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Crack patterns in laboratory experiments on thick samples of dry-
ing cornstarch are geometrically similar to columnar joints in cool-
ing lava found at geological sites such as the Giant’s Causeway. We
present measurements of the crack spacing from both laboratory
and geological investigations of columnar jointing, and show how
these data can be collapsed onto a single master scaling curve. This
is due to the underlying mathematical similarity between theories
for the cracking of solids induced by differential drying or by cool-
ing. We use this theory to give a simple quantitative explanation of
how these geometrically similar crack patterns arise from a single
dynamical law rooted in the nonequilibrium nature of the phe-
nomena. We also give scaling relations for the characteristic crack
spacing in other limits consistent with our experiments and obser-
vations, and discuss the implications of our results for the control
of crack patterns in thin and thick solid films.
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D rying solids lose moisture from their exposed surfaces and
shrink as a consequence. Similarly, cooling solids lose heat

from their exposed surfaces and shrink as a consequence. In either
case, this differential shrinkage of one part of the solid relative to
another leads to stresses that can eventually lead to cracking (1–3).
Although much is known about the nucleation, growth, dynamics,
and stability of a single crack in an elastic solid, most questions
associated with the patterns of multiple cracks due to stresses
that arise from nonequilibrium processes such as drying and cool-
ing (4–7) remain wide open. The resulting polygonal planform
patterns can arise in a variety of situations, from the mundane
cracks in drying mud, to the deliberately artistic cracks in ceram-
ics and pottery, to the spectacular columnar joint formations of the
Giant’s Causeway in Northern Ireland, Fingal’s Cave on Staffa, in
Scotland, and the Devil’s Postpile in California. The latter forma-
tions have fascinated casual observers, artists, and scientists for
centuries (8–10), but no comprehensive physical theory for their
form or scale exists. Indeed, it is only in the past decade or so
that careful laboratory experiments have started to address the
dependence of any of these crack patterns on such quantities as
the rate of drying or cooling, the thickness of the layers, and their
mechanical properties (4–7, 11–13). For example, recent experi-
ments show that crack formation and propagation in drying thin
films leads to length scales and patterns that can be strongly time-
dependent; cracks in directionally drying films grow diffusively
at short times, and can advance intermittently via stick-slip-like
motion over longer times (11, 12). The patterns formed by these
cracks depend in detail on the spatiotemporal dynamics of drying,
substrate adhesion, and thickness variations (4, 6, 13, 14). This
immediately suggests a nonequilibrium origin to these crack pat-
terns, one that couples the heterogeneous elastic stresses in the
cracking solid to the dynamics of drying or cooling, that might be
contrasted with the equilibrium crack patterns that are seen and
studied in a variety of engineering applications (15).

For columnar joints like those shown in Fig. 1, which only occur
in relatively thick layers, the similarity between crack patterns
induced by drying (16–21) and cooling (16, 22–25) can be traced
to the fact that the transport of water in a drying slurry and the

extraction of heat from a hot solid are mathematically analogous
(1–3). In a poroelastic medium, fluid flow is coupled to the elastic
deformation of a porous solid, whereas in a thermoelastic medium,
heat conduction is coupled to elastic deformation of a conducting
solid; pressure in one case is analogous to temperature in the other.
In each case, a shrinkage front propagates through the medium
leading to the penetration of a crack front that follows slightly
behind. Ordering of the crack network at this front carves out
the regular columns. In this article, we will show how the scale of
this shrinkage front sets the average size of the resulting colum-
nar joints. To understand this quantitatively, we present observa-
tions on both laboratory and geological columnar joints, and then
deduce the appropriate scaling behavior from general theoretical
considerations. The resulting scaling law is also applicable to a
wide class of fracture problems where the elastic screening length
of the crack pattern is smaller than the sample thickness.

Experimental Observations on Starch
We studied laboratory examples of columnar jointing made by
drying slurries of corn starch (see Fig. 1 A and D), that have been
known since at least Victorian times (9), although they have only
recently been investigated quantitatively (17–21).

Slurries of corn starch were prepared by mixing equal weights of
dry (Canada brand) corn starch and water. Traces of bleach were
added to sterilize the experiments, and samples were dried in glass
dishes under a pair of 250 W heat lamps. The sample mass was
automatically recorded every minute, and these data were used in
a feedback loop to control the evaporation rate. If the observed
evaporation rate was lower than desired, the duty cycle of the
heat lamps was proportionally increased, to deliver more heat to
the starch-cake, and vice versa. Using these methods, which are
described in more detail in ref. 21, we could fix the evaporation
rate to within 10% of a desired value throughout the experiment.
As discussed below, the evaporation rate controls the rate of frac-
ture advance and the scale of the columns that are formed. In
runs with feedback control, the evaporation rate was held con-
stant, and a stable average column size was reached within 1 cm
of the drying surface, and maintained to the base of the starch-
cake (21). In runs without feedback control, the evaporation rate
decreases decreased with time, the fracture front slowed, and the
columns became larger with depth (19, 21, 25). We measured col-
umn scales in both controlled and uncontrolled runs and were thus
able to study the column scale over over a wide range of fracture
advance rates.
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Fig. 1. There is a strong regularity in the pattern of columnar jointing in desiccated corn starch (A) and cooled lava (B), when observed in cross-section. This
roughly hexagonal pattern is caused by a network of shrinkage cracks that organize themselves into an array of almost regular prismatic columns [basalt near
Fingals Cave (C) and corn starch (D), with a millimeter scale]. (E) The best preserved columnar joints in lava often display striae, chisel-like marks that can be
used to infer details of joint formation.

The fracture position as a function of time can be deduced
from the sample mass as a function of time by using a data
inversion technique that integrates the water concentration data,
presented in Fig. 2 A and B, to construct a lookup table for the
fracture position as a function of sample mass. Although the exact
shape of the water concentration front depends on the evapora-
tion rate (both current and past), these details do not substan-
tially alter the relationship of the total sample mass to fracture
position, which reflects the almost step-like jump in water con-
centration at the drying front, evident in Fig. 2 A and B. To
test this technique, we dried a series of 17 samples under heat
lamps, using identical drying conditions for each sample. These
were broken open after different drying periods had elapsed,
and the fracture position was measured directly in each starch-
cake. The sample mass, which had been measured every minute,
was then converted into an estimated fracture position by using
the inversion algorithm. As shown in Fig. 3A, there is excellent
agreement between direct observations of the fracture front posi-
tion, and the position inferred from continuously weighing the
starch-cake.

The fracture front velocity v is taken to be the numerical deriv-
ative of the fracture position with respect to time. As shown in
Fig. 3B, we can use this technique to measure the velocity of the

fracture front as it passed through the sample, after drying is com-
plete. Typically, in our controlled experiments, a desired average
fracture velocity was well achieved in the middle 60-75% of the
sample. The velocity v is simply related to the volumetric flux
of evaporated water per unit area J0 and the sample porosity φ
by v = J0/φ. All experiments were consistent with a porosity of
φ = 26 ± 1%.

Feedback control produced very regular starch joints within
a certain narrow size range, by using drying fronts that moved
through the sample at fixed v. An example is shown in Fig. 1D.
To probe a larger range of v, we let thick starch-cakes direc-
tionally dry without feedback control, resulting in columns that
slowly increase in scale. In both cases, we measured how the
fracture spacing, defined as the square root of the average col-
umn cross-sectional area, depends on v. Fig. 4A shows that the
fracture spacing is inversely proportional to the instantaneous
fracture front velocity v, so that faster drying leads to smaller
columns.

Field Observations on Lava
It is not possible to make direct, dynamical observations on colum-
nar joints as they slowly form in cooling lava flows, although some
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Fig. 2. Drying in starch sets up a traveling desiccation front. (A) Water
concentration was measured by weighing small samples taken at various
depths from partially dried starch-cakes before and after baking the samples
dry. In all cases J0 = 0.047 μm/s. Black dots indicate data-sampling points
and white circles show the position of the fracture front. Background color
shows a linear interpolation of the water concentration field between data.
(B) Water concentration distributions 30 h (red), 40 h (orange), 50 h (yellow),
60 h (green), and 70 h (blue) after desiccation is started show that a sharp
water concentration front advances through the sample during drying. The
drying front is accompanied by a well-defined fracture front propagating at
v = 0.18 μm/s. (C) The diffusivity of water in a starch-cake is highly nonlinear.
The data show the measured diffusivity, obtained by applying Eq. 7 to the
results shown in A, averaged over 0.01 g/cm3 bins, as a function of water
concentration.

important insights can be had from borehole temperature mea-
surements that have been made over the decades following the
formation of the Kilauea Iki lava lake (26). It is, however, possible
to deduce the cooling rate, fracture advance velocity, and column
scale from purely geometric characteristics of joints in ancient,
exposed flows (25).

Fig. 3. Inferring fracture position from sample mass measurements in drying
starch. (A) Direct measurements (open circles) of the fracture front position,
obtained by destructively sampling a series of identical, uncontrolled exper-
iments. These agree very well with the fracture position (red), calculated by
inverting records of total sample mass during drying. (B) The derivative of
the calculated fracture position can be used to find the average fracture
front velocity throughout the starch-cake. In this controlled run, where an
evaporation rate of 4.7 μg.cm−2.s−1 was desired, the average velocity of 0.18
μm/s is nearly constant throughout the sample.

We measured columnar joints at field sites across the Columbia
Plateau in Washington State, in southwestern British Columbia,
and on the island of Staffa. The Columbia River Basalt Group cov-
ers central Washington state with up to a kilometer of columnar
basalt, and extends into Oregon and Idaho (27). This Miocene
flood basalt plateau contains several hundred extensive, chemi-
cally homogeneous flows (27, 28). We used this terrain as a natural
laboratory with repeatable lava properties and deposition histo-
ries. Nearby, the volcanism of British Columbia allows, in contrast,
data to be gathered from highly varied eruption and lava types.
Sites in the Garibaldi volcanic belt and the Intermontane belt
allowed us to study jointing in this more heterogeneous environ-
ment, including the diverse small recent flows of columnar dacite,
trachydacite, and alkali basalt in the Vancouver–Whistler corridor
(29–31). Finally, the lava on the island of Staffa in Scotland is part
of the North Atlantic Tertiary Igneous Province, and is composi-
tionally similar to that of the Columbia Plateau, but slightly more
basic (32). We studied the Fingals cave lava unit at several places
along the southern coast of Staffa.

At each field site, the average column face width and stria height
were measured. Striae are chisel-like marks (see Fig. 1E), which
are left by the individual, sequential fracture advances of a growing
crack as it intrudes into the slowly cooling lava (23, 24, 33). These
features, which are also called joint increments (23), are related to
the commonly seen striations characteristic of metal fatigue (33),
and always form perpendicular to the direction of crack motion
(33). More than a few meters away from any cooling surface, the
reflux of water within cracks is the dominant cooling mechanism
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Fig. 4. The average fracture advance speed, v, and the fracture spacing of columnar joints, Lc , are inversely related. This relationship is described by a Péclet
number, Pe, the product of v and Lc , normalized by the diffusivity of moisture or temperature in the system. (A) Fracture spacing from desiccated starch
experiments. Closed circles show the fracture spacing in 2 deep samples as it coarsens in response to a gradually slowing drying front. Open circles show the
final fracture spacing that was selected in individual experiments in which the evaporation rate was kept constant throughout drying. Solid lines indicate
curves of constant Pe = 0.1, 0.15, and 0.2. (B) Fracture spacing from field observations in the tholeiitic basalt of the Columbia River Basalt Group (black circles),
and the Island of Staffa (gray circles), and from a range of columnar lavas types found in southwestern British Columbia (open circles). Solid lines indicate an
inverse dependence of fracture spacing on fracture velocity, showing the curves Pe = 0.15, 0.3, and 0.5.

of lava (26), and establishes a self-sustaining cooling front moving
at a constant speed, v.

The temperature gradients near the moving cooling front arise
from a competition between the diffusion of heat and the advance
of the front at speed v, and it can be shown that they scale
inversely with v (25). The striae leave a permanent record of the
temperature field. As each stria forms, the crack tip advances, on
average, over a drop in thermal stress given by the tensile strength
of the host rock (25, 33). This implies, in turn, that v and the
average stria height are inversely proportional to each other. The
coefficient of proportionality linking these terms can be calcu-
lated theoretically by using the more detailed methods presented
in ref. 25. Here, we directly apply this theory, assuming that the
physical properties of lavas in all locations were the same as those
of the tholeiitic basalts of the Columbia Plateau. Although this
is a valid assumption for the Staffa lava, which is composition-
ally similar to those of the Columbia Plateau, it may contribute to
systematic uncertainties in the results from British Columbia.

In general, we found that large columns are due to slower
cooling than small columns, consistent with qualitative inferences
made previously by using crystal texture analysis (22). Fig. 4B
shows that the fracture spacing of columnar joints in lava is
inversely proportional to the speed of the cooling front over a
wide range of speeds, and is consistent with the linear relation-
ship between stria height and column face width (23, 25, 34). We
see that the same general relationship between fracture spacing
and front speed holds for both cooling lava and drying corn starch
slurries. To understand this, we now turn to the mathematical
similarity between these physical processes.

Scaling Theory
Our dynamic similarity argument rests on the observation that the
processes of drying and cooling of a deformable solid are math-
ematically analogous. In either case, we consider an elastic solid
for which the relative displacement of material is described by a

strain tensor ε = 1
2 (∇u + ∇uT ), where u(x, t) is the displacement

vector field. The distribution of internal forces is described by a
stress tensor σ , which for a linear elastic solid is simply propor-
tional to the strain, so that σ = λ(∇ · u)I + μ(∇u + ∇uT ), where
λ, and μ are the Lamé constants of elasticity. For a conducting
solid that is heated or cooled, there is an additional stress and/or
strain field due to the changes in temperature. Then the governing
equations for thermoelasticity that arise from force balance and
conservation of energy lead to

∇ · σ = αE∇T ,

k∇2T = ρCp
∂T
∂t

+ Qα
∂

∂t
(∇ · u) [1]

where E is the Young’s modulus of the solid, α is the coefficient of
thermal expansion, k is the thermal conductivity, ρ the density, Cp
is the specific heat at constant pressure. The last term characterizes
the rate of heat generation due to elastic dilatation and vanishes
for thermodynamically reversible deformations, but we leave it
here to compare these equations with those for the mechanics of
a fluid-infiltrated porous solid where there is an equivalent addi-
tional stress due to the movement of liquid within the pores. For a
poroelastic solid that has fluid moving relative to the solid through
the interstitial pores, the analogous equations are (1, 3, 35)

∇ · σ = β∇p,

kh∇2p = H
∂p
∂t

+ βK
∂

∂t
(∇ · u) [2]

where β is a dimensionless elastic constant that relates the local
hydraulic pressure to the stress in the porous solid (analogous to
the thermal expansion coefficient), kh is the hydraulic permeabil-
ity of the porous solid (analogous to the thermal conductivity),
H is the effective compliance of the solid which characterizes its
softness (and is thus analogous to its “heat capacity”), and K is
an appropriately scaled (dimensionless) bulk compressibility of
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the network (35). Here, the second equation in Eq. 2 arises from
considerations of Darcy’s law for flow through a porous medium,
coupled with the equation of mass conservation.

When appropriate boundary conditions are specified for T or
p, displacements and/or tractions, the force and energy balance
equations completely determine the state of the solid. We see that
for a poroelastic solid, pressure is mathematically analogous to
temperature, up to factors of the coefficient of thermal expan-
sion and an elastic modulus; indeed the underlying similarity has
a thermodynamic origin (1). Given this, we see that the dynamic
similarity of columnar joints in starch and lava arises because the
transport of the relevant quantity, water or heat, is essentially dif-
fusive in each case. Indeed, for a linearly elastic isotropic solid the
Eq. 1, yield, in the limit of slow deformations, the uncoupled ther-
mal diffusion equation ∂T/∂t = ∇ · (DT (∇T)), with the thermal
diffusivity DT = k/ρCp. For poroelasticity, we get an analogous
equation of the form ∂(∇ · u + βp)/∂t = ∇ · (DP(∇ · u + β∇p)),
with the hydraulic or poroelastic diffusivity DP = kh/H . We see
that the diffusion of heat in thermoelasticity is analogous to the
diffusion of water mass content in poroelasticity. To complete the
formulation of the problem we need to specify boundary condi-
tions of zero normal traction and a prescribed flux of either heat
or moisture on the exposed surface of the half-space. Here, we do
not solve this problem, but restrict ourselves to a simple testable
scaling theory, starting with the case of drying starch, and then
transposing our results to the geological problem.

Following an initial transient after a drying/cooling experi-
ment is started, a propagating nonequilibrium steady state of
drying/cooling is set up in the solid that leads to the formation
of a fracture front that relieves stress in the solid behind it. Dur-
ing the transient drying process near the exposed free surface
of a wet, thick starch-cake of large lateral extent, the surface is
exposed to low humidity air. After a time t following the begin-
ning of the experiment, a surface layer of thickness Ls shrinks
because of the loss of water from it. Shrinkage is easily accom-
modated in the direction normal to the surface, but leads to an
isotropic tensile stress in the plane parallel to it. If the stresses
induced by drying are sufficient to exceed some cracking thresh-
old, then cracks will nucleate from the free surface and propagate
into the bulk material. Each crack will relieve stress in a region
given by the elastic screening or stress relaxation length perpendic-
ular to the crack face, which is proportional to Ls (15). However,
because the drying/cooling field inducing stresses is dynamic, the
cracks move from the highly stressed drier surface into the wetter
and less stressed bulk, and so slow down and eventually stop. Fur-
ther drying leads to a repetition of this cycle. Although individual
cracks move intermittently via a stick-slip-like motion, on average
the crack front advances diffusively, following the drying front,
albeit slightly behind it (12).

During the initial phase of drying near the surface of a very thick
sample, approximated as a half-space, the only dynamical length
scale that arises naturally is given by

Ls ∼ (DPt)1/2 [3]

where DP is the poroelastic diffusivity characterizing the equilibra-
tion of fluid mass content. If the evaporative flux J0 decreases with
time, as when the external humidity is kept constant, the crack
front slows as the transport of water is limited by diffusion out
the sample. As time progresses, Ls increases and the crack pat-
tern should coarsen, i.e., the crack spacing should increase with
increasing distance from the exposed surface. This coarsening has
been previously noticed in starch experiments (17, 19, 20). Our
explanation for the coarsening follows from the nonequilibrium
nature of drying/cooling as outlined above, in sharp contrast with
equilibrium theories given hitherto for these crack patterns that
are based on free-energy minimization (36). When the evapora-
tion rate is kept constant, so that the volumetric flux J0 is invariant

in time, we find ourselves in a nonequilibrium steady state. This is
achieved in the flux-controlled starch experiments presented ear-
lier, where, after a transient near the surface, the crack spacing
does not coarsen further. Achieving this steady state requires that
the drying power increase with time. In this case, the drying front
progresses into the sample at a constant speed v. Under these
conditions, the elastic stress screening length is also invariant, and
scales as

Ls ∼ DP/J0 [4]

This allows us to define a dimensionless Péclet number for a crack
spacing Lc,

Pe = vLc/DP [5]

where the drying front velocity v is related to the moisture flux J0
and the porosity φ by v = J0/φ. Since Pe ∼ Lc/Ls, the observed
inverse scaling of fracture spacing to fracture advance rate follows
if jointing proceeds at a constant Pe ∼ O(1).

Similar considerations apply to the lava cooling case, with
the poroelastic diffusivity DP replaced by the thermal diffusiv-
ity DT = k/ρCp. In the case of cooling lava, coarsening has been
observed near the flow margin (23), whereas the nonequilibrium
steady state is maintained far away from the flow margin by the
heat transport due to the reflux of water in the cracks (24–26). In
this regime, a very regular column scale is observed as in Fig. 1
C and D.

Dynamic Similarity of Starch and Lava Columns
Our scaling theory simplifies somewhat for the case of drying
starch, even though the relationship between the local water con-
centration C and the pressure p is complicated by the fact that
the pores are not fully saturated with water, but instead consist
of water bridges, air, and water vapor. During the drying process,
water is transported under the pressure gradient predominantly
as liquid at the wet end of the sample, and predominantly as
vapor near the dry end (20, 37). Because linear poroelasticity the-
ory shows that the water mass content satisfies a linear diffusion
equation, we expect that the moisture concentration C, which we
measured directly in the experiments, also obeys a diffusion equa-
tion. However, given the large variations in water content that
lead to fundamentally different mechanisms for moisture trans-
port at early and late times (37), the diffusivity is a function of the
moisture content in the solid so that C now satisfies a nonlinear
diffusion equation of the form

∇ · [D(C)∇C] = ∂C
∂t

, [6]

where D(C) is a concentration-dependent effective diffusivity
(related to the poroelastic diffusivity DP ∼ kh/H) which can be
deduced from the experimental data.

In our starch experiments, we controlled the volumetric flux of
water J0 at the surface, rather than the vapor pressure p. We sam-
pled the moisture concentration C(z, t) in the vertical direction z in
many identical starch-cakes dried for different times t, by section-
ing the cakes into 1 to 2-mm-thick layers, and weighing, drying,
and reweighing the sections. As shown in Fig. 2A, the cakes dried
uniformly to a critical moisture concentration of 0.30 g/cm3, after
which time a sharp drying front was initiated at the upper drying
surface. Below this front, C remained constant. As the drying front
steadily advanced, it maintained a concave, self-similar shape, as
shown in Fig. 2B. To understand this, we consider Eq. 6 that can be
integrated to give the concentration-dependent diffusivity (37),

D(C(z, t)) =
(∫ z

h

∂C
∂t

dz′
) /(

∂C
∂z

)
. [7]

Here, we have assumed 1-dimensional transport, and that the
sample lies in 0 ≤ z ≤ h. We have imposed a no-flux boundary
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condition on the lower boundary z = h, which is in contact with
the base of the container. Fig. 2C shows the effective diffusivity
D(C) as calculated from Eq. 7 and the water concentration data
presented in Fig. 2A. There is a broad minimum in D(C), reaching
D0 = 1.1 × 10−9 m2/s over approximately C = 0.1 − 0.3 g/cm3.
Above a concentration of 0.3 g/cm3 the diffusivity must continue
to increase with C, as the starch-cake dries almost uniformly from
saturation down to this concentration. However, under these wet
conditions, ∂C/∂x is very small and these data cannot be reliably
used to find D(C). The minimum in D(C), which we call D0, is
due to the cross-over between liquid and vapor transport (37) that
occurs at the sharp drop-off in water concentration which forms
the drying front. It is therefore this minimum D0 which is relevant
to the scaling of the columns. By using Eq. 5 with DP = D0, the
measured starch fracture spacing shown in Fig. 4A is thus found
to correspond to a range of Péclet numbers Pe = 0.15 ± 0.05.

In the case of lava, the energy balance Eq. 1, reduces to a lin-
ear diffusion equation with a diffusivity DT = k/ρCp. Then, we
transpose the result for drying starch to the case of cooling lava by
reinterpreting D as the thermal diffusivity DT and J0 as the heat
flux that is strongly influenced by the continuous reflux of water
in the cracks (24, 25), although this effect does not significantly
influence the water transport in the case of drying starch (21).
Because the thermal diffusivity of basalt (25) is approximately
DT = 6.5 × 10−7 m2/s, and the fracture front velocities are com-
parable to those in the starch experiments, columnar jointing in
lava should be 10-100 times larger than in starch. We see that
this is indeed the case, as shown in Fig. 4B; jointing in lava is well
described by Pe = 0.3±0.2, very similar to that found in the starch
experiments.

Discussion
Our simple scaling theory embodied in Eqs. 3–5 provides a unified
way of understanding the basic observations of columnar jointing
induced by the nonequilibrium and inhomogeneous cooling in a
geological context, and via a mathematical analogy, the columnar

jointing in laboratory experiments of the drying of a fluid infil-
trated porous solid such as starch. In particular, we are able to
derive a simple scaling law for the crack spacing consistent with
both previous and current experimental observations.

In addition to explaining an old geological mystery, and con-
necting it to a number of everyday observations of cracking, our
work paves the way for the engineered cracking of solids to obtain
patterns at will. To take one example, in the production of fine
coke from crushed coal, it is the cooling-induced shrinkage cracks
that control the size, and hence quality, of the product (38). Other
applications range from the industrial drying of paint, concrete,
and photographic paper, to mud-cracks and the desiccation of
soils, the thermal fracture of permafrost (39), and the jointing of
metamorphic rocks (S. Shoreland-Ball, R. Sparks, M. Murphy,
C. MacNicaill, and B. Daniel, unpublished work). In all of these
examples, the crack patterns are controlled by the competition
between nonequilibrium processes such as the relatively slow dry-
ing and cooling by which stresses develop, and rapid cracking that
causes these stresses to be relieved. Thus, although elastic defor-
mations are important, the dynamics of crack propagation are
much faster than the very slow process of stress generation that
ultimately determines the rate of cracking and thence the scale of
jointing.

We conclude with a brief discussion of the drying or cooling of
a solid of finite thickness h. For very thin or very slowly cooling (or
drying) solids, the crack spacing will be ∼ O(h), if cracks form at
all (4, 5, 13). However, if the characteristic scale given by Eq. 3 is
smaller than h, the fracture spacing ∼ Ls, no longer depends on h,
but is instead a function of the cooling (or drying) rate. More gen-
erally, if the characteristic elastic stress screening length is smaller
than the thickness of the drying solid, then the crack spacing is
just the stress relaxation length, so that the crack spacing should
be proportional to min(h, Ls).
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