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Needleless electrospinning for scaled-up production of ultrafine 
chitosan hybrid nanofibers used for air filtration  

Lei Wang, a1 Changbo Zhang, b1 Feng Gaoc* and Gang Pan a,d* 

Large scale ultrafine chitosan hybrid nanofibers containing TiO2 and/or Ag nanoparticles were prepared using needleless 

electrospinning method. The nanofiber production rate was reached 50 g/h by needleless electrospinning method, which 

was much higher than 0.02-1 g/h in the traditional single needle electrospinning method. By optimizing the spinning 

parameters, nanofibers with a smooth uniform morphology were obtained with diameters ranging from 25 to 60 nm and Ag 

nanoparticles with average size of 2.9 nm were deposited on the surface of the nanofibers without aggregation. The hybrid 

nanofibers exhibted a significant increase in filtration efficiency (> 99%) for removal of nanoparticles aerosol, comparable 

to commercial high-efficiency particulate air filters, but with lower pressure drop and less mess. The chitosan hybrid 

nanofibers showed excellent antibacterial activity, e.g. 97% of E. coli and 99% of S. aureus were killed within 2 h. The cross-

linked nanofibers exhibited excellent water durability and maintained a stable microstructure in high humidity and in water 

immersion. The daily productivity can be achieved above 1.2 kg, which make this ultrafine nanofibers possible in the 

application of wound dressing, air filtration and environmental purification. 

Introduction 

Air pollution, such as haze, is a serious human health concern in many 
developing nations.1, 2 PM 2.5 is one of the most blatant serious 
sources of fine particulates in air and has been found to be the cause 
of many human diseases.3, 4 Ultrafine particles, expecially 
nanoparticles are more dangerous and not easy to filter out. There is 
an enormous requirement for clean air around the world which has 
sparked immense interest in the development of high efficiency 
filters. Nanofibrous materials have attracted increasingly attention in 
filtration.5-7 Functional nanofibers are now recognized as efficient 
materials for the treatment of the environmental problems. Because 
of their unique properties of the electrospun nanofibers such as high 
surface area, high aspect ratio, good mechanical properties and the 
ability to incorporate multifunctional nanoparticles in the fibers, the 
resulting product can be an excellent filter medium for air and water 
contaminants purification.8-15 The main difficulties focus on the high 
throughput, functionalization and fiber diameter reduction, while 
maintaining nanofibers stability.  

Chitosan is recognized as the second most globally abundant natural 
polysaccharide after cellulose.16, 17 Chitosan has several interesting 
properties including, biodegradability, nontoxicity and fungicidal 
effects, which make it an attractive material for uses in a wide range 
of industries.5, 18-26 However, electrospinning of chitosan has proven 
to be difficult, because of the poor solubility of chitosan in water. 
Many researchers have investigated the effect of solvents on the 
morphology of chitosan nanofibers, such as, acetic acid, hydrochloric 
acid, formic acid and trifluoracetic acid (TFA).27-30 It has been found 
that increasing concentrations of chitosan cause the morphology of 
fibers to change from spherical beads to an interconnected fibrous 
network. Regardless, electrospun chitosan fiber has been prepared 
in solution with TFA or in a co-solvent system with TFA and 
dichloromethane.31, 32 It is difficult to obtain large area homogenous 
fibers from chitosan solutions in pure TFA and the average fiber 
diameter is normally hundreds of nanometer with a broad 
distribution of fiber diameters. Furthermore, electrical sparks often 
occur, which can damage the samples and result in the defects to the 
chitosan nanofiber, including branched fibers and spindle or bead-
like structures.33 Nanofibers have been successfully electrospun from 
ionogenic polymers using mixed solutions of ionogenic polymer and 
non-ionogenic polymer. Electrospinning of chitosan nanofiber has 
been accomplished using a blend of chitosan with another polymer, 
such as poly (ethylene oxide) (PEO),34, 35 poly (vinyl alcohol) (PVA),27, 

31 polyvinylpyrrolidone (PVP)36 and silk fibroin.37 Nevertheless, the 
obtained hybrid nanofibers normally have a large diameter. 
Decreasing the nanofiber diameter within these mats provides many 
beneficial effects such as increase specific surface area to volume 
ratios and decrease average pore size. The reported chitosan hybrid 
nanofibers was usually prepared using single needle electrospinning 
method, which was seriously restricted its scale-up production to 
meet the large-scale application. Recently, more attention has been 
paid to develop needleless electrospinning technique.38-41  
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The present work was aim to prepare the large scale freestanding 
ultrafine chitosan hybrid nanofibers mats by a home–made 
needleless electrospinning setup with high throughput. In this work, 
PVA, TiO2 and/or Ag nanoparticles were introduced to improve the 
function and spinning ability, meanwhile reduce the fiber diameter. 
The production rate was compared with that of the single needle 
electrospinning. The performance of the nanofiber mats were 
investigated by using air filtration and antibacterial test. The test 
results indicated that the obtained hybrid nanofibers showed 
excellent antibacterial activity and a high filtration efficiency of 
nanoparticles aerosol with a low pressure drop while depositing a 
thin layer of nanofibers.  

Experimental 

Materials 

Chitosan (CS) (B.R. grade, degree of deacetylation: 80.0-95.0%, MW: 
590,000), Hydrochloric acid (37% of purity), Glutaraldehyde (50% in 
water) and Acetone were purchased from Sinopharm Chemical 
Reagent Co., Ltd. PVA (86-90% hydrolysed, MW: 118,000-124,000) 
was obtained from Zhong Ke Guo Chang Technology Co., Ltd (Beijing, 
China). Silver nitrite (AgNO3) and acrylic acid (AA) were purchased 
from Beijing Chemical Works. TiO2 in the form of aeroxide hydrophilic 
fumed powder was purchased from Evonik Industries Metal Oxides. 
The polypropylene (PP) non-woven fabric (Thickness: 100 μm) was 
obtained from Handan Heng yong Protective & Clean Products Co., 
Ltd. (China). The high efficiency particulate air (HEPA) filter 
(CZU500W) was obtained from Chongqing Paper Industry Research 
and Design Institute Co., Ltd. (China). All chemicals were used 
without further purification.   

Needleless electrospinning of nanofiber mats 

The home-made needleless electrospinning setup was used as 
described in Fig. 1, which was consisted of a positive stainless steel 
roller (length: 25 cm, diameter: 8 cm) connected with high voltage 
power supply (Spellman SL130 P300), a polytetrafluoroethylene 
solution tank (volume: 2 L) and a collect roller (length: 50 cm, 
diameter: 10 cm). The collect roller was placed vertically at the top 
of the spinning roller. The spinning roller was partially immerged in 
the spinning solution and the polymer solution could cover and load 
on the surface of rotatable roller during the electrospinning process. 
The rotation speed of spinning electrode was fixed at 20 rpm. The 
collector was rotating at a speed of 50 rpm. 4 wt% of chitosan 
solution was prepared by dissolving dry mass in 2% v/v aqueous 
acetic acid at room temperature then heating to 60°C with magnetic 
stirring for 24 h. 10 wt% of PVA solution was prepared by dissolving 
PVA polymer in deionized water at 60°C, and completely dissolved by 
stirring. Optimization of the electrospinning parameters were carried 
out by variation blend weight ratios (CS: PVA from 1/2 to 3/1), 
applied voltage (20–70 kV), the distance from the tip of the needle 
to grounded collector (TCD: 6–15 cm), AgNO3 concentration (from 
0.04% to 1.0%) and TiO2 concentration (0.04%). The prepared mixed 
solutions were placed in a polytetrafluoroethylene solution tank. The 
electrospinning experiments were carried out at 25°C and 20% of 
relative humidity (RH). The nanofiber mats were collected on a 
grounded roller and dried at room temperature in vacuum for 24 h 

to remove any remaining moisture or acetic acid. The nanofibers 
were cross-linked by placing them in a desiccator saturated with 
glutaraldehyde vapor for 24 h or with 4 wt% glutaraldehyde in 
acetone solution for 30 min. 

 

Fig. 1 The diagram of needleless electrospinning setup (a) and the 
electrospinning process (b) 

Characterizations  

The morphology of nanofiber was characterized by scanning electron 
microscope (SEM, S4800, HITACHI). The average nanofiber diameter 
was determined by the statistical treatment of the SEM images with 
Image J. The diameter distribution was obtained by measuring at 
minimum of 50 product nanofibers. Ag nanoparticles were 
characterized by transmission electron microscopy (TEM, Tecnai G2 
20 S-TWIN, FEI) and energy dispersive X-ray spectroscopy (EDX). The 
conductivity of the spinning solution was measured by using a 
conductivity meter (DDS-11A, Shanghai REX Instrument Factory). 
Fourier transform infrared spectroscopy (FTIR) spectra of the 
chitosan nanofibers were performed in ATR mode from 4000 to 400 
cm-1 (Perkin-Elmer Spectrum 100).  

Testing of air filtration capacity 

The CS hybrid nanofibers were deposited on the non-woven PP 
substrate which covered the collecting roller to form a composite 
filter. A TSI Automated Filter Tester (Model 8130) was used to 
measure the filtration performance of nanofibrous media. The 
testing particles were monodisperse solid NaCl aerosols with 
diameter of 75±20 nm. The testing time was 10 s with air flow of 32 
L/min. The filtration efficiency (R) of nanoparticles aerosol was 
determined by the following equation:  

R = (1- Cp/C0) × 100% 

Where Cp and C0 represented the concentration of nanoparticles at 
the filter holder outlet with and without a filter installed. All of the 
tests were performed triplicate. 

Determination of antibacterial activity 
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The antibacterial properties against gram-negative Escherichia coli 
(E. coli) and gram-positive Staphylococcus aureus (S. aureus) of 
electrospun CS/PVA blends mats were tested using the agar plate 
method. Nanofiber samples were cut into wafers with diameter of 1 
cm and then sterilized by ultraviolet radiation. After the activation, 
the prepared nanofiber samples were placed onto the agar plate 
where the bacteria was inoculated and cultured at 37°C for 24 h. 
Photographs were used to illustrate the antibacterial performance of 
the samples. 

The shake flask method was used to test the bactericidal kinetics of 
the CS hybrid nanofiber. The initial concentration of bacteria was 
7×106 CFU/mL. 20 mg of CS hybrid nanofiber mat was put into 50 mL 
of bacteria solution, which was kept on shaking at 37°C. 0.1 mL of the 
bacteria solution was sampled every 0.5 h and cultured on an agar 
plate at 37°C for one day. Control experiment was carried out 
without adding the CS hybrid nanofiber mats and the bacterial 
colonies were counted. The bactericidal kinetics were determined by 
the degradation of bacterial colonies. All of the experiments were 
performed triplicate. 

Results and discussion 

Characterization of chitosan hybrid nanofiber mats 

Fig. 2 FE-SEM images of various nanofibers (a) CS, (b) CS/PVA, (c) 

CS/PVA/Ag, (d) CS/PVA/TiO2, (e) CS/PVA/Ag/TiO2 and (f) optical 

image of part nanofiber mat. The concentration of AgNO3 was 0.1% 

and TiO2 was 0.04%. 

Needleless electrospinning was performed by a home-made setup 

with an applied voltage of 50 kV and collection distance of 10 cm. 

Electrospinning of CS in 2% acrylic acid solution over a broad 

concentration range failed to yield the desired nanofibers. As shown 

in Fig. 2a, the bead structure was formed during the electrospinning 

process. Chitosan nanofibers can’t be directly prepared by the 

electrospinning method,42 because of its natural properties such as 

low solubility, high degree of inter and intra-chain hydrogen bonding. 

It has been found that the addition of a non-ionogenic polymer with 

a flexible chain could facilitate the nanofiber formation of the CS 

from ionogenic polymers. PVA has good fiber-forming ability and 

biocompatibility, so it was selected as the suitable non-ionogenic 

partner for preparation of CS hybrid nanofibers.43, 44 From Fig. 2b, 

PVA obviously enhanced the electrospinning ability of CS and 

improved the material properties of chitosan resulting in, for 

example, high tensile strength.45  

 

 

Fig. 3 FTIR spectra of the electrospun nanofiber mats (a) CS, (b) 

CS/PVA and (c) PVA. 

Fig. 3 summarizes the FTIR spectra of various nanofiber mats. The 

presence of CS in the mat was confirmed by the absorption bands for 

O-H and N-H at 3441 cm-1, the saccharine characteristic peak around 

1150 cm-1-898 cm-1 and an amino peak at 1255 cm-1. It was observed 

that O-H and N-H stretching vibrations shifted to a lower 

wavenumber and the amino peak at 1255 cm-1 disappeared in the 

CS/PVA nanofibers. Moreover, N-H peak at 1580 cm-1 and the 

saccharine characteristic peaks were present in CS/PVA nanofibers. 

These results indicated that CS and PVA formed hydrogen bonds and 

the repulsive force between the ionic groups within the CS backbone 

decreased which improved the electrospinning ability of CS.  

However, the morphology of the CS/PVA nanofiber mat was still 

included some beads structure and the fibers were not uniform in 

the diameter (Fig. 2b). The CS/PVA blend nanofibers with AgNO3 

and/or TiO2 were successfully fabricated with a uniform smooth 

morphology and ultrafine diameters in range of 25-60 nm (Fig. 2c-e), 

which were much lower than the reported chitosan nanofibers with 

diameters of 90-220 nm prepared by single needle electrospinning 

method.42, 46, 47 The conductivity of the various CS, CS/PVA, 

CS/PVA/AgNO3 and CS/PVA/TiO2 hybrid solutions were 2.24, 3.06, 

3.66 and 3.25 mS/cm, respectively. This result suggested that the 

conductivity of the solution played an important role in the 

electrospinning and the addition of AgNO3 and TiO2 significantly 

improved the electrospinning capability of the CS/PVA solution. 
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Fig. 4 (a) TEM image of the CS hybrid nanofiber mats and (b) the 

diameter distribution of the Ag nanoparticles. The EDX spectra of 

different hybrid nanofibers (c) CS/PVA/Ag, (d) CS/PVA/TiO2 and (e) 

CS/PVA/Ag/TiO2. The other peaks on the spectra were attributed to 

Au due to the Au coating performing. 

Fig. 4a presents the TEM images of the nanofibers and it clearly 

shows that the Ag nanoparticles with an average diameter around of 

2.9 nm are successfully deposited on the surface of nanofibers (Fig. 

4b). Nanosized Ag particles offer high reaction activity, such as 

catalysis and antibacterial activity.48, 49 Various blended fibers with 

Ag and/or TiO2 were synthesized with uniform morphologies and 

ultrafine fiber diameters. The deposition of Ag and TiO2 in the mats 

were further verified using energy dispersive X-ray spectroscopy 

analysis, as shown in Fig. 4c-e. 

Systematic effects on the preparation of CS hybrid nanofibers 

Fig. 5 FE-SEM images and diameter distribution of the CS/PVA/Ag 

mats with different CS to PVA weight ratios (a) 1/2, (b) 1/1, (c) 2/1 

and (d) 3/1. The AgNO3 concentration was 0.1%. 

In order to obtain the high quality of nanofibers, electrospinning 

parameters was optimized by using CS/PVA/Ag as an example. 

Applied voltage and collection distance were 50 kV and 10 cm, 

respectively. Fig. 5 shows the SEM micrographs of the subject fibrous 

mat. This figure reveals the average diameter and diameter 

distribution of the CS/PVA/Ag hybrid nanofiber mats containing 0.1% 

AgNO3 with different weight ratios of CS/PVA. As shown in Fig. 5b, a 

uniform nanofibers structure was observed when the CS/PVA weight 

ratio was 1/1. The nanofiber diameter gradually decreased with the 

increase of CS content in the blend solution. For example, the 

diameter of the fibers with a CS/PVA weight ratio of 1:2 was 92.8 nm, 

but this diameter decreased to 25.7 nm when the ratio of CS/PVA 

was 3/1. This result can be explained by the increase of  charge 

density of the spinning solution and the increase of conductivity as 

the increase of CS content in the solution (Table 1).27 However, when 

the CS/PVA weight ratio reached up to 3/1, few nanofibers were 

resulted. An increase in the amount of nanofiber defects were also 

observed, such as branched fibers, bead-like structures. This result 

was possibly due to the increase of CS content in the spinning 

solution, which could induce the increase of repulsive force between 

the ionic groups within the ploymer’s backbone. This was 

detrimental to continuous fiber formation under high electric field.  

The effect of the AgNO3 concentration in the mixture was also 

investigated. From the results shown in Fig. 6, the nanofibers were 

successfully synthesized with various concentrations of AgNO3 

(0.04%, 0.1%, 0.5% and 1.0%) and all of the resulting nanofibers 

exhibited a smooth morphology and uniform diameter. It can be 

concluded from these results that the addition of Ag ions significantly 

improved the spinning ability of the CS/PVA solution. The 

conductivity of the solution was increased from 3.37 to 6.60 mS/cm 

when the AgNO3 concentration was increased from 0 to 1.0% (Table 

1). However, the average diameter of the fibers increased from 34.5 

to 61.7 nm under the same circumstances, which was inconsistent 

with the increase in the AgNO3 concentration. The possible reason 

for this latter result was that as the AgNO3 concentration in solution 

increased, the dynamic viscosity of solution increased, which was 

unfavorable for the electrospinning process. Nanofibers with 

ultrafine diameter were desired, so the concentration of AgNO3 was 

controlled from 0.04% to 0.1% in this study. From the above results, 

it appeared that the surface morphology of the nanofibers and the 

average fiber diameters were significantly affected by the 

composition of the spinning solution.  

 

Fig. 6 FE-SEM images and diameter distribution of the CS/PVA/Ag 

mats with different AgNO3 concentrations (a) 0.04%, (b) 0.1%, (c) 0.5% 

and (d) 1.0%. CS to PVA weight ratio was 1/1. 

Table 1 Conductivity (σ) of the mixed solutions under different 

conditions. 

Conditions Different CS/PVA(w/w)  

(0.1%AgNO3) 

Different AgNO3 content  (CS/PVA=1/1) 

1/2 1/1 2/1 3/1 0 0.04% 0.1% 0.5% 1.0% 

σ(mS/cm) 3.56 3.66 3.76 3.83 3.37 3.43 3.66 4.62 6.60 
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Table 2 Voltage and TCD effects on the fiber diameter. 

(a)Voltage/kV 20 30 50 60 70 

dave/nm 60.5 45.0 36.7 38.5 40.0 

(b)TCD/cm 6 9 10 12 15 

dave/nm 45.5 37.0 36.7 44.2 48.4 

It has been reported that applied voltage has an important effect on 

the synthesis of the electrospun nanofibers and especially affects the 

fiber diameter and the morphology.32, 33 To determine the effect of 

applied voltage, a series of experiments were conducted where the 

conditions were, a ratio of CS/PVA 1/1, 0.1% AgNO3 and TCD (tip to 

collector distance) was 10 cm. The applied voltage was varied from 

20 to 70 kV. Within these applied voltages the resulting nanofibers 

were produced with a smooth morphology. The results in Table 2a, 

appear to suggest that the average diameter of nanofibers decreased 

with the increase of the applied voltage, which was in accordance 

with results reported by Sencadas et al.32 But when applied voltage 

was too high, the phenomenon of electrical sparking often occurred 

during the spinning process which induced the discontinuous 

spinning of the nanofibers. This adversely affected the morphology 

and diameter of the fibers. Table 2b shows the TCD effects on the 

fiber diameter. These results suggested that the fiber diameter 

increased as the TCD increased from 9 to 15 cm. This was due to weak 

dissipative forces that occurred at longer TCD. The same result was 

observed with a lower TCD (below 9 cm), the explanation for this 

could be that short distance adversely affected the solvent 

evaporation, inducing more adhesion between the nanofibers 

resulting in the formation of large diameter fibers. Therefore, it is 

important to optimize the applied voltage and distance during the 

electrospinning process. Using a TCD of 10 cm and 50 kV, smooth 

nanofibers were produced with an average diameter of 36.7 nm. 

Applied voltage effect on the production rate of CS hybrid nanofiber 

was measured in this study. The most important thing of 

electrospinning was keeping on a continuous fluent electrospinning 

process. The production rate of nanofibers were achieved 28, 50 and 

36.5 g/h when the applied voltage was tested at 20, 50 and 70 KV, 

separately. The maximum productivity was obtained at 50 KV. When 

the voltage was low, the amount of jet flow was less than that of high 

voltage, but when the applied voltage was too high, the 

phenomenon of electrical sparking often occurred and thus caused 

the discontinuous electrospinning and low productivity. Herein, the 

productivity of ultrafine chitosan hybrid nanofibers could be 

achieved 50 g/h by using the home-made needleless electrospinning 

setup (50 KV, TCD: 10 cm). Thus, the daily production rate was 

reached over 1.2 kg in bench-scale laboratory test. However, the 

production rate of the known single-needle electrospinning was 

limited to 0.02-1 g/h.39 This work provided an efficient approach for 

massive production of high quality functional nanofibers and the 

production could be further improved in pilot scale test. 

Cross-linking of electrospun nanofibers 

To improve the potential application of the subject nanofibers in the 

aqueous environments, we chose to cross-link the polymers to 

improve the durability of the nanofibers in water. Glutaraldehyde 

vapor and glutaraldehyde solution were all studied and compared in 

this work. Control experiments were performed using nanofibers 

without any treatment. All samples were immersed in deionized 

water for 30 min. As shown in Fig. 7, when the electrospun nanofiber 

mats were immersed in water solution, they were disintegrated 

instantaneously and the fibers dissolved with neither the mat nor 

individual fibers remaining intact. Cross-linking the fibers using 

glutaraldehyde vapor improved their water durability of the product. 

However, the morphology of mats and the porous structure were still 

partially destroyed. From all of the SEM images, it was evident that 

after cross-linking with 4% glutaraldehyde solution the fiber mats 

became highly water durable and maintained their integrity as long, 

randomly oriented, cylindrical fibers (Fig. 7c). The glutaraldehyde 

residue was removed by washing with water for several times and 

drying under vacuum condition to remove the remaining solvent. 

Nanofibers cross-linked by glutaraldehyde solution retained their 

shape and rigidity unaltered in an environment of high humidity or 

water immersion. 

 

Fig. 7 FE-SEM images of the CS/PVA/Ag nanofiber mats immersed in 

water for 30 min: (a) without treatment, (b) cross-linked using 

glutaraldehyde vapor and (c) cross-linked using 4% glutaraldehyde 

solution. 

 

Air filtration performances of the chitosan hybrid nanofiber filters 

Fig. 8 (a) shows the filtration efficiency and pressure drop across of 

composite membrane versus the thickness of nanofibers. The PP 

fabrics have large pore size about 10 µm and high diameter of 2 µm. 

The filtration efficiency of PP non-woven fabrics was only 17.0%, but 

it was increased significantly and achieved above 98% after 

compositing with a thin layer of CS hybrid nanofibers. The filtration 

efficiency of ultrafine nanoparticles were effected by mechanisms of 

Brownian diffusion and electrostatic absorption, which was different 

from the large size particles by interception. Nanoparticles were 

easily captured on the surface of the nanofiber layer due to its 

ultrafine diameter and small pore size (Fig. 8). The filtration efficiency 

increased from 17.0% to 99.2% with the increase of the thickness of 

the nanofibers layer from 0 to 18.7 μm and then decreased a little to 

98.4% in the case of the 27.4 μm fibers. The filtration efficiencies 

were significantly improved with the addition of a thin layer of CS 

hybrid nanofibers (only 2.5 μm). The pressure drop was also 

increased along with the increase in fiber thickness. Filtration 

experiment was also carried using a commercial high-efficiency 

particulate air (HEPA) filter. The HEPA showed the filtration efficiency 

of 99.95%, but with a much higher pressure drop of 280 mm H2O than 

that of the chitosan composite nanofibers filter media (Fig. 8). High 

efficient filters normally need both higher filtration efficiency and 

lower pressure drop. It can be concluded that the chitosan composite 
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filter media presented better performance than HEPA for the 

filtration of nanoparticles aerosol.  

In order to study the nanoparticles aerosol filtration efficiency based 

on the size of the nanofibers, the filtration efficiency of CS hybrid 

nanofibers with different nanofiber diameters were tested. As shown 

in Fig. 9, with increasing nanofiber diameter the air filtration 

efficiency was decreased. In this work, the ultrafine nanofibers (tens 

of nm) showed significant improvement in the aerosol nanoparticles 

filtration compared with the reported fibers with hundreds of nm or 

micrometer diameter.50 51 It was attributed to the higher pore size 

obtained with increasing nanofiber diameters along with increase in 

air permeability. 

 

Fig. 8 The filtration efficiency and pressure drop of nanofibers versus 

the thickness of nanofibers (a) and the SEM images of the samples 

after filtrating aerosols with (b) low scale and (c) magnified scale. 

 

Fig. 9 The filtration efficiency of nanofibers with different diameters 

Antibacterial activity of the nanofiber mats 

During the filtration process, especially the indoor filtration, the 

pathogenic organisms normally can stay on the surface of filters. The 

growth and proliferation of bacteria on the filters can result in the 

decrease of filtration efficiency and improve the pathogenic risk. 

Thus, it is important to prepare the antibacterial membrane filter. 

The antimicrobial properties of the synthesized fiber mats were 

determined using E. coli and S. aureus which were inoculated with 

CS/PVA/Ag or CS/PVA/TiO2 nanofiber membrane on agar plates for 

24 h. Controls consisted of a PVA membrane and CS/PVA nanofiber 

membrane which were also inoculated with these bacteria and 

grown on agar plates for 24 h. Based on the results for the inhibition 

zone of the circle shown in Fig. 10, the nanofiber mats with Ag or TiO2 

exhibited evident antibacterial activity. The CS/PVA also inhibited the 

growth of the bacteria, because chitosan has antibacterial properties, 

caused by damaging the interaction of polycations with the 

negatively charged surface of the bacteria and thus result in a loss of 

membrane permeability, cell leakage and cell death. Fig. 10a-d shows 

the lesions and holes on the bacterial cell membrane, which indicate 

the damages of the bacterial cell caused by the CS/PVA/Ag nanofiber 

mats. The shake flask method was used to examine the bactericidal 

kinetics of the nanofiber mats. 20 mg of CS/PVA/Ag or CS/PVA/TiO2 

nanofibers were added to tubes containing 50 mL of the test bacteria 

at a concentration of 7×106 CFU/mL. The tubes were maintained in 

an incubated shaker at 37°C. Fig. 10e shows the bactericidal kinetics 

of the CS hybrid nanofiber mats with Ag or TiO2. Both types of 

nanofibers exhibited powerful antibacterial activity. The 

antibacterial activity of the nanofibers with 0.04% AgNO3 attained a 

mortality rate of 97% for E. coli and 99% for S. aureus within 2 h. The 

nanofibers with 0.04% TiO2 exhibited a mortality rate of 90% for E. 

coli and 92% for S. aureus. The Ag nanoparticle presented strong 

bactericidal activity, because it could affect the cell wall permeability 

and cellular respiration.52-54 TiO2 will naturally be more effective 

bactericidal under irradiation. However, these results suffice to show 

that the CS hybrid nanofibers with Ag or TiO2 are excellent 

antibacterial materials. The presence of micro- and nano-sized pores 

in the same antibacterial membrane not only performs acceptable 

filtration while assisting to minimize microbial fouling. Consequently, 

this novel filtration medium can be used for simultaneous 

nanoparticles filtration and disinfection of pathogens, such as viruses 

and bacteria. 

 

Fig. 10 Images of the inhibition zone of various fibers (A) PVA, (B) 

CS/PVA, (C) CS/PVA/TiO2 and (D) CS/PVA/Ag; SEM images of E.coli 

and S.aureus contacted with CS/PVA/Ag nanofiber (a, c) 0 h and (b, 

d) 2 h and (e) the bactericidal kinetics. The test was carried out in 

7×106 CFU/mL of E.coli and S.aureus. 

Conclusions 

In conclusion, for the first time, high throughput non-woven 

mats of chitosan hybrid nanofibers containing TiO2 and/or Ag 

nanoparticles were prepared using needleless electrospinning 

method. Needleless electrospinning significantly improved the 

production rate of chitosan hybrid nanofibers, which was more 
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than 50 fold higher than the yields in the traditional single 

needle electrospinning method. The daily productivity could be 

achieved above 1.2 kg. Through optimization of the spinning 

conditions, the ultrafine chitosan hybrid nanofibers with the 

diameters ranging from 25 to 60 nm were obtained in this work. 

When the nanofiber mats were cross-linked using 4% 

glutaraldehyde solution, they exhibited excellent water 

durability and maintained their original morphology in an 

environment of high humidity or when immersed in water. The 

hybrid nanofibers mats exhibited high filtration efficiency of 

nanoparticles aerosol and excellent antibacterial activity. In 

addition, with the presence of an abundance of functional 

groups, the large scale ultrafine CS hybrid nanofibers could be 

used as a nanoreactor system to produce fiber-based composite 

nanostructured materials. The porous structures of these 

materials could make them useful for applications ranging from 

wound dressing, filtration to environmental remediation. 
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