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Abstract 

 

We generalise the Black-Litterman (BL) portfolio management framework to incorporate 

time-variation in the conditional distribution of returns in the asset allocation process. We 

evaluate the performance of the dynamic BL model using both standard performance ratios as 

well as other measures that are designed to capture tail risk in the presence of non-normally 

distributed asset returns. We find that the dynamic BL model outperforms a range of different 

benchmarks. Moreover, we show that the choice of volatility model has a considerable 

impact on the performance of the dynamic BL model. 
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1. Introduction 

The portfolio theory proposed by Markowitz (1952) is a cornerstone of modern finance. 

Markowitz argues that investors should balance risk and expected return to determine the 

optimal allocation of assets. However, when implemented in practice, the resulting portfolio 

suffers from various problems, including extreme weights (Green and Hollifield, 1992), 

corner solutions leading to highly concentrated portfolios (Grauer and Shen, 2000), 

sensitivity of the solution to the input parameters and large fluctuations in the weights over 

time (Best and Grauer, 1991). The main reason for this is estimation error in the inputs of the 

model, which has a disproportionate effect on the resulting portfolio weights. Kolm et al. 

(2014) summarise several methods that have been widely adopted in the literature to mitigate 

the impact of estimation error. These include Bayesian approaches and the Black-Litterman 

model (Jorion, 1991; Black and Litterman, 1991), robust optimization methods (Tütüncü and 

Koenig, 2004; Stinstra and Hertog, 2008; Huang et al., 2010), incorporating higher moments 

and tail-risk measures (Harvey et al., 2010), and imposing constraints on the portfolio 

weights (Jagannathan and Ma, 2003). In this paper, we focus on the Black-Litterman (1991, 

1992, hereafter BL) model, which uses an equilibrium approach to estimate the expected 

returns of individual assets, incorporating the investor’s views by adjusting the equilibrium 

expected returns using a Bayesian approach. The BL model overcomes many of problems 

associated with the mean-variance model and, as a result, has become one of the most 

commonly used asset allocation approaches in practice (Bevan and Winklemann, 1998; 

Bertsimas et al, 2012). In particular, the BL model provides stable and intuitively appealing 

mean-variance efficient portfolios based on the investor’s subjective views, and eliminates 

the input sensitivity of mean-variance optimization (see also Herold and Maurer, 2003).  

The assumptions that are implicit in the BL model include: (1) the expected return vector and 

the covariance matrix are constant over time, (2) the returns of individual assets are normally 

distributed, and (3) investors do not differentiate between positive and negative deviations 

from the mean. In reality, all three of these assumptions are questionable. For example, 

Bollerslev et al. (1988) argue that investors have time-varying conditional expectations of 

returns. Moreover, it is well known that the variances and covariances of most financial time 

series are time-varying (Andersen et al., 2004). In addition, there is overwhelming empirical 

evidence that asset returns are not normally distributed (Peiro, 1999; Ang and Chen, 2002), 

which would suggest that the standard deviation may not be a suitable measure of risk. As a 

result, alternative risk measures such as value at risk (VaR) and conditional value at risk 
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(CVaR) have been developed (Artzner et al., 1999; Rockafellar and Uryasev, 2002). 

Relatedly, when returns are not normally distributed, the Sharpe ratio is no longer an 

appropriate measure of portfolio performance. To overcome this problem, a number of other 

performance ratios have been proposed (see, among others, Farinelli and Tibiletti, 2008; 

Farinelli et al., 2008; Farinelli et al., 2009). For example, the standard deviation has been 

replaced by VaR and CVaR measures of tail risk (Biglova et al., 2004; Rachev et al. 2007; 

Giacometti et al., 2007). Finally, evidence suggests that investors have asymmetric attitudes 

towards upside and downside risks (Scott and Horvath, 1980). Mitton and Vorkink (2007) 

show that investors are willing to sacrifice portfolios with higher Sharpe ratios for those with 

higher skewness. Consequently, a number of researchers have incorporated skewness and 

kurtosis into portfolio selection (Harvey et al., 2010; Kerstens et al., 2011), while others have 

incorporated measures of tail-risk. For example, Goh et al. (2012) separate the distribution of 

asset returns into positive and negative half-spaces and define a new robust risk measure, 

called Partitioned Value-at-Risk (PVaR), that incorporates asymmetry in the return 

distribution. They then select the portfolio with the minimum-PVaR. Favre and Galeano 

(2002) introduce Modified VaR to measure tail risk for distributions with asymmetry and fat 

tails, and then construct the optimal portfolio, which has the maximal ratio of expected excess 

return to Modified VaR. Similarly, Rachev et al. (2003) propose a Generalised Sharpe ratio 

that uses Conditional VaR to measure tail risk, and maximise this ratio to yield the optimal 

portfolio. 

A number of recent studies have attempted to extend the BL model to deal with non-

normality in the distribution of asset returns (Giacometti et al., 2007; Martellini and Ziemann, 

2007; Meucci, 2009), and in investors’ views (Fabozzi et al., 2006; Beach and Orlov, 2007; 

Palomba, 2008; Babameto and Harris, 2009; Chiarawongse et al., 2012). However, none of 

these studies allows for time-variation in the conditional distribution of returns. Moreover, 

despite allowing for non-normality in returns, they evaluate the performance of the BL model 

using measures that are only valid under normality, namely the standard deviation and the 

Sharpe ratio.  

We make the following contributions. First, we relax the assumption of a constant expected 

return vector and covariance matrix in the BL model. In particular, we generalize the BL 

model to incorporate time-variation in the conditional distribution of returns in the asset 

allocation process. Second, we relax the assumption of normally distributed returns and 

explicitly account for tail risk in the BL model. Moreover, we use alternative performance 
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ratios that are appropriate for tail risk, namely the reward-to-VaR and reward-to-CVaR ratios, 

in order to construct the optimal dynamic BL portfolio. Third, we extend the method of 

Giacometti et al. (2007) to a dynamic setting and use the estimated time-varying VaR and 

CVaR to substitute the time-varying standard deviation in the quadratic utility function. 

Fourth, we estimate the tail risk-adjusted equilibrium returns and combine these with the 

investor’s views to construct the dynamic BL portfolio.  

We evaluate the out-of-sample performance of the following dynamic BL portfolios: the 

implied BL portfolio with reverse optimization, the SR-BL portfolio with maximal Sharpe 

ratio, the MVaR-BL portfolio with maximal reward-to-VaR ratio, the MCVaR-BL portfolio 

with maximal reward-to-CVaR ratio and the risk-adjusted BL portfolio. The market 

portfolios are represented by the 10 FTSE sector indices for the US, UK and Japan. To 

estimate the time-varying distribution of returns, we use a range of conditional volatility 

models (the Rolling Window, Exponentially Weighted Moving Average and Dynamic 

Conditional Correlation (DCC) models), distributional assumptions (the normal and t-

distributions) and confidence levels (90%, 95% and 99%). We report three main findings. 

First, the dynamic BL portfolios and risk-adjusted BL portfolios outperform the benchmark 

and the equally-weighted naive portfolio. Second, the dynamic BL portfolio based on the 

DCC model has the best out-of-sample performance. Third, the portfolios that account for tail 

risk outperform the portfolios that ignore tail risk. Our results are robust to the choice of 

estimation window length and data frequency, and hold in sub-samples. 

The outline of the remainder of the paper is as follows. Section 2 describes the data used in 

the empirical analysis. Section 3 describes the dynamic BL asset allocation framework. 

Section 4 reports and discusses the empirical results and summarizes our findings. Section 5 

presents the robustness tests. Section 6 offers some concluding remarks. 

2. Data 

We use monthly price indices and market values for the 10 FTSE industry sectors in the US, 

UK and Japan obtained from DataStream, for the period from December 1993 to August 

2015, i.e. 261 observations. The FTSE sector indices are free from survivorship bias by 

construction. The price indices and market values are measured in US Dollars. In addition, we 

obtained the US one-month Treasury Bill rate for the corresponding period from the Kenneth 

R. French Data Library. We use the price indices to compute simple returns and then subtract 
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the Treasury Bill rate to give excess returns, which are used throughout the empirical 

analysis. We employ the market value of each FTSE sector index to compute the weight of 

each index in the benchmark portfolio during each month.  

Table 1 reports the summary statistics for the excess returns for each index from January 

1994 to August 2015. The average standard deviation of excess returns across all sectors is 

6.8% for the UK, 5.7% for the US and 6.8% for Japan, and ranges from 4.1% for US Health 

Care to 11.8% for UK Oil and Gas. Excess returns are leptokurtic for all 30 country-sectors, 

most notably for UK Financials, UK Basic Materials and Japan Telecom. They are negatively 

skewed for the majority of sectors in the US and UK, but positively skewed for all but one of 

the sectors in Japan. The null hypothesis of normality is rejected in 24 out of 30 cases at the 

five percent significance level, and in 19 cases at the one percent level.  

[Table 1] 

Table 2 reports the time series properties of excess returns for each index from January 1994 

to August 2015. In particular, it shows the first five autocorrelation coefficients and the value 

of the Ljung-Box test for serial correlation up to 10 lags, the ARCH test of Engle (1982) and 

the DCC test of Engle and Sheppard (2001). In only a few cases do excess returns display 

significant autocorrelations. This suggests that it is only for these series that we need to 

specify a conditional mean model to predict excess returns. However, taking the low power 

of the test and the possibility of non-linear dependence in excess returns into account, we use 

a momentum strategy for all 30 indices in order to capture predictability in excess returns as a 

basis for the investor’s views in the BL model (see Fabozzi et al., 2006). The results of the 

ARCH test suggest that there is significant volatility clustering for most of the excess return 

series. As shown in Table 2, the DCC test for all 30 excess return series fails to reject the null 

of a constant correlation in favour of a dynamic structure, with a p-value larger than 10%. We 

apply the DCC test to the 18 indices that exhibit a strong volatility clustering effect. The test 

suggests that these indices exhibit significant time-varying conditional correlations, with a p-

value less than 1%, thus motivating the use of dynamic conditional covariance models. The 

non-rejection of the null hypothesis for the remaining 12 series may be due to the low power 

of the test. Overall, therefore, the results reported in Table 2 suggest that it is appropriate to 

use a conditional volatility model to estimate the covariance matrix in the dynamic asset 

allocation model. 
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[Table 2] 

3. Theoretical Framework 

We generalize the BL model in a dynamic asset allocation framework, and measure tail risk 

under the assumption of both normally distributed and t-distributed returns. The dynamic BL 

portfolios that we consider include both unconstrained as well as risk-adjusted portfolios. To 

construct the unconstrained BL portfolios, we calculate the optimal weights using the 

following methods: reverse optimization implied in the BL model (the implied BL portfolio); 

optimization with a maximal Sharpe ratio (the SR-BL portfolio); optimization with a 

maximal reward-to-VaR ratio (the MVaR-BL portfolio); and optimization with a maximal 

reward-to-CVaR ratio (the MCVaR-BL portfolio).  

3.1. Dynamic BL Model  

In the generalized dynamic BL model that we propose, we define the first and second 

moments of the excess returns of  assets, conditional on the information set , as follows: 

 

 

where  is the excess returns vector,  is the  vector of 

expected excess returns in period ,  is the  error term vector, 1tY  is the information 

set in the period 1t .  is any location-scale family distribution,  is the 

covariance matrix,  is the conditional equilibrium return vector of the market 

portfolio, and the scale parameter  indicates the uncertainty of the CAPM prior. The smaller 

the value of , the higher the confidence in the estimation of the implied equilibrium return. 

In Black and Litterman (1992)  ranges between 0.01 and 0.05.  

3.1.1 Estimation of the Time-Varying Covariance Matrix 

In the dynamic asset allocation model, we use a time-varying conditional volatility model to 

estimate the covariance matrix. Indeed, Table 2 clearly shows that for the majority of the 

excess return series, the data exhibit volatility clustering and time-varying conditional 
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correlations. The literature is replete with covariance matrix forecasting models. In order to 

narrow the scope of the research, we select three widely used models in increasing order of 

sophistication. The Rolling Window (RW) model is the simplest but it also suffers from a 

number of limitations such as ghost features (see Alexander, 1998). The Exponentially 

Weighted Moving Average (EWMA) model provides a more realistic approach to the 

weighting of past observations, while preserving the simplicity of the RW model. This model 

puts more weight on recent observations relative to those in the distant past and remedies the 

‘ghost features’ problem of the Rolling Window model (see Alexander, 1998), and is better 

suited to capturing volatility persistence. Moreover, EWMA-based VaR forecasts have been 

shown to be superior to those based on GARCH models in many cases (see, for instance, 

Alexander and Leigh, 1997; Boudoukh et al., 1997; Guermat and Harris, 2002). Finally, to 

capture time-varying conditional correlations in asset returns, we also employ the more 

sophisticated Dynamic Conditional Correlation (DCC) model (see, for instance, Engle and 

Sheppard, 2001; Engle, 2002; Kalotychou et al., 2014). An advantage of this model that it has 

a smaller number of parameters compared to traditional multivariate models such as the VEC 

and BEKK models, and can therefore be applied to problems involving a large number of 

assets. We rebalance the portfolio every month using the estimated conditional covariance 

matrix for that month.  

 

Rolling Window Covariance Matrix 

The Rolling Window (RW) covariance matrix is given by: 

where 

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where  is the decay factor, with , which determines how rapidly the weights on 

past observations decline, and is typically estimated to be between 0.92 and 0.96. In 

RiskMetrics (J.P. Morgan, 1994), the decay factor is set to 0.94.  

DCC Covariance Matrix 

The DCC covariance matrix is given by: 

where  is the time-varying covariance matrix,  is the diagonal matrix of time-varying 

standard deviations from univariate GARCH models with  as the  element at time , 

i.e., ,  is the time-varying correlation matrix (see, Engle, 2002). 

3.1.2. Conditional Equilibrium Returns 

Bollerslev et al. (1988) argue that investors have conditional expected returns that are time-

varying. They employ a multivariate GARCH process within the CAPM framework to 

estimate expected returns. The idea is that the expected returns are proportional to the 

conditional non-diversifiable risk represented by the conditional covariance of each return 

with the market portfolio.  

Following Bollerslev et al. (1988), let  be the  vector of excess returns of all assets in 

the market at time , let  be the  conditional mean vector and let  be the  

conditional covariance matrix of these returns given information available at time . In 

addition, define  to be the  vector of market capitalization weights at time , 

and hence the excess return on the market portfolio is . When the CAPM holds, 

the conditional mean vector  satisfies the following equation: 

 

where  is the dynamic risk aversion coefficient. Brandt and Wang (2003) argue that the 

risk aversion coefficient is time-varying. We use a simple method to calculate the risk 
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aversion coefficient as the value of the global market risk premium divided by the market 

variance (see Idzorek, 2004; Babameto and Harris, 2009).  

3.1.3. The Investor’s Views 

An investor can possess views about some or all of the returns of the assets in a portfolio that 

may differ from the implied equilibrium returns. The uncertainty of the views is given by the 

error vector with a mean of zero and covariance matrix . The error terms are unknown 

and independent. The investor’s views at time  can thus be expressed as: 

At time , let  be the total number of the views (including both relative and absolute 

views),  is the  matrix of view portfolios and  is the  vector of expected 

returns on the view portfolios.  

 

Following Fabozzi et al. (2006), we utilize a momentum strategy to generate views. 

However, we extend their approach by substituting the constant standard deviation with a 

time-varying standard deviation to calculate the dynamic normalized returns. Further, there is 

evidence that the momentum effect is strongest at the six-month horizon (see Richard, 1997). 

Thus, we rank securities over the past six months and the momentum portfolios are formed at 

time  and held for 6 months. Therefore, the normalized six-month return  is given by: 

 

where   is the sector index price  at time ;  is the sector index price  at time 

 – 6; and   is the volatility of the sector index price  at time . The top half of the sector 

indices are allocated weights of , while the bottom half of the sector indices are 

allocated weights of , where,  Then, the view matrix  in 

the BL model is a N1 vector with each element equal to one of these two quantities, and 

thus represents the relative view that the top half of the sector indices will continue to 
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outperform the bottom half of the sector indices. The parameter  is a constant whose role is 

to constrain the annual long-short portfolio volatility to a certain level (20% in this case). 

Note that the portfolio weights do not sum to zero with this non-zero-cost long-short 

portfolio. The expected return of this momentum portfolio is the expected view return . 

After constructing the momentum portfolio in each period , we hold it for one month and 

observe its return  over the holding period. For the same holding period, we also observe 

the realized return  on the portfolio of the actual winners and losers. Then, the residual 

return is calculated as the difference between  and . The residual return series is 

then obtained by rolling the evaluation window forward one month and repeating the process. 

The level of confidence in the views  is equal to the variance of the series of residuals . 

 

3.1.4. Combining Conditional Equilibrium Returns and Views 

The next step in the estimation is to combine the conditional equilibrium returns with the 

views using a Bayesian approach. In the dynamic case, the  vector of conditional 

expected returns  at time   is given by:  

 

and the estimated  covariance matrix  is given by:  

 

3.2. Unconstrained Dynamic BL Portfolio  

We estimate the time-varying expected returns and covariance matrix from Equations (8) and 
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(see, for example, Idzorek, 2004). For the second method, we use mean-variance 

optimization, and maximize the Sharpe ratio: 

 

where  is the expected excess return of the BL portfolio in (8),  is the 

conditional portfolio standard deviation,  is the  vector of portfolio weights and  

is an  vector of ones. Thus, the vector of optimal weights for the SR-BL portfolio is 

given by: 

 

In both methods, the standard deviation is used to measure the portfolio risk. As noted above, 

this is only appropriate when returns are normally distributed and so we consider a more 

general formulation of the maximal reward-to-risk portfolio, where risk is measured by the 

VaR or CVaR of the BL portfolio based on the assumption of conditional joint elliptically 

distributed returns and finite variance (see Ortobelli et al, 2006a and 2006b). In this paper, in 

order to maintain the simplicity of the estimation of VaR and CVaR, we consider the cases 

that returns have either a normal distribution or a t-distribution. In particular, the optimization 

problem with maximal reward-to-VaR (MVaR-BL) is: 
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where  is the expected maximum loss on the BL portfolio at time  with a confidence 

level of . The VaR of the BL portfolio at time  can be expressed as: 

 

where  is the % quantile of the cumulative distribution  and  is 

equal to 1%, 5% or 10% (see, for example, Rockafellar and Uryasev, 2000). 

Similarly, the optimization problem with maximal reward-to-CVaR (MCVaR-BL) is: 

subject to 1', 1w tBL
 

where  is the average loss exceeding the expected maximum loss at time  on 

the BL portfolio with a certain confidence level of . The CVaR of the BL portfolio at 

time  is: 

where  and  (see, for example, 

Rockafellar and Uryasev, 2000). Note that all of our proposed dynamic BL portfolios allow 

for short sales.  
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dynamic asset allocation framework, which we address here. The first step is to estimate the 

time-varying risk-adjusted equilibrium return. The optimization problem is given by: 

 

where  indicates the measure of risk (i.e. variance, VaR or CVaR) of the portfolio 

return  and the equilibrium returns at time  are given by: 

 

where  is the covariance matrix at time  obtained from the conditional volatility models 

(2)-(4),  under the normal or t-distribution.  and  are the VaR and the CVaR at 
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substitute  in Equation (8) with  in Equations (18) to (20). Then, we use Equation (10) 

to construct the implied risk-adjusted BL portfolio, and Equation (12) to construct the risk-
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4. Empirical Results 
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the AHI, the less diversified the portfolio. To evaluate the performance of the portfolio, we 

use the information ratio, the reward-to-risk ratio (i.e. the Sharpe ratio) and the ratio of 

reward-to-downside risk, where downside risk is measured by VaR or CVaR computed from 

the empirical distribution. The information ratio measures the active return of the portfolio 

divided by the amount of portfolio risk relative to the benchmark. With these evaluation 

criteria, we compare the risk-adjusted BL portfolios to the benchmark, the naive 1/N 

portfolio, and the unconstrained BL portfolios. Finally, we investigate the impact of the 

choice of distribution and confidence level on the performance of the dynamic BL portfolios. 

Following Giacometti et al. (2007), we initially estimate each of the three volatility models 

using the first 110 observations (from January 1994 to February 2003) to generate a one-

month-ahead out-of-sample forecast of the conditional covariance matrix for month 111 

(March 2003). The estimation sample is then rolled forward by one month, the models are re-

estimated and used to generate out-of-sample forecasts for month 112, and so on until the end 

of the sample. For each iteration, the starting parameter values for each model are set to the 

values estimated in the previous iteration. This procedure results in a total of 151 out-of-

sample monthly forecasts. We then construct the momentum portfolio with a holding period 

of six months to use as the view vector in the BL model. Thus, the first month in which the 

BL portfolio is formed is August 2003 and so the total number of out-of-sample estimates is 

reduced to 145. We report the out-of-sample portfolio performance results in Table 3.  

[Table 3] 

Table 3 shows that all the unconstrained BL portfolios outperform both the benchmark 

portfolio and the 1/N portfolio, with better Sharpe ratios and reward-to-downside risk ratios. 

In addition, the unconstrained BL portfolios have significantly lower values of the AHI (less 

than 1) than the traditional static mean-variance portfolio (which has an AHI value of 12.636) 

implying higher diversification and more moderate weights.1  

4.1. The Benchmark Portfolio and the 1/N Portfolio  

Panel A of Table 3 indicates that while the 1/N portfolio is more diversified, the benchmark 

portfolio offers superior performance. In particular, the benchmark portfolio generates a 

                                                           
1 For the traditional static mean-variance method, we use historical returns over the estimation period (from 

January 1994 to July 2003) to estimate the inputs. The portfolio problem can be expressed as maximisation of 

the Sharpe Ratio, subject to the constraint that the sum of weights is equal to 1, while short sales are allowed 

with weights between -1 and 2. The allocated weights do not change during the evaluation period (from August 

2003 to August 2015). The sum of the squared weights is equal to 12.636.  
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1.71% higher Sharpe ratio and a 0.95% higher reward-to-downside risk ratio relative to the 

1/N portfolio. This result contradicts findings reported elsewhere in the literature regarding 

the performance of the 1/N portfolio relative to other, more sophisticated portfolio strategies 

(see, for example, DeMiguel et al., 2009).   

4.2. The Dynamic Implied BL Portfolio and the SR-BL Portfolio  

Next, we evaluate the performance of the two unconstrained portfolios, namely the implied 

BL portfolio and the SR-BL portfolio. We find that the implied BL portfolio constructed with 

the DCC model achieves the highest information ratio of 0.157 (see Panel B). In addition, this 

portfolio delivers the highest Sharpe, reward-to-VaR and reward-to-CVaR ratios, of 0.199, 

0.078 and 0.074, respectively. These are considerably higher than the corresponding ratios for 

the DCC-based SR-BL portfolio (see Panel C). Moreover, the information ratio of the DCC-

based SR-BL portfolio is 0.075, which is less than half of that of the implied BL portfolio. 

The DCC-based SR-BL portfolio has an AHI value of 0.097 and is thus less diversified than 

the implied DCC-based BL portfolio, which has an AHI value of 0.094. 

We also examine the impact of the choice of the volatility model on the performance of the 

implied BL portfolio and the SR-BL portfolio. We find that the use of the DCC model leads 

to superior portfolio performance, regardless of the performance measure. Relative to the RW 

model, the EWMA model results in better performance for the SR-BL portfolio but worse 

performance for the implied BL portfolio.  

4.3. The Dynamic MVaR-BL Portfolio  

Panel D of Table 3 reports the results for the unconstrained MVaR-BL strategy. The findings 

on the impact of the volatility models discussed in section 4.2 are similar. In particular, we 

find that the DCC-based MVaR-BL portfolio is superior at each confidence level under the t-

distribution. Further, the EWMA-based MVaR-BL portfolio is superior in terms of risk-

adjusted performance but inferior in terms of active portfolio performance relative to the 

RW-based MVaR-BL portfolio. This finding appears robust to the choice of confidence level 

and distributional assumption. For example, Panel D1 shows that the DCC-MVaR-BL 

portfolio outperforms both the EWMA-MVaR-BL and the RW-MVaR-BL portfolios under 

the t-distribution at the 99% confidence level. Indeed, it achieves the highest information 

ratio (0.137), Sharpe ratio (0.200), reward-to-VaR ratio (0.080), and reward-to-CVaR ratio 

(0.067). However, with the highest AHI value (of 0.161), the outperformance comes at the 
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cost of lower diversification. Similar conclusions can be drawn at lower confidence levels 

(Panels D2 and D3). 

Next, we assess the impact of the confidence level and distributional assumption on portfolio 

performance. The EWMA-MVaR-BL and RW-MVaR-BL portfolios appear insensitive to the 

choice of confidence level and distribution. However, the DCC-MVaR-BL portfolio 

performance is more sensitive, and performs better at the 99% confidence level under both 

the normal and t-distribution (see rows 1 and 4 of Panels D1 to D3). The DCC-MVaR-BL 

portfolio achieves a slightly better performance under the t-distribution than under the normal 

distribution at the 99% confidence level (Panel D1). However, the better performance comes 

at the cost of lower diversification. Similar conclusions can be drawn for the lower 

confidence levels (Panels D2 and D3). 

4.4. The Dynamic MCVaR-BL Portfolio  

The finding that the unconstrained MCVaR-BL portfolio with a DCC model is superior to the 

same portfolio constructed with other volatility models is robust to different confidence levels 

and distributional assumptions (Panel F). For example, the DCC-MCVaR-BL portfolio 

achieves higher Sharpe and reward-to-downside risk ratios than the EWMA-based MCVaR-

BL portfolio under a t-distribution and at the 99% confidence level (Panel F1). The AHI 

value of 0.164 implies that the outperformance of the DCC-MCVaR-BL portfolio comes at 

the cost of lower diversification. Similar conclusions can be drawn under normality and lower 

confidence levels (Panels F1 to F3).  

Turning to the impact of the confidence level and distributional assumption, we see that the 

performance of the DCC-MCVaR-BL portfolio is better under the t-distribution than under 

the normal distribution at the 99% confidence level, but seems insensitive to the choice of 

distribution at lower confidence levels. Further, the performance of the MCVaR-BL 

portfolios based on the EWMA and RW models does not appear to be sensitive to the choice 

of confidence level or distribution.  

4.5. The Dynamic Risk-adjusted BL Portfolio  

In this section, we discuss the performance of the risk-adjusted BL portfolios reported in 

Table 4.  

[Table 4] 
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4.5.1. The Variance-Adjusted BL Portfolio 

The variance-adjusted SR-BL portfolio performs much worse than the implied variance-

adjusted BL portfolio, with performance measures that are lower by more than two thirds 

(Columns 8 to 11, Panels A and B of Table 4). This arises from the extreme negative 

skewness and high kurtosis of the variance-adjusted SR-BL portfolio, leading to higher tail 

risk. 

4.5.2. The VaR-Adjusted SR-BL Portfolio 

Panel C of Table 4 indicates that the distributional assumption has a significant impact on the 

performance of the VaR-adjusted SR-BL portfolio at each confidence level. The t-distribution 

is better suited to the VaR-adjusted SR-BL portfolio for both performance and 

diversification. At each confidence level, the Sharpe ratio and reward-to-downside risk ratios 

under the t-distribution are larger than under the normal distribution. Further, the AHI value 

under the t-distribution is at least 0.12 lower. Secondly, as the confidence level decreases, the 

risk-adjusted performance of the VaR-adjusted SR-BL portfolio improves under the normal 

distribution, while its performance deteriorates slightly under the t-distribution (Rows 1 and 

2, Panels C1 to C3).  

4.5.3. The CVaR-Adjusted SR-BL Portfolio 

Panel D of Table 4 indicates that the confidence levels and distributional assumption have a 

moderate impact on the CVaR-adjusted SR-BL portfolio performance. As the confidence 

level is reduced from 99% to 90%, the Sharpe ratio falls from 0.183 to 0.165, while at the 

same time, the portfolio becomes more concentrated as suggested by the AHI, which 

increases from 0.425 to 0.431. A similar trend of deteriorating performance and 

diversification as the confidence level is reduced obtains under the t-distribution. Moreover, 

using the t-distribution rather than the normal distribution, both the diversification and risk-

adjusted performance of the CVaR-adjusted BL portfolio performance improves. At the 99% 

confidence level under the t-distribution, the Sharpe ratio and the reward-to-downside risk 

ratios of the CVaR-adjusted BL portfolio are, respectively, 0.4% and 0.1% higher than under 

the normal distribution. The AHI under the t-distribution is about 4.4% lower than under the 

normal distribution. At lower confidence levels, the Sharpe ratio and the reward-to-downside 

risk ratios of the CVaR-adjusted BL portfolio are 1.4% higher on average than under the 

normal distribution.   
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4.6. Dynamic BL Portfolio Performance Ranking 

In this section, we discuss the performance ranking of the dynamic BL portfolios reported in 

Table 5.  

[Table 5] 

We select the outperforming DCC-based dynamic BL portfolios in each strategy and report 

their rankings based on different performance measures. Based on the AHI, the 1/N and the 

benchmark portfolios have the best performance. However, these two portfolios are 

outperformed by most dynamic BL portfolios in terms of risk-adjusted performance and 

active performance. Table 5 shows that the best performing dynamic BL portfolios are the 

implied BL, the MVaR-BL, MCVaR-BL and the implied variance-adjusted BL portfolios. 

The implied BL portfolio offers the best active performance with information and reward-to-

CVaR ratios of 0.158 and 0.074 respectively. The MVaR-BL shows balanced performance. 

Overall, the MCVaR-BL portfolio under the t-distribution at the 99% confidence level 

performs better than any other portfolio. Although the implied variance-adjusted BL portfolio 

has the highest reward-to-VaR ratio (0.088) and second highest Sharpe ratio (0.206), its AHI 

value is nearly twice as large as that of the MCVaR-BL portfolio. All risk-adjusted BL 

portfolios have much higher AHI values, ranging from 0.307 to 0.541.  Moreover, the CVaR-

adjusted BL portfolio outperforms the VaR-adjusted BL portfolio. Occasionally, both the 

VaR- and the CVaR-adjusted BL portfolios perform better than the variance-adjusted BL 

portfolio, but they do not outperform the unconstrained DCC-BL portfolios. 

Finally, our results highlight the importance of using an appropriate reward-to-risk ratio in 

portfolio performance evaluation (see also Alexander and Baptista, 2003). The performance 

ranking obtained by the Sharpe ratio under non-normality can be misleading. In this case, the 

reward-to-downside risk ratios should be used as complementary performance criteria.  

4.7. Summary of the Findings 

The out-of-sample analysis highlights the following important findings. First, the dynamic 

BL portfolios outperform both the 1/N and the benchmark portfolios. In addition, the 

dynamic BL portfolios are more diversified than the mean-variance portfolio. Further, the 

DCC-based dynamic BL portfolios outperform the EWMA and RW-based portfolios in most 

cases. Second, the implied BL portfolio outperforms the SR-BL portfolio when using the 

DCC model and the RW model. Third, both the MVaR-BL and MCVaR-BL portfolios 

outperform the SR-BL portfolios at high levels of confidence. Further, the MCVaR-BL 
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portfolio outperforms the MVaR-BL portfolio and the implied BL portfolio, particularly 

under the t-distribution and at the 99% confidence level. Fourth, the MVaR-BL and the 

MCVaR-BL portfolios constructed with a DCC model perform better under the t-distribution 

than under the normal distribution. However, there is not a consistent ranking of the risk-

adjusted portfolio performance and the active portfolio performance, which depends on the 

volatility model employed. Fifth, the implied variance-adjusted BL portfolio cannot beat the 

DCC-based MCVaR-BL portfolio under the t-distribution and at the 99% confidence level; 

however, it outperforms most of the unconstrained BL portfolios. It also has the best risk-

adjusted performance and active portfolio performance of the risk-adjusted BL portfolios. 

5. Robustness Checks 

In this section we examine the robustness of our results to the estimation window length and 

data frequency. We also analyse the stability of our results by considering the sub-period 

performance of the asset allocation models.  

5.1. Estimation Window and Data Frequency 

We consider the performance of the models using different window lengths and different data 

frequencies to estimate the model parameters. In particular, Table 6 reports results for the 

performance of a selection of the DCC-based dynamic portfolios considered in Table 5 (the 

implied BL, MVaR 0.99t, MCVaR 0.99t, implied variance-adjusted BL, VaR-adjusted BL, 

and CVaR-adjusted BL portfolios) for estimation window lengths of 36, 60 and 110 months, 

using both monthly and weekly data. The table also reports results for the benchmark and 1/N 

portfolios. The superior performance of the dynamic BL portfolios is generally robust to 

changes in both the estimation window length and the choice of data frequency. All of the 

risk-adjusted portfolios outperform the benchmark and 1/N portfolios, while the implied-BL 

portfolio, the MVaR portfolio and the MCVaR portfolio are more sensitive to the changes in 

the sample size and data frequency, but nevertheless outperform the benchmark and 1/N 

portfolios in most cases. The relationship between performance and window length depends 

on the frequency of the data, reflecting a trade-off between the relevance of the estimation 

sample in the presence of structural breaks (which is best achieved by using a relatively short 

sample) and statistical precision (which increases with the sample size). In particular, using 

monthly and quarterly data, the out-of-sample performance of the dynamic BL portfolios 

deteriorates as the window length becomes shorter, while with weekly data, the performance 

of the dynamic BL portfolios tends to improve as the window length becomes shorter.  The 
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best performance is obtained using weekly data with a window length of 36 months.2  Our 

results are consistent with Bessler et al. (2015), who show that owing to the relatively slow 

reaction of asset allocation models to structural breaks, the use of long estimation windows 

(especially those of 48 months and longer) tends to reduce out-of-sample performance. 

 [Table 6] 

5.2. Sub-period performance 

We divide the full evaluation period (from August 2003 to August 2015) into three sub-

periods: the pre-financial crisis sub-period (August 2003 to October 2007), the financial crisis 

sub-period (November 2007 to February 2009) and the post-financial crisis sub-period 

(March 2009 to August 2015). We then assess the performance of the BL portfolios in each 

of the three sub-periods. Owing to the reduced sample size, and in view of the findings 

reported above, we use weekly data and an estimation window of 36 months. Table 7 reports 

the results of the sub-period analysis using the DCC-based dynamic BL portfolios in each 

strategy. Consistent with our results for the full evaluation period, all of the dynamic BL 

portfolios outperform the benchmark and 1/N portfolios in both the financial crisis sub-period 

and the post-financial crisis sub-period. In the pre-financial crisis sub-period, most of the 

risk-adjusted BL portfolios outperform the benchmark and 1/N portfolios. However, the 

relative performance of the different strategies is time-dependent. In the financial crisis sub-

period, the implied BL portfolio, the SR-BL portfolio, the MVaR portfolio and the MCVaR 

portfolio outperform the risk-adjusted BL portfolios, with positive Sharpe ratios and reward-

to-downside risk ratios. However, in the pre-financial crisis and post-financial crisis sub-

periods, the risk-adjusted BL portfolios perform better than the other strategies.  

[Table 7] 

6. Conclusion 

In this paper, we extend the Black–Litterman methodology to a dynamic asset allocation 

framework. The main contribution of this paper is to relax the assumption of a constant 

conditional distribution of returns in the BL model. Moreover, this paper also improves the 

BL framework by using alternative risk measures (VaR and CVaR) under different 

distributional assumptions (normal and t-distribution). The dynamic unconstrained BL 

portfolio nests the implied BL portfolio formed by reverse optimization of the BL model, the 

                                                           
2 Detailed results for the full set of portfolios are available on request. 
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SR-BL portfolio with maximal Sharpe ratio, the MVaR-BL portfolio with maximal reward-

to-VaR ratio and the MCVaR-BL portfolio with maximal reward-to-CVaR ratio. We analyse 

four risk-adjusted BL portfolios, the implied variance-adjusted BL portfolio, variance-

adjusted SR-BL portfolio, VaR-adjusted SR-BL portfolio and CVaR-adjusted SR-BL 

portfolio. We also use different performance measures, which lead to different rankings of 

these BL portfolios. Further, we examine the effect of the choice of volatility model, 

distributional assumption and the specified confidence level on portfolio diversification and 

portfolio performance.  

The out-of-sample analysis suggests that the dynamic BL asset allocation framework 

performs well. In particular, the dynamic BL portfolios and risk-adjusted BL portfolios 

outperform the benchmark and the 1/N portfolio and lead to more diversified portfolios 

relative to the standard mean-variance portfolio. We find that the DCC model is a suitable 

volatility model choice when constructing a dynamic BL portfolio. Since the Sharpe ratio is 

not an appropriate performance ratio when asset returns are non-normal, alternative 

performance ratios (reward-to-VaR and reward-to-CVaR ratios) are used to construct 

unconstrained BL portfolios and evaluate portfolio performance. The alternative is to use the 

estimated risk-adjusted equilibrium returns in the dynamic BL asset allocation process, 

although this leads to much more concentrated portfolios relative to the unconstrained BL 

portfolios.  

The dynamic BL asset allocation approach could be extended in several directions. First, it 

could be examined under the new performance measures of Biglova et al. (2004) and Rachev 

et al. (2007). In particular, it would be interesting to investigate the performance of the 

portfolios that optimize the Rachev ratio and Rachev generalised ratio. In addition, adding 

tracking error constraints to improve the active portfolio performance following the method of 

Palomba (2008) is another direction for future research. It would also be useful to investigate 

the performance of the dynamic BL portfolio in other markets, such as bonds, currencies and 

commodities, and over a longer sample period. 
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Table 1 Summary Statistics for the FTSE Sector Indices Excess Returns 

Table 1 reports summary statistics for the monthly excess return series on 10 FTSE Sector Indices in UK, US and Japan countries for the period 

January 1994 to August 2015. The table also reports the statistic and p-value of the Jarque-Bera test of the null hypothesis that the series are 

normally distributed distribution.  

 
Mean Median Standard Deviation Skewness Kurtosis Min Max Jarque-Bera P-value 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

UK BASIC MATS 0.004 0.003 0.078 -0.385 6.069 -0.359 0.254 108.45 0.000 

UK CONSUMER GDS 0.003 0.004 0.073 0.152 4.480 -0.239 0.293 24.72 0.000 

UK CONSUMER SVS -0.001 0.003 0.051 -0.546 4.151 -0.199 0.125 27.26 0.000 

UK FINANCIALS 0.000 0.002 0.069 -0.091 7.735 -0.322 0.335 243.19 0.000 

UK HEALTH CARE 0.002 0.005 0.045 -0.071 3.588 -0.144 0.162 3.96 0.138 

UK TECHNOLOGY -0.001 0.004 0.068 -0.751 5.151 -0.257 0.155 74.54 0.000 

UK INDUSTRIALS 0.005 0.005 0.061 0.064 3.688 -0.171 0.178 5.30 0.071 

UK OIL & GAS -0.005 -0.002 0.118 0.018 3.277 -0.307 0.332 0.84 0.656 

UK TELECOM 0.000 0.003 0.066 -0.331 3.357 -0.207 0.169 6.12 0.047 

UK UTILITIES 0.002 0.000 0.048 0.075 3.793 -0.168 0.157 7.06 0.029 

USA BASIC MATS 0.004 0.004 0.064 -0.163 4.787 -0.248 0.233 35.75 0.000 

USA CONSUMER GDS 0.000 0.003 0.054 -0.495 4.249 -0.205 0.124 27.52 0.000 

USA CONSUMER SVS 0.003 0.004 0.050 -0.345 3.775 -0.168 0.138 11.65 0.003 

USA FINANCIALS 0.003 0.007 0.063 -0.623 5.659 -0.234 0.196 93.41 0.000 

USA HEALTH CARE 0.004 0.009 0.041 -0.568 3.726 -0.126 0.103 19.67 0.000 

USA INDUSTRIALS 0.004 0.009 0.054 -0.441 4.824 -0.201 0.174 44.46 0.000 

USA OIL & GAS 0.006 0.004 0.054 -0.082 4.009 -0.184 0.177 11.33 0.003 

USA TECHNOLOGY 0.008 0.014 0.083 -0.301 3.495 -0.276 0.223 6.57 0.037 

USA TELECOM -0.001 0.004 0.047 -0.384 3.459 -0.136 0.130 8.67 0.013 

USA UTILITIES -0.001 0.007 0.057 0.031 4.782 -0.142 0.259 34.45 0.000 

JAPAN BASIC MATS -0.001 -0.004 0.071 0.298 3.766 -0.214 0.227 10.20 0.006 

JAPAN CONSUMER GDS 0.001 0.001 0.057 0.225 4.112 -0.160 0.230 15.58 0.000 

JAPAN CONSUMER SVS -0.003 -0.008 0.052 0.384 3.303 -0.144 0.156 7.39 0.025 

JAPAN FINANCIALS -0.006 -0.014 0.087 0.479 3.767 -0.224 0.317 16.30 0.000 

Table 1 (continued)          
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Table 1 (continued)          

 Mean Median Standard Deviation Skewness Kurtosis Min Max Jarque-Bera P-value 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

JAPAN HEALTH CARE 0.000 0.000 0.051 0.430 4.726 -0.152 0.218 40.29 0.000 

JAPAN INDUSTRIALS 0.001 0.005 0.062 -0.107 3.089 -0.193 0.179 0.58 0.748 

JAPAN OIL & GAS -0.001 -0.005 0.086 0.095 3.763 -0.271 0.271 6.70 0.035 

JAPAN TECHNOLOGY 0.001 -0.003 0.087 0.296 3.376 -0.197 0.293 5.32 0.070 

JAPAN TELECOM 0.000 -0.003 0.079 0.855 6.032 -0.230 0.375 131.27 0.000 

JAPAN UTILITIES -0.002 -0.006 0.052 0.428 4.372 -0.117 0.231 28.32 0.000 
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Table 2 reports the test statistics for autocorrelation, autoregressive conditional heteroskedasticity (ARCH) and dynamic conditional correlation 

for the full sample from January 1994 to August 2015. The Ljung-Box-Q test statistic for autocorrelation of up to order 10 is asymptotically 

distributed as a central Chi-square with 10 d.o.f. The ARCH (1) statistic is asymptotically distributed as a central Chi-square with one d.o.f. The 

DCC statistic is distributed as a central Chi-square with one d.o.f. *, ** and *** denote significance at 10%, 5% and 1% levels respectively. In 

the DCC test, ‘30 assets’ refers to the sample that includes all assets, and ‘18 assets’ refers to the sample that includes assets selected with 

significant autocorrelation in the squared residuals with one lag. 
 

Table 2 Time Series Properties 

 ACF(1) ACF(2) ACF(3) ACF(4) ACF(5) LB-Q(10) ARCH(1) 

 (1) (2) (3) (4) (5) (6) (7) 

UK BASIC MATS  0.141* 0.156*** 0.076*** 0.007*** -0.130*** 25.736*** 35.848*** 

UK CONSUMER GDS  -0.034 -0.001 0.093 -0.120 -0.056 18.377* 0.021 

UK CONSUMER SVS  0.107 -0.010 0.022 0.131 -0.034 9.272 1.111 

UK FINANCIALS  0.165*** 0.029* 0.090* 0.070* -0.033* 17.040 11.760*** 

UK HEALTH CARE  -0.075 0.059 0.009 -0.094 -0.005 5.758 1.319 

UK TECHNOLOGY  0.070 -0.009 -0.001 0.032 0.028 5.662 0.268 

UK INDUSTRIALS  -0.119 0.024 -0.021 -0.018 -0.027 8.585 7.661*** 

UK OIL & GAS  0.086 0.007 0.076 0.117 -0.027 10.630 18.609*** 

UK TELECOM  0.093 -0.018 0.189*** -0.007* 0.071* 17.808 7.963*** 

UK UTILITIES  0.020 0.066 0.034 0.052 -0.068 10.341 4.160* 

USA BASIC MATS  0.021 0.041 0.044 0.003 -0.058 13.554 28.250*** 

USA CONSUMER GDS  0.027 -0.146 0.008 0.008 0.006 11.018 1.458 

USA CONSUMER SVS  0.063 -0.113 0.070 0.010 -0.024 6.323 7.070*** 

USA FINANCIALS  0.082 -0.033 0.067 0.073 0.071 14.632 17.591*** 

USA HEALTH CARE  0.024 -0.015 0.004 -0.029 0.070 12.487 0.854 

USA INDUSTRIALS  0.059 -0.062 0.046 0.120 0.002 15.097 9.553*** 

USA OIL & GAS  -0.035 0.052 -0.065 0.063 -0.055 6.950 3.471* 

USA TECHNOLOGY  -0.027 0.006 0.117 -0.068 0.012 8.017 44.773*** 

USA TELECOM  0.058 -0.028 0.090 0.059 0.004 12.308 1.962 

USA UTILITIES  0.005 -0.049 0.085 0.013 0.081 13.521 13.540*** 

JAPAN BASIC MATS  0.083 0.005 0.095 -0.027 0.070 11.657 19.241*** 

JAPAN CONSUMER GDS  0.063 -0.028 0.158* -0.006 0.025 15.853 1.574 

JAPAN CONSUMER SVS  0.083 -0.089 0.072 -0.107 0.029 14.931 0.741 

JAPAN FINANCIALS  0.072 -0.041 0.079 -0.029 0.031 9.811 0.043 

Table 2 (continued)        
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DCC test statistic p-Value 

30 Assets 3.280 0.194 

18 Assets 11.911 0.003 
  

Table 2 (continued)        

 ACF(1) ACF(2) ACF(3) ACF(4) ACF(5) LB-Q(10) ARCH(1) 

 (1) (2) (3) (4) (5) (6) (7) 

JAPAN HEALTH CARE  0.032 -0.069 -0.044 -0.094 0.024 9.865 0.141 

JAPAN INDUSTRIALS  0.161*** 0.009** 0.123*** -0.024** 0.012* 14.524 7.407*** 

JAPAN OIL & GAS  -0.021 -0.105 0.108 -0.076 -0.054 15.681 9.266*** 

JAPAN TECHNOLOGY  0.124* 0.114** 0.176*** 0.039*** 0.068*** 23.638** 32.434*** 

JAPAN TELECOM  0.180*** 0.038*** 0.055** 0.000*** 0.152*** 21.111* 12.101*** 

JAPAN UTILITIES -0.068 0.067 -0.111 -0.041 -0.046 8.596 0.764 
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Table 3 Out-of-sample Unconstrained BL Portfolio Performance 

Table 3 reports realized unconstrained BL portfolio performance compared with the benchmark performance in the period from August 2003 to 

August 2015. Return is the average realized excess return, Sharpe Ratio (SR) is the average excess realized return divided by the standard 

deviation (SD). Average Herfindahl index (AHI) is the average value of the time-varying Herfindahl index. Information Ratio (IR) is the average 

active return divided by the standard deviation of active return. Both VaR and CVaR are measured using the empirical distribution. and 

 evaluate the excess return per unit of tail risk. In the construction of the portfolio, both VaR and CVaR are estimated by the 

parametric method with the assumption of a normal distribution (‘N’) or t-distribution (‘t’) at confidence levels of 99%, 95% and 90%. The 

implied BL portfolio is constructed by reverse optimization of the utility function. The SR-BL portfolio is constructed by maximizing the SR in. 

The MVaR-BL portfolio is constructed by maximizing the reward-to-VaR ratio. The MCVaR-BL portfolio is constructed by maximizing the 

reward-to-CVaR ratio.  

    
Return 

(1) 

SD Skewness Kurtosis VaR CVaR AHI IR SR   

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

  Panel A. The benchmark portfolio and the 1/N portfolio 

Benchmark   0.005 0.039 -0.855 5.487 0.107 0.149 0.075 NaN 0.135 0.049 0.036 

1/N   0.005 0.038 -0.903 5.441 0.126 0.150 0.033 -0.070 0.118 0.036 0.030 

  Panel B. The implied BL portfolio 

Implied BL 

DCC 0.008 0.042 -0.230 4.201 0.107 0.112 0.094 0.157 0.199 0.078 0.074 

EWMA 0.006 0.039 -0.276 4.250 0.105 0.107 0.102 0.047 0.153 0.056 0.055 

RW 0.006 0.039 -0.397 4.534 0.106 0.121 0.106 0.074 0.155 0.058 0.050 

  Panel C. The SR-BL portfolio 

SR-BL 

DCC 0.007 0.042 -0.628 5.599 0.109 0.151 0.097 0.075 0.164 0.063 0.045 

EWMA 0.006 0.038 -0.231 4.121 0.093 0.101 0.098 0.072 0.161 0.067 0.061 

RW 0.006 0.039 -0.462 4.716 0.111 0.123 0.103 0.038 0.145 0.052 0.047 

Table 3 (continued) 

 

 

VaR/

CVaR/

VaR/ CVaR/
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Table 3 (continued) 

    Return SD Skewness Kurtosis VaR CVaR AHI IR SR   
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Panel D. The MVaR-BL portfolio 

Panel D1. The MVaR-BL portfolio (99% Confidence Level) 

MVaR-BL N 

DCC 0.008 0.039 -0.452 4.129 0.098 0.116 0.159 0.130 0.196 0.079 0.066 

EWMA 0.007 0.038 -0.234 4.788 0.100 0.118 0.098 0.089 0.174 0.066 0.056 

RW 0.007 0.038 -0.271 4.399 0.100 0.105 0.103 0.100 0.170 0.065 0.062 

MVaR-BL t 

DCC 0.008 0.039 -0.439 4.101 0.098 0.116 0.161 0.137 0.200 0.080 0.067 

EWMA 0.007 0.038 -0.237 4.778 0.100 0.118 0.098 0.088 0.173 0.066 0.056 

RW 0.007 0.038 -0.274 4.390 0.100 0.105 0.103 0.099 0.170 0.065 0.062 

Panel D2. The MVaR-BL portfolio (95% Confidence Level) 

MVaR-BL N 

DCC 0.007 0.040 -0.686 4.694 0.129 0.132 0.146 0.099 0.180 0.056 0.055 

EWMA 0.007 0.038 -0.235 4.793 0.100 0.118 0.098 0.088 0.173 0.066 0.056 

RW 0.007 0.038 -0.271 4.401 0.100 0.105 0.103 0.100 0.170 0.065 0.062 

MVaR-BL t 

DCC 0.008 0.039 -0.451 4.128 0.098 0.116 0.158 0.130 0.196 0.079 0.066 

EWMA 0.007 0.038 -0.233 4.798 0.100 0.118 0.098 0.088 0.173 0.066 0.056 

RW 0.007 0.038 -0.271 4.399 0.100 0.105 0.103 0.100 0.170 0.065 0.062 

Panel D3. The MVaR-BL portfolio (90% Confidence Level) 

MVaR-BL N 

DCC 0.007 0.040 -0.689 4.708 0.130 0.132 0.146 0.099 0.180 0.055 0.054 

EWMA 0.007 0.038 -0.237 4.799 0.100 0.118 0.098 0.088 0.173 0.066 0.056 

RW 0.007 0.038 -0.271 4.402 0.100 0.105 0.103 0.100 0.170 0.065 0.062 

MVaR-BL t 

DCC 0.008 0.039 -0.443 4.126 0.098 0.116 0.156 0.131 0.196 0.079 0.066 

EWMA 0.007 0.038 -0.236 4.805 0.100 0.118 0.098 0.088 0.173 0.066 0.056 

RW 0.007 0.038 -0.271 4.401 0.100 0.105 0.103 0.100 0.170 0.065 0.062 

Table 3 (continued) 

VaR/ CVaR/
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Table 3 (continued) 

 

Return 

(1) 

SD 

(2) 

Skewness 

(3) 

Kurtosis 

(4) 

VaR 

(5) 

CVaR 

(6) 

AHI 

(7) 

IR 

(8) 

SR 

(9) 
 

(10) 
 

(11) 

Panel F. The MCVaR-BL portfolio 

Panel F1. The MCVaR-BL portfolio (99% Confidence Level) 

MCVaR-BL N 

DCC 0.007 0.039 -0.460 4.041 0.098 0.116 0.154 0.119 0.190 0.076 0.064 

EWMA 0.007 0.038 -0.237 4.784 0.100 0.118 0.098 0.088 0.173 0.066 0.056 

RW 0.007 0.038 -0.271 4.399 0.100 0.105 0.103 0.100 0.170 0.065 0.062 

 
DCC 0.008 0.039 -0.436 4.063 0.098 0.116 0.164 0.143 0.207 0.083 0.069 

MCVaR-BL t EWMA 0.007 0.038 -0.232 4.766 0.100 0.117 0.098 0.088 0.173 0.066 0.056 

  RW 0.007 0.038 -0.272 4.390 0.100 0.105 0.103 0.098 0.170 0.065 0.062 

Panel F2. The  MCVaR-BL portfolio (95% Confidence Level) 

MCVaR-BL N 

DCC 0.008 0.039 -0.451 4.127 0.098 0.116 0.158 0.131 0.196 0.079 0.066 

EWMA 0.007 0.038 -0.233 4.798 0.100 0.118 0.098 0.088 0.173 0.066 0.056 

RW 0.007 0.038 -0.271 4.398 0.100 0.105 0.103 0.100 0.170 0.065 0.062 

MCVaR-BL t 

DCC 0.008 0.039 -0.452 4.124 0.098 0.116 0.158 0.130 0.196 0.079 0.066 

EWMA 0.007 0.038 -0.237 4.782 0.100 0.118 0.098 0.088 0.173 0.066 0.056 

RW 0.007 0.038 -0.274 4.390 0.100 0.105 0.103 0.099 0.170 0.065 0.062 

Panel F3. The MCVaR-BL portfolio (90% Confidence Level) 

MCVaR-BL N 

DCC 0.008 0.039 -0.444 4.126 0.098 0.116 0.157 0.131 0.196 0.079 0.066 

EWMA 0.007 0.038 -0.236 4.805 0.100 0.118 0.098 0.088 0.173 0.066 0.056 

RW 0.007 0.038 -0.272 4.399 0.100 0.105 0.103 0.100 0.170 0.065 0.062 

MCVaR-BL t 

DCC 0.008 0.039 -0.452 4.127 0.098 0.116 0.159 0.131 0.197 0.079 0.066 

EWMA 0.007 0.038 -0.236 4.785 0.100 0.118 0.098 0.088 0.173 0.066 0.056 

RW 0.007 0.038 -0.271 4.399 0.100 0.105 0.103 0.100 0.170 0.065 0.062 

 

VaR/ CVaR/
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Table 4 reports realized risk-adjusted unconstrained BL portfolio performance in the period from August 2003 to August 2015. Return is the 

average realized excess return, Sharpe Ratio (SR) is the average excess realized return divided by the standard deviation (SD). Average 

Herfindahl index (AHI) is the average value of the time-varying Herfindahl index. Information Ratio (IR) is the average active return divided by 

the standard deviation of active return. Both VaR and CVaR are measured on the empirical distribution.  and  evaluate the 

excess return per unit of tail risk. In the construction of the portfolio, both VaR and CVaR are estimated by the parametric method with the 

assumption of a normal distribution (‘N’) and t-distribution (‘t’) at confidence levels of 99%, 95% and 90%. The implied variance-adjusted BL 

portfolio is constructed by reverse optimization of the utility function. The variance-adjusted SR-BL portfolio is constructed by maximizing the 

SR. The -VaR portfolio is constructed by maximizing the VaR-adjusted return to SD ratio. The -CVaR portfolio is constructed by 

maximizing the CVaR-adjusted return to SD ratio.  

  
Return SD Skewness Kurtosis VaR CVaR AHI IR SR   

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Panel A. The implied variance-adjusted BL portfolio 

Implied variance-adjusted BL 0.009 0.043 -0.363 4.278 0.100 0.136 0.307 0.094 0.206 0.088 0.065 

Panel B. The variance-adjusted SR-BL portfolio 

Variance-adjusted SR-BL 0.007 0.050 -2.015 15.205 0.143 0.264 0.324 0.036 0.136 0.047 0.025 

Panel C. The -VaR portfolio 

Panel C1. The -VaR portfolio (99% Confidence Level) 

-VaR N 0.008 0.063 -1.624 13.727 0.319 0.335 0.541 0.046 0.126 0.025 0.024 

-VaR t 0.008 0.045 -0.658 6.454 0.128 0.178 0.381 0.080 0.180 0.063 0.045 

Panel C2. The -VaR portfolio (95% Confidence Level) 

-VaR N 0.008 0.077 -0.732 7.512 0.297 0.313 0.546 0.037 0.105 0.027 0.026 

-VaR t 0.009 0.051 -0.623 7.095 0.132 0.207 0.429 0.098 0.179 0.069 0.044 

Panel C3. The -VaR portfolio (90% Confidence Level) 

-VaR N 0.008 0.059 -0.787 6.805 0.221 0.233 0.886 0.043 0.131 0.035 0.033 

-VaR t 0.007 0.046 -1.881 15.289 0.137 0.244 0.440 0.049 0.162 0.054 0.030 

Table 4 (continued) 

 

VaR/ CVaR/

 

VaR/ CVaR/















Table 4 Out-of-sample Risk-Adjusted Unconstrained BL Portfolios Performance 



34 

 

Table 4 (continued) 

 Return SD Skewness Kurtosis VaR CVaR AHI IR SR   

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Panel D. The -CVaR portfolio 

Panel D1. The -CVaR portfolio (99% Confidence Level) 

-CVaR N 0.010 0.054 -0.252 5.985 0.130 0.192 0.425 0.116 0.183 0.076 0.051 

-CVaR t 0.009 0.048 -0.372 5.491 0.127 0.170 0.382 0.104 0.187 0.070 0.052 

Panel D2. The -CVaR portfolio (95% Confidence Level) 

-CVaR N 0.013 0.076 0.478 7.183 0.220 0.237 0.541 0.138 0.174 0.060 0.056 

-CVaR t 0.009 0.051 -0.337 5.812 0.129 0.184 0.407 0.110 0.185 0.073 0.051 

Panel D3. The -CVaR portfolio (90% Confidence Level) 

-CVaR N 0.008 0.048 -1.226 10.300 0.135 0.225 0.431 0.066 0.165 0.059 0.035 

-CVaR t 0.010 0.056 -0.182 6.060 0.138 0.198 0.436 0.120 0.182 0.074 0.051 

 

  

VaR/ CVaR/














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Table 5 Out-of-sample Dynamic BL Portfolios Performance Ranking 

Table 5 summarises out-of-sample performance evaluation ratios and report the rankings of the benchmark portfolio, 1/N portfolio, the the DCC-

based BL portfolios in the period from August 2003 to August 2015. Sharpe Ratio (SR) is the average excess realized return divided by the 

standard deviation (SD). Average Herfindahl index (AHI) is the average value of the time-varying Herfindahl index. Information Ratio (IR) is 

the average active return divided by the standard deviation of active return. Both VaR and CVaR are measured on the empirical distribution. 

 and  evaluate the excess return per unit of tail risk. The implied BL portfolio is constructed by reverse optimization of the 

utility function. The SR-BL portfolio is constructed by maximizing the SR. The MVaR-BL portfolio is constructed by maximizing the reward-

to-VaR ratio. The MCVaR-BL portfolio is constructed by maximizing the reward-to-CVaR ratio. The implied variance-adjusted BL portfolio is 

constructed by reverse optimization of the utility function. The variance-adjusted SR-BL portfolio is constructed by maximizing the Variance-

adjusted return to SD ratio. The -VaR portfolio is constructed by maximizing the VaR-adjusted return to SD ratio. The -CVaR portfolio is 

constructed by maximizing the CVaR-adjusted return to SD ratio. Both VaR and CVaR are estimated by the parametric method with the 

assumption of a normal distribution (‘N’) or t-distribution (‘t’) at a confidence level of 99%.  

 

SR Ranking  Ranking  Ranking AHI Ranking IR Ranking 

Benchmark 0.135 12 0.049 11 0.036 11 0.075 2 NaN NaN 

1/N 0.118 14 0.036 13 0.030 12 0.033 1 -0.070 13 

Implied BL 0.199 4 0.078 5 0.074 1 0.094 5 0.157 1 

SR-BL 0.164 10 0.063 10 0.045 10 0.097 6 0.075 10 

MVaR 0.99 N 0.196 5 0.079 4 0.066 4 0.079 3 0.130 4 

MVaR 0.99 t 0.200 3 0.080 3 0.067 3 0.080 4 0.137 3 

MCVaR 0.99 N 0.190 6 0.076 6 0.064 6 0.154 7 0.119 5 

MCVaR 0.99 t 0.207 1 0.083 2 0.069 2 0.164 8 0.143 2 

Implied variance-adjusted BL 0.206 2 0.088 1 0.065 5 0.307 9 0.094 8 

Variance-adjusted SR-BL 0.136 11 0.047 12 0.025 13 0.324 10 0.036 12 

VaR-adjusted SR-BL 0.99 N 0.126 13 0.025 14 0.024 14 0.541 14 0.046 11 

VaR-adjusted SR-BL 0.99 t 0.180 9 0.063 9 0.045 9 0.381 11 0.080 9 

CVaR-adjusted SR-BL 0.99 N 0.183 8 0.076 7 0.051 8 0.425 13 0.116 6 

CVaR-adjusted SR-BL 0.99 t 0.187 7 0.070 8 0.052 7 0.382 12 0.104 7 

 

VaR/ CVaR/

 

VaR/ CVaR/
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Table 6 Out-of-sample of the Dynamic BL Portfolios Using Different Window Lengths and Different Data Frequencies 

Table 6 summarises out-of-sample performance evaluation ratios for the benchmark portfolio, 1/N portfolio, and selected DCC-based BL 

portfolios in the period from August 2003 to August 2015, using an estimation window of 36 months, 60 months and 110 months. Sharpe Ratio 

(SR) is the average excess realized return divided by the standard deviation (SD).  Information Ratio (IR) is the average active return divided by 

the standard deviation of active return. Both VaR and CVaR are measured using the empirical distribution.  and  evaluate the 

excess return per unit of tail risk. The implied BL portfolio is constructed by reverse optimization of the utility function. The MVaR-BL 

portfolio is constructed by maximizing the reward-to-VaR ratio. The MCVaR-BL portfolio is constructed by maximizing the reward-to-CVaR 

ratio. The implied variance-adjusted BL portfolio is constructed by reverse optimization of the utility function. The -VaR portfolio is 

constructed by maximizing the VaR-adjusted return to SD ratio. The -CVaR portfolio is constructed by maximizing the CVaR-adjusted return 

to SD ratio. Both VaR and CVaR are estimated by the parametric method with the assumption of a t-distribution (‘t’) at a confidence level of 

99%.  

 

  

Monthly Data 

  

Weekly Data 

  

 

SR 
  

IR 
 

SR 
  

IR 

Panel A: The benchmark portfolio and the 1/N portfolio 

Benchmark 0.135 0.049 0.036   0.090 0.030 0.022  

1/N 0.118 0.036 0.030 -0.070  0.102 0.035 0.026 0.015 

Panel B: Estimation Window of 36 months 

Implied BL 0.102 0.029 0.025 -0.087  0.222 0.103 0.068 0.101 

MVaR 0.99 t 0.118 0.042 0.034 -0.072  0.123 0.044 0.030 0.043 

MCVaR 0.99 t 0.115 0.040 0.032 -0.102  0.208 0.087 0.058 0.112 

Implied variance-adjusted BL 0.157 0.051 0.049 0.075  0.291 0.100 0.075 0.053 

VaR-adjusted SR-BL 0.99 t 0.146 0.047 0.045 0.024  0.241 0.086 0.058 0.099 

CVaR-adjusted SR-BL 0.99 t 0.154 0.048 0.046 0.031  0.214 0.093 0.050 0.087 

(Table 6 Continued) 
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(Table 6 Continued) 

  

Monthly Data 

  

Weekly Data 

  

 

SR 
  

IR 
 

SR 
  

IR 

Panel C: Estimation Window of 60 months 

Implied BL 0.190 0.069 0.060 0.109  0.183 0.081 0.066 0.061 

MVaR 0.99 t 0.143 0.052 0.044 0.007  0.091 0.030 0.023 -0.005 

MCVaR 0.99 t 0.137 0.049 0.041 -0.022  0.087 0.028 0.021 -0.018 

Implied variance-adjusted BL 0.152 0.050 0.047 0.049  0.169 0.070 0.041 -0.006 

VaR-adjusted SR-BL 0.99 t 0.157 0.052 0.048 0.062  0.182 0.065 0.042 0.079 

CVaR-adjusted SR-BL 0.99 t 0.154 0.050 0.047 0.050  0.141 0.062 0.033 0.070 

Panel D: Estimation Window of 110 months          

Implied BL 0.199 0.078 0.074 0.157  0.178 0.077 0.054 0.065 

MVaR 0.99 t 0.200 0.080 0.067 0.137  0.037 0.012 0.008 -0.074 

MCVaR 0.99 t 0.207 0.083 0.069 0.143  -0.021 -0.009 -0.004 -0.056 

Implied variance-adjusted BL 0.206 0.088 0.065 0.094  0.235 0.090 0.064 0.010 

VaR-adjusted SR-BL 0.99 t 0.180 0.063 0.045 0.080  0.163 0.057 0.042 0.104 

CVaR-adjusted SR-BL 0.99 t 0.187 0.070 0.052 0.104  0.127 0.049 0.032 0.069 
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Table 7 Out-of-sample Dynamic BL Portfolios Performance in Sub-periods 

Table 7 reports out-of-sample performance of the benchmark portfolio, 1/N portfolio, and the DCC-based BL portfolios in three sub-periods 

between August 2003 and August 2015. The results are based on weekly data with an estimation window length of 36 months. Return is the 

average realized excess return, Sharpe Ratio (SR) is the average excess realized return divided by the standard deviation (SD). Average 

Herfindahl index (AHI) is the average value of the time-varying Herfindahl index. Information Ratio (IR) is the average active return divided by 

the standard deviation of active return. Both VaR and CVaR are measured on the empirical distribution. and evaluate the 

excess return per unit of tail risk. The implied BL portfolio is constructed by reverse optimization of the utility function. The SR-BL portfolio is 

constructed by maximizing the SR. The MVaR-BL portfolio is constructed by maximizing the reward-to-VaR ratio. The MCVaR-BL portfolio is 

constructed by maximizing the reward-to-CVaR ratio. The implied variance-adjusted BL portfolio is constructed by reverse optimization of the 

utility function. The variance-adjusted SR-BL portfolio is constructed by maximizing the Variance-adjusted return to SD ratio. The -VaR 

portfolio is constructed by maximizing the VaR-adjusted return to SD ratio. The -CVaR portfolio is constructed by maximizing the CVaR-

adjusted return to SD ratio. Both VaR and CVaR are estimated by the parametric method with the assumption of a normal distribution (‘N’) or t-

distribution (‘t’) at a confidence level of 99%.  

  
Return SD Skewness Kurtosis VaR CVaR AHI IR SR   

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Panel A. Sub-period 1: August 2003 to October 2007  

Benchmark  0.008 0.031 -0.224 0.835 0.085 0.094 0.081 NaN 0.243 0.089 0.080 

1/N 0.011 0.034 -0.183 0.825 0.086 0.105 0.033 0.125 0.313 0.125 0.102 

Implied BL 0.009 0.030 -0.244 0.845 0.083 0.091 0.137 0.147 0.292 0.107 0.096 

SR-BL 0.009 0.030 -0.253 0.857 0.084 0.093 0.149 0.122 0.285 0.102 0.093 

mu-VaR 0.99 N 0.009 0.030 -0.254 0.857 0.084 0.093 0.148 0.119 0.284 0.102 0.093 

mu-VaR 0.99 t 0.008 0.030 -0.233 0.845 0.085 0.091 0.079 0.051 0.274 0.096 0.090 

mu-CVaR 0.99 N 0.009 0.030 -0.221 0.835 0.083 0.085 0.930 0.003 0.316 0.114 0.111 

mu-CVaR 0.99 t 0.009 0.030 -0.257 0.858 0.085 0.093 0.079 0.111 0.284 0.101 0.093 

Implied variance-adjusted BL 0.004 0.010 -0.119 1.208 0.025 0.035 0.063 -0.069 0.360 0.150 0.107 

Variance-adjusted SR-BL 0.015 0.039 -0.048 0.924 0.097 0.107 0.353 0.118 0.380 0.152 0.138 

(Table 7 continued) 
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(Table 7 continued) 

  
Return SD Skewness Kurtosis VaR CVaR AHI IR SR   

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Panel A. Sub-period 1: August 2003 to October 2007  

VaR-adjusted SR-BL 0.99 N 0.003 0.011 -0.158 1.389 0.028 0.039 0.034 -0.071 0.264 0.100 0.072 

VaR-adjusted SR-BL 0.99 t 0.007 0.019 -0.120 1.788 0.067 0.072 0.064 -0.018 0.346 0.099 0.092 

CVaR-adjusted SR-BL 0.99 N 0.004 0.012 -0.172 1.625 0.036 0.046 0.039 -0.062 0.309 0.102 0.081 

CVaR-adjusted SR-BL 0.99 t 0.008 0.023 -0.111 1.177 0.070 0.071 0.076 0.004 0.339 0.110 0.108 

Panel B. Sub-period 2: November 2007 to February 2009 

Benchmark -0.043 0.087 -0.289 1.709 0.347 0.407 0.074 NaN -0.495 -0.123 -0.105 

1/N -0.037 0.084 -0.404 1.945 0.348 0.415 0.033 0.129 -0.446 -0.107 -0.090 

Implied BL 0.003 0.087 0.636 2.286 0.252 0.306 0.087 0.262 0.031 0.011 0.009 

SR-BL 0.016 0.130 1.005 2.858 0.342 0.386 0.087 0.255 0.121 0.046 0.041 

mu-VaR 0.99 N 0.013 0.123 0.778 2.271 0.344 0.386 0.087 0.273 0.107 0.038 0.034 

mu-VaR 0.99 t -0.030 0.080 -0.448 2.485 0.351 0.422 0.089 0.259 -0.368 -0.084 -0.070 

mu-CVaR 0.99 N -0.025 0.080 -0.639 2.891 0.371 0.443 0.165 -0.021 -0.308 -0.067 -0.056 

mu-CVaR 0.99 t 0.002 0.100 0.244 1.712 0.336 0.395 0.203 0.292 0.016 0.005 0.004 

Implied variance-adjusted BL 0.001 0.035 0.517 1.869 0.099 0.109 0.051 0.313 0.031 0.011 0.010 

Variance-adjusted SR-BL -0.011 0.084 -0.552 2.482 0.361 0.443 0.243 0.256 -0.133 -0.031 -0.025 

VaR-adjusted SR-BL 0.99 N 0.001 0.051 0.537 2.283 0.132 0.133 0.060 0.335 0.010 0.004 0.004 

VaR-adjusted SR-BL 0.99 t -0.010 0.073 -0.038 2.514 0.292 0.333 0.069 0.376 -0.140 -0.035 -0.030 

CVaR-adjusted SR-BL 0.99 N -0.003 0.062 0.551 2.355 0.172 0.180 0.068 0.352 -0.041 -0.015 -0.014 

CVaR-adjusted SR-BL 0.99 t -0.022 0.084 -1.265 4.910 0.441 0.548 0.079 0.268 -0.261 -0.050 -0.040 

(Table 7 continued) 
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(Table 7 continued) 

  
Return SD Skewness Kurtosis VaR CVaR AHI IR SR   

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Panel C. Sub-period 3: March 2009 to August 2015 

Benchmark 0.011 0.044 -0.104 1.062 0.126 0.143 0.074 NaN 0.254 0.088 0.078 

1/N 0.009 0.041 -0.160 0.948 0.111 0.136 0.033 -0.068 0.212 0.078 0.064 

Implied BL 0.013 0.044 0.030 1.134 0.121 0.137 0.105 0.067 0.290 0.104 0.093 

SR-BL 0.013 0.045 0.162 1.524 0.123 0.144 0.178 0.079 0.288 0.107 0.091 

mu-VaR 0.99 N 0.014 0.045 0.127 1.448 0.124 0.145 0.163 0.102 0.298 0.109 0.094 

mu-VaR 0.99 t 0.008 0.030 -0.233 0.845 0.085 0.091 0.078 -0.040 0.274 0.096 0.090 

mu-CVaR 0.99 N 0.014 0.047 -0.026 1.292 0.113 0.156 0.155 0.081 0.297 0.124 0.090 

mu-CVaR 0.99 t 0.013 0.045 0.069 1.275 0.122 0.143 0.089 0.079 0.291 0.106 0.091 

Implied variance-adjusted BL 0.012 0.032 -0.020 1.502 0.087 0.116 0.068 0.009 0.364 0.134 0.100 

Variance-adjusted SR-BL 0.020 0.048 0.225 1.318 0.110 0.121 0.203 0.168 0.419 0.183 0.166 

VaR-adjusted SR-BL 0.99 N 0.014 0.042 0.105 1.864 0.110 0.155 0.081 0.045 0.330 0.125 0.089 

VaR-adjusted SR-BL 0.99 t 0.015 0.039 0.093 1.464 0.103 0.129 0.087 0.083 0.378 0.144 0.114 

CVaR-adjusted SR-BL 0.99 N 0.014 0.039 0.229 1.784 0.097 0.134 0.077 0.055 0.361 0.145 0.105 

CVaR-adjusted SR-BL 0.99 t 0.016 0.042 0.031 1.102 0.101 0.131 0.105 0.140 0.387 0.160 0.124 
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