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Abstract 

 

Chlorpyrifos (CPF) and CPF-oxon (CPO) are known to inhibit neurite outgrowth but little is known 

about their ability to induce neurite retraction in differentiating neuronal cells. The aims of this 

study were to determine the ability of these compounds to destabilize neurites and to identify the 

key molecular events involved. N2a cells were induced to differentiate for 20 h before exposure to 

CPF or CPO for 2-8 h. Fixed cell monolayers labeled with carboxyfluorescein succinimidyl ester or 

immunofluorescently stained with antibodies to tubulin (B512) or phosphorylated neurofilament 

heavy chain (Ta51) showed time- and concentration-dependent reductions in numbers and length of 

axon-like processes compared to the control, respectively, retraction of neurites being observed 

within 2 h of exposure by live cell imaging. Neurofilament disruption was also observed in treated 

cells stained by indirect immunofluorescence with anti-phosphorylated neurofilament heavy chain 

(NFH) monoclonal antibody SMI34, while the microtubule network was unaffected. Western 

blotting analysis revealed transiently increased levels of reactivity of Ta51 after 2 h exposure and 

reduced levels of reactivity of the same antibody following 8 h treatment with both compounds, 

whereas reactivity with antibodies to anti-total NFH or anti-tubulin was not affected. The alteration 

in NFH phosphorylation at 2 h exposure was associated with increased activation of extracellular 

signal-regulated protein kinase ERK 1/2. However, increased levels of phosphatase activity were 

observed following 8 h exposure. These findings suggest for the first time that 

organophosphorothionate pesticide-induced neurite retraction in N2a cells is associated with 

transient increases in NFH phosphorylation and ERK1/2 activation. 
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Introduction 

 

Chlorpyrifos (CPF: chlorpyrifos, O, O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothionate, O, 

O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothionate, chlorpyrifos-ethyl) is one of the most 

extensively used organophosphate (OP) insecticides. It was introduced into the market in the 1960s, 

and is still used widely in agriculture and in the home. Following its entry into the body, CPF is 

metabolically converted into its oxygen or oxon analogue, in which the sulphur of its P=S group is 

replaced by oxygen. This biotransformation reaction is carried out mainly in the liver by the 

cytochrome P450 (CYP)-dependent monooxygenase system (Flaskos 2012). CPF activation to 

CPF-oxon (CPO) is the main cause of moderate acute toxicity in mammals (Richardson 1995). 

 

Numerous in vitro studies using different cell culture models have reported the ability of CPF to 

induce neurodegenerative effects in animals and humans (Eaton et al. 2008; Flaskos et al. 2011). 

The principle mechanism of CPF toxicity involves the inhibition of acetylcholinesterase (AChE), 

which regulates neurotransmission at central and peripheral cholinergic synapses (Campbell et al. 

1997; Steevens and Benson 1999). The persistent inhibition of AChE activity prevents 

acetylcholine (ACh) degradation, causing its accumulation, which can lead consequently to 

cholinergic overstimulation (Eaton et al. 2008; Flaskos 2012). 

 

Severe cases of OP acute toxicity are defined by more than 70 % inhibition of AChE activity (Clegg 

and Gemert 1999a). Such cases develop a condition known as “cholinergic syndrome” which 

includes several CNS associated symptoms such as ataxia, coma, convulsion and blurred vision 

(Lotti 2005). However, in severe cases acute toxicity of OPs can cause respiratory failure, which is 

believed to be responsible for most fatalities in cases associated with CPF exposure (Larkin and 

Tjeedema 2000; Flaskos 2012). Furthermore, CPF poisoning can have a neurodegenerative effect 

on CNS neurons, especially in the spinal cord, resulting in a condition known as OP-induced 



delayed neuropathy (OPIDN). In such cases, the primary target of this compound is the enzyme 

neuropathy target esterase (NTE), which has a crucial role in embryonic development and 

maintenance of peripheral axons (Lotti and Moretto 2005). 

 

It has been shown that CPF and CPO can inhibit the outgrowth of neurites and disrupt the levels of 

cytoskeletal proteins in differentiating neuronal cell lines (Sachana et al. 2001, 2005; Flaskos et al. 

2011). It is also known that the induction of developmental neurotoxicity may depend on the 

developmental stage at which exposure occurs. The majority of previous in vitro studies have 

involved the administration of OP at the point of induction of cell differentiation. However, little is 

known about the effects of OPs once cells have been committed to differentiation.  The aim of the 

present study was to investigate the ability of non-cytotoxic concentrations of CPF and CPO to 

cause neurite retraction in pre-differentiated mouse N2a neuroblastoma cells and to relate these 

neurotoxic effects to the levels of expression and activities of cytoskeletal proteins and cell 

signaling pathways involved in neural cell differentiation and survival.  

 

Materials and methods  

 

Materials 

The mouse N2a neuroblastoma cell line was purchased from ATCC-LGC Standards (Middlesex, 

UK). Cell culture plastic ware was supplied by SLS Laboratory Supplies (Nottingham, UK). Cell 

culture reagents were obtained from Lonza (Verviers, Belgium). Mouse monoclonal antibodies 

against total NFH (N52), phosphorylated NFH (SMI34), total α-tubulin (B512), GAP-43 (GAP-

7B10) and β-III tubulin (2G10) were obtained from Sigma-Aldrich Co. Ltd. (Poole, UK). Rat anti-

phosphorylated NFH (pNFH) monoclonal antibody (Ta51) was purchased from Chemicon Europe 

Ltd. (Chandlers Ford, UK). Mouse anti-phospho ERK 1/2 (E-4) and rabbit anti-total ERK 1/2 (K-

23) were supplied by Santa Cruz Biotechnology (Santa Cruz, CA, USA). Horseradish peroxidase 



(HRP) conjugated anti-rat and anti-mouse IgG secondary antibodies were purchased from 

DakoCytomation (Ely, UK). Chlorpyrifos and chlorpyrifos oxon (purity 97.6%) from Chem Service 

Inc. (West Chester, PA, USA), were supplied by Greyhound Chromatography (Birkenhead, UK). 

Unless otherwise stated, all other chemicals were obtained from Sigma-Aldrich Co. Ltd. (Poole, 

UK). 

 

Cell Maintenance and the Induction of Cell Differentiation 

Mouse neuroblastoma N2a cells were grown at 37°C in a humidified atmosphere of 5% CO2/ 95% 

air and maintained as a monolayer in Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/L 

glucose and 2 mM L-glutamine, supplemented with 10% (v/v) foetal bovine serum (FBS), penicillin 

(100 U/ml) and streptomycin (100 μg/ml). On reaching 60-80% confluence, cell cultures were 

either used to seed monolayers on 24 or 96 well plates for assays, T75 flasks for Western blot 

analysis or passaged to maintain the cell line. To passage the cell cultures, monolayers were 

mechanically removed from the flask surface by pipetting jets of growth medium and then 

harvested by centrifugation at 300 × g at room temperature for 5 min. The cells were then 

resuspended in DMEM by Pasteur pipette prior to sub-culture at the required cell density.  

 

Only cells below passage number 20 were used in experiments. Cell differentiation was induced by 

serum withdrawal and the addition of 0.3 mM dibutyryl cyclic AMP (Flaskos et al. 2007). Prior to 

induction of differentiation, a viable cell count was determined using a haemocytometer chamber 

and Trypan blue exclusion assay (Bhuyan et al, 1976).  Cells were then diluted to a density of 

50,000 viable cells/ml, before 40 ml of cell suspension were seeded into each T75 culture flask.  

 

After 24 h growth recovery, the growth medium was removed and replaced with serum free 

medium containing 0.3 mM dibutyryl cyclic AMP (differentiation medium). After 20 h of 

incubation, differentiation medium was replaced with the same volume of fresh differentiation 



medium with or without CPF or CPO (at the final concentration indicated in Results). Cells were 

returned to the CO2 incubator and incubated for a further 0.5 - 8 h, as appropriate. CPF and CPO 

were prepared as 200-fold concentrated stock solutions in dimethyl sulphoxide (DMSO) and added 

to the pre-warmed serum free medium immediately before use. Controls cells were treated with 

serum free medium containing the same concentration of DMSO (0.5% v/v).  

 

Measurement of neurite outgrowth 

Differentiated N2a cells were labeled using carboxyfluorescein succinimidyl ester (CFSE) 

fluorescent cell staining dye. Cells were seeded into 8-well cell chamber slides and induced to 

differentiate as indicated above. They were then incubated for 10 min with 10 μM CFSE dye in pre-

warmed sterile phosphate buffered saline (PBS) before being treated with 3 μM CPF or CPO in 

differentiation medium at 37 °C. Cells were then fixed in pre-warmed 3.7% w/v formaldehyde in 

PBS, followed by three 10-min washes in PBS and mounted under glass cover slips using 

VectaShield mounting medium for fluorescence (Vector Laboratories Ltd., Peterborough, UK) 

and viewed using an Olympus DP71 epifluorescence microscope. Eight culture wells were grown in 

four separate experiments. From each well, four random fields of view were selected giving a total 

cell count of 200-300 cells/well. In each field, the total number of cells and the total number of 

axon-like processes (long neurites; defined as extensions greater than two cell body diameters in 

length with an extension foot; Keilbaugh et al. 1991) were recorded and the mean number of long 

neurites per 100 cells was calculated (Flaskos et al. 1998).  

 

High content analysis of neurite outgrowth 

Alternatively, dose response experiments were performed using ibidi 8-well µ-slides seeded at 

15,000 cells/well. Differentiated cell monolayers were exposed for 8 h in the presence and absence 

of 1, 3 and 10 µM CPF or CPO, after which they were fixed and stained with monoclonal 

antibodies to total α-tubulin (B512) or to pNFH (Ta51), as described below for indirect 

http://en.wikipedia.org/wiki/Fluorescent
http://en.wikipedia.org/wiki/Staining


immunofluorescence. The effects of OP exposure on neurite outgrowth were detected using an 

ImageXpress® Micro Widefield High Content Screening (HCS) System (Molecular Devices, 

Wokingham, UK).  

 

Fluorescence images were acquired using a 10× objective lens and then analysed by 

MetaXpress software, using Neurite Outgrowth analysis settings. Objects were identified as 

cells if valid nuclei had been detected and cell body width ranged from 10 to 25 μm. 

Outgrowths longer than 10 μm were recorded as neurites. Analysis was performed on a total 

of 4 fields and at least 200 cells per well from four independent experiments. The maximum 

neurite length per cell (i.e. the average of the maximum neurite length recorded for each cell 

in a field) or the average neurite length per cell (i.e. the average of all recorded neurite lengths 

for each cell in a field) were recorded. 

 

 

Cell Viability Assessment 

The effects of CPF and CPO (1, 3 and 10 μM) on the viability of N2a cells were determined by the 

3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) reduction assay (Mosmann 

1983). For this, cells were plated out in Corning 24 well plates. At 30 min prior to the end of the 

required incubation period, a volume of 50 μl MTT (5 mg/ml solution in DMEM) was added to 

each culture well and re-incubated for 30 min at 37°C. Differentiation medium was then aspirated 

and DMSO was added to solubilise the reduced formazan crystals, the absorbance of which was 

read at 570 nm. There was no significant effect on MTT reduction compared to untreated controls at 

any of the OP concentrations tested (not shown). 

 

 

 



Acetylcholinesterase Activity Assay 

For this, 2 million cells were plated into T75 culture flasks and induced to differentiate as above. 

Cells were harvested by centrifugation, resuspended in ice-cold PBS and transferred into an 

Eppendorf micro-centrifuge tube. Cells were micro-centrifuged at 10,000 × g for 3 min to remove 

traces of DMEM. Cell pellets were then resuspended in ice cold 200 mM sodium phosphate buffer 

(pH 7.4) containing Triton X100 (0.1% v/v) at 4°C. AChE was then determined according to the 

assay of Ellman et al. (1961) modified for a microtitre plate format, as described by Flaskos et al. 

(2007). 

 

Indirect Immunofluorescence 

The intracellular distribution of neurofilaments and microtubules was further studied by indirect 

immunofluorescence staining. Initially, N2a cells were seeded into an 8-well cell culture chamber 

slide for 24 h, after which they were induced to differentiate with or without OPs as described 

earlier. N2a cells were fixed for 10 min with 3.7% w/v formaldehyde in PBS, extracted in 0.5% w/v 

Tween-20 in Tris buffered saline (TBS: 10 mM Tris, 140 mM NaCl; pH 7.4) for 15 min and 

blocked with 3 % w/v bovine serum albumin (BSA) in TBS (BSA/TBS) for 45 min at room 

temperature. They were then incubated with primary antibodies against NFH, p-NFH and β-tubulin 

followed by Alexa Fluor 488 rabbit anti-mouse IgG labeled secondary antibody, as described 

previously (Hargreaves et al. 2006; Harris et al. 2009b; Flaskos et al. 2007, 2011). After washing, to 

remove unbound secondary antibodies, the chamber slide was carefully dismantled and the cell 

monolayer mounted under a glass coverslip using VectaShield mounting medium for fluorescence 

(Vector Laboratories Ltd., Peterborough, UK) containing DAPI counterstain for nuclei 

visualization. Finally, the slide was viewed using an Olympus DP71 epifluorescence microscope 

system. 

 

 



Live Cell Imaging 

The real time changes in cell morphology following toxin exposure were determined using CFSE 

and monitored using a Leica TCS SP5 confocal laser scanning microscope with epifluorescence 

optics. The N2a cells were incubated in an environmental chamber which controlled the 

temperature and CO2. They were seeded into 96-well black-sided cell culture treated plates (BD 

Falcon™), induced to differentiate and labeled with CFSE prior to OP exposure, as described 

earlier. For each well, the focal point of the microscope lens was set to the position where cells with 

clear axons were detected. Non-treated live cells were first imaged to create a time zero 

measurement before adding the toxins. After that, a 3 μM concentration of CPF or CPO was added 

to each treatment well and the same positions were viewed every 30 min for an interval of 8 h 

exposure time. Live image snapshots were then obtained using Leica application suite advanced 

fluorescence lite (LAS AF) and selected axons were detected and measured. 

 

Gel Electrophoresis and Western Blot Analysis 

For Western blotting analysis, N2a cells were seeded and induced to differentiate, then treated in 

the presence and absence of CPF or CPO compounds for up to 8 h in T75 culture flasks, as 

described above. Intact cell monolayers were then solubilised by boiling in 2 ml of 0.5% w/v 

sodium dodecyl sulphate (SDS) in TBS prior to protein estimation. Protein was estimated by the 

bicinchoninic acid (BCA) assay, using BSA as the standard (Brown et al. 1989).  The resultant cell 

lysates were subsequently subjected to gel electrophoresis in the presence of SDS (SDS-PAGE) 

employing a 10% w/v polyacrylamide resolving gel overlaid with a 4% w/v polyacrylamide 

stacking gel  (Laemmli 1970).  Separated proteins were then electrophoretically transferred onto 

nitrocellulose membrane filters (Towbin et al. 1979). The resultant Western blots were blocked with 

BSA/TBS for at least 1 h at room temperature. Blots were then probed overnight at 4°C with 

appropriate dilutions of primary antibodies in BSA/TBS, including mouse anti-total NFH (N52, 

dilution 1:250), rat anti-pNFH (Ta51, dilution 1:250), anti-GAP-43 (GAP7B10, dilution 1:1000), 



mouse anti-α-tubulin (B512, dilution 1:2000), mouse anti-β-III tubulin (2G10, dilution 1:1000), 

mouse anti-phosphorylated ERK 1/2 MAP kinase (E-4, dilution 1:500), monoclonal antibodies and 

the rabbit-total ERK 1/2 (K-23, dilution 1:1000). After six 10-min washes in TBS containing 0.05% 

v/v Tween-20 (TBS/Tween), blots were probed with horseradish peroxidase (HRP)-conjugated 

secondary antibodies for 2 h at room temperature. Following 6 further washes with TBS/Tween, 

antibody reactivity was visualized using enhanced chemiluminescence (ECL) reagent (Thermo 

Scientific, Rockford, IL, USA). For quantification of antibody reactivity, band intensities on images 

of developed Western blots were determined using Advanced Image Data Analysis software 

(AIDA; Fuji). All band densities were normalized to that of anti-α-tubulin, which was used as 

internal control. 

 

Enzyme-linked immunosorbent assay (ELISA) of fixed cell monolayers 

For concentration-response experiments, cells were seeded in sterile flat-bottomed 96-well culture 

dishes at a density of 50,000 cells/ml in a total volume of 200 μl growth medium per well (four 

replicates) and incubated overnight in a CO2 incubator. After 24 h recovery, cells were induced to 

differentiate for 20 h, as described earlier, after which they were treated in the absence or presence 

of OP at final concentrations of 1, 3, and 10 μM in fresh differentiation medium for 2 or 8 h. 

Serum-free medium was then removed by aspiration and cell monolayers were fixed by pre-warmed 

4% (w/v) paraformaldehyde (Sigma-Aldrich, UK) (200 μl/well) for 10 min at room temperature. 

Fixative was then removed and the plate was washed twice with 200 μl/well of ice-cold TBS (2 

min/wash). Next, cells were incubated in permeabilisation buffer (0.5% (v/v) Tween-20 in TBS) for 

15 min at room temperature, after which they were rinsed twice with TBS. A volume of 300 μl/well 

of BSA/TBS was then applied and the plate was incubated overnight at 4C. The blocking buffer 

was then removed and 100 μl/well of primary antibodies diluted 1:1000 in BSA/TBS were added 

and incubated overnight at 4C.  

 



After removing the primary antibodies, wells were washed again twice with TBS/Tween, followed 

by 2 h incubation in 200 μl/well of diluted HRP-conjugated secondary antibodies at room 

temperature. After removal of secondary antibodies, two final washes were applied with 

TBS/Tween 20. The reaction was started by the addition into each well of 100 μl developing buffer 

(100 mM sodium acetate buffer pH 6, containing 0.075 mg/ml tetra methyl benzidine and 0.005 % 

v/v H2O2). After 5 min incubation at room temperature, colour development was stopped by the 

addition of 100 μl of 5 M sulphuric acid. Absorbance was measured at a wavelength of 450 nm 

using an ASYS Expert 96 microtitre plate reader (Biochrom, UK). 

 

Phosphatase Assay 

The activity of alkaline phosphatase was monitored using the p-Nitrophenyl Phosphate (pNPP) 

liquid substrate system. Cells were seeded and induced to differentiate in the presence and absence 

of OPs in T75 culture flasks, as described above, after which they were harvested by centrifugation, 

resuspended in 1 ml ice-cold PBS (pH7.4) and transferred into Eppendorf tubes. All tubes were then 

micro-centrifuged at 10,000 × g for 3 min. Cell pellets were resuspended in ice cold TBS containing 

0.5% v/v Triton X100. Cell pellets were broken down by gentle pipetting and transferred into a 96-

well microtitre plate (50 μl/well). The reaction was started when 100 μl of pNPP liquid substrate 

system were added into each well. The absorbance was then recorded at regular intervals for 30 min 

at 405 nm in a microtitre plate reader. Protein was estimated in the retained 100 μl of cell lysate by 

the BCA assay (Brown et al. 1989), and specific activity was expressed as absorbance change /mg 

protein/h. 

 

Statistical Analysis 

All sets of quantitative data were based on a minimum of 4 separate experiments and expressed as 

mean ± SEM. Average values for each treatment were compared to the corresponding control by 

one-way or two-way ANOVA, as appropriate, using 95% confidence limits. Differences were 



considered to be statistically significant when p < 0.05. GraphPad Prism 6 software was used for the 

production of graphs and statistical analysis. 

 

Results 

 

In a preliminary study we found that CPF at a non-cytotoxic concentration of 3μM had the ability to 

induce retraction of approximately 50 % of axon-like processes formed by differentiating N2a cells, 

as determined by Coomassie Brilliant Blue staining (Sachana et al. 2001). However, the effects of 

CPO on pre-formed neurites had not been previously tested. In order to achieve comparable results 

to the previous work with CPF, live N2a cells were stained directly with CFSE dye and the growth 

of long neurites was recorded for each exposure time point under similar conditions. In the current 

study, it was clearly shown that exposure of pre-differentiated N2a cells to 3 µM CPF and CPO 

significantly reduced the numbers of axon-like processes compared to non OP-treated controls in a 

time dependent manner (Fig. 1 and 2a), CPO being slightly more toxic than CPF. However, MTT 

reduction assays showed no significant effect of these OPs on the viability of N2a cells under the 

same experimental conditions (not shown). The concentration-response relationship of this effect 

was then further studied for each compound using high content analysis (HCA) of 

immunofluorescently-stained cell monolayers after 8 h exposure to each OP at a concentration of 1, 

3 or 10 µM. As can be seen in Fig. 2b, there was a dose-dependent decrease in both the maximum 

and average neurite length per cell, in fixed cell monolayers  stained with monoclonal antibodies 

B512 and Ta51 to detect total α-tubulin  and phosphorylated NFH, which are indicative of total and 

axon-like neurites, respectively. The reductions in average neurite length were similar for both 

compounds. However, the reduction in maximum neurite length in Ta51- but not B512-stained cell 

monolayers was greater in CPO-treated cells.  

The impact of 3 M CPF and CPO on the activity of AChE enzyme in differentiating N2a cells was 

further assessed to determine whether the morphological changes in the outgrowth of neurites could 



 
 

Figure 1: Effects of 3 µM CPF and CPO on the morphology of pre-differentiated N2a cells. Displayed are 

representative fluorescence images of N2a cells induced to differentiate for 20 h prior being incubated in the absence 

(Control) or presence of  3 µM CPF or 3 µM CPO for 2, 4 and 8 h. Cells were stained with CFSE and fixed. Arrows 

show typical axon-like processes detected in non-OP treated controls. Scale bar represents 50 µm. 

 
be related to AChE inhibition. As illustrated in Fig. 3, after 0.5, 2, 4 or 8 h exposure, 3 µM CPO -

treated cells showed a sustained significant reduction (>70 %) in the specific activity of AChE 

compared to non OP-treated controls (p0.05), whereas the same concentration of CPF showed 

little or no effect. 

The neurotoxic effects of both CPF and CPO on the intracellular distribution of microtubules and 

neurofilaments were then monitored using immunofluorescence staining of N2a cells after 4 and 8 h 



 

Figure 2: Quantitative analysis of the effects of CPF and CPO on neurite outgrowth. Mouse N2a neuroblastoma 

cells were induced to differentiate for 20 h, as described in Materials and methods. They were then either (a) labeled 

with CFSE then incubated in the absence or presence of  3 µM CPF and CPO for 2, 4, and 8 h or (b) treated for 8 h with 

0-10 µM CPF (triangles) or CPO (circles) prior to fixation and indirect immunofluorescence staining with antibodies to 

total -tubulin (B512) or pNFH (Ta51). Data from 4 independent experiments are expressed as (a) mean number of 

long neurites  per 100 cells ± SEM or (b) average/maximum neurite length per cell ± SEM. Asterisks indicate where 

OP-treated cell values were significantly different from the corresponding control (p0.05).  

 

exposure. In the case of neurofilaments, it can be seen that there was relatively strong staining of 

axons in control cells; much less neurite staining was observed in CPF and CPO treated N2a cells, 

where more aggregates were observed in cell bodies. In the case of anti--III tubulin, intense 

staining was detected both in cell bodies and in remaining neurites of both OP-treated and non OP-

treated cells (Fig. 4).  

 



 
Figure 3: Effects of non-cytotoxic concentrations of CPF and CPO on acetylcholinesterase activity in 

differentiating N2a cells. N2a cells were induced to differentiate for 20 h before being incubated with or without 3 μM 

of CPF and CPO for 0.5, 2, 4 and 8 h, after which the activity of AChE was measured as described in Materials and 

methods. Control specific activities were within the range 0.70 ± 0.06 absorbance units/mg protein/min. Results are 

expressed as mean specific activity (% control) ± SEM from 4 separate experiments. Asterisks show statistically 

significant changes compared to the control values (p0.05).  

 

In order to determine the real time effects of toxins on N2a cell morphology, a live cell imaging 

approach was developed. Images were recorded at 30 min intervals for a period of 8 h from the 

addition of toxin. Neurite length was shown to be highly affected over time. Approximately 25 % of 

neurites retracted within the first 2 to 4 h, suggesting that some of these changes were occurring at a 

very early stage. However, no other variations in cell morphology were detected, such as changes in 

cell body shape or size (Fig. 5). Time lapse videos of control and CPO-treated cells are shown in 

Supplementary Data, figures 1 and 2 (available via online access at journal website). 

 

The molecular changes underlying the neurotoxic effects of these compounds on the maintenance of 

neurites in pre-differentiated N2a cells were further studied by quantitative Western blotting using 

antibodies against a range of cytoskeletal and axon growth associated proteins. As indicated in Fig. 

6a and Table 1, there were no significant changes in the cross reactivity of N2a cell lysates with 

antibodies against α-tubulin (B512) following exposure to 3 µM CPF and CPO at all of the time 

points. A transient reduction was observed in the levels of GAP-43 (GAP7B10) after 4 h of 

exposure in cell lysates treated with both compounds. However, GAP-43 reactivity was unaffected  

http://dx.doi.org/10.1016/j.taap.2016.08.008


 

Figure 4: Immunofluorescence staining of differentiating N2a cells. Cells were induced to differentiate for 20 h 

prior to being treated with or without 3 μM of CPF or CPO for 8 h. Cells were then fixed and stained by indirect 

immunofluorescence as described in Materials and methods. Shown are digital images of non OP-treated control and 

cells exposed to 3 M CPF or 3 M CPO stained with anti-NFH (N52), anti-phosphorylated NFH (SMI34) and anti-

III tubulin (2G10). Horizontal arrows display typical axon-like neurites and vertical arrows show aggregates in cell 

bodies. Bar represents 30 m. 

 

following exposure to both agents for 2 h and seemed to recover following 8 h of exposure. 

Reactivity of cell extracts with anti-total NFH (N52) antibody was similar to the corresponding 

control at all of the time points. In contrast, reactivity with anti-pNFH (Ta51) was considerably 

higher than the reactivity level of non-OP treated control at 2 h, which was then followed by a 

significant decline in comparison to control values at 8 h exposure to both compounds. Similar 

responses were also found for B512 and Ta51 reactivity using a cell ELISA approach, the effects 

being dose-dependent over the 1-10 µM concentration range (Fig. 6b). 

 

Further analyses were performed to determine whether the altered levels of reactivity of lysates 

with antibodies to pNFH could be attributed to changes in the activation status of extracellular  



 

 

Antigens 
Incubation 

time (h) 

Densitometric peak area (%control  S.E.M.) 

3μM CPF 3μM CPO 

NFH 
2 107±9 101±8 

4 102±18 81±22 

8 120±12 105±16 

pNFH (Ta51) 
2 214±16* 444±90* 

4 84±7 93±12 

8 36±4* 30±1* 

Total α-tubulin 
2 107±8 96±7 

4 102±5 102±8 

8 103±6 106±7 

GAP-43 

2 107±12 96±5 

4 75±6* 60±10* 

8 106±11 117±17 

 
Table 1: Densitometric analysis of Western blots probed with antibodies to cytoskeletal and growth associated 

proteins. N2a cell lysates were induced to differentiate for 20 h prior to being treated with or without 3 μM of CPF or 

CPO for 2, 4 and 8 h. They were then subjected to SDS-PAGE and Western blotting analysis using antibodies that 

recognise NFH, pNFH (Ta51), total α-tubulin and GAP-43. Shown are data from 6 separate experiments. Band 

densities were normalized to anti-α-tubulin. Data are expressed as a percentage of their corresponding control ± SEM. 

Asterisks indicate values that were statistically significant from their corresponding control (p0.05). 

 
 

 

signal-regulated protein kinase ERK 1/2, which is known to be important in neurite outgrowth and 

phosphorylation of NFH (Perron and Bixby 1999). Data from Western blotting analyses using anti-

total ERK showed no significant changes in reactivity levels with lysates from N2a cells treated 

with either CPF or CPO compared to non OP-treated controls. In contrast, anti-pERK antibodies 

showed increased reactivity compared to the corresponding control at all of the time points but the 

changes were only statistically significant at 2 h exposure (Fig. 7a and Table. 2). Measurements by 

cell ELISA showed a similar pattern of ERK activation, which was concentration dependent and 

stronger for CPO than for CPF (Fig. 7b).  

 



 
 

Figure 5: Live cell imaging of differentiating N2a cells. Cells were induced to differentiate for 20 h, stained with 

CFSE then treated with 3 μM of CPO prior to analysis as described in Materials and methods. Shown are digital images 

of snapshots taken of treated cells at the same location. The real time changes in cell morphology following toxin 

exposure were recorded for a period of 8 h, the first image being taken at minute 20. Subsequent images were taken 1 h 

intervals, using a Leica TCS SP5 confocal laser scanning microscope with epifluorescence optics. Arrows labeled 1-5 

show retracting neurites detected in differentiating N2a cells and scale bar represents 30 μm. 

 

Since there was a clear relationship between the early changes in reactivity of antibodies against 

pNFH and pERK activity in OP-treated cell lysates, further experiments were carried out to detect 

the possible cause for the subsequently observed reductions pNFH phosphorylation following 4 and 

8 h exposure. For this, phosphatase activity was detected using pNPP liquid substrate under the 

same experimental conditions. As demonstrated in Fig. 8, phosphatase activity in control cells 

increased from 2 to 4 h then stabilized. This effect may be the consequence of the addition of fresh 

medium. There was a significant increase relative to the controls in the level of phosphatase activity 

in extracts from cells treated with either CPF or CPO for 8 h. However, at 2 and 4 h treatment no 



statistically significant changes were detected in lysates from OP-treated cells (Fig. 8

). 

Figure 6: Detection of cytoskeletal proteins by Western blot analysis and cell-ELISA. For the data shown in panel 

A) cells were induced to differentiate for 20 h prior to treatment without (CON) or with 3 μM CPF (CPF) or 3 μM CPO 

(CPO) for 2, 4 and 8 h, after which cell lysates were subjected to SDS-PAGE and Western blotting as described in 

Materials and methods. Shown are typical blots probed with antibodies to NFH (N52), pNFH (Ta51), α-tubulin (B512) 

and GAP-43 (GAP7B10) followed by HRP-conjugated secondary antibodies and developed by ECL reagents. 

Alternatively, as shown in panel B), cells were differentiated as described above then exposed to CPF (circles) or CPO 

(triangles) at the concentrations indicated, before being fixed and stained with monoclonal antibodies B512, N52 and 

Ta51 and their reactivity with monolayers quantified by ELISA as described in Materials and methods. Data are 

presented a percentage of the non OP-treated control ± SEM from four independent experiments. Data were analysed 

using two way ANOVA. CPF effects are shown by blue solid lines with circles; CPO effects are shown as red dashed 

lines with triangles. Asterisks indicate changes that are statistically different from the non OP-treated controls (p ˂ 

0.05). When SEM bars are not visible, the error is smaller than the symbol size. 
 

Discussion 

The data presented on neurite outgrowth in CFSE-labeled cells and HCA of cells stained with 

monoclonal antibodies B512 and Ta51 demonstrated that both CPF and CPO caused neurite 



retraction in a dose and time dependent manner when administered to pre-differentiated N2a cells. 

As indicated earlier, B512 stains all neurites (i.e. both axon- and dendrite-like processes) whereas 

 

Figure 7: Detection of cell signaling proteins by Western blot analysis and cell-ELISA. For the data shown in panel 

A), cells were induced to differentiate for 20 h prior to treatment without (CON) or with 3 μM CPF (CPF) or 3 μM CPO 

(CPO) for 2, 4 and 8 h then cell lysates were subjected to SDS-PAGE and Western blotting as described in Materials 

and methods. Shown are typical blots probed with antibodies to total ERK 1/2 (K-23) and phosphorylated ERK 1/2 

MAP kinase (E-4), followed by HRP-conjugated secondary antibodies and developed by ECL reagents. Alternatively, 

as shown in panel B), cells were differentiated as described above then exposed to CPF (triangles) or CPO (circles) at 

the concentrations indicated, before being fixed and stained with monoclonal antibodies to total and pERK, after which 

their reactivity with monolayers quantified by ELISA as described in Materials and methods. Data are presented a 

percentage of the non OP-treated control ± SEM from four independent experiments. Data were analysed using two 

way ANOVA. CPF effects are shown by blue solid lines with circles; CPO effects are shown as red dashed lines with 

triangles. Asterisks indicate changes that are statistically different from the non OP-treated controls (p ˂ 0.05). When 

SEM bars are not visible, the error is smaller than the symbol size. 

 

Ta51 stains pNFH, which is enriched in axons. Therefore, the observation that the average and 

maximum lengths of neurites in cells stained with Ta51 were greater than the same values for B512 

stained cells is consistent with the view that a significant proportion of longer neurites in 

differentiating N2a cells are axon-like (Keilbaugh et al., 1991; Sachana et al. 2003; Hargreaves et  



Antigens 
Incubation 

time (h) 

Densitometric peak area 

 (%control  S.E.M.) 

3μM CPF 3μM CPO 

Total ERK 

2           106 ±  7       95 ± 11 

4           111 ± 14     115 ± 20 

8           107 ±  7     107 ±  8 

pERK  

2           147 ± 21*
 

    128 ±  6* 

4           149 ± 33     142 ± 34 

8           113 ± 15       91 ±  2 

Total α-tubulin 

2           106 ±  9       98 ±  5 

4           104 ±  2     107 ±  9 

8           102 ±  7     104 ±  9 

 

Table 2: Densitometric analyses of Western blots probed with antibodies to cell signaling proteins. N2a cell 

lysates were induced to differentiate for 20 h prior to being treated with or without 3 μM of CPF or CPO for 2, 4 and 8 

h. They were then subjected to SDS-PAGE and Western blotting analysis using antibodies that recognise total ERK 1/2 

(K-23) and phosphorylated ERK 1/2 MAP kinase (E-4). Shown are data from 6 separate experiments. Band densities 

were normalized to anti-α-tubulin (B512 reactivity). Data are expressed as a percentage of their corresponding control ± 

SEM. Asterisks indicate values that were statistically significant from their corresponding control (p0.05). 

 

al. 2006; Harris et al. 2009b; Flaskos et al. 2007; 2011). The trend of greater reduction in the 

number of long neurites and the maximum neurite length observed in Ta51-stained CPO-treated 

cells is consistent with the possibility that the oxon metabolite may have a greater impact or a more 

 

Figure 8: Effects of CPF and CPO on phosphatase activity in differentiating N2a cells. Cells were induced to 

differentiate for 20 h prior to being treated with or without 3 μM CPF or CPO for 2, 4 or 8 h. Data are expressed as 

mean specific activity (absorbance change/mg protein/h) ± SEM for 4 separate experiments. Asterisks in the 8 h 

treatment demonstrate changes that are significantly different to the non OP treated control (p0.05). # indicates 

significant increases relative to the 2 h non OP treated control 

 



rapid effect on the retraction of axon-like processes than the parent compound under the exposure 

conditions tested.  

Although inhibition of neurite outgrowth from N2a cells has been previously investigated after CPF 

exposure (Sachana et al. 2001), and other OPs such as leptophos, phenyl saligenin phosphate (PSP), 

diazinon and CPO using Coomassie blue staining (Sachana et al. 2003; Hargreaves et al. 2006; 

Harris et al. 2009b; Flaskos et al. 2007; 2011), this is the first time that CFSE has been used to 

measure the growth or retraction of neurites in cultured N2a cells. Since it provides similar results 

to our previous work with CPF, morphometric analysis of CFSE-labeled N2a cells can be 

considered as a novel and reliable approach to assess cell differentiation and neurite outgrowth. 

Furthermore, the data from HCA not only confirm the validity of our previously used manual 

approach to morphological assessments, they additionally illustrate the concentration dependence of 

the effects of these OPs on neurite retraction. 

 

The observed retraction of neurites induced by CPF on pre-differentiated N2a cells (i.e. under post-

differentiation exposure conditions) is in good agreement with that noted in the same culture system 

using a similar concentration of CPF under both post- and co-differentiation conditions (Sachana et 

al. 2001). In addition, the current study has revealed for the first time the potential neurotoxic 

ability of CPO to induce the retraction of axon-like processes from pre-differentiated N2a cells, and 

that this effect appears to be stronger than that of CPF with respect to longer (axon-like) neurites. 

The rapid collapse of neurites observed in experiments using live cell imaging further confirms the 

neurite destabilising effect of CPF and CPO towards pre-differentiated N2a cells (Fig 5), since all 

neurites, irrespective of initial size, exhibited reduced lengths from within 2h of exposure to both 

compounds..  

 

The inability of either compound to affect MTT reduction suggested that the concentrations used in 

this study were non-cytotoxic towards pre-differentiated N2a cells. This finding is in agreement 



with previous studies which employed similar concentrations (1-10 µM) of CPF and other OPs such 

as diazinon and diazinon oxon that were also found to be non-cytotoxic towards differentiating N2a 

cells for exposure periods of up to 24 h (Flaskos et al. 2007; Sachana et al. 2001, 2003, 2005; 

Sidiropoulou et al. 2009). However, in those studies exposure was initiated at the point of induction 

of cell differentiation (i.e. under co-differentiation conditions). 

 

The significant reduction in the specific activity of AChE observed at all time-points of  CPO 

exposure is in line with a previous study by Flaskos et al. (2011), which demonstrated sustained 

inhibition of AChE in differentiating N2a cells that were  exposed for 4 or 24 h to CPO from the 

point of induction of cell differentiation. A reduced activity of AChE was also noted in N2a cells 

exposed for 4 h from the point of induction of differentiation to the OP diazoxon, although in that 

case no significant effect was observed after 24 h (Sidiropoulou et al. 2009). However, it is unlikely 

that inhibition of AChE alone could account for the morphological changes in the outgrowth of 

neurites in N2a cells, as CPF (as would be expected) had little effect on AChE in the current work, 

and a number of in vivo (Slotkin et al. 2006) and in vitro (Das and Barone 1999; Fowler et al. 2001; 

Howard et al. 2005) studies suggest that OPs capable of only weak inhibition of AChE can also 

induce marked impairment in the development of neurites. In this respect, the OP trio-ortho-cresyl 

phosphate significantly inhibited the development of axon-like processes in N2a cells. However, it 

is only a weak inhibitor of AChE (Lock and Johnson 1990).  Therefore, inhibition of AChE activity 

by CPF or CPO is unlikely to be the main cause of retraction of axon-like neurites in N2a cells, 

although our data suggest that high levels of cholinesterase inhibition may increase the severity of 

certain OP effects on neurite outgrowth. 

 

Indirect immunofluorescence findings further confirmed the idea that both compounds could impair 

neurite development and interfere with the expression levels and/or intracellular distribution of 

cytoskeletal proteins. The changes in the staining intensity from clear axonal staining in the control 



cells to aggregates in the cell bodies of treated cells, suggested that the neurofilament network was 

heavily disrupted by CPF and CPO treatments. This disruption in the intracellular distribution of 

neurofilaments is consistent with that observed in previous studies, in which cells were induced to 

differentiate for 24 h in the presence and absence of non-cytotoxic neurite inhibitory concentrations 

of phenyl saligenin phosphate (Hargreaves et al. 2006), diazinon (Flaskos et al. 2007) and CPO 

(Flaskos et al. 2011). On the other hand, the similar distribution of anti-tubulin staining in cell 

bodies and neurites of OP-treated and control cells indicated no major disruption of the microtubule 

network, suggesting that microtubules are not the main target for OP pesticides in differentiating 

N2a cells. 

 

Neurofilaments play a key role in regulating axon girth and stability (Williamson et al. 1996) and 

are increasingly expressed and phosphorylated as axons develop (Lee et al. 1988; Veerana et al. 

1998). Thus, it was of interest to determine whether inhibition of neurite outgrowth could be 

reflected at the molecular level by altered levels of phosphorylation of NFH. The observed increase 

in the reactivity of antibodies against pNFH in OP-treated cell lysates at 2 h and the following 

decline at 8 h exposure, together with the lack of statistically significant effects of OPs on the 

reactivity of antibodies that recognise total NFH at all time-points are consistent with an early 

transient hyperphosphorylation of NFH followed by a reduced phosphorylation state of NFH, with 

no overall effect on the total levels of NFH protein. The data for CPF are in agreement with an 

earlier study, which revealed little or no effect on the levels of NFH from N2a cells following 

exposure to CPF under similar post differentiation conditions (Sachana et al. 2001). However, in 

our previous work, when CPF and CPO were added to N2a cells at the same time as induction of 

differentiation, immunoblot analysis indicated significant reduction in NFH protein but the level of 

NFH phosphorylation remained close to the control values (Flaskos et al. 2011), suggesting that the 

effect observed in the current work was specific for pre-differentiated cells. Thus, the toxicity 



response may be related to the developmental stage of cell differentiation at which the exposure to 

OPs occurs. 

 

The observation that densitometric analysis revealed no change in the reactivity of N2a cell lysates 

with antibodies against α-tubulin following treatment with either compound is consistent with the 

strong staining patterns of remaining neurites with anti-βIII tubulin antibody obtained by indirect 

immunofluorescence, suggesting that the microtubule network was not a primary target of OPs. 

This view is also supported by previous studies, which found no detectable changes in the level of 

total -tubulin after co-differentiation exposure of N2a cells to other OP compounds (Hargreaves et 

al. 2006; Flaskos et al. 2007, 2011; Sidiropoulou et al. 2008, Harris et al. 2009a). These data, 

together with the findings presented in the current study, suggest that altered tubulin levels are not 

associated with neurite inhibitory effects of CPF and CPO towards differentiating N2a cells. 

 

Results obtained from immunoblot analysis using monoclonal antibody GAP7B10 suggested that 

CPF and CPO induced a transient reduction in GAP-43 levels after 4 h exposure. This protein is 

highly expressed in axons during elongation and has been shown to play a vital role in axon 

outgrowth and maintenance (Skene 1989); since reduced levels of GAP-43 occurred in parallel with 

the observed collapse in axon outgrowth obtained by live cell imaging, it could also have 

contributed to the detachment of the growth cones. Previously, reduced levels of GAP-43 were also 

reported in N2a cells exposed to similar concentrations of different OPs in a number of studies 

(Harris et al. 2009a; Fowler et al. 2001; Sachana et al. 2003, 2005; Sidiropoulou et al. 2009). Since 

GAP-43 plays a key role during axon outgrowth, the current data together with previous findings 

strongly suggest that reduced level of GAP-43 might be a common molecular marker of sub-lethal 

neurite inhibitory effects of OPs. 

 



The observed alterations in NFH phosphorylation were consistent with the possible disruption of 

cell signaling pathways. In the current study, it was important to relate these changes to the 

activation status of the MAP kinase ERK 1/2, since it known as a convergence point for cell 

signaling pathways involved in neuronal cell differentiation (Perron and Bixby 1999). This protein 

kinase is activated in N2a cells following induction of cell differentiation by serum withdrawal 

(Hargreaves et al. 2006) and such activation is required for the development of neurites (Singleton 

et al. 2000; Lopez-Maderuelo et al. 2001). Moreover, it is known to be important in the 

phosphorylation of NFH (Perron and Bixby 1999). The increase in reactivity of anti-pERK with no 

detectable changes in anti-total ERK antibody binding after 2 h exposure to both compounds 

suggested that OP treatment lead to increased activation of ERK, which could account for the 

changes in NFH phosphorylation at that time point. However, the lack of significant changes 

compared to the control after 4 and 8 h exposure suggested that the OP-induced activation of ERK 

1/2 was short-lived.  

 

On the other hand, the data obtained from the measurement of phosphatase activity compared to the 

controls were consistent with the possibility that increased phosphatase activity could account for 

the observed reduction in NFH phosphorylation at the later time point. Previously, it has been 

reported that protein phosphatase 2A from both rat spinal cord and rabbit skeletal muscle can 

reduce the phosphorylation of NFH following hyperphosphorylation by cyclin-dependent kinase-5 

(cdk5) in neurodegenerative disease (Veeranna et al. 1995). In addition, reduced levels of protein 

phosphatases 2A and other phosphatases were found to be associated with enhanced NFH 

phosphorylation in protein aggregates found in Alzheimer’s disease (Vogelsberg-Ragaglia et al. 

2001) and amyotrophic lateral sclerosis brain (Kesavapany et al. 2007). Therefore, protein 

phosphatase 2A might be one potential NF-associated phosphatase involved in the reduced 

phosphorylation of NFH following 8 h exposure to both CPF and CPO. Further work to identify 



specific phosphatases involved in the regulation of NFH phosphorylation in OP-treated cells would 

be worthwhile. 

 

As previously discussed, the concentration of 3 µM CPF and CPO was chosen for most assays in 

the current study due to its ability to induce approximately 50 % reduction in both neurite 

outgrowth and in the number of pre-formed neurites in differentiating N2a cells. This concentration 

of CPF has clinical relevance to human developmental neurotoxicity, as median levels of 8.26 

µg/ml (23.6 µM) are detectable in meconium samples of newborn children (Ostrea et al. 2002) and 

low micromolar levels of oxon metabolites are attainable in the developing human being (Flaskos 

2012). Although oxon metabolites have higher water solubility than their parent compounds 

(Sogorb and Vilanova 2010), which would affect their ability to enter the fetus, the detection of 

significant cholinesterase inhibition in the mammalian fetus following in vivo exposure of pregnant 

animals to organophosphorothionate pesticides (Gupta 1995) suggests that fetal exposure to CPO 

can occur. 

 

The fetus is thought to be exposed mainly to oxons formed in the maternal tissues; the main enzyme 

responsible for oxon formation in humans CYP2B6 (Foxenberg et al. 2007; Croom et al 2010) is 

present at relatively low levels in human placenta (Pelkonen et al 2006), suggesting that the 

placenta does not make a major contribution to oxon formation. However, although CYP2B6 is 

expressed at low levels in the human fetus compared to later stages of development (Croom et al. 

2009), the fact that paraoxonase 1 (PON 1) levels are also relatively low at this stage (Costa et al 

2005) could allow some oxon formation and/or accumulation in fetal tissue. Additionally, reduced 

levels of serum PON1 due to genetic polymorphisms in the PON1 gene would be associated with 

increased susceptibility to toxicity of the oxon metabolite (Costa et al. 2005). It could be argued that 

the concentrations of CPO used in the current study are unlikely to be attained in vivo and that the 

associated levels of AChE inhibition would be potentially lethal to the unborn child. On the other 



hand, there are numerous clinical case studies of patients who, following accidental or intentional 

exposure, have survived very high levels of cholinesterase inhibition comparable to those observed 

in the current work, with the help of pharmacological intervention (e.g. by the administration of 

atropine and/or oximes). Survivors of CPF-induced acute cholinergic crisis (including both adults 

and children) can subsequently be affected by a delayed neuropathy involving dying back of axons 

in peripheral/central neurons (Clegg and Van Gemert 1999ab; Nand et al. 2007; Thivakaran et al. 

2012). Furthermore, it has been shown that CPF administered at acute levels in animal models can 

lead to OPIDN (reviewed in Gupta, 2006). 

 

It should be noted that the OP concentrations used in the current study are indicative of the 

maximum possible concentration of available OP. However, given that preliminary data (not 

shown) indicate an IC50 value for AChE following 4 h exposure of N2a cells to CPO of 

approximately 1 µM, compared to a value of 10 nM after 30 min exposure in rodent brain 

homogenates and 3 nM with immunoprecipitated AChE (Mortensen et al., 1998) it is possible that 

the indicative concentration was not reached in the cells, that the N2a cell line has limited uptake, 

the ability to detoxify CPO or that CPO rapidly loses activity in this cellular model. Further work to 

determine the actual concentration of OPs that enter the cells would be worthwhile. 

 

From all of the results presented in this study, it can be concluded that the exposure of pre-

differentiated N2a cells to non-cytotoxic concentrations of CPF and CPO results in rapid neurite 

retraction and major disruption of the neurofilament network. These effects are not dependent on 

the inhibition of AChE but are associated with an early transient increase in the phosphorylation of 

NFH by ERK 1/2, followed by protein phosphatase-mediated hypophosphorylation.  
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