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Route learning in Williams syndrome and Down syndrome 
 

Research highlights: 

- Individuals with Williams syndrome performed better than a matched subset of 

typically developing children on more difficult routes 

- Measures of attention and long-term memory were strongly associated with route 

learning 

- All of the groups, including 5- to 6-year-old typically developing children, 

demonstrated the ability to make use of various landmark types to aid route learning, 

including distant landmarks 

Abstract 

The ability to navigate new environments has a significant impact on the daily life and 

independence of people with learning difficulties. The aims of this study were to investigate 

the development of route learning in Down syndrome (N=50), Williams syndrome (N=19), 

and typically developing children between 5- and 11-years-old (N=108); to investigate use of 

landmarks; and to relate cognitive functions to route learning ability in these groups. Overall, 

measures of attention and long-term memory were strongly associated with route learning, 

even once non-verbal ability was controlled for. All of the groups, including 5- to 6-year-old 

TD children, demonstrated the ability to make use of all landmark types to aid route learning; 

those near junctions, those further from junctions, and also distant landmarks (e.g., church 

spire, radio mast). Individuals with WS performed better than a matched subset of TD 

children on more difficult routes; we suggest that this is supported by relatively strong visual 

feature recognition in the disorder. Participants with DS who had relatively high levels of 

non-verbal ability performed at a similar level to TD participants.  
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Spatial knowledge of novel environments is typically gained by moving through those 

environments. Siegel and White (1975) proposed that the development of spatial knowledge 

proceeds via three distinct stages, each a precursor of the next: landmark knowledge, which 

can be described as information about objects without knowledge of the relations between 

them; route knowledge, which is characterized as knowledge of the sequence of landmarks 

and turns along a path of a particular route; and configural knowledge, which is information 

about the layout of an environment that includes distance and direction between landmarks. 

Although recent evidence does not support the hierarchical nature of this model (e.g., 

Montello, 1998; Ishikawa & Montello, 2006), these three categories of knowledge are 

nonetheless relevant to studies of spatial navigation. In typical adults, the model is broadly 

supported at a neural level; although part of an interacting network, the parahippocampal 

gyrus shows activation to landmarks along a route (Wegman & Janzen, 2011), whilst route 

knowledge is associated with the caudate nucleus, and the hippocampus shows activation for 

configural knowledge of the environment (Doeller, King & Burgess, 2008). The current study 

explored the first two stages, landmark knowledge and route knowledge: its aims were to 

chart the development of route learning ability and landmark use in typically developing 

(TD) children, individuals with Down syndrome (DS) and individuals with Williams 

syndrome (WS), and to determine the cognitive correlates of route learning in each group, 

i.e., verbal ability, nonverbal ability, attention, and memory. 

Cognitive profiles of Williams and Down syndromes 

Down syndrome (DS) is a neurodevelopmental disorder with a prevalence of ~5 in 10,000 

(Steele & Stratford, 1995) and results from an extra copy, or part-copy, of chromosome 21. 

Individuals with DS generally show difficulties with verbal tasks (e.g., Chapman, 1995) but 

less impairment of visuospatial ability (e.g., Purser & Jarrold, 2005). Williams syndrome 

(WS) is a neurodevelopmental disorder, with a prevalence of ~1 in 20,000 (Morris, Dempsey, 
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Leonard, Dilts & Blackburn, 1988), resulting from a microdeletion of 28 genes from one 

copy of chromosome 7 (Ewart et al., 1993). The disorder is characterized by a cognitive 

profile that contrasts with the one seen in DS: despite marked difficulties with visuospatial 

cognition, verbal abilities are less impaired in individuals with WS (e.g., Howlin, Davies & 

Udwin, 1998). For both DS and WS groups, level of ability also varies within each domain, 

on account of differences in task demands and the associated neural systems. For example, 

visuo-spatial perception is typically stronger than visuo-motor performance in WS (Farran, 

Jarrold & Gathercole, 2003); and performance on the CANTAB Paired Associate Learning 

task (requiring participants to learn and remember abstract visual patterns associated with 

various locations) is an impaired aspect of visuo-spatial cognition in DS (e.g., Pennington, 

Moon, Edgin, Stedron, & Nadel, 2003; Edgin et al., 2010). Thus, whilst we cannot predict the 

relative levels of ability on our environmental learning tasks in DS and in WS, given the 

broad differing cognitive profiles, it is possible that any difficulty in environmental learning 

experienced by each population will be a product of different underlying deficits.  

Environmental learning in Williams and Down syndromes 

For both DS and WS, research into cortical structure or activation has focused on pre-

determined regions of interest. Thus, whilst there is evidence for atypicalities of the 

hippocampus in both groups (DS: Pinter et al., 2001; WS: Meyer-Lindenberg et al., 2005), 

activation of the caudate nucleus and parahippocampal gyrus have not been investigated. 

Behavioural and neural evidence (when available) is discussed below. 

Pennington and colleagues (Pennington et al., 2003) investigated the performance of 

adolescents with DS on a virtual version of the Morris water maze (Morris, 1981). The 

participants with DS performed less well than mental-age-matched controls. However, a 

larger study by Edgin et al. (2010) did not find any impairment in DS on the same task, 
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relative to mental-age-matched controls, although Edgin and colleagues interpreted the 

overall pattern of visuospatial behaviors observed in DS as a hippocampal deficit. This is 

consistent with evidence of a small hippocampus in DS, relative to overall brain volume 

(Pinter et al., 2001). Also in line with the notion of a hippocampal deficit, decreased 

neurogenesis has been demonstrated in the dentate gyrus of the hippocampus in both foetuses 

with DS and Ts65Dn mice (Contestabile et al., 2007), indicating a plausible mechanism for 

some of the visuospatial problems associated with the disorder. There are four recent studies 

of environmental learning in WS. In a real-world study Farran, Blades, Boucher and Tranter 

(2010) found that their WS group were worse at retracing a route than a group with moderate 

learning difficulties matched for mental and chronological age (and were also worse than a 

chronological age-matched TD group). However, the WS group showed a similar degree of 

improvement in following the correct route as the control groups across learning trials. 

Building on this work, Farran and colleagues (Farran, Courbois, Van Herwegen, & Blades, 

2012a; Farran, Courbois, Van Herwegen, Cruickshank & Blades, 2012b) assessed route 

learning and recall of landmarks in WS and typical development, using virtual environments 

(VEs). Farran et al. (2012a) used VEs of brick-wall mazes with 6 junctions, each featuring 

sixteen landmarks. Half of the landmarks on the correct path through the maze were close to 

junctions (junction landmarks), the other half were not (path landmarks). The participants 

with WS made more route learning errors than 9-year-old TD participants. This performance 

impairment was primarily due to perseverative errors (errors made at the same junction on 

consecutive learning trials) on the part of the WS group, consistent with other evidence of an 

executive dysfunction in this population (e.g., Menghini, Addona, Costanzo and Vicari, 

2010). The TD group showed superior recall of junction landmarks over path landmarks. 

This recall advantage for junction landmarks was also shown by participants with WS, but 

only for those with higher nonverbal ability. Poor route knowledge, as well as configural 
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knowledge, in WS has been further demonstrated using a VE cross-maze (a square maze with 

four radial arms), where individuals with WS required more trials to learn a route than TD 

10-year-olds (Broadbent, Farran & Tolmie, in press). Neural evidence to-date relates to 

configural knowledge only; hippocampal activation and structure is impaired in WS (Meyer-

Lindenberg et al., 2005). Furthermore, a link between hippocampal deficits and spatial 

learning has been demonstrated in LIMK-1 knockout mice (LIMK-1 is deleted in WS) (Meng 

et al., 2002). In humans, however, the contribution of LIMK-1 to spatial learning in WS is 

likely in combination with other deleted genes in the WS critical region (Gray et al., 2006). 

Landmark use in typical development 

The dissociation between junction and path landmarks discussed above, has been shown in 

TD adults at both behavioural and neural levels.  That is, activation of the parahippocampal 

gyrus (PHG) is higher for landmarks at decision points (junction landmarks) than landmarks 

at non-decision points (path landmarks) and higher PHG activation is correlated with stronger 

recognition of landmarks (Wegman & Janzen, 2011). Whilst we are not aware of research 

into the neural correlates of landmark use in TD children, behavioural evidence demonstrates 

that the preferential use of junction over path landmarks emerges with development. That is, 

when asked to recall landmarks along a learnt route TD children as young as 6 years can 

encode junction landmarks better than path landmarks (Farran et al., 2012a).  

Although many studies have been concerned with landmarks on routes, few have addressed 

the utility of distant landmarks for children, such as church spires. Cornell, Heth, and Broda 

(1989) found that 12-year-olds, but not 6-year-olds, benefit from being told to pay attention 

to distant landmarks during route learning. As noted above, there is mixed evidence for 

whether people with DS are less good than mental-age-matched controls at using distant 

landmarks in a virtual Morris maze (Pennington et al., 2003; Edgin et al., 2010). Individuals 
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with WS were faced with distant landmarks only in Broadbent et al. (in press) and, as 

discussed, demonstrated route knowledge below a typical ten-year-old level. 

One final point concerning landmarks is that their proficient use must depend on long-term 

visual recognition abilities. Jarrold, Baddeley, and Phillips (2007) assessed long-term 

memory among participants with DS and WS, using the Doors and People battery (Baddeley, 

Emslie, & Nimmo-Smith, 1984), which does provide measures of both long-term recall and 

recognition of both verbal and visual information. When scores were standardized on 

nonverbal mental age relative to a typically developing sample, neither disorder group was 

impaired on long-term visual recognition. This alleviates (but does not preclude) possible 

concerns that differences in landmark-related behaviour could be a consequence of visual 

recognition problems. 

Overview of the current study 

Experiment 1 investigated the development of route learning using a VE maze that featured a 

variety of landmarks. Experiment 2 assessed use of junction, path and distant landmarks by 

running three different mazes for each participant, each featuring one of these landmark types 

in isolation.  

Predictions 

The different cognitive profiles of DS and WS were expected to give rise to differing patterns 

of performance in Experiment 1. In the absence of evidence regarding parahippacampal gyrus 

or caudate nucleus function in these groups, predictions based on neural evidence can only be 

tentative; evidence of impaired hippocampal function in both groups could indirectly impact 

landmark knowledge and route knowledge, on account of connections within the 

environmental learning neural network. Based on behavioural evidence, the WS group was 
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expected to perform at or below their general level of visuo-spatial ability at route learning, 

which would represent a weakness within their cognitive profile. For the DS group, 

behavioural evidence for impaired configural knowledge demonstrates that environmental 

learning might not follow the cognitive profile of relatively strong visuo-spatial performance 

in this group. However, given the absence of research into landmark or route knowledge in 

this group, strong predictions cannot be made. 

We predicted differences in the underlying mechanisms that drive route-learning performance 

across groups. To this end, a cognitive battery was administered including measures of 

executive control and long-term memory, which are known to influence route learning in TD 

children (Purser et al., 2012).  

Developmental trajectories 

The current study concerns neurodevelopmental disorders; the route learning data were 

therefore analysed within a developmental framework. A developmental trajectories approach 

was adopted (Thomas, Annaz, Ansari, Scerif, Jarrold & Karmiloff-Smith, 2009), in which 

functions of task performance against mental age are constructed, which allow the 

comparison of developmental change across groups.  Such trajectories can identify 

developmental differences between participant groups that simple group-matched designs 

cannot reveal. 

Experiment 1 Method 

Participants 

Participants were: 108 TD individuals, 50 individuals with a clinical diagnosis of DS, and 19 

individuals with a clinical diagnosis of WS. The WS group, 67 of the TD group and 21 DS 

group were English, the remainder were French. The DS group included three participants 
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over the age of 30; although there is some concern about such participants being at risk of 

Alzheimer-like dementia (e.g., Lott & Head, 2001), all subsequent analyses were repeated 

with and without these participants and no differences were evident between these analyses. 

All participants with WS had been diagnosed based on phenotypic and genetic information. 

Genetic diagnosis was based on a Fluorescent in situ Hybridisation (FISH) test (see Lenhoff, 

Wang, Greenberg, & Bellugi, 1997). English participants were tested on the British Picture 

Vocabulary Scale III (BPVS; Dunn, Dunn, Styles, & Sewell, 2009); the French participants 

were tested on the equivalent, L'échelle de vocabulaire en images Peabody (EVIP; Dunn et 

al., 1993). For brevity, both tests will be referred to as BPVS henceforth. Participants were 

also assessed on Raven’s Coloured Progressive Matrices (RCPM; Raven, Raven, & Court, 

1998). Participant information is given in Table 1. 

Maze task 

A virtual environment (VE) maze, created using Virtools 5.0, was used. The maze consisted 

of a network of roads at right angles from each other, lined with brick walls. There were six 

junctions, each leading to one correct and one incorrect path section. Across these junctions, 

there were two left, two right, and two straight-ahead choices that led to the next correct path 

segment. Correct choices were balanced by the equivalent type and number of incorrect 

choices. Incorrect path choices ended in a cul-de-sac, which had the same appearance as a T-

junction when viewed from the preceding junction. A map of the maze layout is shown in 

Figure 1.  

Thirty-two landmarks were placed in or around the maze (see Figures 1 and 2). Landmark 

objects were selected from a range of categories (e.g., animals, tools, furniture) and were 

chosen for high verbal frequency (Morrison, Chappell, & Ellis, 1997) and also for being easy 

to recognize. There were 19 unique landmarks: eight of the unique landmarks were near to 
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junctions (‘junction landmarks’). Eight of the unique landmarks were not near to junctions 

(‘path landmarks’). There were three unique landmarks outside the maze (‘distant 

landmarks’). Each of the three distant landmarks was visible from most locations within the 

maze, though it was not possible for all three to always be visible, given the height of walls 

necessary for the maze to be effective (such that the maze solution was not visible to 

participants). Landmarks within the maze were equally distributed to the left and right of the 

path. There were 13 non-unique landmarks: the same landmark, a key, appeared once on each 

of the 13 path segments. 

At the end of the maze was a metallic ball, which elicited the words ‘Well done!” and a 

fanfare sound when the participant reached it.  

Figures 1 and 2 about here 

Procedure 

Each participant was first familiarized with how to manually control their navigation through 

a VE by completing a short familiarisation maze with no landmarks. Participants followed a 

single path, which included two right-angle turns; there were no decisions to be made. 

Movement through the maze was controlled by computer keyboard and mouse: the space bar 

caused forwards movement, while orientation was controlled by the mouse.  

After the familiarisation maze, the experimenter showed the participant the correct route 

through the experimental maze, saying to the participant, “Pay close attention to the route and 

also to the various objects that appear in the ‘maze game’ because you will have to go exactly 

the same way through the maze after I have shown you.” The participant then attempted to 

navigate through the maze, with a maximum of 10 trials to complete the maze from start to 

finish without error on two consecutive trials. Because the incorrect path sections ended in 
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cul-de-sacs, when the participant made an error, they were able to self-correct; 

encouragement was given, but no help. Each trial terminated on completion of the route.  

The dependent variable was the total number of errors made across all trials, henceforth 

referred to as Maze Error. An error was defined as a deliberate incursion down an incorrect 

path; if the participant corrected his/her course before reaching halfway down an incorrect 

path section, no error was counted; the computer program automatically detected errors. 

After participants had completed the above task they were asked to complete the two-turn 

familiarisation maze once more, as quickly as possible. This served as a measure of 

keyboard/mouse proficiency. 

A naming task was then administered. To ensure that the landmarks used could be identified, 

participants were shown images of each of the 20 landmarks in a pseudorandom order and 

were asked to name them. 

Cognitive test battery 

Go/No Go (GNG) task. GNG was chosen as a measure of executive control. A 

pseudo-random series of red, green, blue and yellow solid circles (diameter: 5cm) was 

presented on a computer. Participants were instructed to press the space bar as rapidly as 

possible when they saw each circle, unless it was red, in which case they should refrain from 

pressing the space bar. If the space bar was pressed on red, a buzzing ‘error’ noise was heard 

and the circle disappeared. Each circle disappeared after two seconds if the space bar was not 

pressed. If participants pressed the space bar on two consecutive red trials, they were 

reminded of the task rules. There were 8 practice trials, followed by 128 experimental trials, 

with a break after 64. The dependent measures were the average reaction time (RT) for 

correct hits and the number of errors (pressing the space bar for a red circle). 
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People Test. The People Test (Baddeley, Emslie, & Nimmo-Smith, 1994) is a 

measure of long-term verbal memory. Participants were shown pictures of four people in 

succession, each paired with a forename and surname (Jim Green, Cuthbert Cattermole, Tom 

Webster, Philip Armstrong) which were printed under the picture. The experimenter told the 

participant the occupation of each person and said his name aloud (e.g., “This is the doctor. 

His name is Jim Green”), before moving on to the next person. Immediately after being 

shown all four people and told their professions, there was a test phase: for each person in 

turn, participants were cued with the profession of the person encountered and asked to 

produce the relevant name (“Can you tell me the name of the doctor?”). This test phase was 

repeated two more times, or until perfect performance was attained, in which case a 

maximum score was assumed for the remaining trials. Each forename or surname recalled 

correctly earned one point and one additional point was granted for successfully recalling a 

forename and surname together (one point for ‘Jim Heath’ or ‘Tom Green’, 3 points for ‘Jim 

Green’). The maximum score was 36 (3 points for each name X 4 names X 3 trials). 

Experiment 1 Results 

Table 1 shows descriptive statistics for route learning performance and for the items in the 

cognitive test battery. The majority of participants required fewer than ten learning trials to 

learn the route (TD: 96%; DS: 72%; WS: 89%) and overall the TD and WS groups each 

made a mean of 5 route learning errors (Maze Error), whereas the DS group made 18, a 

significant group difference, F(2, 174) = 24.343, p < .001, ηp
2 = 219 (DS < WS, TD). 

Considered separately, the English and French TD samples showed the same patterns of 

correlations between Maze Error and the other measures, with the exception of Go/No Go:  

Go/No Go RT was reliably associated with Maze Error for the UK TD sample, but Go/No Go 

error was not. Neither was associated with Maze Error in the French TD sample. Given that 
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the UK pattern prevailed when participants were treated as one group, this lack of 

relationships in the French sample is likely due to noise. 

Correlations between the test battery items and Maze Error are displayed in Table 2. The 

distribution of Maze Error was positively skewed in the WS group, so Spearman’s rho is 

reported instead of Pearson’s r for this group.  

The relationships between test battery items and maze error were examined further with 

partial correlations, controlling for RCPM to ‘factor out’ variance associated with general 

fluid intelligence (i.e., controlling for non-central task demands, see Jarrold & Brock, 2004), 

thus giving a stricter assessment of possible relationships between our background measures 

and route learning. For the TD group, only Go/No Go RT, r(102) = .247, p < .05, and People, 

r(102) = -.368, p < .001, remained reliably associated with route learning performance. For 

the DS group, Go/No Go Error was significantly associated with route learning, r(39) = .354, 

p < .05, and the association with People and route learning was marginally significant, r(39) 

= -.279, p = .078. Partial correlations could not be run for the WS group, because of the skew 

in Maze Error.  

Tables 1 and 2 about here 

Trajectory analyses 

RCPM was strongly related to route learning performance in all three groups and was 

continuously distributed, indicating that a trajectory design was appropriate (Thomas et al., 

2009). However, a large proportion of the WS group made no Maze Error; this made these 

data unsuitable for such analyses and they will be considered separately below. The trajectory 

analyses were univariate ANCOVAs with group as the between-subjects factor and RCPM as 

the covariate. The ANCOVA model included interaction terms between the RCPM covariate 
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and the between-subjects factor, to explore whether route-learning performance developed at 

a different rate in each group with respect to nonverbal ability. The data were analysed with 

respect to RCPM (non-verbal ability), rather than chronological age, because chronological 

age was not associated with task performance in the DS (or WS) group.  

There was a steeper relationship between RCPM and Maze Error in the DS group than the 

TD group, F(1,154) = 5.563, p < .05, ηp
2 = .035 (Figure 3) and at the intercept the DS group’s 

Maze Errors were significantly higher than the TD group’s, F(1,154) = 7.378, p < .01, ηp
2 = 

.046. Put together, low non-verbal ability was more disruptive to route-learning performance 

in the DS group than in the TD group and the group difference reduced as RCPM score 

increased.  

The WS group was individually matched on RCPM raw score to 19 TD children. The WS 

group made significantly fewer Maze Errors than this TD group, indicated by a 

nonparametric Mann-Whitney U-test, U(38) = 95.50, p = .012. 

Figure 3 about here 

Experiment 1 Discussion 

There were three aims of Experiment 1: the first was to explore which factors determine 

route-learning performance in each group; the second was to explore the level of route 

knowledge of the DS and WS groups relative to the TD group. Surprisingly, the DS group 

demonstrated the poorest route-learning ability. Trajectory analysis unpacked this finding 

further. The WS sample performed above the level predicted by nonverbal ability. 

Correlations showed that both verbal and nonverbal ability predicted route-learning 

performance in all three groups. However, age predicted performance only in the TD group, 
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indicating that ability is much less closely related to age in developmental disorders (as is 

often the case, see Karmiloff-Smith, 1998). 

Cognitive correlates of route learning 

For the TD group, Go/No Go RT, but not Go/No Go Error, predicted route learning; for the 

DS and WS groups, route learning was predicted by Go/No Go Error, but not Go/No Go RT.  

This may reflect different aspects of attention being important for the groups: reaction time 

reflects the general attentional resources (and also processing speed) involved in 

concentrating on a task, with higher speed perhaps associated with better sustained attention 

(e.g., Redick, Calvo, Gay, & Engle, 2011). In contrast, errors result from impulsive 

responding, or a lack of motor-control inhibition. Thus, perhaps sustained attention led to 

more route-learning errors in the TD group, whereas poorer inhibition was associated with 

more errors in the disorder groups. 

Long-term memory was associated with route learning in the TD and DS groups, but not the 

WS group. Several participants with WS made no errors; this lack of performance variability 

meant that their performance could not be correlated to other variables. Certainly, each group 

must have made use of long-term memory in the route-learning task in order to remember 

which way to turn at junctions, and/or to recognize landmarks. Given the very strong 

association of Go/No Go Error for the WS group, we infer that errors were made by this 

group because of poor attentional inhibition, but not because of forgetting the route. 

Computer Control score, our measure of keyboard/mouse proficiency, was not associated 

with route-learning performance in any group. This was important to establish, because any 

such relationship could have masked other relationships between variables. 
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General cognitive ability would be expected to contribute to task performance in terms of 

non-central task demands. Even after controlling for such ability, as indexed by RCPM, the 

associations between route-learning error and attention and between route-learning error and 

long-term memory remained strong in the TD and the DS groups (the WS data were not 

suited to this analysis).  

Developmental trajectories of route learning 

The trajectory analyses revealed that higher RCPM scores were associated with superior 

route-learning ability in both groups, but that low nonverbal ability had more of a negative 

impact on route-learning performance in the DS group than in the TD group, deviating 

somewhat from the prediction that the DS group would perform in line with nonverbal 

ability. However, the DS group’s performance approaches that of the TD group at higher 

nonverbal ability levels: it ‘catches up’.  Thus, route-learning ability is mental age-

appropriate for higher-functioning individuals with DS, but below the level predicted by 

mental age for lower functioning individuals.  

The WS group was individually matched on nonverbal ability to a sample of TD children. 

The WS group performed better at the route-learning task than the matched TD group. It is 

unusual to find superior ability in matched developmental disorder samples. This suggests 

that route knowledge, although not at a chronological age appropriate level, represented a 

relative peak within the non-verbal domain for this group. This pattern contrasts with Farran 

et al. (2012a), whose WS group made a comparable number of errors to TD 6-, 7-, and 8-

year-old TD children, and more route-learning errors than 9-year-old TD participants. Given 

that non-verbal mental age is typically at about the 6-year-old level in WS, the participants in 

Farran et al. (2012a) performed within the range expected for TD children of the same non-

verbal mental age to slightly above that level. This slight difference between studies is not 
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related to increased cognitive variability in WS as the WS groups used across the two studies 

are largely overlapping. Equally, cognitive variation in WS has been shown to be no more 

wide-ranging than the typical population with reference to verbal, non-verbal and working 

memory measures (Van Herwegen, Rundblad, Davelaar & Annaz, 2011).  The difference is 

most likely a reflection of the more stringent scoring in Farran et al. In their study, if a 

participant looked down an incorrect path but didn’t travel down it, or travelled any distance 

down a correct path this was scored as an error; in the current experiment, participants were 

not penalized for such behaviour. If participants with WS chose to look at their path choices 

before making a decision, this would explain the difference between the results of the current 

study and that of Farran et al. (2012a).  

If route-learning is a relative strength for people with WS, one possibility is that they use 

their relative proficiency in language to facilitate a verbal strategy in performing the route-

learning task, as they do to support number processing (Ansari et al., 2003). Against this 

explanation, however, Farran et al. (2010) found evidence suggesting that people with WS do 

not spontaneously use a verbal strategy when learning a route. Another possibility is that 

people with WS might use good visual recognition skills to support route learning: there is 

evidence of chronological-age appropriate face recognition ability in WS (Bellugi, Wang, & 

Jernigan, 1994; Wang, Doherty, Rourke, & Bellugi, 1995), which seems to be based on 

featural, rather than configural, processing (Karmiloff-Smith, 1997). This featural processing 

style applies to nonface stimuli in addition to faces (Karmiloff-Smith et al., 2004). This 

hypothesis also fits with the contrast between the current study and Farran et al. (2012a), 

which suggests that participants with WS look down correct and incorrect paths before 

making a decision more than TD children. This ‘looking’ behaviour is consistent with a 

strategy of looking at landmarks for recognition purposes, and thus using a visual recognition 

strategy rather than learning a route by recalling the sequence of landmarks and turns.  
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Experiment 2 was conducted to assess the ability to use each landmark type to successfully 

learn routes using mazes where only one type of landmark was available. We hypothesized 

that all participants would make fewer errors when path or junction landmarks only were 

available than when distant landmarks only were available.  

Experiment 2 Method 

Participants 

Participants were the same at those in Experiment 1, apart from 5 of the DS group, who were 

unavailable for testing: 108 TD individuals, 45 individuals with DS, and 19 individuals with 

WS. Experiment 2 was conducted five months after Experiment 1. 

Maze task 

There were three maze designs, each conforming to the specification given for Experiment 1. 

There were three conditions: a maze with junction landmarks only, a maze with path 

landmarks only, and one with distant landmarks only. The conditions were counterbalanced 

across the three maze designs (there were 9 mazes in total). Each participant undertook three 

mazes, one for each condition, with order and maze design counterbalanced. 

In the junction condition, there were 16 landmarks: 8 at junctions on the correct paths, and 8 

at the ends of incorrect paths (that appeared to be at junctions when viewed from the correct 

path). 

In the path condition, there were 16 landmarks: 8 on the correct path, situated in the middle 

of path segments (away from junctions), and 8 in the middle of incorrect path segments.  

In the distant condition, there were just three large landmarks, positioned outside of the maze 

walls, with each visible from most locations within the maze.  

18 
 



Route learning in Williams syndrome and Down syndrome 
 

As in Experiment 1 landmark objects were drawn from a range of categories and chosen for 

high verbal frequency (Morrison et al., 1997) and easy visual recognition. 

Procedure 

After completing the same familiarisation maze as in Experiment 1, the experimenter showed 

the participant the correct route through the first experimental maze, saying to the participant, 

“Pay close attention to the route and also to the various objects that appear in the ‘maze 

game’ because you will have to go exactly the same way through the maze after I have shown 

you.” 

The participant then attempted to navigate through the maze, with a maximum of 3 trials to 

complete the maze from start to finish without error. This maximum trial number was lower 

than that used in Experiment 1, and was chosen to prevent testing sessions from becoming 

too long for participants to complete. Errors were scored in the same way as in Experiment 1. 

Experiment 2 Results 

Descriptive statistics for route-learning and test battery items are given in Table 1. As in 

Experiment 1, the development of route learning was explored for each group, with respect to 

nonverbal ability.  

A repeated-measures ANOVA of route-learning errors, with landmark type (junction, path 

and distant) as the repeated measure was run for each group. For the TD group, there was a 

main effect of landmark type, F(2,214) = 44.700, p < .001, ηp
2 = .295; post-hoc Bonferroni 

corrected t-tests revealed more errors in the mazes with distant landmarks than both the 

mazes with junction landmarks, p < .001, and with path landmarks, p < .001, mazes, but no 

difference between performance on the mazes with path and junction landmarks, p = .836.  
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The DS group also showed a main effect of landmark type, F(2,88) = 5.721, p < .01, ηp
2 = 

.115; they made more errors in mazes with distant landmarks than mazes with junction 

landmarks, p < .01, but there was no difference on distant and path mazes, p = .238 or 

junction and path mazes, p = .293 

There was a main effect of landmark type for the WS group, F(2,36) = 3.759, p < .05, ηp
2 = 

.173; however, the WS group made similar numbers of errors in distant mazes and junction 

mazes, p = .302, path and junction mazes, p = 0.929, and distant and path mazes, p = .081. 

The main effect is likely driven by marginal effect of more errors in the distant than the path 

maze. 

Although the groups were not matched, it is worth noting that there was an effect of group, 

overall, F(2,169) = 138.747, p < .001, ηp
2 = .451, due to poorer performance by the DS group 

than the TD, p < .001, and WS, p < .01, groups, but with no difference between the WS and 

TD groups, p = .932. 

Comparison between the numbers of errors made in the first three learning trials in 

Experiment 1, to performance in Experiment 2 (in which participants completed three 

learning trials per maze only) enables us to establish any detrimental effects of the presence 

of one landmark type (Experiment 2), relative to the full complement of landmarks types 

(Experiment 1). ANOVA of maze type (Experiment 1, Junction, Path, Distant) by Group 

demonstrated a main effect of maze type, F(3, 507) = 17.528, p < .001,  ηp
2 = .094, which was 

consistent across groups, F(6, 507) = 1.400, p = .212, ηp
2 = .016. Pairwise comparisons 

(Bonferroni corrected) demonstrated that the source of the main effect of maze was solely 

due to poor performance on the distant maze compared to other mazes (p < .001 for all). 

Performance on the junction only and path only mazes did not differ from the full landmark 

maze used in Experiment 1 (p > .05 for both). 
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Comparable performance on the junction and path landmark only mazes with the Experiment 

1 maze suggests that participants could learn these routes. To determine whether learning 

took place in the distant maze, comparison between participants’ first and third learning trial 

was compared. Participants who made no errors on the first and second learning trial did not 

complete a third learning trial (they had met criterion) and so are not included in the analysis. 

This demonstrated a main effect of learning trial, F(1, 131) = 4.52, p = .035, ηp
2 =. 033, which 

did not interact with group, F < 1, thus demonstrating that learning did take place within the 

distant maze despite poor performance on this maze. A similar analysis of the TD group, split 

by age group (5-6 years, 7-8 years, 9-11 years), demonstrated the same pattern (Trial: F(1, 

77) = 7.21, p = .009, ηp
2 = .086; Trial by Group: F < 1). 

Trajectory analyses 

As in Experiment 1, ANCOVAs were conducted on TD and DS Maze Error with group as the 

between-subjects factor and RCPM as the covariate. The models included interaction terms 

between the RCPM covariate and the between-subjects factor. The data from the WS group 

were analysed separately, with a TD group individually matched on RCPM. This was 

because the data were positively skewed as a large proportion of the WS group made no 

Maze Errors. 

Mazes with junction landmarks 

As in Experiment 1, at the intercept the DS group’s Maze Errors were significantly higher 

than the TD group’s, F(1,149) = 8.97, p =.003, ηp
2 = .057, and the relationship between 

RCPM and Maze Error was steeper in the DS group than the TD group, F(1,149) = 5.376, p < 

.05, ηp
2 = .035, i.e., the DS group ‘catch-up’ with TD performance with increasing RCPM 

score (Figure 4). 
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The WS and TD groups did not significantly differ in Maze Errors, U(38) = 154.00, p = .407. 

Mazes with path landmarks 

Again, at the intercept the DS group’s Maze Errors were significantly higher than the TD 

group’s, F(1,149) = 12.43, p =.001, ηp
2 = .077, and the relationship between RCPM and Maze 

Error was steeper in the DS group than the TD group, F(1,149) = 9.597, p < .01, ηp
2 = .061 

(Figure 5). 

The WS and TD groups did not differ in Maze Errors, U(38) = 159.00, p = .509. 

Mazes with distant landmarks 

There was no group difference at the intercept, F < 1, or in the relationship between RCPM 

and Maze Error for the DS group compared to the TD group, F < 1 (Figure 6). 

The WS group made fewer Maze Errors than the matched TD group, U(38) = 99.00, p = .017. 

Cross-maze comparisons 

Repeated measures ANCOVAs were conducted separately for the TD and DS groups, with 

landmark type the within-subjects factor and RCPM as the covariate. Simple effects of task 

are independent of the covariate and have been reported in the ANOVAs above. 

For the TD group, performance improved with RCPM, F(1,106) = 32.282, p < .001, ηp
2 = 

.233. There was an interaction between RCPM and landmark type, F(2,212) = 7.770, p < .01, 

ηp
2 = .068, reflecting a steeper relationship between RCPM and performance on distant mazes 

than both junction, p < .05, and path mazes, p < .01, and on path mazes compared with 

junction mazes, p < .05. 
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For the DS group, there was an improvement of performance with higher RCPM score, 

F(1,43) = 11.430, p < .01, ηp
2 = .210. However, there was no reliable interaction between 

RCPM and landmark type, F < 1. 

Figures 4, 5 and 6 about here 

Experiment 2 Discussion 

The aim of Experiment 2 was to investigate the development of the ability to use different 

types of landmarks in typical development, Down syndrome and Williams syndrome. 

Because of the lower maximum trial number for each maze in Experiment 2, total errors were 

lower than for those observed in Experiment 1. However, comparison across Experiments 

using equivalent numbers of learning trials demonstrated that participants were just as 

competent route learners when presented with just junction landmarks or just path landmarks, 

relative to a maze with all three landmark types. Consistent with Experiment 1, when 

compared across groups, the poorest performance was observed in the DS group. We first 

discuss the performance of the TD group, before turning to the patterns of performance in the 

atypical groups. 

The TD group’s performance was better when junction or path landmarks were present than 

when only distant landmarks were available, but even the youngest children tested could 

learn using distant landmarks alone. However, there was no evidence for any overall 

advantage of junction landmarks over path landmarks in the TD group, when the three age-

groups were examined separately. In line with the hypothesis that an advantage in using 

junction over path landmarks would emerge developmentally for the TD group, using a much 

higher-power analysis of the whole group, however, there was a difference in the relationship 

between nonverbal ability and performance across the path and junction conditions, with 

higher-ability individuals performing better in path mazes, relative to lower-ability 

23 
 



Route learning in Williams syndrome and Down syndrome 
 

individuals, than in junction mazes. In other words, development learning was ‘faster’ for 

junction landmark use than for path landmark use. This emphasizes the usefulness of 

trajectory analyses: only when performance was considered with respect to a developmental 

measure, RCPM, was an advantage with junction over path landmarks revealed (in line with 

the results of Farran et al., 2012a).  

The 5- to 6-year-old TD children were able to successfully learn across the three learning 

trials when only distant landmarks were available, although with more errors in the process 

than when landmarks were present within the maze walls. Although it is possible that these 

children succeeded at the task without reference to the distant landmarks, simply by 

remembering the sequence of left and right turns, this seems unlikely for two reasons. First, 

there were six turns in each of the mazes, making it very difficult for the youngest children to 

remember the route as a verbal list, since 5-year-old children tend to have verbal memory 

spans of around three (increasing up to about five items by 11 years old; Hulme, Thomson, 

Muir, & Lawrence, 1984; Nicolson, 1981). Second, children less than 7 years old do not 

spontaneously recode visually presented verbal material into a phonological form (e.g., 

Conrad, 1971; Henry, 1991; Hitch, Halliday, Dodd, & Littler, 1989). Given these points, 

along with the salience of the landmarks in an otherwise very sparse and repetitive brick wall 

environment, we conclude that even the youngest children tested were able to make use of 

distant landmarks. There was a steeper relationship between nonverbal ability and 

performance with distant landmarks over the other landmark types; considered together with 

the junction vs. path results, this indicates a developmental schedule in which junction 

landmarks can be used successfully earlier than path ones, which can both be used earlier 

than distant landmarks.  

The DS group made more errors than the TD group overall. Initial analyses appeared to show 

a similar pattern of Maze Errors. That is, they made fewer route-learning errors in mazes with 
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junction landmarks than in mazes with distant landmarks, but there were no differences in 

performance across the other maze types. Thus, people with Down syndrome are able to 

make better use of more useful landmarks, in a similar way to the TD sample in the study. 

However, for mazes with path or junction landmarks, the trajectory analyses showed different 

patterns for the DS and TD groups: in each case, better route-learning was associated with 

higher RCPM scores, but low nonverbal ability had more of a negative impact on route-

learning performance in the DS group than in the TD group. This is the same pattern that was 

found for Experiment 1.  

In mazes where only distant landmarks were visible, the DS trajectory was not significantly 

different from the TD trajectory, in line with our predictions. However, this result should be 

treated with caution, because both groups’ variability in Maze Error was high in this 

condition.  

Across maze conditions, the pattern of results was different for the WS group from the TD 

and DS groups: there were no performance differences across the different maze types. 

Caution should be taken in attempting to interpret null results, given the sample size of the 

WS, but the lack of differences in performance across the different maze types suggests that 

the WS group could have approached the task in a different way to the other groups. When 

compared with a subset of TD participants matched for nonverbal ability, the WS group 

performed better than the TD group only on the distant landmark maze. This may relate to a 

more featural visual processing style (Karmiloff-Smith, 1997), discussed further below. 

General Discussion 

In Experiment 1, attention was a particularly strong predictor of route-learning ability across 

TD, DS and WS groups. In Experiment 2, the TD and DS groups showed the ability to use 
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junction and path landmarks over distant landmarks, while there were no performance 

differences across landmark types for the WS group. 

Trajectory analysis was possible for TD and DS groups only, for both Experiments. This is 

unfortunate, as is precluded developmental assessment of the WS group. Further research in 

which the task design elicits higher error rates in the WS group would enable trajectory 

analysis in this group. Despite this, we were still in a position to make cross-syndrome 

comparisons regarding absolute levels of ability on each of the four mazes, as well as the 

patterns of performance across mazes. 

Across both Experiments 1 and 2, the largest deficit in route learning was observed in the DS 

group, specifically those with low levels of non-verbal ability where route-learning 

performance was below that expected for their level of non-verbal ability. In contrast, 

performance of the WS group was in-line with or above the level predicted by their level of 

non-verbal ability. Given that the two disorder groups had similar levels of non-verbal ability 

(and attentional control), this suggests that the WS group were able to draw on a 

compensatory strategy to boost their performance, discussed below. 

For the TD group only, an emerging ability to make better use of junction landmarks over 

path ones was demonstrated, with increasing nonverbal ability. This effect was subtle, 

however, indicating that path landmarks may be as useful as junction landmarks for TD 

children, at least in certain circumstances: e.g., when path landmarks are only a few seconds’ 

walk away from a junction, and (critically) when an environment is relatively sparse. 

Strikingly, even 5- to 6-year-old TD children could use distant landmarks. 

The WS group performed better than a matched TD subgroup on both Experiment 1, where 

junction, path, distant, and non-unique landmarks were all present, and also in Experiment 2, 

on mazes where only distant landmarks were present. This is a surprising result that 
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contradicts our prediction that the WS group would perform at or below general levels of 

visuo-spatial ability on all route-learning tasks. What do these two maze types have in 

common that could explain this advantage of the WS group? Although more data are needed, 

we tentatively suggest that the particular challenge in each might be selecting relevant/useful 

foci for attention, or switching between them. In Experiment 1, the participant must choose 

which of the numerous landmarks to attend to at each time point; in the distant condition of 

Experiment 2, the participant must choose whether to attend to the landmarks outside of the 

maze or to the path/junction in view within the maze (not path or junction landmarks, but the 

path or junction itself). In such circumstances, the featural processing style associated with 

WS might enhance performance above that of participants with more holistic or global 

processing styles, who would attend to more irrelevant or less useful visual information at 

any given time. Karmiloff-Smith (1997) found that a WS group performed at chronological-

age-appropriate level in a face recognition task that could be performed using a featural 

strategy. To the extent that maze performance in the current study requires featural 

processing, then, one might expect the WS group to perform better than the TD group. What 

might support good featural processing? Visual attention is an obvious candidate. In a review 

of attention in WS, Breckenridge et al. (2012) note that WS samples scored at a mental-age-

appropriate level on the flanker task, which assessed selective attention, but below mental-

age level on a visual search task; inhibition and set shifting tasks. However, sustained 

attention was above mental-age level. Given the importance of attention for route learning in 

WS found in the current study, an elucidating line of future research would be to explore 

directly the relationship between various types of attention and route learning in WS.  

Performance was in line with nonverbal ability in the DS group across the whole range of 

non-verbal ability only in the distant condition of Experiment 2. In all other conditions, route-

learning performance was below the level predicted by non-verbal ability for individuals with 
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low non-verbal scores (with performance ‘catching up’ at higher levels of non-verbal ability), 

but in the distant condition of Experiment 2 no such group difference was found. This further 

supports evidence for within-domain variability in DS; route learning for people with low 

non-verbal scores, represents a relative weakness within the non-verbal domain. The present 

finding sits somewhere between the findings of Pennington et al. (2003) and Edgin et al. 

(2010) and demonstrates that poor non-verbal ability can be particularly detrimental to some 

aspects of route learning in this group. At this point, this puzzling pattern of results calls for 

more data: again, a thorough investigation of the relationship of different attentional abilities 

to route learning seems a promising avenue of research for DS, as for WS. 
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Table 1a. Descriptive statistics for route learning and the cognitive test battery.  

 Mean SD Range 

Age 

(years;months) 

   

TD 8;4 1;9 5;4-11;4 

DS (Expt 1) 18;7 7;4 10;2-39;1 

DS (Expt 2) 18;3 6;1 10;2-39;1 

WS 20;2 7;4 12;1-30;7 

BPVS (raw)    

TD 108 25 41-150 

DS (Expt 1) 81 23 27-143 

DS (Expt 2) 80 22 27-142 

WS 116 22 79-158 

RCPM (raw)    

TD 27 5.6 9-36 

DS (Expt 1) 17 4.8 9-31 

DS (Expt 2) 17 4.9 9-31 

WS 19 4.6 12-29 

Note. TD = typically developing, DS = Down syndrome, WS = Williams syndrome, BPVS = 

British Picture Vocabulary Scale, RCPM = Raven’s Coloured Progressive Matrices. 
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Table 1b. Scores for route learning, Go/No Go and the People Test.  

 Mean SD Range 

Route learning 

errors 

   

Maze 1    

TD 5.1 7.7 0-37 

DS 17.6 16.2 0-72 

WS 4.7 7.7 0-28 

Maze 2A : 

Junction 

Landmarks 

   

TD 1.2 2.6 0-14 

DS 6.0 8.1 0-36 

WS 3.2 4.7 0-15 

Maze 2A : Path 

Landmarks 

   

TD 1.6 3.5 0-27 

DS 8.8 10.4 0-39 

WS 2.6 3.6 0-13 

Maze 2A : Distant 

Landmarks 

   

TD 8.6 10.9 0-56 

DS 11.9 10.3 0-41 
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WS 7.6 9.1 0-29 

Go/No Go RT (ms)    

TD 630 126 387-1031 

DS 722 188 420-1264 

WS 768 120 607-998 

Go/No Go Errors    

TD 3.9 2.9 0-15 

DS 5.4 6.5 0-26 

WS 4.1 4.4 0-16 

People Test    

TD 19.6 9.5 0-36 

DS 11.8 9.1 0-32 

WS 16.7 8.9 0-31 

Note. TD = typically developing, DS = Down syndrome, WS = Williams syndrome 
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Table 2. Correlations between cognitive measures and route learning errors in Experiment 1.  

 Age BPVS RCPM GNG RT GNG 

Errors 

People Computer 

TD -.50** -.41** -.50** .42** .06 -.57** -.03 

DS -.13 -.37** -.45** .22 .37** -.34* .10 

WS (non-

parametric) 

-.20 -.68** -.58** -.13 .73** -.45 .26 

Note. BPVS = British Picture Vocabulary Scale, RCPM = Raven’s Coloured Progressive 

Matrices, GNG RT = Go/No Go task reaction time, Computer = a measure of 

mouse/keyboard and eye coordination. *p < .05; **p < .01. 
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Figure 1. 

A map of the maze used in Experiment 1 

 

Note. 1 to 8 are junction landmarks and A to H are path (non-junction) landmarks. The black 

circles are non-unique landmarks (keys). Distant landmarks (tree, church, windmill) are 

outside the maze walls. 
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Figure 2. The virtual environment maze in Experiment 1.  

 

Note. Shows example landmarks: drum and horse (junction landmarks, key (non-unique 

landmark) and the tree (distant landmark). 

 

 

 

 

 

 

43 
 



Route learning in Williams syndrome and Down syndrome 
 

Figure 3. Experiment 1: Maze Error against RCPM score for the TD and DS groups. 

 

Note. TD = typically developing, DS = Down syndrome, RCPM = Raven’s Coloured 

Progressive Matrices. 
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Figure 4. Experiment 2, mazes with junction landmarks: Maze Error against RCPM score for 

the TD and DS groups. 

Note. TD = typically developing, DS = Down syndrome, RCPM = Raven’s Coloured 

Progressive Matrices. 
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Figure 5. Experiment 2, mazes with path landmarks: Maze Error against RCPM score for the 

TD and DS groups.  

 

Note. TD = typically developing, DS = Down syndrome, RCPM = Raven’s Coloured 

Progressive Matrices. 
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Figure 6. Experiment 2, mazes with distant landmarks: Maze Error against RCPM score for 

the TD and DS groups. 

Note. TD = typically developing, DS = Down syndrome, RCPM = Raven’s Coloured 

Progressive Matrices. 
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