)	 6579.678	

	

As	can	be	seen	from	Table	5,	the	fitness	decreases	dramatically	for	all	of	the	designs	using	the	

upper	tolerance	values,	with	an	error	of	8.6%.	Even	worse,	when	using	the	lower	tolerances,	

none	of	the	designs	are	feasible	because	they	all	violate	constraints	g1	and	g3	and	hence	would	

not	be	fit	for	purpose!		

There	are	two	aspects	of	robust	optimisation.	The	first	is	related	to	the	narrowness	of	the	

global	optimum	for	unconstraint	optimisation.	Figure	10	shows	an	example	of	a	fitness	

landscape	for	a	one‐dimensional	optimisation	problem.	In	the	example,	there	are	two	maxima,	

one	at	 5x 	and	the	other	at 10x .	The	global	optimum	is	located	at	 5x .	However,	the	

peak	is	too	narrow,	and	slight	deviations	in	implementing	the	solution	will	cause	a	significant	

Case	study:	pressure	vessel	problem	

31	
	

drop	in	the	fitness	value.	The	local	optimum	at	 10x 	does	not	offer	the	same	fitness,	but	

slight	deviations	in	 x 	do	not	cause	a	dramatic	drop	in	fitness	when	implementing	the	solution.	

If	the	fitness	were	acceptable,	this	would	be	the	preferred	solution	for	an	engineering	

application.	For	a	practical	application,	it	would	be	more	desirable	to	find	a	robust	solution	than	

the	global	optimum.	

	

Figure	10	–	Example	of	a	fitness	landscape	for	a	one‐dimensional	optimisation	problem.	

The	other	problem	relates	to	constraint	optimisation.	Here,	constraints	define	areas	in	the	input	

space	that	do	not	contain	feasible	solutions.	Figure	3	shows	an	example	of	an	input	space	for	a	

two‐dimensional	constraint	optimisation	problem.	

	

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

F
itn

es
s

Design variable x

Case	study:	pressure	vessel	problem	

32	
	

x2

x1
	

Figure	11	–	Example	of	an	input	space	for	a	two‐dimensional	constraint	optimisation	

problem.	

In	the	example,	there	are	two	design	variables,	 1x 	and	 2x .	However,	only	combinations	of	 1x

and	 2x 	that	lie	in	the	grey	area	are	feasible,	i.e.	allowed,	whereas	combinations	that	lie	in	the	

white	areas	are	not	feasible.	The	white	areas	are	defined	by	the	constraints.	The	more	

constraints	there	are,	the	more	complicated	the	shape	of	the	allowed	area(s)	can	be	and	hence	

the	more	difficult	the	optimisation	problem.	

It	is	a	well‐known	fact	that	optimum	solutions	are	normally	located	at	the	edges	of	the	

feasible	space;	for	example,	this	forms	the	basis	for	the	simplex	algorithm	for	linear	

programming	(Murty,	1983).	Figure	4	shows	an	example	of	a	fitness	landscape	for	a	one‐

dimensional	constrained	optimisation	problem.	

	

Case	study:	pressure	vessel	problem	

33	
	

	

Figure	12	–	Example	of	a	fitness	landscape	for	a	one‐dimensional	constrained	

optimisation	problem.	

It	can	be	seen	that	the	global	optimum	is	located	at 15x .	However,	all	of	the	points	for	values	

15x 	lie	outside	of	the	area	of	feasible	solutions	and	hence,	due	to	penalisation,	result	in	a	

fitness	value	of	zero.	If	an	algorithm	finds	the	global	optimum	correctly,	but	due	to	the	

engineering	related	problems	mentioned	above	the	implementation	of	the	solution	uses x ,	

all	of	solutions	with	a	positive	  will	cause	a	constraint	violation,	i.e.	lead	to	infeasible	

solutions.		

Clearly,	it	would	be	of	benefit	if	an	algorithm	could	find	a	solution	close	to	the	global	

optimum	but	with	a	safety	distance d .	In	this	case,	if	the	realisation	process	caused	a	

deviation	up	to	  ,	the	resulting	solution	would	a)	still	be	close	to	the	global	optimum,	and	b)	

not	violate	any	constraint.		

Both	problems,	i.e.	narrow	global	optima	and	constraint	optimisation	using	penalty	

functions,	are	equivalent	and	hence	it	is	possible	to	address	both	issues	using	a	single	method.	

This	analysis	led	to	the	design	of	a	meta‐method	that	can	be	used	in	conjunction	with	any	

iterative	optimisation	algorithm.	This	method	is	presented	in	the	next	chapter.	

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

F
itn

es
s

Design variable x

Case	study:	pressure	vessel	problem	

34	
	

	

3.3 Summary	

This	chapter	introduced	an	interesting	standard	benchmark	problem	from	the	field	of	

mechanical	engineering,	the	pressure	vessel	problem,	which	was	introduced	by	Sandgren	

(1990).	The	aim	here	is	to	minimise	the	total	cost	of	the	materials	used	as	well	as	the	production	

costs.	The	required	accuracy	for	the	pressure	vessel	problem	was	discussed.	The	solutions	

presented	in	the	literature	have	up	to	five	significant	figures	after	the	decimal	point.	However,	

the	manufacturing	process	cannot	achieve	the	required	accuracy.	As	a	consequence,	when	the	

manufactured	parameters	differ	slightly	from	the	design,	different	fitness	values	are	achieved.	

Based	on	these	problems,	two	aspects	of	robust	optimisation	were	discussed.	The	first	is	related	

to	the	narrowness	of	the	global	optimum	for	unconstrained	optimisation.	The	other	problem	

relates	to	constraint	optimisation,	where	constraints	define	areas	in	the	input	space	that	do	not	

contain	feasible	solutions.	This	led	to	the	design	of	a	meta‐method	for	robust	design,	which	can	

be	used	in	conjunction	with	any	iterative	optimisation	algorithm.	This	method	is	presented	in	

the	next	chapter.	

	

Meta‐method	of	robust	design	optimisation	

35	
	

4 Meta‐method	of	robust	design	optimisation	

Typical	engineering	optimisation	problems	deal	with	high‐dimensional	and	multimodal	design	

spaces.	The	goal	of	engineering	design	should	be	to	find	a	good	enough	solution	that	is	a)	near‐

optimal	in	terms	of	its	fitness	criterion,	and	b)	robust	enough	to	maintain	that	fitness	even	if	the	

manufacturing	process	causes	slight	deviations	in	the	actual	design	parameter	values.	

Computational	optimisation	methods	have	been	proven	to	find	near‐optimal	solutions	in	

a	finite	time	and	with	a	high	degree	of	repeatability	(Schwefel,	1995).	These	methods	should	be	

modified	so	as	to	learn	from	experience,	i.e.	guided	away	from	dangerous,	non‐robust	areas	

during	the	search.	However,	none	of	the	common	standard	computational	optimisation	

algorithms	has	such	an	in‐build	facility	aimed	at	robustness.	The	closest	one	would	be	local	

search,	a	technique	often	used	to	improve	the	current	solution	of	a	global	search	algorithm	by	

searching	the	neighbourhood	of	the	current	solution	(see	Section	2.2).	If	a	better	solution	is	

found,	the	solution	itself	is	changed	(Lamarckian	learning).	Alternatively,	for	genetic	algorithms,	

the	fitness	value	of	the	original	current	solution	can	be	improved,	which	increases	the	

individual’s	chance	of	being	selected	to	generate	offspring	for	the	next	generation	(Baldwin	

learning)	(El‐Mihoub	et	al.,	2006).	

4.1 Narrow	peaks	

Figure	13	shows,	as	an	example,	a	contour	plot	of	a	fitness	landscape	for	a	two‐dimensional	

unconstrained	optimisation	problem.	As	can	be	seen	from	the	figure,	the	global	optimum	is	

located	at	(5,5)	and	two	local	optima	are	located	at	(7,7)	and	(8,13).	Conventionally,	one	would	

try	to	find	the	global	optimum.	However,	for	engineering	applications,	when	implementing	the	

solution,	the	actual	realisation	might	be	slightly	off	the	target	value	as	described	previously.	

Figure	14	presents	a	contour	plot	of	the	same	landscape.	Here,	a	solution	 1s is	located	at	the	

global	optimum	and	a	solution	 2s is	located	at	the	second	best	local	optimum.	Due	to	the	

Meta‐method	of	robust	design	optimisation	

36	
	

engineering	nature	of	the	problem,	the	actual	implementation	might	be	slightly	off	but	still	

within	a	radius  .	

	

Figure	13	–	Multimodal	fitness	landscape	for	two‐dimensional	unconstrained	

optimisation	problem.	

As	can	be	seen,	most	deviations	from	 1s 	will	cause	the	solution	to	drop	dramatically	in	fitness	

whereas	solution	 2s 	is	more	robust	in	that	respect.	A	local	search	here	would	not	be	of	any	help	

since	the	global	optimum	 1s 	has	already	been	found.	However,	if,	through	local	probing,	a	

measure	of	the	deviation	in	fitness	for	the	region	around	 1s 	could	be	established,	it	could	be	

used	to	adjust	the	fitness	accordingly.	This	would	be	similar	to	the	Baldwin	approach	for	genetic	

algorithms	but	it	could	be	used	for	any	optimisation	algorithm,	for	example	the	one	described	in	

Chapter	2.2.	

 0
 5

 10
 15

 20 0

 5

 10

 15

 20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Meta‐method	of	robust	design	optimisation	

37	
	

	

Figure	14	–	Contour	plot	of	the	multimodal	fitness	landscape	in	Figure	13.	

Similarly,	for	constraint	optimisation	(see	below)	using	penalty	functions,	this	measure	could	be	

used	to	penalise	solutions	that	are	too	close	to	the	border	with	the	forbidden	areas.		

4.2 Constraint	optimisation	

Figure	15	shows	two	solutions	 1s 	and	 2s 	for	a	two‐dimensional	constrained	optimisation	

problem.	The	grey	area	contains	all	of	the	feasible	solutions;	white	areas	are	forbidden.	

Meta‐method	of	robust	design	optimisation	

38	
	

x2

x1

x

x

s1

s2

	

Figure	15	–	Two	different	solutions	in	a	constrained	search	space.	

It	can	be	seen	that	probing	the	areas	with	a	radius	ε	around	the	solutions	would	lead	to	a	

penalisation	for 2s ,	because	a	section	of	the	circle	is	in	the	forbidden	zone.	On	the	other	hand, 1s 	

would	not	be	subject	to	such	a	penalty,	because	none	of	the	points	within	the	neighbourhood	

 would	cause	a	violation	of	a	constraint.	

As	shown	above,	both	problems	can	be	solved	by	using	a	measure	of	the	quality	of	the	

solutions	contained	in	the	neighbourhood	of	a	solution.	For	unconstrained	optimisation,	this	

penalty	would	change	the	shape	of	the	effective	fitness	landscape	so	that	narrow	peaks	are	

penalised.	For	constrained	optimisation,	it	would	change	the	shape	of	the	fitness	landscape	so	

that	points	near	to	or	on	the	border	of	a	forbidden	region	would	be	lowered	in	fitness	or,	in	

other	words,	the	edges	would	be	‘rounded	off’	and	a	fitness	barrier	would	be	produced	to	

protect	the	solutions	from	leaving	the	feasible	space	when	realised	through	an	engineering	

process		

(Figure	16).	

	

	

Meta‐method	of	robust	design	optimisation	

39	
	

	

	

Figure	16	–	Fitness	barrier	to	protect	solutions	from	dropping	into	the	forbidden	area.	

To	overcome	this	problem,	a	meta‐heuristic	was	developed,	which	is	explained	in	the	next	

section.	

	

	

	

	

	

	

	

	

	

Meta‐method	of	robust	design	optimisation	

40	
	

4.3 A	meta‐heuristic	for	robust	optimisation.	

Figure	17	shows	a	flowchart	of	the	meta‐heuristic	for	engineering	applications	based	on	

Baldwinian	learning.		

Start

start with initial
solution s

n:=1
fmean:=0

n<max
?

measure fitness f
for s+random

number
fmean:=fmean+f

n:=n+1

no

yes

fmean:=fmean/
max

i<i_max
?

i:=i+1

no
yes

Stop

fmean:= fitness of
initial solution

use fmean
for

optimisation

i:=0

	

Figure	17	–	Baldwinian‐based	meta‐heuristic	for	engineering	optimisation.	

Meta‐method	of	robust	design	optimisation	

41	
	

The	search	begins	with	an	initial	solution,	respectively	with	an	initial	population	of	solutions.	

Each	time	a	solution	is	due	to	be	evaluated	by	the	optimisation	algorithm	being	used,	its	fitness	

is	evaluated	first	and	then	the	neighbourhood	with	the	radius	ε	is	sampled	with	random	trials.	

The	average	fitness	of	all	of	the	trials	is	calculated	and	used	by	the	host	optimisation	algorithm	

instead	of	the	fitness	for	the	original	solution.	Figure	18	shows	the	optimisation	loop	for	the	

Baldwinian‐based	meta‐heuristic.	

Engineering
Problem

Optimisaton
Algorithm

Meta-heuristic

si

fmean (si)

fn(si+e)

si+e

	

Figure	18	–	Optimisation	loop	for	Baldwinian‐based	meta‐heuristic.	

It	can	be	seen	that	the	optimisation	algorithm,	which	could	be	of	any	type,	does	not	receive	a	

quality	measure	directly	from	the	engineering	problem.	Instead,	it	sends	its	solution	to	the	meta‐

heuristic,	which	in	turn	presents	a	number	of	slightly	different	versions	of	the	solution	to	the	

problem	and	calculates	the	average	fitness,	including	any	penalties	if	applicable.	This	average	

fitness	is	then	used	by	the	optimisation	algorithm	for	decision	making.	This	meta‐heuristic,	

referred	to	as	Baldwinian‐based	meta‐heuristic	(BMH),	was	tried	in	combination	with	PSO	and	

SASS.	These	two	algorithms	were	selected	because	of	their	low	number	of	control	parameters		

Meta‐method	of	robust	design	optimisation	

42	
	

(see	Chapter	2.3),	which	makes	them	suitable	for	engineers	who	are	inexperienced	in	the	field	of	

computational	optimisation.	These	two	methods	are	introduced	in	the	next	sections.	

4.4 Basic	PSO	

Fish,	ants,	and	many	other	animals	search	in	swarms	for	rich	feeding	grounds.	Besides	individual	

searches	(cognitive	part),	each	of	them	is	orientated	to	the	other	swarm	members	in	their	direct	

environment	(social	part).	A	particle	swarm	optimisation	algorithm	(PSO)	(Chen	and	Li,	2007;	

Yoshida	et	al.,	1999)	mimics	this	social	behaviour	of	e.g.	ant	colonies	or	fish	schools,	with	a	

stochastic,	population‐based	recursion	procedure.	This	heuristic	technique	belongs	to	the	family	

of	swarm	intelligence	computational	techniques	and	was	first	introduced	by	Kennedy	and	

Eberhart	in	1995.	It	quickly	emerged	that	some	unique	features	make	PSO	very	efficient	in	

solving	optimisation	problems	related	to	science	and	engineering	(Jordehi	et	al.,	2015;	Liao	et	al.,	

2007;	Yin	et	al.,	2009).	Compared	with	classical	approaches	such	as	linear	and	non‐linear	

programming,	PSO	algorithms	obtain	much	higher	efficiency	and	do	not	require	continuity	and	

differentiability	of	the	objective	function	(Wu	and	Tsai,	2008).	Also	among	other	bio‐inspired	

approaches	like	genetic	algorithms,	evolution	strategies,	or	differential	evolution,	PSOs	show	

interesting	features	that	make	them	suitable	and	efficient	to	use	(Abido,	2001).	PSO,	for	example,	

has	less	parameters	that	need	to	be	tuned,	faster	convergence	rates,	easier	coding,	higher	

accuracy,	and	less	computational	effort	than	the	most	classical	and	heuristic	approaches.	

The	basic	procedure	of	PSO	is	very	simple	and	starts	with	random	initialisation	of	a	

swarm	of	individuals	in	the	n‐dimensional	search	space.	Each	particle	moves	through	the	search	

space	with	adjustable	velocity	and	keeps	two	possible	values	in	its	memory.	Value	one	is	the	best	

experience	of	the	individual	itself	or	to	be	more	precise,	the	best	fitness	value	of	the	individual.	

Value	two	is	the	best	experience	of	the	entire	swarm.		

In	detail,	the	procedure	is	as	follows.	Each	search	candidate	is	defined	as	a	particle,	

which	has	the	actual	position	ݔiሬሬሬԦ	within	the	search	space	and	the	velocity	ݒiሬሬሬԦ		,	where	݅ ൌ 1,… . ,݉.	

Here,	m	is	the	number	of	decision	variables.	

Meta‐method	of	robust	design	optimisation	

43	
	

In	each	iteration,	the	velocity	of	the	particle	is	calculated	as	follows	(Equation	9):	

	

ݐԦ௜ሺݒ ൅ 1ሻ ൌ ߱ ∙ ሻݐԦ௜ሺݒ ൅ ଵߚ ∙ ൬ݔԦ௜
ሺ௟௢௖௔௟ሻ ሺݐሻ െ ሻ൰ݐԦ௜ሺݔ ൅ ଶߚ ∙ ൬ݔԦ௜

ሺ௚௟௢௕௔௟ሻ ሺݐሻ െ 	ሻ൰ݐԦ௜ሺݔ (9)

	

The	parameters 1 and	 2 	are	random	numbers.	Their	ranges	are	determined	by	two	constants	

1c and	 2c ,	which	need	to	be	selected	by	the	user.	The	inertia	weight	 also	has	to	be	adjusted	

to	the	problem.	After	the	new	velocity	vector	is	computed,	the	position	of	the	particle	is	updated	

using	Equation	10.		

ݐԦ௜ሺݔ ൅ 1ሻ ൌ ሻݐԦ௜ሺݔ ൅ ሻݐԦ௜ሺݒ (10)

	

Ԧ௜ݔ
ሺ௟௢௖௔௟ሻ	in	Equation	9	denotes	the	local	memory	of	each	particle	and	it	has	the	information	about	

the	best	position	within	the	search	space,	which	the	selected	particle	has	identified	so	far		

(Equation	11).	

Ԧ௜ݔ
ሺ௟௢௖௔௟ሻ ሺݐሻ ൌ Ԧ௜ݔ ቀܽݔܽ݉݃ݎ௨ୀଵ

௧ ݂൫ݔԦ௜ሺݑሻ൯ቁ	 (11)

	

Ԧ௜ݔ
ሺ௚௟௢௕௔௟ሻ	represents	the	global	memory	of	the	complete	swarm,	i.e.	it	holds	the	information	about	

the	best	position	within	the	search	space	where	any	of	the	particles	have	been	so	far,	which	

means:	

ሻݐԦሺ௚௟௢௕௔௟ሻሺݔ ൌݔԦ௝
ሺ௟௢௖௔௟ሻ ሺݐሻwith ݆ ൌ ௜ୀଵݔܽ݉݃ݎܽ

௠ ݂ ൬ݔԦ௜
ሺ௟௢௖௔௟ሻ ሺݐሻ൰	 (12)

Figure	19	shows	pseudo‐code	for	the	basic	PSO	algorithm.	

	

			

Meta‐method	of	robust	design	optimisation	

44	
	

Procedure PSO
For each particle ݅ do Begin

choose random ݔԦ௜ ; ݒԦ௜ ൌ 0ሬԦ;
End
Repeat

For each particle ݅ do Begin
ݕ ≔ ݂ሺݔԦ௜ሻ;

If ݕ ൒ ݂ ቀݔԦ௜
ሺ௟௢௖௔௟ሻቁ then ݔԦ௜

ሺ௟௢௖௔௟ሻ	∶ൌ ;Ԧ௜ݔ

If ݕ ൒ ݂ ቀݔԦ௜
ሺ௚௟௢௕௔௟ሻቁ then ݔԦሺ௚௟௢௕௔௟ሻ 	 ∶ൌ ;Ԧ௜ݔ

End
For each particle do Begin

Ԧ௜ݒ ∶ൌ ߙ ∙ Ԧ௜ݒ ൅ ଵߚ ∙ ቀݔԦ௜
ሺ௟௢௖௔௟ሻെ Ԧ௜ቁݔ ൅ ଶߚ ∙

൫ݔԦሺ௚௟௢௕௔௟ሻ െ ;Ԧ௜൯ݔ
Ԧ௜ݔ ∶ൌ Ԧ௜ݔ ൅ ;Ԧ௜ݒ

End
Until stopping criterion is met;

//particle swarm optimization
//initialize position of each
//particle
//random in search space
//move swarm particles
//pass through all particles
//compute function at position of
//particle

//update local/global memory
//pass through all particles
//again

//update velocity and position of
//each particle

Figure	19	–	Pseudo‐code	for	PSO.	

4.5 Basic	SASS	

In	many	engineering	design	problems,	a	search	based	optimisation	is	used	to	maximise	or	

minimise	the	system's	vectors.	In	most	cases,	important	information	about	the	system,	like	

transfer	functions	or	a	function's	derivatives,	is	not	available	and	the	use	of	different	heuristic	

computational	optimisation	algorithms	such	as	GA	(Matousek	et	al.,	2007;	Nolle	et	al.,	1999),	SA	

(Nolle	et	al.,	2002),	ACO	(Nolle	et	al.,	2008)	becomes	inevitable.	A	problem	of	using	these	

algorithms	in	a	practical	and	engineer‐friendly	manner	is	the	lack	of	standard	methodology	for	

choosing	a	matching	algorithm	for	a	particular	design	problem.	Furthermore,	the	process	of	

choosing,	tuning	and	applying	proper	optimisation	techniques	requires	specialist	knowledge	

and	a	large	number	of	computational	experiments.		These	circumstances	and	their	lack	of	

experience	make	it	difficult	for	engineers	to	involve	acceptable	and	novel	algorithms	in	their	

optimisation	problems.

To	overcome	these	problems,	more	generally	applicable,	efficient,	and	effective	

algorithms,	which	require	less	effort	to	tune	the	control	parameters,	would	be	beneficial.	An	

approach	proposed	by	Nolle	and	Bland	(2012)	is	a	further	development	of	a	hill	climbing	

algorithm	(Hopgood,	2001),	named	self‐adaptive	step	size	search	(SASS).	It	combines	

effectiveness,	wide	range	applicability	and	efficiency	with	a	minimum	number	of	parameters	

Meta‐method	of	robust	design	optimisation	

45	
	

that	need	to	be	tuned.	The	only	parameter	that	can	be	tuned	in	SASS	is	the	number	of	particles.	

This	results	in	an	approach	that	is	easy	to	use	even	for	inexperienced	engineers.	

It	was	recently	shown	by	Nolle	(2004)	that	the	definition	of	the	neighbourhood	and	the	

chosen	step	size	are	important	parameters	for	the	success	and	performance	of	the	algorithm.	It	

was	demonstrated	that	using	a	random	step	size	limited	by	a	maximum	step	size	smax	

outperforms	other	methods	using	a	fixed	step	size.		In	particular,	when	the	search	space	was	too	

large	to	mind	direct	neighbours	of	a	candidate	solution,	the	performance	of	the	optimisation	

declined	and	an	adaptive	step	size	became	inevitable	.	In	SASS,	the	neighbourhood	of	a	particle	

pi	is	defined	by	the	space	between	the	particle	itself	and	a	randomly	chosen	sample	particle si of	

the	population.	Because	the	initial	population	is	distributed	over	the	entire	search	space,	the	

space	between si and pi is	typically	very	large	at	the	beginning	of	the	search	process.	During	the	

search	process,	every	single	particle	is	attracted	to	a	local	optimum	and	the	population	is	

accumulated	around	a	set	of	optima.	For	the	case	that pi and si are	located	in	varying	clusters,	pi	

can	escape	the	local	optimum	to	achieve	higher	fitness.	At	the	end	of	the	search	process,	most	

particles	will	be	in	the	region	of	the	global	optimum	and	the	distance	between pi and si will	be	

much	smaller	than	in	the	initial	population.		The	sequence	of	the	different	steps	is	shown	in	the	

following	pseudo	code	(Figure	20).	

Meta‐method	of	robust	design	optimisation	

46	
	

Procedure selfAdaptiveStepSizeSearch

Begin

initialise population of n particles
While stopping criterion not met
Begin

For every particle p in population
Begin

select random particle s ≠ p
For every component pi in particle p
Begin

smax ← | pi – si |
generate random value r Î [-smax; +smax]
p'i ← pi + r

End
If f(p') better than f(p) then p ← p'i

End
End
Return best result

End

Figure	20	–	Pseudo‐code	for	SASS.

4.6 Comparison	of	BMH/PSO	and	BMH/SASS	

Both,	PSO	and	SASS	were	combined	with	the	meta‐heuristic	presented	in	Section	4.3.	Since	

standard	test	functions,	like	De	Jong’s	functions	or		the	Rosenbrock	function	(Schwefel,	1995),	do	

not	exhibit	the	desired	properties,	the	resulting	hybrids	were	tested	on	an	artificial	test	function	

(Equation	13).		

222222

4

13

4

8

22

7

2

7

25.0

5

5.0

5

2 5.18.12),(






 







 







 







 







 







 



yxyxyx

eeeeeeeyxf 	 (13)

This	multi‐modal	function,	which	is	also	depicted	in	Figure	13,	was	designed	to	contain	a	very	

narrow	global	optimum	and	two	local	ones	that	are	wider.	This	represents	a	typical	engineering	

design	scenario,	where	the	global	optimum	is	not	the	most	favourable	for	designers.	It	was	also	

designed	so	that	it	could	be	visualised	easily.	

	 For	both	algorithms	the	number	of	particles	was	arbitrarily	set	to	50	and	the	number	of	

iterations	was	set	to	1000.	The	sample	size	for	the	meta‐heuristic	was	set	to	5	and	the	safety	

distance	  was	set	to	0.1.	

Before	PSO	could	be	applied,	three	control	parameters,	omega,	c1	and	c1	had	to	be	

selected.	To	avoid	extensive	tuning,	the	constants 1c and 2c were	both	set	to	2,	which	is	a	

Meta‐method	of	robust	design	optimisation	

47	
	

common	value	for	PSO	(Bansal	et	al.,	2011).	The	inertia	weight	 cannot	be	set	to	a	default	

value,	because	its	setting	has	to	be	adjusted	to	the	problem	at	hand.		

To	determine	a	suitable	value	for	the	inertia	weight,	it	was	changed	from	1	to	0.0001.	Each	value	

was	applied	100	times.	Figure	21	shows	the	influence	of	 on	the	average	fitness	and	its	

standard	variations.	

	

Figure	21	–	Influence	of	omega	on	fitness	for	PSO.	

It	can	be	seen	that	for	values	above	0.01	the	standard	variation	increases	and	that	for	values	

above	0.1	the	average	fitness	drops	dramatically.	Therefore,	a	value	of	0.001	was	chosen	for	the	

experiments.	

	 Figure	22	shows	a	plot	of	the	locations	of	the	solutions	for	BMH/PSO	and	PSO.	Each	

algorithm	was	run	100	times.	It	can	be	seen	that	PSO	found	the	global	optimum	at	(5,5)	very	

reliably.	However,	this	is	a	very	narrow	global	optimum,	which	should	be	avoided	for	robust	

 2.5

 3

 3.5

 4

 4.5

 5

 0.0001 0.001 0.01 0.1 1

fit
ne

ss

omega

average
standard deviation

Meta‐method	of	robust	design	optimisation	

48	
	

applications.	BMH/PSO,	on	the	other	hand,		found	the	second	best	optimum	in	most	runs.	This	

second	best	optimum	is	much	wider	and	hence	preferable	to	the	global	optimum.	

	

Figure	22	–Comparison	of	PSO	and	BMH/PSO.	

 0

 5

 10

 15

 20

 0 5 10 15 20

x2

x1

BMH/PSO
PSO

Meta‐method	of	robust	design	optimisation	

49	
	

	

Figure	23	–	Comparison	of	SASS	and	BMH/SASS.	

Figure	23	shows	a	plot	of	the	locations	of	the	solutions	found	by	BMH/SASS	and	SASS.	Here,	too,	

SASS	found	the	global	optimum	at	(5,5)	very	reliably	whilst	BMH/SASS	converged	towards	the	

preferable	optimum	at	(7,7).		

Comparing	BMH/PSO	and	BMH/SASS	it	can	be	said	that	both	hybrids	found	robust	

solutions	in	most	of	the	experiments.	The	area	in	which	the	solutions	are	located	is	slightly	

smaller	for	BMH/SASS.	This	algorithm	also	has	the	advantage	that	no	tuning	is	required	prior	to	

optimisation.	In	conclusion,	it	can	be	said	that	both	hybrids	found	good	robust	solutions	in	most	

cases	and	hence	are	suitable	for	robust	engineering	optimisation	applications.	

4.7 Summary	

This	chapter	described	problems	caused	by	inaccuracies	in	engineering	processes,	i.e.	

manufacturing	processes,	for	real‐world	applications	of	computational	optimisation	techniques.	

The	case	study	presented	in	Chapter	3	was	used	to	demonstrate	this	problem.	Based	on	an	

analysis	of	the	problem,	a	novel	meta‐heuristic	was	proposed,	based	on	Baldwinian	learning,	to	

 0

 5

 10

 15

 20

 0 5 10 15 20

x2

x1

BMH/SASS
SASS

Meta‐method	of	robust	design	optimisation	

50	
	

temporarily	shape	the	fitness	landscapes	so	that	solutions	are	still	fit	for	purpose	even	if	the	

implemented	solution	deviates	slightly	from	the	theoretical	one	due	to	the	nature	of	the	

manufacturing	processes.	The	meta‐heuristic	was	tested	in	combination	with	two	standard	

optimisation	algorithms	on	an	artificial	benchmark.	These	tests	showed	that	the	meta‐heuristic	

is	capable	of	reliably	guiding	direct	search	algorithms	towards	robust	solutions.	This	meta‐

heuristic	is	used	in	the	next	chapter	to	find	robust	solutions	to	the	highly	constrained	

optimisation	problem	of	pressure	vessel	design.	

	

	

Experiments	

51	
	

5 Experiments	

In	this	chapter,	the	new	meta‐heuristic	proposed	in	Chapter	4	was	applied	to	the	pressure	vessel	

design.	The	results	of	the	experiments	are	presented	and	discussed.	

5.1 Experimental	set‐up	

The	meta‐heuristic	presented	in	the	previous	chapter	can	be	combined	with	any	direct	search	

algorithm,	i.e.	any	algorithm	that	uses	an	optimisation	loop	to	adjust	current	solutions	using	the	

fitness	currently	observed	(see	Chapter	1).	For	the	experiments,	self‐adaptive	step	size	search	

(SASS)	(Nolle,	2006;	Nolle	and	Bland,	2012)	was	chosen	because	it	has	only	one	control	

parameter,	which	is	the	number	of	particles.	Hence,	the	experiments	would	not	be	influenced	by	

the	meta‐optimisation	problem	of	tuning	control	parameters,	for	example	genepool	size,	

crossover	probability	etc.	as	in	the	case	of	genetic	algorithms	(Chapter	2.3).	SASS	has	also	

proven	to	be	effective	and	efficient	for	the	pressure	vessel	problem	(Nolle	and	Bland,	2012).	

Figure	24	shows	the	optimisation	loop	for	the	pressure	vessel	problem,	using	SASS	as	a	direct	

search	algorithm.	

	

Experiments	

52	
	

Pressure Vessel

SASS

Meta-heuristic

si

fmean (si)

fn(si+e)

si+e

	

Figure	24	–	Optimisation	loop	for	the	pressure	vessel	experiments.	

For	SASS,	the	same	control	parameters	were	used	as	reported	by	Nolle	and	Bland	(2012)	to	

allow	a	fair	comparison.	Hence,	the	number	of	particles	was	set	to	16	and	the	maximum	number	

of	iterations	was	initially	set	to	25,000.		

Before	carrying	out	the	experiments,	it	was	decided	to	limit	the	number	of	places	after	

the	decimal;	for	the	pressure	vessel	problem,	the	design	parameters	x3	and	x4	are	continuous.	

For	practical	applications,	a	solution	with	a	large	number	of	significant	figures	behind	the	

decimal	point	cannot	be	implemented,	because	of	the	accuracy	of	the	engineering	processes	

involved,	for	example	+/‐	0.0002	inches	for	modern	CNC	machines	(Pullarcot,	2002).	Therefore,	

only	four	places	behind	the	decimal	point	were	used	for	the	experiments.		

The	new	method,	referred	to	as	Baldwinian‐based	meta‐heuristic	(BMH),	has	two	degrees	

of	freedom,	which	are	the	number	of	trials	or	the	sample	size,	and	the	range	of	the	samples	

around	a	solution,	i.e.	perturbation	epsilon.	These	had	to	be	determined	empirically	as	described	

below.	

Experiments	

53	
	

5.2 Determining	the	control	parameters	

In	this	set	of	experiments,	the	influence	of	the	sample	size	and	epsilon	range	on	the	effectiveness	

of	the	BMH,	i.e.	the	average	fitness	achieved,	was	studied.	The	outcome	was	used	to	determine	

the	settings	for	the	actual	optimisation,	which	is	discussed	in	the	next	section.		

The	sample	size	s	is	the	number	of	trials	that	the	BMH	algorithm	carries	out	in	order	to	

estimate	the	average	fitness	of	a	solution.	The	sample	size	was	varied	from	one	to	50	in	steps	of	

10.	This	was	repeated	for	epsilon=0.01%,	0.1%	and	1.0%	of	the	individual	ranges	for	each	

dimension	of	the	search	space.	For	comparison,	a	sample	size	of	one	was	included,	which	is	

equivalent	to	not	using	the	meta‐heuristic,	because	the	first	sample	is	always	the	original	

solution.	Each	experiment	was	repeated	50	times	and	the	average	fitness	and	standard	deviation	

were	calculated.		

Figure	25	shows	the	sample	size	s	versus	the	average	fitness	for	epsilon	=	1.0%	of	the	

search	space	dimension	length.	It	can	be	seen	that	with	a	larger	number	of	samples	the	average	

fitness	values	increase	and	converge	towards	around	6240.	

	

Figure	25	–	Sample	size	versus	fitness	for	epsilon	=	1.0%.	

 6040

 6060

 6080

 6100

 6120

 6140

 6160

 6180

 6200

 6220

 6240

 0 10 20 30 40 50 60

F
itn

es
s

Sample Size s

Epsilon = 1.0%

Experiments	

54	
	

Since	the	optimisation	problem	at	hand	is	a	minimisation	problem,	lower	fitness	values	are	

related	to	better	solutions.	

	In	terms	of	the	standard	deviation	of	the	fitness	(Figure	26)	it	can	be	seen	that	larger	

sample	sizes	result	in	lower	standard	deviations	from	the	mean	values,	apart	from	an	outlier	at	s	

=	40.	Therefore,	larger	sample	sizes	result	in	better	reproducibility	of	results.	The	same	

behaviour	can	be	observed	in	Figure	27	and	Figure	28	for	epsilon	=	0.1%	of	the	search	space	

dimension	length	and	in	Figure	29	and	Figure	30	for	epsilon	=	0.01%	respectively.	For	epsilon	=	

0.1%,	there	is	an	outlier	in	standard	deviation	for	s	=	10.	For	epsilon	=	0.01%,	there	are	outliers	

for	both	the	average	fitness	and	the	standard	deviation	for	s=20.	

	

Figure	26	–	Sample	Size	versus	standard	deviation	of	the	fitness	for	epsilon	=	1.0%.	

Based	on	the	results	from	this	set	of	experiments,	the	sample	size	for	the	pressure	vessel	design	

problem	was	chosen	to	be	10	and	epsilon	was	chosen	to	be	0.01%	of	the	search	space	dimension	

range.	These	parameters	were	used	for	the	optimisation	and	are	described	below.	

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60

S
ta

nd
ar

d
D

ev
ia

tio
n

F
itn

es
s

Sample Size s

Epsilon = 1.0%

Experiments	

55	
	

	

Figure	27	–	Sample	size	versus	fitness	for	epsilon	=	0.1%.	

	

Figure	28	–	Sample	size	versus	standard	deviation	of	fitness	for	epsilon	=	0.1%.	

 6058

 6060

 6062

 6064

 6066

 6068

 6070

 6072

 6074

 6076

 0 10 20 30 40 50 60

F
itn

es
s

Sample Size s

Epsilon = 0.1%

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60

S
ta

nd
ar

d
D

ev
ia

tio
n

F
itn

es
s

Sample Size s

Epsilon = 0.1%

Experiments	

56	
	

	

Figure	29	–	Sample	size	versus	fitness	for	epsilon	=	0.01%.	

	

Figure	30	–	Sample	size	versus	standard	deviation	of	fitness	for	epsilon	=	0.01%.	

 6059

 6060

 6061

 6062

 6063

 6064

 6065

 6066

 6067

 6068

 0 10 20 30 40 50 60

F
itn

es
s

Sample Size s

Epsilon = 0.01%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60

S
ta

nd
ar

d
D

ev
ia

tio
n

F
itn

es
s

Sample Size s

Epsilon = 0.01%

Experiments	

57	
	

It	can	clearly	be	seen	that	the	best	results	were	achieved	using	epsilon	=	0.01%	of	the	search	

space;	for	small	values	of	s,	the	average	fitness	is	almost	as	good	as	the	fitness	achieved	without	

the	meta‐heuristic	(sample	size	=	1).	And	even	for	larger	values,	the	average	fitness	seems	to	

have	converged	against	a	value	of	around	6061.	

5.3 Experimental	Results	

During	the	previous	experiments	the	number	of	iterations	was	kept	at	25,000,	as	reported	by	

Nolle	and	Bland	(2012).	Next,	the	maximum	number	of	iterations	necessary	for	BMH	was	

determined.	For	this,	five	experiments	were	carried	out	with	the	maximum	number	of	iterations	

ranging	from	12,000	to	100,000.	Each	experiment	was	repeated	50	times	and	the	findings	are	

depicted	in	Figure	31.	

	

Figure	31	–	Iterations	versus	average	fitness.	

It	can	be	seen	that	the	average	fitness	achieved	drops	to	approximately	6066	after	around	

50,000	iterations.	Figure	32	shows	a	correlation	diagram	for	the	maximum	number	of	iterations	

versus	the	number	of	iterations	needed	on	average	to	find	the	optimum	solution.	It	can	be	seen	

that	after	around	50,000	iterations	the	algorithm	found	the	best	solution	before	the	maximum	

 6066

 6066.5

 6067

 6067.5

 6068

 6068.5

 6069

 6069.5

 6070

 6070.5

 6071

 6071.5

 0 20000 40000 60000 80000 100000

F
itn

es
s

Iterations

Experiments	

58	
	

number	of	iterations	was	reached,	whereas	below	50,000	iterations	the	algorithm	constantly	

improved	the	solution.	

	

Figure	32	–	Maximum	number	of	iterations	versus	average	iteration	needed.	

Therefore,	the	maximum	number	of	iterations	was	chosen	to	be	75,000	for	the	experiments.	

After	50	runs	of	the	algorithm,	an	average	fitness	of	6065.3908	was	achieved	with	a	standard	

deviation	of	2.5375.	Figure	33	shows	a	conversion	plot	of	a	typical	run.	It	can	be	seen	that	the	

average	fitness	improves	up	to	around	65,000	iterations,	whereas	the	best	fitness	had	already	

been	found	after	approximately	9,000	iterations.	

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

M
ax

im
um

 F
itn

es
s

fo
un

d
on

 A
ve

ra
ge

 a
t

It
er

at
io

n

Maximum Number of Iterations

Experiments	

59	
	

	

Figure	33	–	Conversion	plot	for	a	typical	run	of	BMH.	

In	the	next	section,	the	best	solutions	found	during	the	50	runs	of	the	BMH/SASS	algorithm	are	

compared	with	the	best	solutions	reported	in	the	literature.	

5.4 Comparison	of	results	

In	order	to	evaluate	the	solutions,	a	Monte	Carlo	simulation	(Rubinstein,	1981)	was	developed;	

the	manufacturing	process	was	simulated	by	randomly	changing	the	optimal	solutions	found	by	

different	optimisation	algorithms.	These	algorithms	were:	Particle	Swarm	Optmisation	(PSO)	

(He	and	Prempain,	2004),	Hybrid	Particle	Swarm	Branch‐and‐Bound	(HPB)	(Nema	at	al.,	2008),	

Self‐Adaptive	Stepsize	Search	(SASS)	(Nolle	and	Bland,	2012)	and	the	new	Baldwinian‐based	

meta‐heuristic	on	top	of	SASS	(BMH/SASS).	Apart	from	the	latter	method,	the	best	solutions	

reported	in	the	literature	were	used	and	rounded	to	four	decimal	places.	The	perturbation	

epsilon	was	randomly	chosen	from	the	intervals	presented	in	Table	6,	which	represent	the	

technical	limitations	in	pressure	vessel	manufacturing	(Pullarcot,	2002).	A	uniform	distribution	

of	random	numbers	was	used.	

	

 6000

 6100

 6200

 6300

 6400

 6500

 6600

 6700

 6800

 6900

 7000

 0 10000 20000 30000 40000 50000 60000 70000 80000

F
itn

es
s

Iteration

Average Fitness

Best Fitness

Experiments	

60	
	

Table	6	–	Upper	and	lower	bounds	of	the	perturbation	epsilon.	

	Limits	[inches]	 x1	 x2 x3 x4	

Lower	limit	 ‐0.0118	 ‐0.0118	 ‐0.1969	 ‐0.2756	

Upper	limit	 0.0472	 0.0472	 0.1969	 0.2756	

	

The	quality	criterion	here	was	the	percentage	of	pieces	produced	that	were	rejected,	i.e.	that	

violated	one	or	more	constraints.	The	lower	the	number	of	rejected	goods	the	better	the	

solution.		

The	solutions	produced	by	each	algorithm	were	virtually	implemented	100	times	using	the	

random	perturbation	as	described	above.	Table	7	shows	a	comparison	of	the	results	achieved.	

Table	7	–	Comparison	of	results.	

Limits	[inches]	 PSO	 HPB SASS BMH/SASS

Passed	[%]	 42	 40	 40	 53	

Average	Fitness	 6298.09	 6298.72	 6318.39	 6284.24	

	

5.5 Discussion	

As	can	be	seen	from	Table	7,	out	of	the	100	pieces	virtually	produced,	only	40	passed	the	quality	

check	in	the	case	of	SASS	and	HPB	and	42	in	case	of	PSO.	SASS	was	outperformed	by	both	PSO	

and	HPB,	in	terms	of	pass	rate	and	average	fitness.	However,	when	combined	with	BMH,	the	

number	of	passes	for	SASS	increased	by	30%	and	the	average	fitness	dropped	below	that	of	PSO	

and	HPB.	This	clearly	shows	that	BMH	is	capable	of	improving	the	effectiveness	of	generic	direct	

search	algorithms	for	engineering	applications,	i.e.	for	applications	where	the	actual	realisation	

of	a	solution	differs	slightly	from	the	theoretical	one	because	of	the	accuracy	of	the	

manufacturing	processes	involved	in	producing	the	goods	in	the	physical	world.		

Experiments	

61	
	

	

Figure	34	–	Map	showing	how	the	positions	have	changed	in	relation	to	the	other	

methods.		

Figure	34	shows	the	design	parameters 3x 	and	 4x of	the	solutions	found	by	PSO,	HPB,	SASS	and	

BMH/SASS.	Design	parameters	 1x 	and	 2x are	not	used	since	they	have	the	same	values	in	all	

solutions.	As	can	be	seen,	the	solution	found	by	SASS	at	(42.0352,177.426)	is	located	in	a	

different	region	of	the	design	space,	whereas	the	solutions	found	by	the	other	methods	are	

clustered	in	the	right	bottom	corner.		This	shows	that	the	meta‐heuristic	successfully	guided	

SASS	away	from	the	global	optimum,	which	is	located	too	close	to	the	constraint	area,	towards	a	

more	stable,	i.e.	robust	solution.	

	

	

	

 176

 176.5

 177

 177.5

 178

 42 42.02 42.04 42.06 42.08 42.1 42.12 42.14

x4

x3

BMH/SASS

PSO HPB SASS

Experiments	

62	
	

5.6 Summary	

In	this	chapter,	the	proposed	Baldwinian‐based	meta‐heuristic	(BMH)	was	applied	to	the	

pressure	vessel	design	problem.	The	influence	of	the	perturbation	and	the	number	of	trials	was	

analysed	and,	based	on	the	results,	control	parameters	for	the	novel	method	were	chosen.	BMH	

was	then	combined	with	SASS	and	the	resulting	algorithm	was	employed	to	optimise	the	

pressure	vessel	design.	The	solutions	found	by	BMH/SASS,	as	well	as	the	best	solutions	for	PSO,	

HPB	and	SASS	reported	in	the	literature,	were	virtually	manufactured	using	a	Monte	Carlo	

simulation.	BMH	improved	the	effectiveness	of	SASS	and	hence	demonstrated	its	potential	to	

improve	generic	iterative	optimisation	algorithms	for	engineering	optimisation	applications.	

	

Conclusions	and	future	work	

63	
	

6 Conclusions	and	future	work	

This	chapter	revisits	the	research	question	presented	in	Chapter	1	and	discusses	the	findings	

obtained	by	applying	the	novel	Baldwinian‐based	meta‐heuristic	(Chapter	4)	for	generic	

iterative	optimisation	algorithms	(Chapter	2)	to	one	of	the	engineering	case	studies	from	

Chapter	3.	Following	a	discussion,	it	draws	the	thesis	to	a	close	by	suggesting	future	work	that	

could	be	undertaken	in	this	area.	

6.1 Conclusions	

The	aim	of	this	research	was	to	identify	problems	in	engineering	optimisation	and	then	to	

develop	novel	solutions	to	the	identified	problems.	First,	principles	of	computational	

optimisation	were	studied	and	a	literature	review	was	conducted.	It	emerged	that	the	latest	

research	in	the	area	of	automated	engineering	design	optimisation	tends	to	combine	different	

optimisation	algorithms	to	improve	effectiveness	or	efficiency.	Three	basic	types	of	such	hybrid	

configurations	were	identified:	nested	algorithms,	sequential	algorithms	and	meta‐optimisers.	

Two	problems	were	then	identified	that	inexperienced	practitioners	encounter	when	trying	to	

apply	computational	optimisation	to	real‐world	engineering	problems.	The	first	is	the	problem	

of	parameter	tuning	and	the	second	is	the	problem	of	finding	robust	solutions.	A	well‐known	

engineering	design	problem,	the	pressure	vessel	problem,	was	selected	as	a	case	study	to	

investigate	these	problems	in	an	engineering	context.	The	pressure	vessel	problem	is	used	as	a	

test‐bed	by	researchers	from	the	field	of	computational	optimisation	to	evaluate	new	

optimisation	methods	because	it	is	a	difficult	problem	to	solve	due	to	its	relatively	large	number	

of	constraints.		

The	problem	of	robust	optimisation	has	two	dimensions:	the	first	is	that	for	optimisation	

problems,	the	theoretical	solutions	have	to	be	implemented	in	the	physical	world	using	

manufacturing	processes.	As	with	everything	in	the	physical	world,	these	processes	suffer	from	

noise,	i.e.	inaccuracies	that	disturb	the	theoretical	solutions.	It	is	also	well‐known	that	for	

constrained	problems,	optimal	solutions	usually	exist	on	the	borders	of	the	feasible	solution	

Conclusions	and	future	work	

64	
	

space.	If	the	perturbation	moves	a	solution	around	slightly	it	might	enter	an	area	of	the	solution	

space	that	is	not	allowed	because	one	or	more	constraints	would	be	violated.		

The	second	dimension	is	related	to	the	narrowness	of	global	solutions;	if	a	global	solution	is	

located	on	a	very	narrow	peak	in	the	multi‐dimensional	fitness	landscape,	slight	deviations	from	

that	location	will	result	in	a	dramatic	drop	in	fitness.	In	the	real‐world	this	could	have	

catastrophic	consequences	for	practical	engineering	applications,	such	as	designing	a	bridge.	If	a	

beam	were	designed	so	that	it	had	maximum	strength	and	minimum	weight,	but	could	not	be	

manufactured	with	the	required	accuracy,	then	the	strength	might	drop	below	a	safety	level	and	

hence	the	bridge	could	collapse.	Therefore,	engineers	usually	incorporate	safety	factors	into	

their	designs	(Yao,	1972),	which	means	that	they	move	away	from	optimum	designs.	

Economically,	this	is	not	justifiable	and	it	is	in	contrast	to	the	aims	of	computational	

optimisation.	

To	overcome	the	problems	mentioned	above,	a	Baldwinian‐based	meta‐heuristic	(BMH)	

was	proposed.	As	well	as	using	the	fitness	of	a	solution,	it	also	probes	its	neighbourhood	in	order	

to	estimate	the	goodness	of	the	region	of	the	solution.	This	meta‐heuristic	can	be	combined	with	

any	arbitrary	optimisation	algorithm.	This	was	demonstrated	in	Chapter	5,	where	a	combination	

of	BMH	and	SASS	was	applied	to	the	pressure	vessel	design	problem.	SASS	was	chosen	because	it	

only	has	one	control	parameter	to	tune,	which	makes	it	most	suitable	to	overcome	the	problems	

of	parameter	tuning.	

It	was	shown	that	BMH/SASS	was	able	to	outperform	standard	SASS	as	well	as	Particle	

Swarm	Optimisation	(PSO)	and	Hybrid	Particle	Swarm	Branch‐and‐Bound	(HPB).		

Another	aspect	of	engineering	optimisation	is	the	number	of	decimal	places.	For	

example,	a	theoretical	solution	that	relies	on	a	design	parameter	to	have	eight	figures	behind	the	

decimal	point	when	measured	in	millimetres	cannot	be	manufactured,	even	with	modern	CNC	

equipment.	Therefore,	a	recommendation	here	is	to	use	no	more	than	four	decimal	places.	

Conclusions	and	future	work	

65	
	

In	conclusion,	it	can	be	said	that	the	new	method	proposed	in	this	work	has	the	potential	to	find	

more	robust	solutions	for	engineering	optimisation	applications.	However,	there	are	still	some	

open	questions,	which	will	be	discussed	in	the	next	section.	

6.2 Future	work	

One	open	question	is	the	influence	of	the	random	number	distribution	used	for	epsilon.	Here,	

only	uniformly	distributed	random	numbers	were	used.	However,	this	distribution	might	not	

correctly	reflect	the	distributions	obtained	from	the	manufacturing	processes.	Other	

distributions,	for	example	a	normal	distribution,	could	lead	to	better	results	and	hence	should	be	

investigated.	

Finally,	the	combination	BMH	/SASS	worked	well	for	the	pressure	vessel	design	problem,	

but	other	combinations	should	be	explored	in	order	to	prove	the	claim	that	BMH	can	be	

combined	with	any	arbitrary	direct	search	method.	

	

References	

66	
	

References	

Abido,	M.A.	(2001)	Particle	swarm	optimization	for	multi‐machine	power	system	stabilizer		
		 design,	in	Proceeding	of		Power	and	Energy	Society		Summer	Meeting,	15	Jul‐19	Jul,	
		 Vancouver,	Canada,	pp	1346–1351.		

Arnaud,	R.,	Poirion,	F.	(2014)	Stochastic	annealing	optimization	of	uncertain	aeroelastic	system,	
Aerospace	Science	and	Technology,	Vol.	39,	pp	456‐464.	

Azad,	S.	K.,	Hasancebi,	O.	(2014a)	An	elitist	self‐adaptive	step‐size	search	for	structural	design	
optimization,	Applied	Soft	Computing,	Vol.	19,	pp	226‐235.	

Azad,	S.	K.,	Hasancebi,	O.	(2014b)	Elitist	Self‐Adaptive	Step‐Size	Search	in	Optimum	Sizing	of	
Steel	Structures,	International	Journal	of	Advances	in	Computer	Science	&	Its	Applications,	
Vol.	4,	No.	4,	pp	192‐196.	

Bach,	H.	(1969)	On	the	downhill	method,	Communications	of	the	ACM,	Vol.	12,	Issue	12,	pp	675‐
677.	

Bansal,	J.C.,	Singh,	P.K.,	Saraswat,	M.,	Verma,	A.,	Jadon,	S.S.,	Abraham,	A.	(2011)	Inertia	Weight	
Strategies	in	Particle	Swarm	Optimization,	Third	World	Congress	on	Nature	and	
Biologically	Inspired	Computing,	19‐21	Oct,	Salamanca,	Spain,	pp	633‐640.	

Beyer,	 H.G.,	 Sendhoff,	 B.	 (2007)	 Robust	 optimization	 –	 A	 comprehensive	 survey,	 Computer	
Methods	in	Applied	Mechanics	and	Engineering,		196	(2007)	3190–3218.	

Cao,	 Y.J.	 and	Wu,	Q.H.	 (1999)	A	mixed	variable	 evolutionary	programming	 for	optimization	of	
mechanical	 design,	 Engineering	 Intelligent	 Systems	 for	 Electrical	 Engineering	 and	
Communications,	Vol.	7,	No.	2,	pp	77‐82.	

Chen,	X.,	Li,	Y.	(2007)	A	modified	PSO	structure	resulting	in	high	exploration	ability	with		
		 convergence	guaranteed,	IEEE	Transaction	On	Systems,	Man,	and	cybernetics—part	b:	
		 cybernetics,	Vol.	37,	No.	5,	pp	1271‐1289.	

Christensen,	P.	W.,	Klarbring,	A.	(2008)	An	Introduction	to	Structural	Optimization,	Springer.	

Coello,	C.	A.	C.	(2002)	Theoretical	and	numerical	constraint‐handling	techniques	used	with	
		 evolutionary	algorithms:	a	survey	of	the	state	of	the	art,	Computer	Methods	in	Applied	
		 Mechanics	and	Engineering,	Vol.	191,	Issue	11‐12,	pp1245‐1287.		

Coello,	C.A.C.,	Montes,	E.M.	(2001)	Use	of	dominance‐based	tournament	selection	to	handle	
		 constraints	in	genetic	algorithms,	Proc.	ANNIE,	Vol.11,	pp	177‐182.			

Congedo,	P.M.,		Witteveen,	J.,	Iaccarino,	G.	(2013)	A	simplex‐based	numerical	framework	for	
simple	and	efficient	robust	design	optimization,	Computational	Optimization	and	
Applications,	Vol.	56,	pp	231–251.	

Costanzo,	F.	(2013)	Engineering	Mechanics:	Statics,	2nd	ed.,	McGraw‐Hill	Companies.	

Deb,	K.	(2000)	An	efficient	constraint	handling	method	for	genetic	algorithms,	Computer	
		 Methods	in	Applied	Mechanics	and	Engineering,	Vol.	186,			Issue	2‐4,	pp	311‐338.	

	

References	

67	
	

Dias	Junior,	A.,	da	Silva	Junior,	D.C.	(2013)	Using	guiding	heuristics	to	improve	the	dynamic	
checking	of	temporal	properties	in	data	dominated	high‐level	designs,	Proceedings	of	
2013	IEEE	Computer	Society	Annual	Symposium	on	VLSI,	August	5‐7,	Natal,	Brazil,	pp	20‐
25.	

Dimopoulos,	G.G.	(2007)		Mixed‐variable	engineering	optimization	based	on	evolutionary	
		 and	social	metaphors,	Computer	Methods	in	Applied	Mechanics	and	Engineering,	
		 Vol.	196,	No.	4‐6,	pp	803‐817.	

Dorigo,	M.,	Gambardella,	L.	(1997)	Ant	Colony	System:	A	Cooperative	Learning	Approach		
	to	the	Travelling	Salesman	Problem,	IEEE	Transactions	on	Evolutionary	Computation,	
Vol.	1,		 No.	1,	pp	53‐66.	

Du,	X.,	Wang,	Y.,	Chen,	W.	(2000)	Methods	for	robust	multidisciplinary	design,	Tech.	Rep.	2000‐
1785,	American	Institute	of	Aeronautics	and	Astronautics,	AIAA,	2000.	

El‐Mihoub,	T.	A,	Hopgood,	A.	A.,	Nolle,	L.,	Battersby,	A.	(2006)	Hybrid	Genetic	Algorithms:	A	
Review,	Engineering	Letters,	Vol.	13,	No.	2,	pp	124‐137.	

Golub,	 B.,	 Holmer,	 M,	 McKendall,	 R.,	 Pohlman,	 Zenios,	 S.A.	 (1994)	 Stochastic	 Programming	
Models	for	Money	Management,	European	Journal	of	Operational	Research,	Vol.	85,	Issue	
2,		pp	282–296.	

Guo,	W.A.,	Li,	W.Z.,	Zhang,	Q.,	Wang,	L.,	Wu,	Q.D.,	Ren,	H.L.	(2015)	Biogeography‐based	particle	
swarm	optimization	with	 fuzzy	 elitism	 and	 its	 applications	 to	 constrained	 engineering	
problems,	Engineering	Optimization,	Vol.	46,	No.	11,	pp.	1465–1484.	

He,	 S.;	 Prempain,	 E.,	 Wu,	 Q.H.	 (2004)	 An	 improved	 particle	 swarm	 optimiser	 for	 mechanical	
design	optimization	problems,	Engineering	Optimization,	Vol.	36,	No.	5,	pp	585‐605.	

Holland,	J.H.	(1975)	Adaptation	in	Natural	and	Artificial	Systems,	University	of	Michigan	Press.	

Hopgood,	A.A.	(2001)	Intelligent	Systems	for	Engineers	and	Scientists.	2nd	ed.,	CRC	Press.		

Jamshidi,	R.,	Ghomi,	S.M.T.F.,	Karimi,	B.	(2015)	Flexible	supply	chain	optimization	with	
controllable	lead	time	and	shipping	option,	Applied	Soft	Computing,	Vol.	30,		
pp.	26–35.	

Jayaprakasam,	S.,	Rahim,	S.K.A.,	Leow,	C.Y.	(2015)	PSOGSA‐Explore:	A	new	hybrid	metaheuristic	
approach	forbeampattern	optimization	in	collaborative	beamforming,	Applied	Soft	
Computing,	Vol.	30,	pp.	229‐237.		

Jeet,	V.,	Kutanoglu,	E.	(2007)	Lagrangian	relaxation	guided	problem	space	search	heuristics	for	
geralized	assignment	problems,	European	Journal	of	Operations	Research,	Vol.	182,	No.	3,	
pp.	1039‐1056.	

Jordehi,	A.R.,	Jasni,	J.	(2015)	Particle	swarm	optimisation	for	discrete	optimization	problems:	a	
		 review,	Artificial		Intelligence	Review,	Vol.	43,	Issue	2,	pp	243‐258.	
	
Kanagaraj,	G.,	Ponnambalam,	S.	G.,	Jawahar,	N.,	Nilakantan,	Mukund,	J.	(2015)	An	effective	hybrid	
		 cuckoo	search	and	genetic	algorithm	for	constrained	engineering	design	optimization,	
		 Engineering	Optimization,	Vol.	46,	No.	10,	pp	1331–1351.	

Kennedy,	J.,	Eberhart,	R.	(1995)	Particle	swarm	optimization,	Proceedings	of	the	IEEE		
		 International	Conference	on	Neural	Networks,	Nov.	27‐	Dec.	01,	Perth,	Australia,		
		 pp	1942‐1948.	

References	

68	
	

Kirkpatrick,	S.,	Gelatt,	C.D.,	Vecchi,	M.P.	(1984)	Optimization	by	Simulated	Annealing:	
		 Quantitative	Study,	Journal	of	Statistical	Physics,	Vol.34,	1984,	pp	975‐986.	

Kitayama,	S.,	Arakawa,	M.,	Yamazaki,	K.	(2006)	Penalty	function	approach	for	the	mixed		
	 discrete	nonlinear	problems	by	particle	swarm	optimization,	Structural	and	
		 Multidisciplinary	Optimization,	Vol.	32,	No.	3,	pp	191‐202.	

Liao,	T.,	Socha,	K.,	Montes	de	Oca,	M.	A.,	Stuetzle,	T.,	Dorigo,	M.	(2014)	Ant	Colony	Optimization	
for	Mixed‐Variable	Optimization	Problems,	IEEE	Transactions	on	Evolutionary	
Computation,	Vol.	18,	No.	4,	pp	503‐518.	

Lee,	 K.H.,	 Park,	 G.J.	 (2001)	 Robust	 optimization	 considering	 tolerances	 of	 design	 variables,	
Computers	and	Structures	79	(2001)	77–86	

Li,	F.,	Sun,	G.,	Huang,	X.,	Rong	J.,	Li,	Q.	(2015)	Multiobjective	robust	optimization	for	
crashworthiness	design	of	foam	filled	thin‐walled	structures	with	random	and	interval	
uncertainties,	Engineering	Structures,	Vol.	88,	pp.	111‐124.	

Li,	X.,	Zhang,	G.	(2013)	Minimum	penalty	for	constrained	evolutionary	optimization,	
		 Computational	Optimization	and	Applications,	Vol.	60,	Issue	2,	pp	513‐544.	

Li,	Z.,	Li,	Ze.,	Nguyen,	T.T.,	Chen,	S.	(2015)	Orthogonal	chemical	reaction	optimization	algorithm	
for	global	numerical	optimization	problems,	Expert	Systems	with	Applications,	Vol.	42,	pp.	
3242‐3252.

Liao,	C.J.,	Tseng,	C.T.,	Luarn,	P.	(2007)	A	discrete	version	of	particle	swarm	optimization	for	
		 flowshop	scheduling	problems,	Computers	&	Operations	Research,	Vol.	34,	No.	10,		
		 pp	3099–3111.	

Lopez,	R.	H.,	Ritto,	T.	G.,	Sampaio,	R.,	Souza	de	Cursi,	J.	E.	(2014)	A	new	algorithm	for	the	robust	
optimization	of	rotor‐bearing	systems,	Engineering	Optimization,	Vol.	46,	No.	8,	pp	1123‐
1138.		

Mahia,	M.,	Baykan,	Ö.K.,	Kodaz	H.	(2015)	A	new	hybrid	method	based	on	Particle	Swarm	
Optimization,		Ant	Colony	Optimization	and	3‐Opt	algorithms	for	Traveling	Salesman	
Problem,	Applied	Soft	Computing,	Vol.	30,	pp.	484‐490.	

Martínez‐Soto,	R.,	Castillo,	O.,	Aguilar,	L.T.,	Rodriguez,	A.	(2015)	A	hybrid	optimization	method	
with	PSO	and	GA	to	automatically	design	Type‐1	and	Type‐2	fuzzy	logic	controllers,	
International	Journal	of	Machine	Learning	and	Cybernetics,Vol.	6,	pp	175‐196.	

Murty,	K.	G.	(1983)	Linear	programming,	John	Wiley	&	Sons.	

Nelder,	J.	A.,	Mead,	R.	(1965)	A	Simplex‐Method	for	Function	Minimization,	Computer	Journal,	
Vol.	7,	Issue	4,	pp	308‐313.	

Nema,	S.,	Goulermas,	J.,	Sparrow,	G.,	Cook,	P.	(2008)	A	Hybrid	Particle	Swarm	Branch‐and‐Bound	
(HPB)	Optimizer	for	Mixed	Discrete	Nonlinear	Programming,	IEEE	Transactions	on	
System,	Man	and	Cybernetics	–	Part	A,	Vol.	38,	No.	6,	pp	1411‐1424.	

Nolle,	L.	(2004)	On	the	effect	of	step	with	selection	schemes	on	the	performance	of	stochastic	
		 local	search	strategies,		In:	Horton,	G.	networked	simulations	and	simulated	networks,	SCS,	
		 pp	149‐153.		

References	

69	
	

Nolle,	L.	(2006)	On	a	Hill‐Climbing	Algorithm	with	Adaptive	Step	Size:	Towards	a	Control	
	Parameter‐Less	Black‐box	Optimisation	Algorithm,	Advances	in	Soft	Computing,	Vol.	38,	
pp	587‐595.	

Nolle,	L.	(2007)	SASS	applied	to	optimum	work	roll	profile	selection	in	the	hot	rolling	of	wide	
steel,	Knowledge‐Based	Systems,	Vol.	20,	Issue	2,	pp	203‐208.	

Nolle,	L.	(2008)	On	a	novel	ACO‐estimator	and	its	application	to	the	target	motion	analysis		
		 problem,	Knowledge‐Based	Systems,	Vol.	21,	No.	3,	pp	225–231.	

Nolle,	L.,	Armstrong	A.,	Hopgood,	A.,	Ware,	A.	(1999)	Optimum	work	roll	profile	selection	in	the		
		 hot	rolling	of	wide	steel	strip	using	computational	intelligence,	Lecture	Notes	in	Computer	
		 Science,	Vol.	1625	,		pp	435–452.	

Nolle,	L.,	Goodyear,	A.,	Hopgood,	A.A.,	Picton,	P.D.,	Braithwaite,	S.N.	(2002)	Automated	control	of		
		 an	actively	compensated	Langmuir	probe	system	using	simulated	annealing,	
		 Knowledge‐Based	Systems,	Vol.	15,	Issues	5–6	,	pp	349–354.	

Nolle,	L.,	Bland,	J.A.	(2012)	Self‐adaptive	stepsize	search	for	automatic	optimal	design,	
Knowledge‐Based	Systems,	Vol.	29,	pp.	75–82.	

Matousek,	R.,	Nolle,	L.	(2007)	GAHC:	Improved	GA	with	HC	mutation,	in:	Proceedings	of	World	
		 Congress	on	Engineering	and	Computer	Science	WCECS	2007,	San	Francisco,	USA,		
		 pp.	24–26.	

Metropolis,	N.,	Rosenbluth,	A.,	Rosenbluth,	M.,	Teller,	A.,	Teller,	E.	(1953)	Equation	of	State	
		 Calculations	by	Fast	Computing	Machines,	Journal	of	Chemical	Physics.	Vol.	21,		
		 pp	1087‐1092.	

Mulvey,	 J.,	 Vanderbei,	 R.J.	 (1994)	 Robust	 Optimization	 of	 Large‐Scale	 Systems,	 Operations	
Research,	Vol	43,	No	2,	1995.	

OED	(2015)	Oxford	English	Dictionary,	Oxford	University	Press.	

Pappas,	M.,	Amba‐Rao,	C.	L.	(1971)	A	Direct	Search	Algorithm	for	Automated	Optimum	
	Structural	Design,	The	American	Institute	of	Aeronautics	and	Astronautics	Journal,	Vol.	9,	
No.	3,	pp.	387‐393.	

Phadke,	M.S.	(1989)	Quality	engineering	using	robust	design,	Englewood	Cliffs:	Prentice	Hall;	
1989.	p	97–229.	

Pholdee,	N.,	Park,	W.,	Kim,	D.K.,	Im,	Y.,		Bureerat,	S.,	Kwon,	H.,	Chun,	M.	(2015)	Efficient	hybrid	
evolutionary	algorithm	for	optimization	of	a	strip	coiling	process,	Engineering	
Optimization,	Vol.	47,	Issue	4,	pp.	521‐532.	

Pullarcot,	S.	(2002)	Practical	Guide	to	Pressure	Vessel	Manufacturing,	CRC	Press.	

Rao,	S.	S.	(2009)	Engineering	Optimization,	Theory	and	Practice,	4th	ed.,	Wiley	&	Sons.	

Rechenberg,	I.	(1973)	Evolutionsstrategie	–	Optimierung	technischer	Systeme	nach	Prinzipien	
derbiologischen	Evolution,	Frommann‐Holzboog.	

Rubinstein,	R.	Y.	(1981)	Simulation	and	the	Monte	Carlo	Method,	John	Wiley	&	Sons,	New	York.	

Runarsson,	T.	P.,	Yao,	X.	(2000)	Stochastic	ranking	for	constrained	evolutionary	optimization,	
IEEE	Transactions	on	Evolutionary	Computation,	Vol.	4,			Issue:	3,		pp	284‐294.	

References	

70	
	

Salimi,	H.	(2015)	Stochastic	Fractal	Search:	A	powerful	metaheuristic	algorithm,	Knowledge‐
Based	Systems,	Vol.	75,	pp	1–18.	

Sandgren,	S.	(1990)	Nonlinear	integer	and	discrete	programming	in	mechanical	design	
optimization,	Journal	of	Mechanical	Design,	Vol.	112,	pp	223‐229.	

Sayol,	J.,	Nolle,	L.,	Schaefer,	G.,	Nakashima,	T.	(2008)	Comparison	of	simulated	annealing	and	
SASS	for	parameter	estimation	of	biochemical	networks,	Proceedings	of	IEEE	World	
Congress	on	Computational	Intelligence,	1‐6	June,	Hong	Kong,	China,	pp	3568‐3571.	

Schwefel,	H.‐P.	(1995)	Evolution	and	Optimum	Seeking,	Wiley	&	Sons.	

Shanley,	F.	R.	(1949)	Principles	of	Structural	Design	for	Minimum	Weight,	Journal	of	the	
		 Aeronautical	Sciences,	Vol.	16,	No.	3,	pp.	133‐149.	

Standards	Australia	(1995)	Steel	plates	for	pressure	equipment,	AS	1548:1995.	

Storn,	R.,	Price,	K.	(1997)	Differential	evolution	‐	a	simple	and	efficient	heuristic	for	global	
	optimization	over	continuous	spaces,	Journal	of	Global	Optimization,	Vol.	11,	pp	341–
359.		

Sundaresan,	S.,	Ishii,	K.,	Houser,	D.R.	(1995)	A	robust	optimization	procedure	with	variations	on	
design	variables	and	constraints,	Engineering	Optimization	1995;24(2):101–17	

Suri,	R.,	Otto,	K.	(2001)	Manufacturing	system	robustness	through	integrated	modeling,	
Journal	of	Mechanical	Design	123	(4)	(2001)	630–636.	

Templeman,	A.	B.	(1970)	Structural	design	or	minimum	cost	using	the	method	of	geometric	
		 programming,	ICE	Proceedings,	Vol.	46,	Is.	4,	pages	459	–472.	

Wang,	J.,	Yuan,	W.,	Cheng,	D.	(2015)	Hybrid	genetic–particle	swarm	algorithm:	An	efficient	
method	for	fast	optimization	of	atomic	clusters,	Computational	and	Theoretical	
Chemistry,	Vol.	1059,	pp.	12–17.	

Wu,	W.C.,	Tsai,	M.S.	(2008)	Feeder	reconfiguration	using	binary	coding	particle	swarm	
optimization,	International	Journal	of	Control,	Automation	and	Systems	6(4):488–494	

Xu,	R.,	Venayagamoorthy,	G.K.,	Wunsch,	D.C.	(2007)	Modeling	of	gene	regulatory	networks	with	
hybrid	differential	evolution	and	particle	swarm	optimization,	Neural	Networks,	Vol.	20,	
No.8,	pp.	917‐92.		

Yang,	H.	Z.	,	Zhu,	Y.,	Lu,	Q.	J.,	Zhang,	J.	(2015)	Dynamic	reliability	based	design	optimization	of	the	
tripod	sub‐structure	of	offshore	wind	turbines,	Renewable	Energy,	Vol.	78,	pp	16‐25.	

Yao,	J.	T.	P.	(1972)	Concept	of	Structural	Control,	Journal	of	the	Structural	Division,	Vol.	98,	No.	7,	
July	1972,	pp.	1567‐1574	

Yin,	S.A.,	Lu,	C.N.	(2009)	Distribution	feeder	scheduling	considering	variable	load	profile	and	
		 outage	costs,	IEEE	Transactions	on	Power	Systems	,	Vol.	24,	No.	2,	pp	652–660.	

Yoshida,	H.,	Kawata,	K.,	Fukuyama,	Y.,	Nakanishi,	Y.	(1999)	A	particle		swarm	optimization	for	
		 reactive	power	and	voltage	control	considering	voltage	stability,		in	Proceeding	of	the	
		 	International	Conference	on	Intelligent	Systems	and	Applied	Power	Systems,	Rio	de	
		 Janeiro,	Brazil,	pp.	117–121.	

References	

71	
	

Zhou,	Y.,	Zhou,	G.,	Zhang,	J.	(2015)	A	hybrid	glow	worm	swarm	optimization	algorithm	to	solve	
constrained	multimodal	functions	optimization,	Optimization:	A	Journal	of	Mathematical	
Programming	and	Operations	Research,	Vol.	64,	Issue	4,	pp	1057‐1080.	

Appendix	–	Published	paper	

72	
	

Appendix	–	Published	paper	

Krause,	R.,	Nolle,	L.,	Cant,	R.	J.	(2015)	Self‐adaptive	stepsize	search	applied	to	robust	engineering	
		 design	optimisation,	to	appear	in:	Proceedings	of	the	29th	European	Conference	on		
		 Modelling	and	Simulation,	26th‐29th	May,	Albena,	Bulgaria.	

	

SELF-ADAPTIVE STEPSIZE SEARCH APPLIED TO ROBUST

ENGINEERING DESIGN OPTIMISATION

Ralph Krause Lars Nolle Richard J. Cant

Siemens AG Jade University of Applied Science Nottingham Trent University

Energy Management

EM MS S SO PR

Department of Engineering Science

WE Applied Computer Science

School of Science and

Technology

Mozartstrasse 31c

91052 Erlangen, Germany

Friedrich-Paffrath-Straße 101

26389 Wilhelmshaven, Germany

Clifton Lane

Nottingham, NG11 8NS, UK

Email: ralph.krause@siemens.com Email: lars.nolle@jade-hs.de Email: richard.cant@ntu.ac.uk

KEYWORDS
Robust engineering design optimisation, Pressure vessel

problem, Self-Adaptive Stepsize Search

ABSTRACT

In engineering it is usually necessary to design systems

as cheap as possible whilst ensuring that certain

constraints are satisfied. Computational optimisation

methods can help to find optimal designs. However, it is

demonstrated in this work that an optimal design is

often not robust against variations caused by the

manufacturing process, which would result in

unsatisfactory product quality. In order to avoid this, a

novel meta-method is introduced, which can guide

arbitrary optimisation algorithms towards more robust
solutions. This was demonstrated on a standard

benchmark problem, the pressure vessel design

problem, for which a robust design was found using the

proposed method together with self-adaptive stepsize

search, an optimisation algorithm with only one control

parameter to tune. The drop-out rate of a simulated

manufacturing process was reduced by 30% whilst

maintaining near-minimal production costs,

demonstrating the potential of the proposed method.

INTRODUCTION

In engineering, designing a system that satisfies all the
user requirements, without violating problem specific

constraints, usually requires determining the system’s

design variable values in such a way that the resulting

design is optimal in turns of a cost function. Usually, the

design space is too vast to evaluate every possible

design and hence only a subset of the design space can

be considered. Here, a computer-based approach can be

of great benefit to the engineering design process.

For this, a large number of computational optimisation

algorithms are readily available, for example Genetic

Algorithms (Holland 1975; Goldberg 1989), Simulated
Annealing (Kirkpatrick 1984; Nolle et al 2001), Particle

Swarm Optimisation (Kennedy and Eberhart 1995) or

Self-Adaptive Stepsize Search (Nolle 2006;

Kazemzadeh Azad and Hasanc 2014), to generate

optimal designs automatically (Nolle and Bland 2012).

An interesting standard benchmark problem from the

field of mechanical engineering, which was introduced

by Sandgren (1990), is the pressure vessel problem. It

was used as a standard problem by many researchers.

Although the problem only consists of four design

variables, it is not a trivial one, as it involves the

optimisation of both discrete and continuous design

variables under a relatively large number of constraints.

The problem is used as a case study here and is

therefore explained in more detail in the next section.

Pressure vessel problem

The pressure vessel consists of a simple cylinder (shell)

with each end capped by a hemi-spherical shell (head),

as illustrated in Figure 1. There are four design

variables, which can be chosen by the engineer: the

thickness x1 of the shell, the thickness x2 of the heads,

the inner radius x3 and the length x4 of the shell.

x1x2

x
3

x
4

Shell

Heads

 Figures 1: Pressure Vessel Design Problem

The variables x1 and x2 are both discrete and vary in

multiples of 0.0625 inches (please note: Sandgren used

Imperial units), and variables x3 and x4 are both

continuous (see Table 1).

Table 1: Design parameter types and ranges for the

pressure vessel problem

Design

variable

Definition Variable

Type

Thickness

Increments

x1 Thickness of

cylinder

discrete 0.0625 inch

x2 Thickness of

sphere

discrete 0.0625 inch

x3 Inner radius
of cylinder

continuous N/A

x4 Length of

cylinder

continuous N/A

The design has to satisfy four constraint functions and

an allowed range for each design variable. The design

and constraint functions and the ranges of the design

variables are given in the following equations and

inequalities:

00193.0)(131 ≤−= xxg x

000954.0)(232 ≤−= xxg x

03/4000.296,1)(3

34

2

33 ≤−−= xxxg ππx

0240)(44 ≤−= xg x

1875.60625.0 1 ≤≤ x

1875.60625.0 2 ≤≤ x

20010 3 ≤≤ x

20010 4 ≤≤ x

(1)

The aim is to minimise the total cost of the materials

used and also the production costs, which consist of the

costs of forming and welding the pressure vessel.
Equation (2) provides the fitness function f(x), which

was introduced by Sandgren (1990). It comprises the

four design variables x = (x1 , x2 , x3 , x4) .

3

2

14

2

1

2

32431

84.191661.3

7781.16224.0)(

xxxx

xxxxxf

+

++=x
 (2)

Previous methods used are, amongst many others,

Branch and Bound (BB) (Sandgren, 1990), Evolutionary

Programming (EP) (Cao and Wu, 1999), Genetic

Algorithm (Coello and Montes, 2001), Particle Swarm

Optmisation (PSO) (He and Prempain, 2004), Hybrid

Particle Swarm Branch-and-Bound (HPB) (Nema at al.,

2008) and Self-Adaptive Stepsize Search (SASS) (Nolle

and Bland, 2012). Table 2 shows the best designs, as

found by the three best methods, and the associated

fitness values as reported by Nolle and Bland (2012). As
can be seen, the fitness (costs) could be reduced

dramatically, compared to Sandgren’s original value of

7982.5.

Table 2: Comparison of results

 PSO HPB SASS

Fitness 6,059.7143 6,059.6545 6,059.7143
x1 0.8125 0.8125 0.8125
x2 0.4375 0.4375 0.4375
x3 42.09845 42.09893 42.09845
x4 176.6366 176.6305 176.5366

This example clearly showed that computational
optimisation methods are capable of finding very good

solutions for engineering applications in terms of fitness

function values. However, when implementing optimal

designs physically, engineers are often confronted with

a number of problems, which are outlined below.

Problems with optimal solutions

As can be seen from the example above, computational

optimisation methods are capable of finding very good

solutions for engineering applications in terms of fitness

function values. However, solutions presented in the

literature often use design parameter values that have

many decimal places. This means, in reality, that those

solutions cannot actually be manufactured because of

the tolerances of both the materials involved and the

manufacturing processes.

For the pressure vessel problem, for example, the

solutions presented in the literature show up to five

places after the decimal point. Since the manufacturing

process cannot achieve the required accuracy, the

parameter values are slightly different and hence result
in a different fitness value. For example, using a modern

CNC machine, tolerances of +/- 0.005 mm are common.

Also, controlling the dimensions of the heads is

especially difficult (Pullarcot 200). Other unavoidable

causes of error are the thickness tolerances for plate

rolled on a plate mill (Standards Australia, 1995). Table

3 shows the combined upper and lower tolerances for

the pressure vessel design problem.

Table 3: Upper and lower tolerances for pressure vessel

Tolerance
[inches]

x1

x2 x3 x4

Lower limit -0.0118 -0.0118 -0.1969 -0.2756

Upper limit 0.0472 0.0472 0.1969 0.2756

The upper and lower tolerance values were added to the

design solutions presented in Table 2. Table 4 shows

how the fitness values changed when the upper and

lower tolerances were taken into account.

Table 4: Fitness after applying upper and lower

tolerances to the original design solutions

Method Original

fitness

Fitness for

lower tolerance

values

Fitness

for upper

tolerance

values

PSO 6,059.7143 N/A (g1 and g3
violated)

6579.68

HPB 6,059.6545 N/A (g1 and g3

violated)

6579.60

SASS 6,059.7143 N/A (g1 and g3

violated)

6579.678

As can be seen from Table 4, the fitness decreases

dramatically for all of the designs using the upper

tolerance values, with an error of 8.6%. Even worse,

when using the lower tolerances, all of the designs are

unfeasible because they violate constraints g1 and g3 and

hence would not be fit for purpose!

There are two aspects of robust optimisation. The first is

related to the narrowness of the global optimum for
unconstraint optimisation. Figure 2 shows an example

of a fitness landscape for a one-dimensional

optimisation problem. In the example, there are two

maxima, one at x=5 and the other at x=10. The global

optimum is located at x=5. However, the peak is too

narrow, and slight deviations in implementing the

solution will cause a significant drop of the fitness

value. The local optimum at x=10 does not offer the

same fitness, but slight deviations in x do not cause a

dramatic drop in fitness when implementing the

solution. If the fitness were acceptable, this would be

the preferred solution for an engineering application.

For a practical application, it would be more desirable to

find a robust solution rather than the global optimum.

Figures 2: Example of a fitness landscape for a one-

dimensional optimisation problem

The other problem relates to constraint optimisation.

Here, constraints define areas in the input space which

do not contain feasible solutions. Figure 3 shows an

example of an input space for a two-dimensional
constraint optimisation problem.

x2

x1

Figures 3: Example of an input space for a two-

dimensional constraint optimisation problem

In the example, there are two design variables, x1 and

x2. However, only combinations of x1 and x2 that lie in

the grey area are feasible, i.e. allowed, whereas

combinations that lie in the white areas are not feasible.

The white areas are defined by the constraints. The
more constraints there are, the more complicated the

shape of the allowed area(s) can be and hence the more

difficult the optimisation problem.

It is a well-known fact that optimum solutions are

normally located at the edges of the feasible space; for

example, this forms the basis for the simplex algorithm

for linear programming (Murty, 1983). Figure 4 shows

an example of a fitness landscape for a one-dimensional

constrained optimisation problem.

Figures 4: Example of a fitness landscape for a one-

dimensional constrained optimisation problem

It can be seen that the global optimum is located at
x=15. However, all of the points for values x>15 lie

outside of the area of feasible solutions and hence, due

to penalisation, result in a fitness value of zero. If an

algorithm finds the global optimum correctly, but due to

the engineering related problems mentioned above the

implementation of the solution uses x+ε, all solutions

with a positive ε will cause a constraint violation, i.e.

lead to infeasible solutions.

Clearly, it would be of benefit if an algorithm could find

a solution close to the global optimum but with a safety

distance d > ε. In this case, if the realisation process

causes a deviation up to ε, the resulting solution would
a) still be close to the global optimum, and b) not violate

any constraint.

Both problems mentioned above, i.e. narrow global

optima and constraint optimisation using penalty

functions, are equivalent, and hence it is possible to

address both issues using a single method.

This analysis led to the design of a meta-method, which

can be used in conjunction with any iterative

optimisation algorithm. This method is presented in the

next sections.

META-METHOD FOR ROBUST OPTIMISATION

Typical engineering optimisation problems deal with

high-dimensional and multimodal design spaces. The

goal of engineering design should be to find a good

enough solution that is a) near-optimal in terms of its

fitness criterion, and b) robust enough to maintain that

fitness even if the manufacturing process causes slight

deviations in the actual design parameter values.

Computational optimisation methods have been proven

to find near-optimal solutions in finite time and with a

high degree of repeatability. These methods should be

modified so as to learn from experience, i.e. guided
away from dangerous areas during the search. However,

none of the common standard computational

optimisation algorithms has a facility to learn during a

single iteration. The closest facility would be local

search, a technique often used to improve the current

solution by searching the neighbourhood of the current

solution. If a better solution is found, the solution itself

is changed (Lamarckian learning). Alternatively, for

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

F
it
n
e
s
s

Design variable x

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

F
it
n
e
s
s

Design variable x

genetic algorithms, the fitness value of the original

current solution can be improved, which increases the

individual’s chance of being selected to generate

offspring for the next generation (Baldwin learning)

(El-Mihoub et al 2006).

Figure 5 shows as an example a contour plot of a fitness

landscape for a two-dimensional unconstrained

optimisation problem.

Figures 5: Contour plot of a multimodal fitness

landscape

As can be seen, most deviations from s1 will cause the

solution to drop dramatically in fitness whereas solution

s2 is more robust in that respect. A local search here

would not be of any help since the global optimum (s1)

has already been found. However, if, through local

probing, a measure of the deviation in fitness for the

region around s1 could be established, it could be used

to adjust the fitness accordingly. This would be similar

to the Baldwin approach for genetic algorithms but
could be used with any arbitrary optimisation algorithm.

Similarly, for constraint optimisation using penalty

functions, this measure could be used to penalise

solutions that are too close to the border with the

forbidden areas. Figure 6 shows two solutions s1 and s2

for a two-dimensional constrained optimisation

problem. The grey area contains all feasible solutions;

white areas are forbidden.

x
2

x
1

x

x

s
1

s
2

Figures 6: Two different solutions in a constrained

search space

It can be seen that probing the areas with the radius ε

around the solutions would lead to a penalisation for s2,

because a section of the circle is in the forbidden zone.

On the other hand, s1 would not be subject to such a

penalty, because none of the points within the

neighbourhood <=ε would cause a violation of a

constraint.

As can be seen above, both problems can be solved by

using a measure of the quality of the solutions contained

in the neighbourhood of a solution. For unconstrained

optimisation, this penalty would change the shape of the

effective fitness landscape so that narrow peaks are

penalised. For constrained optimisation, it would change

the shape of the fitness landscape so that points near to

or on the border of a forbidden region would be lowered

in fitness or, in other words, the edges would be
‘rounded off’ (see Figure 4) and produce a fitness

barrier to protect the solutions from leaving the feasible

space when realised through an engineering process

(Figure 7).

Figures 7: Fitness barrier to protect solutions from

dropping into the forbidden area

This led to the development of the following meta-

heuristic for engineering applications (Figure 9). The

search begins with an initial solution, respectively with

an initial population of solutions. Each time a solution is

due to be evaluated by the optimisation algorithm used,
its fitness is evaluated first and then the neighbourhood

with the radius ε is sampled with random trials. The

average fitness of all of the trials is calculated and used

by the host optimisation algorithm instead of the fitness

for the original solution. Figure 8 shows the

optimisation loop for the Baldwinean-based meta-

heuristic.

Engineering
Problem

Optimisaton
Algorithm

Meta-heuristic

s
i

f
mean

(s
i
)

fn(si+e)

s
i
+e

Figures 8: Optimisation loop for meta-heuristic

It can be seen that the optimisation algorithm, which

could be of any type, does not receive a quality measure

directly from the engineering problem. Instead, it sends

its solution to the meta-heuristic, which in turn presents

n slightly different versions of the solution to the

problem and calculates the average fitness, including

any penalties if applicable. This average fitness is then

used by the optimisation algorithm for decision making.

Start

start with initial
solution s

n:=1
fmean:=0

n<max
?

measure fitness f
for s+random

number
fmean:=fmean+f

n:=n+1

no

yes

fmean:=fmean/
max

i<i_max
?

i:=i+1

no
yes

Stop

fmean:= fitness of
initial solution

use fmean
for

optimisation

i:=0

Figures 9: Meta-heuristic for robust engineering

EXPERIMENTS

The meta-heuristic described above can be combined

with any direct search algorithm, i.e. any algorithm, that

uses an optimisation loop to adjust current solutions

using the fitness currently observed.

For the experiments, self-adaptive stepsize search

(SASS) (Nolle 2006) was used as the optimisation

algorithm.

SASS is a population-based adaptation scheme for hill

climbing with a self-adaptive step size, where the

temporary neighbourhood of a particle pi is determined
by the distance between itself and a randomly selected

sample particle si of the population in each iteration.

When the search is progressing, each particle is

attracted by a local optimum and hence the population is

clustered around a number of optima. If both, pi and si

are located in different clusters, pi has the chance to

escape its local optimum if it samples from a region

with a higher fitness, i.e. lower costs. Towards the end

of the search, most particles have reached the region of

the global optimum and hence their mean distance is

much smaller than in the initial population. As a result,
the maximum step size smax is sufficiently small to yield

the global optimum.

SASS was chosen because it has only one control

parameter, which is the number of particles. This

eliminates the need for fine-tuning control parameters

before the algorithm can successfully applied to

industrial problems (Nolle 2007; Dias Junior and da

Silva Junior, 2013). Hence, the experiments would not

be influenced by the meta-optimisation problem of

tuning control parameters.

SASS was also proven to be effective and efficient for

the pressure vessel problem (Nolle and Bland, 2012).
Figure 10 shows the optimisation loop for the pressure

vessel problem, using SASS as a direct search

algorithm.

Pressure Vessel

SASS

Meta-heuristic

si

f
mean

(s
i
)

f
n
(s

i
+e)

s
i
+e

Figures 10: Optimisation loop for Baldwinean-based

meta-heuristic

For SASS, the same control parameters were used as

reported by Nolle and Bland (2012) to allow a fair

comparison. The number of particles was hence set to

16.

Before carrying out the experiments, it was decided to

limit the number of places after the decimal; for the

pressure vessel problem, the design parameters x3 and

x4 are continuous. For practical applications, a solution

with a large number of decimal places behind the

decimal point cannot be implemented, because of the

accuracy of the engineering processes involved, for

example +/- 0.0002 inches for modern CNC machines

(Pullarcot, 200). Therefore, only four places behind the

decimal point were used for the experiements.

The new method, refered to as Baldwinian-based Meta-
Heuristic (BMH) has two degrees of freedom, which are

the number of trials, or sample size, and the range of the

samples around a solution, i.e. epsilon. These had to be

determined empirically. Based on the results obtained

from extensive experiments, the sample size was

chosen to be 10 and epsilon was chosen to be 0.01% of

the search space dimension range.

The maximum number of iterations was chosen to be

75,000 for the experiments. After 50 runs of the

algorithm, an average fitness of 6065.3908 was

achieved with a standard deviation of 2.5375. Figure 11
shows a conversion plot of a typical run. It can be seen

that the average fitness improves up to around 65,000

iterations whereas the best fitness was already found

after approximately 9,000 iterations.

Figures 11: Conversion Plot for a typical Run of BMH.

The solid line depicts the average fitness and the dashed

line represents the best fitness in the population.

The best solutions found during the 50 runs of the

BMH/SASS algorithm are compared with the best

solutions reported in the literature in the next section.

EVALUATION

In order to evaluate the solutions obtained, a Monte

Carlo simulation (Rubinstein, 1981) was developed; the

manufacturing process was simulated by randomly

changing the optimal solutions found by different

optimisation algorithms. These algorithms were:

Particle Swarm Optmisation (PSO) (He and Prempain,

2004), Hybrid Particle Swarm Branch-and-Bound

(HPB) (Nema at al., 2008), Self-Adaptive Stepsize

Search (SASS) (Nolle and Bland, 2012) and the new

Baldwinian-based meta-heuristic on top of SASS

(BMH/SASS). Apart from the latter method, best

solutions reported in the literature were used and

rounded to four decimal places behind the decimal

point. The perturbation was randomly chosen from the

intervals presented in Table 3, which represent the

technical limitations for pressure vessel manufacturing

(Pullarcot, 2002). A uniform distribution or random

numbers was used.

Table 5: Comparison of results

 PSO HPB SASS BMH/SASS

Passed

[%]

42 40 40 53

Average

Fitness

6298.09 6298.72 6318.39 6284.24

As it can be seen from Table 5, out of the 100 pieces

virtually produced, only 40 passed the quality check in

the case of SASS and HPB and 42 in case of PSO.

SASS was outperformed by both, PSO and HPB, in

terms of pass rate and average fitness. However, when

combined with BMH, the number of passes for SASS

increased by 30% and the average fitness dropped

below that of PSO and HPB. This clearly shows that
BMH is capable of improving the effectiveness of

generic direct search algorithms for engineering

applications, i.e. for applications were the actual

realisation of a solution differs slightly from the

theoretical one because of the accuracy of the

manufacturing processes involved in producing the

goods in the physical world.

CONCLUSIONS

The aim of this research was to increase the robustness

of engineering design solutions. Two major problems

were identified; the first one is the problem of over-
specifying solutions. This means, that for engineering

optimisation problems, the theoretical solutions have to

be implemented in the physical world using

manufacturing processes. As everything in the physical

world, these processes suffer from noise, i.e.

inaccuracies that disturb the theoretical solutions. It is

also well-known that for constrained problems, optimal

solutions usually exist on the borders to the feasible

solution space. If the perturbation moves a solution

slightly around it might enter an area of the solution

space that is not allowed because one or more constrains
would be violated.

The second problem is related to the narrowness of

global solutions; if a global solution is located on a very

narrow peak in the multi-dimensional fitness landscape,

slight deviations from that location will result in a

dramatic drop of fitness. In the real-world this could

have catastrophic consequences for practical

engineering applications. For example, if a bridge has to

be build using a beam that was designed so that it has

maximum strength and minimum weight, but could not

be manufactured with the required accuracy, then the

 6000

 6100

 6200

 6300

 6400

 6500

 6600

 6700

 6800

 6900

 7000

 0 10000 20000 30000 40000 50000 60000 70000 80000

F
it
n
e
s
s

Iteration

Average Fitness

Best Fitness

strength might drop below a safety level and hence the

bridge could collapse. Therefore, engineers usually

incorporate safety factors into their designs, which

means that they move away from optimum designs.

This is economically not justifiable and is in contrast to

the aims of computational optimisation.

To overcome these problems, a Baldwinian-based meta-

heuristic (BMH) was proposed. It uses not only the

fitness of a solution alone, it also probes its

neighbourhood in order to estimate the goodness of the

region of the solution. This meta-heuristic can be
combined with any arbitrary optimisation algorithm,

which was demonstrated on the pressure vessel

problem, where a combination of BMH and SASS was

used. It was shown that BMH/SASS was able to

outperform standard SASS as well as Particle Swarm

Optimisation (PSO) and Hybrid Particle Swarm Branch-

and-Bound (HPB).

Another aspect of engineering optimisation is the

number of decimal places behind the decimal point. For

example, a theoretical solution that relies on a design

parameter to have eight decimal places behind the
decimal point when measure in millimetres cannot be

manufacture, even with modern CNC equipment.

Therefore, a recommendation here is to use not more

than four decimal places.

In conclusion, it can be said that the new method

proposed in this work has the potential to find more

robust solutions for engineering optimisation

applications.

REFERENCES

Cao, Y.J. and Wu, Q.H. 1999 “A mixed variable evolutionary
programming for optimization of mechanical design”,
Engineering Intelligent Systems for Electrical Engineering

and Communications, Vol.7, No. 2, pp 77-82.
Coello, C.A.C. and Montes, E.M. 2001 “Use of dominance-

based tournament selection to handle constraints in genetic
algorithms”, Proc. ANNIE, Vol.11, pp 177-182.

Dias Junior, A. and da Silva Junior, D.C. 2013. “Using

Guiding Heuristics to Improve the Dynamic Checking of
Temporal Properties in Data Dominated High-Level
Designs”. Proceedings of IEEE Computer Society Annual
Symposium on VLSI, pp 20-25.

El-Mihoub, T.; Hopgood, A.A.; Nolle, L.; Battersby, A. 2006.
“Hybrid Genetic Algorithms – a Review”, Engineering

Letters, Vol. 13, No. 2, pp 124-137.
Goldberg, D. E. 1989. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesley.
Holland, J.H. 1975. Adaptation in Natural and Artificial

Systems, University of Michigan Press.
He, S.; Prempain, E. and Wu, Q.H. 2004. “An improved

particle swarm optimiser for mechanical design
optimization problems”, Engineering Optimization, Vol.
36, No. 5, pp 585-605.

Kazemzadeh Azad, S. and O. Hasanc ̧O. 2014. An elitist self-

adaptive step-size search for structural design
optimization. Applied Soft Computing, Vol. 19, pp 226-

235.
Kennedy, J. and Eberhart, R. 1995. “Particle swarm

optimization”. Proceedings of IEEE International
Conference on Neural Networks, Vol.4, pp 1942-1948.

Kirkpatrick, S.; Gelatt, C. D. and Vecchi M. P. 1984.

“Optimization by Simulated Annealing: Quantitative
Study”, Journal of Statistical Physics, Vol.34, 1984, pp
975-986.

Murty, K. G. 1983. Linear programming, John Wiley & Sons.
Nema, S.; Goulermas, J.; Sparrow, G. and Cook, P. 2008. “A

Hybrid Particle Swarm Branch-and-Bound (HPB)
Optimizer for Mixed Discrete Nonlinear Programming”.
IEEE Transactions on System, Man, And Cybernetics,

Part A, Vol. 38, No. 6, pp 1411-1424.
Nolle, L.; Goodyear, A.; Hopgood, A.A.; Picton, P.D. and

Braithwaite, N.St.J. 2001. “Automated Control of an
Actively Compensated Langmuir Probe System Using
Simulated Annealing”, in: Macintosh, A.; Moulton, M.;
Preece, A. (Ed) Applications and Innovations in Intelligent

Systems, Vol. IX, Springer, pp 115-128.
Nolle, L. 2006. “On a Hill-Climbing Algorithm with Adaptive

Step Size: Towards a Control Parameter-Less Black-box

Optimisation Algorithm”. in: Reusch, B. (Ed)
Computational Intelligence, Theory and Applications,
Advances in Soft Computing, Vol. 38, Springer, 2006, pp
587-595.

Nolle, L. 2007. “SASS Applied to Optimum Work Roll
Profile Selection in the Hot Rolling of Wide Steel”.
Knowledge-Based Systems, Vol. 20, Issue 2, pp 203-208.

Nolle, L. and Bland, J.A. 2012. “Self-adaptive stepsize search

for automatic optimal design”, Knowledge-Based Systems,
Vol. 29, pp. 75-82.

Pullarcot, S. 2002 Practical Guide to Pressure Vessel

Manufacturing, CRC Press.
Rubinstein, R. Y. 1981. Simulation and the Monte Carlo

Method. John Wiley & Sons, New York.
Sandgren, S. 1990. “Nonlinear integer and discrete

programming in mechanical design optimization”. Journal

of Mechanical Design, Vol. 112, pp 223-229.
Standards Australia 1995. Steel plates for pressure equipment,

AS 1548:1995.

AUTHOR BIOGRAPHIES

RALPH KRAUSE was born in Weimar,

Germany, and studied power engineering

at the University of Applied Sciences in
Magdeburg. He has been working with

Siemens since 1998, where he held

different positions in commissioning, project

management, quality management, business

development and is now head of department for process,

tools and training governance in medium voltage and

systems.

LARS NOLLE graduated from the

University of Applied Science and Arts in

Hanover, Germany, with a degree in

Computer Science and Electronics. He
obtained a PgD in Software and Systems

Security and an MSc in Software Engineering from the

University of Oxford as well as an MSc in Computing

and a PhD in Applied Computational Intelligence from

The Open University. He worked in the software

industry before joining The Open University as a

Research Fellow. He later became a Senior Lecturer in

Computing at Nottingham Trent University and is now a

Professor of Applied Computer Science at Jade

University of Applied Sciences. His main research

interests are computational optimisation methods for

real-world scientific and engineering applications.

RICHARD CANT started life as a

theoretical physicist, then moved into

industry, where he spent nine years as a

system designer working on computer

generated imaging for military training

systems. Dr Cant is a Senior Lecturer in Computing

with the Nottingham Trent University. His areas of
research interest include: Intelligent simulation and

modelling, Computer graphics, Artificial intelligence,

Software engineering, Integrated hardware/software

design and Physical simulation.

