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 

Abstract— One of the urgent challenges in the automated 

analysis and interpretation of electrical brain activity is the 

effective handling of uncertainties associated with the complexity 

and variability of brain dynamics, reflected in the nonstationary 

nature of brain signals such as electroencephalogram (EEG). 

This poses a severe problem for existing approaches to the 

classification task within brain–computer interface (BCI) 

systems. Recently emerged type-2 fuzzy logic (T2FL) 

methodology has shown a remarkable potential in dealing with 

uncertain information given limited insight into the nature of the 

data generating mechanism. The objective of this work is thus to 

examine the applicability of T2FL approach to the problem of 

EEG pattern recognition. In particular, the focus is two-fold: i) 

the design methodology for the interval T2FL system (IT2FLS) 

that can robustly deal with inter-session as well as within-session 

manifestations of nonstationary spectral EEG correlates of motor 

imagery (MI), and ii) the comprehensive examination of the 

proposed fuzzy classifier in both off-line and on-line EEG 

classification case studies. The on-line evaluation of the IT2FLS-

controlled real-time neurofeedback over multiple recording 

sessions holds special importance for EEG-based BCI technology. 

In addition, a retrospective comparative analysis accounting for 

other popular BCI classifiers such as linear discriminant analysis 

(LDA), kernel Fisher discriminant (KFD) and support vector 

machines (SVMs) as well as a conventional type-1 FLS (T1FLS), 

simulated off-line on the recorded EEGs, has demonstrated the 

enhanced potential of the proposed IT2FLS approach to robustly 

handle uncertainty effects in BCI classification.  

 
Index Terms—Interval type-2 fuzzy systems, brain–computer 

interface (BCI), electroencephalogram (EEG), uncertainty, 

pattern recognition, real-time systems.  

 

I. INTRODUCTION 

HE capacity to handle uncertain and ambiguous 

information inherently present in the real-world modeling 

environments renders fuzzy logic (FL) one of the most 
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commonly exploited soft computing paradigms in pattern 

recognition [1]. More specifically, fuzzy methodology has 

enjoyed considerable popularity in the problem domains 

where multifarious manifestations of uncertainty are 

particularly difficult to capture analytically. Brain signal 

pattern recognition, which lies within the focus of this work, 

serves as the prime instance in this regard. Consequently, the 

literature reports the abundance of FL based approaches to 

analysis, interpretation and classification of brain 

neurophysiologic data, especially electroencephalogram 

(EEG), e.g. [2]-[7]. This paper addresses a particularly 

challenging task of discriminating patterns in the EEG signals 

recorded from subjects performing motor imagery (MI), which 

has already received some attention in fuzzy pattern 

recognition [3],[4] [8]-[11]. The outcome of these 

investigations has intrinsic implications for the broader field 

of EEG-based brain-computer interface (BCI). The 

significance of BCI technology is reflected in its contribution 

to the improvement of living standards for people affected 

from neuromuscular disorders [12],[13] and, more recently, in 

its potential to support a range of rehabilitative therapies 

[14],[15] as well as the growing impact on computer games 

industry [16]. One of the key challenges in the field of EEG-

based BCI is nondeterministic and nonstationary variability of 

the brain dynamics, reflected in EEG, which renders its 

interpretation particularly demanding [12],[17]-[19]. Origins 

of nonstationarities and fluctuations observed in EEG at a 

range of temporal scales, independent of task-dependent 

modulations, are numerous, e.g. different states of subject’s 

awareness, varying focus, neurofeedback effects, or even 

slight changes in electrode positions [20]-[22].  

Long-term variability in the EEG correlates of the 

associated BCI mental task is recognized as one of the key 

aspect of uncertainty effects detrimental to the inter-session 

performance of BCI systems [19],[21]-[25]. This problem has 

been approached with varying degree of success. Shenoy et al. 

[23] made the first attempt to visualize session-to-session 

changes in the distribution of EEG features using principal 

components analysis (PCA) and the class separating 

hyperplane derived from linear discriminant analysis (LDA). 

Noticeable inter-session translations and rotations of the 
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ellipsoidal clusters of the features representing classes of 

associated MIs were accounted for by adjusting the parameters 

of the LDA classifier. Guger et al. [24] performed two-session 

BCI experiments and reported a significant drop in the BCI 

performance from the first to the second session. For these 

reasons it is suggested in [26] that a classifier could be 

updated at the beginning of each session. A similar strategy 

was applied in [27], where a neural classifier was re-trained 

every day and then embedded in the BCI that was used the 

following day. A more frequent adaptation schedule to 

overcome challenges associated with inter- and within-session 

nonstationarity seems plausible using some recent methods in 

an unsupervised or semi-supervised mode [21],[22].  

Motivated by intrinsic potential of FL framework to handle 

uncertainty effects, there have also been proposed FL system 

(FLS) based approaches to EEG classification for BCI 

purposes, e.g. [3],[4],[10],[11],[28]. The promising results 

reported in these studies have however been obtained on small 

benchmark data sets with limited capacity to test multi-session 

performance. Moreover, the literature offers very limited 

evidence of real-time applicability of fuzzy classifiers in EEG 

pattern recognition [29][30][58]. The majority of the proposed 

approaches have been examined retrospectively on previously 

recorded EEG data without providing much insight into their 

on-line capabilities and suitability for providing real-time 

neurofeedback [3],[4],[11]. The specific need for on-line 

evaluation of BCI systems is largely motivated by the fact that 

they are supposed to operate in closed loop scenarios and the 

resultant neurofeedback effects cannot be simulated off-line. 

In addition, it provides an opportunity to validate the capacity 

of a BCI system to cope with uncertainty effects manifested 

on shorter time scales, from trial to trial or even within a trial, 

which are partially contributed by instantaneous feedback. 

These effects have mostly been addressed in the realm of on-

line adaptive BCI classification [31]-[33]. However, like in the 

case of adaptive calibration aimed mainly at reducing inter-

session nonstationarity, instantaneously adaptive classifiers 

intended for on-line use are often devised under the 

assumption of a known feature distribution, which may not be 

satisfied, thus resulting in lower accuracy. A notable exception 

is Yoon et al.’s approach [32], which allows for on-line 

inference and prediction of erroneous or missing target labels 

under a more flexible non-Gaussian model. Despite promising 

results reported on limited data in off-line mode only, the real-

time on-line evaluation has not yet been performed.  

In this work, the problem of both short- and long-term 

manifestations of uncertainty effects in the interpretation of 

MI induced EEG patterns for BCI purposes is addressed in the 

framework of a type-2 FLS (T2FLS) [34],[35]. This recently 

emerged methodology has been demonstrated to offer 

enhanced potential for handling uncertainty when compared to 

classical type-1 FLSs (T1FLSs) in various pattern recognition 

applications (for review, see [36]). In the context of EEG 

classification, it is envisaged that the concept of a T2 fuzzy set 

(T2FS) provides sufficient flexibility for embracing the range 

of possible EEG dynamical states and nonstationarities within 

the operating regime under investigation. This line of 

reasoning motivated the pioneering interval T2FLS (IT2FLS) 

based approach to brain signal pattern classification originally 

introduced by Herman et al. [3],[8]. The evaluation presented 

here primarily aims i) to report a more systematic validation of 

the proposed IT2FLS framework in off-line classification of 

EEG correlates of the MI of left vs right arm, and ii) to verify 

its applicability to on-line EEG-based BCI with real-time 

feedback. The focus in the evaluation, carried out on 

independent sets of data for off-line and on-line cases, is on 

inter-session performance transfer, particularly relevant for 

practical BCI applications where frequent re-tuning or 

adaptation of the system to account for nonstationarity is 

undesirable. The off-line paradigm allows for an extensive 

comparison of classification approaches in batch mode 

whereas the on-line paradigm provides an opportunity to 

validate the performance of our IT2FLS method in a realistic 

BCI context with instantaneous feedback effects. In this light, 

off-line and on-line cases are considered as complementary. In 

addition, when compared to the lower-scale original study [3], 

the concept of data-driven IT2FLS design [34],[37], including 

both rule generation and gradient descent based parameter 

tuning, is given more attention and subjected to a more 

detailed analysis. The classification performance of the 

IT2FLS is compared with the results obtained with popular 

BCI classifiers [38] such as LDA, kernel Fisher discriminant 

(KFD) and support vector machines (SVMs), as well as a 

T1FLS counterpart retrospectively applied to recorded data.  

II. METHODOLOGY DEVELOPMENT 

A. Data Description  

1) Off-line Discrimination of MI-related EEG Patterns  

There are two sets of EEG data utilized in this work. The 

first data set was obtained from the Institute of Human-

Computer Interfaces, Graz University of Technology, and was 

part of BCI Competition II. The EEG signals were recorded 

from 3 subjects (SA, SB and SC) in a timed experimental 

recording procedure where the subjects were instructed to 

imagine moving the left and the right hand in accordance with 

a directional cue displayed on a computer monitor (Fig. 1a). 

Each trial was 8 s in length. A fixation cross was displayed 

from t=0s to t=3s. The beginning of a trial was marked by an 

acoustic stimulus at t=2s. Next, an arrow (left or right) was 

displayed as a cue at t=3s. Therefore the segment of the data 

recorded after t=3s of each trial is considered as event related 

and is used for off-line analysis. The recordings were made 

with a g.tec amplifier and AgCl electrodes over two sessions, 

each consisting of 140 trials for SA and 160 trials for SB and SC 

with equal class representations [40]. Two bipolar EEG 

channels were measured over C3 and C4 locations (two 

electrodes 2.5cm anterior and posterior to positions C3 and 

C4) according to the international 10/20 system [41].  

The EEGs were sampled at a frequency of 128 Hz and 

band-pass filtered in the frequency range 0.5–30 Hz. 

Experimental settings for recording the data under 

consideration are described in greater detail in [40]. 

The second EEG data set was acquired at the Intelligent 



TFS-2015-0829 

 

3 

Systems Research Centre, University of Ulster at Magee 

Campus using the same g.tec equipment as that used by the 

Graz BCI group. The EEG data were obtained from five 

subjects (SI-SV) over ten 160-trial (balanced) sessions with a 

week-long break in between the sessions (five sessions 

without and five sessions with feedback). Four last feedback 

sessions for each subject were selected for extensive off-line 

analysis since the first feedback session resulted in inferior 

quality of the recorded data with extensive artifact 

contamination in subjects SI, SII and SIV. Trials were sampled 

at a frequency of 125 Hz (band-passed in the frequency range 

0.5–30 Hz) and those with artifacts were removed. The 

subjects were asked to imagine moving the left and the right 

hand depending on the horizontal location (left/right) of a 

target basket displayed at the bottom of a monitor screen (Fig. 

1b). Each trial was 7 s in length. A ball was displayed at the 

top of the screen from t=0s to t=3s. In the meantime, at t=2s 

acoustic stimulus signified the beginning of a trial and then the 

baskets (target in green and non-target in red) were displayed 

at t=3s. Also at t=3s the ball started moving to the bottom of 

the screen. The data epoch recorded after t=3s of each trial 

was analyzed in this work. The horizontal component of the 

ball movement was continuously controlled in the original on-

line experiments by the subject via the biofeedback 

mechanism. However, in this case study, the comparative EEG 

analyses for both data sets were carried out off-line with 

classification done at the end of a trial, resembling the concept 

of single MI-related EEG trial discrimination. 

 

2) On-line Classification with BCI Neurofeedback   

The EEG data used in the on-line case study were obtained 

from eight healthy participants (S1-S8, three females) in ten 

sessions (once a week). The recording paradigm and 

equipment were the same as in the previous study with the 

recordings collected at the University of Ulster. The only 

difference lay in the real-time neurofeedback controlled in this 

case by the IT2FLS classifier in the event-related segment of 

the data after t=3s. For these on-line experiments, the BCI was 

deployed in Simulink for real-time capability. The IT2FLS 

was implemented in ANSI-C, compiled to a .mex file, and 

then employed in a Simulink block design with native 

Simulink components for STFT. The BCI implementation was 

subjected to the timing constraint so that the feature extraction 

and classification would be carried out faster than the inverse 

of the sampling frequency, i.e. 1/128 s, to allow for outputting 

real-time feedback at the rate of 128 Hz.  

There were 80 repetitions of each MI per session. The first 

three sessions were conducted without feedback to allow the 

subjects to get familiar with the technology and obtain data to 

calibrate the BCI. In the next sessions, feedback was provided 

using the basket paradigm, as outlined above. 

B. MI-related EEG Features 

The EEG feature space was constructed from the time-

frequency (t-f) representation of the signal. This approach 

rests on the fact that the spectral content of the EEG recorded 

from bipolar channels over C3 and C4 locations when a 

subject performs imagination of hand movements displays 

most relevant changes around µ (8-12Hz) and β (18-25Hz) 

ranges [42],[43]. When the sensorimotor area of the brain is 

activated as a result of MI, two phenomena can occur – event-

related desynchronization (ERD) that performs a band power 

attenuation and event-related synchronization (ERS) 

associated with a band power enhancement of µ and central β 

oscillations [41],[42]. For the subjects examined here, there 

was µ-ERD on the contralateral side and central β ERS on the 

ipsilateral side. The minimalistic setup with two EEG channels 

was also dictated by the need to validate the utilitarian and 

practical aspects of our on-line BCI system. 

  

1) EEG Feature Extraction for Off-line Discrimination of 

MI-related EEG trials  

The short time Fourier transform (STFT) was applied to 

obtain the t-f representation of the EEGs analyzed in this 

study. The event-related segment of each EEG trial was 

divided into Gaussian windows depending on the settings of 

two parameters: window length, win_len and the amount of 

overlap, ovl, (Fig. 2a). Next, the Fourier transform was applied 

within the windows. The EEG features were calculated 

separately for each time window. The frequency components 

related to ERD and ERS were merged together by estimating 

the average spectral power in the two bands, μ and β, for each 

electrode  C3 μ βif   and  C4 μ βif  (i – window index, see 

Fig. 2b). In consequence, a feature vector, F, representing the 

event-related part of a trial (for C3 and C4 channels) had the 

dimensionality of 2Nwin, where Nwin is the number of 

windows fitted into the relevant signal epoch, determined by 

the windowing parameters, win_len and ovl (c.f. Fig. 2b):   

 
C3 C3 C4 C4

1 1(μ β),..., (μ β), (μ β),..., (μ β) .
win winN Nf f f f      F (1) 

 

Since the exact frequency bands of ERS/ERD vary from 

subject to subject, the most reactive frequency bands from 

which to extract features for the given subjects were tuned by 

optimizing the CA evaluated with an LDA classifier in a five-

fold cross-validation procedure. The windowing parameters, 

win_len and ovl, were also optimized in an analogous manner. 

The resulting number of windows, Nwin, ranged between 3 and 

5 across eight subjects in total in the first case study. 

 
Fig. 1.  Data recording in (a) Graz BCI [40] and (b) BCI basket paradigms. 
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2) EEG feature Extraction for Continuous On-line BCI 

Classification  

The spectral quantification of ERD and ERS correlates of 

MI also relied here on STFT. However, there was a 

considerable difference in how the feature vector was 

constructed due to the requirement for on-line classification. 

In particular, feature extraction was carried out at each time 

point, 3s ≤ t ≤ 7s, to provide an instantaneous (within a causal 

window sliding along a trial on a sample-by-sample basis) 

estimate of µ and β band power (Fig. 3). Unlike in the off-line 

classification of full trials, the two spectral components were 

kept separate in the feature vector as it resulted in better 

performance on a sample validation set. Consequently, a four-

dimensional feature vector Ft (2) was first normalized by its 

Euclidean norm and then fed to the BCI classifier at time t. 

The window size and the reactive µ and β frequency bands 

were optimized analogously as in the off-line study case. 

 
C3 C3 C4 C4(μ), (β), (μ), (β) .t t t tf f f f   t

F      (2) 

 

C. Fuzzy Classification 

The design of the proposed fuzzy classifier was undertaken 

in two stages. First, an initial structure of a prototype T1FL 

rule-base was identified and then it was extended to a T2FL 

rule-base by replacing T1FSs with their T2 counterparts 

(section II-C-1). In the second stage, the parameters defining 

membership functions were tuned with a learning algorithm 

(section II-C-2). The design process is illustrated in Fig. 4. 

 

1) Structure Identification of a Fuzzy Model  

The number of the inputs was dictated by the outcome of 

the feature extraction procedure. An initial rule-base was 

created to reflect the distribution of the features and their 

corresponding class assignments in the input-output space due 

to the supervised nature of the classification problem. There 

were four schemes of prototype T1FL rule-base initialization 

in this work: fuzzy c-means clustering (FCM) [44], subtractive 

clustering [45], mapping-constrained agglomerative (MCA) 

clustering [39] and its modification discussed in subsection II-

C-1. The extension of a prototype T1FL rule-base to the initial 

T2 fuzzy model is described later in subsection II-C-1b. 

1a)  Structure identification of a prototype T1 fuzzy model  

FCM clustering was first employed as a common approach 

to fuzzy rule-base identification. The algorithm requires a 

prior assumption of the number of clusters (from 2 to 10). The 

input space was clustered and the cluster centers projected on 

each input dimension served as rule prototypes. The widths of 

the FSs were calculated as the one-dimensional std.dev. of the 

subset of the input data points with the membership degree in 

the corresponding clusters above an arbitrary threshold (0.3–

0.8). The consequents were randomized between -1 and 1. 

 
Fig. 2. Spectral feature extraction in the off-line study: (a) Gaussian 

windowing of the event-related segments (t0–t1) in C3/C4; (b) STFT-based 

quantification of power spectral density (PSD) content in μ and β bands. 

 
Fig. 3.  EEG feature extraction in the on-line BCI: (a) a sliding window with 

causal feature extraction at each sample t; (b) STFT-based quantification of 

PSD content in μ and β bands (the Euclidean norm of Ft constitutes the input 

to BCI classifier at each sample t). 

 

 
 

Fig. 4.  A flowchart of the data-driven process of the IT2FLS classifier 

design (rule-base structure identification, IT2FLS initialization and a three-

stage parameter tuning process. 
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Subtractive clustering [45] derived from mountain 

clustering, proposed by Yager and Filev [46], was also 

employed in this study. The cluster centres were selected 

based on the density of data points (feature vectors). The 

density-related measure had the form of an iterative 

combination of radial basis functions (radii =0.3–0.5). 

Analogously to the FCM approach, the neighborhood of each 

resultant cluster centre was specified to determine the 

membership status of the clustered data points and then to 

estimate the corresponding one-dimensional standard 

deviations. The size of the neighborhood was controlled by a 

parameter, multiplier of the overall input data spread (0.1–

0.5), which facilitated adjustments of the size of overlap 

between the clusters. The output space assignments were made 

randomly for the same reasons as in the FCM-based scheme. 

In order to reinforce the consistency in the mapping from 

the input to the output space the MCA algorithm was also 

employed for the identification of an initial rule-base (the 

number of seed clusters within the range of 2–10 [39]). This 

clustering approach allowed for establishing a parsimonious 

architecture of the fuzzy system. In addition, the MCA scheme 

has been proven to be robust to noise and outliers that can 

affect the input-output mapping consistency [39]. However, 

we observed that the cluster structure obtained with the 

conventional single-pass (sp) MCA for the EEG features was 

susceptible to variations in the data ordering. Thus, refinement 

of the algorithm was necessary. The original spMCA [39] was 

iterated several times (15–30) with the core input data shuffled 

and appended with the data points representing means of 

clusters found in the previous iteration. For each iteration the 

record of a cluster validity index (described below) was kept. 

The maximum of the index determined the iteration resulting 

in the output clusters. This approach, referred to as a multi-

pass MCA algorithm (mpMCA), is summarized in Alg.1.  

The classification accuracy (CA) rate obtained with an 

untrained prototype T1 fuzzy classifier devised using cluster 

means and standard deviations only was used as an index of 

cluster validity since its correlation with the performance of 

the trained version of the classifier was observed. This 

significantly reduced the computational cost of the procedure 

and allowed for effective selection of the clustering 

parameters. T1FLS classifier initialization did not require any 

new parameters and could be directly derived from an output 

of the clustering algorithm with the same number of rules as 

clusters. The resulting clusters in the input-output space, 

defined by the means (mINP and mOUT) and standard deviations 

(sINP, sOUT), determine premise and consequent fuzzy sets of 

the corresponding T1FL rule-base. Since mOUT corresponds to 

a crisp class label (-1/1), sOUT is 0 and the consequent part of a 

T1 fuzzy rule is a singleton centered at mOUT. For easy 

visualization, an example of the projection of a two-

dimensional cluster of data belonging to class C on the axes 

corresponding to the respective input feature vector 

components (fi: F = [f1, f2, .., fi, .., fn], where n is the number of 

inputs) and the resulting T1 fuzzy rule (with Gaussian FSs Ai 

defined by the means m(i)=mINP
(i) and standard deviations 

s(i)=sINP
(i) in the rule antecedent) are illustrated in Fig. 5. This 

method of initializing a T1FL rule-base using a cluster 

structure of the input data is similar to that employing the 

FCM and the subtractive algorithm. The only difference lies in 

setting up the consequents and evaluating the standard 

deviations of the antecedents. In the FCM and subtractive 

clustering, the output data space information (class labels) is 

not exploited and the derived cluster membership degree of 

the input data points implies the aforementioned heuristic 

method of estimating the respective clusters’ widths. 

 1b)  T2FL rule-base initialization – T1 fuzzy model extension  

After initialization of a T1 rule-base, the structure of its T2 

counterpart was determined (Alg.1). A template of a Mamdani 

T2 fuzzy rule exploited in this work is of the following form: 

 

IF  R1  is  Ã1  AND … AND  Rn  is  Ãn   

THEN class is C=[cleft, cright ], 

 

where R1,..,Rn are the fuzzified components of an input feature 

vector F, and Ã1,…, Ãn denote IT2FSs that model the 

uncertainty effects in the feature space (antecedent). C is the 

centroid of the consequent T2FS (interval T1FS for center-of-

sets type reduction [34]) representing the class the input 

feature vector is assigned to. When Ãis are replaced by T1FSs 

and C becomes a crisp centroid of a T1FS, a T2 fuzzy rule 

reduces to T1 [34]. The inputs to both FLSs are modeled as 

T1FSs (fuzzification). All FSs are Gaussian to facilitate 

gradient-based tuning. In particular, the antecedents of the T2 

fuzzy rule exploit Gaussian IT2FSs handling uncertainty about 

the mean, parameterized using the concept of the primary 

membership function ( )A x [35] defined as  

 
Fig. 5.  Fuzzy rule formation, basic components: (a) a two-dimensional 

cluster in the feature space and the corresponding T1 fuzzy rule; (b) FOU of 

a Gaussian IT2FS with uncertain mean,  21,mmm ; (c) an illustrative 

comparison of a one-rule T2FLS and T1FLS-based classifiers (Δm and Δc 

define the initial bounds of uncertainty modeled in the system) 
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1 22

( )
( ) exp( ), [ , ],

2A

x m
x m m m

s



        (3) 

 

where m is an uncertain mean in [m1, m2], s is fixed. The 2D 

domain of support (Fig. 5b) for the secondary membership 

functions [35] is called the footprint of uncertainty (FOU). 

Since the antecedent IT2FSs, Ãis, in the proposed T2 fuzzy 

classifier are described by pairs of the means, m1
(i) and m2

(i), 

plus the standard deviations s(i) (i=1,..,n) as defined in (3), and 

the consequents are characterized by two points, cleft and cright, 

additional quantities, Δm and Δc, need to be introduced to 

transform a T1 to a T2 fuzzy rule (Fig. 5c). The antecedents 

and consequents of each rule were then determined using the 

following vector formulae: 

 

 
1 2, + ,

,

, .left OUT right OUTc m c c m c 

  

   

INP INP

INP

m m Δm m m Δm

s = s
  (4) 

 

Δm was determined with a multiplicative factor dm as follows: 

 

             .dm Δm s            (5) 

 

Finally, sfuzz_inp used in the description of the fuzzified 

inputs R1,..,Rn (Fig. 5c) was set as a scaled vector of the 

standard deviations of the input features, F, in a training set 

using a scaling factor a: 

       std( ).a fuzz_inps F          (6) 

Thus the parameters dm, Δc and a, assumed to be 

homogeneous for the entire rule-base, define the initial bounds 

of the uncertainty modeled in the system. Their selection was 

performed in conjunction with the learning process. In 

particular, the parameters were found using an extensive grid 

search (0.1≤dm≤1.0, 0.05≤Δc≤0.80, 0.1≤a≤1.0) with the aim 

of optimizing the performance of the classifier in a five-fold 

cross-validation setup on the given training session.  

It should be mentioned that product t-norm (with meet 

operator under product t-norm) as part of the FLS 

specification was employed [34]. As mentioned, the centre-of-

sets type reduction was used using Karnik-Mendel algorithm 

[34], followed by centroid defuzzification in the recall by 

taking the average of the type-reduced set (interval T1FS). 
 

Alg. 1.  Pseudocode of the mpMCA-based rule-base initialization scheme for 

T1FLS and IT2FLS classifiers  

 
Use the training data as a set of n-dimensional feature vector, F, and 

class label pairs, Dinit,={(F, class)}: 

BEGIN 

FOR iter=1 TO Npasses (Npasses=15–30) 

 Run the standard MCA method on reshuffled Dinit and 

produce clusters (for each cluster: mINP  – cluster center, 

sINP – cluster spread, and clabel – the assigned class).  

 Build a prototype Mamdani-type T1FLS with Gaussian 

antecedent FSs and centroid consequents (each cluster k 

gives a single T1FLS rule, c.f. Fig.5): 

, , ,
labelk k kk k k

m m s s c c  
INP INP

  

 Classify samples in Dinit using the T1FLS and report the 

CA as a cluster validity index(iter) 

 IF cluster validity index(iter)> max CA 

 Update max CA = cluster validity index(iter) 

END_IF 

 Append the data with the cluster centers and their labels: 

  : cluster index .,
labelk k

init init kD D m c 
INP

 

END_FOR 

Select the T1FLS configuration that has maximized CA (T1FLS 

with max cluster validity index over Npasses of the algorithm) and 

extend it to IT2FLS with Gaussian antecedent FSs (3) according 

to (4–6) using parameters dm, Δc and a. 

END 

 

2) Learning Algorithm 

After setting up an initial rule-base, the quantities such as 

m1, m2, s, cleft, cright and sfuzz_inp were tuned for every rule. The 

learning algorithm followed the concept of gradient descent, 

one of the most popular techniques used to adapt the 

parameters of IT2FLSs [47], with the loss function L in the 

form of the mean square error (7) to be minimized.  

         

  
22

1 1

1 1
,

N N

i i i

i i

L e y c
N N 

      (7) 

 

where N is the number of training samples, yi is the 

defuzzified real-valued crisp output of the fuzzy classifier and 

ci is the desired class label (-1 or 1) for the i-th sample 

( )i i ie y c  . In particular, following the conventional gradient 

descent idea, the aforementioned IT2FLS parameters, 

1 2, , , , ,left rightc c   fuzz_inp
P m m s s , were updated iteratively 

sample-by-sample based on the first derivatives of the L 

function, L

P




, with a positive learning rate α:   

 

 
1 | .

il l

L
 


 


P PP P

P
        (8) 

 

The training method proposed here consists of three stages 

and combines two popular approaches in the domain of 

IT2FLSs, the conventional steepest gradient descent algorithm 

developed by Liang and Mendel [35] and the method based on 

the dynamic optimal rate theorem [37]. This hybridization led 

to more robust and effective searching of a multimodal space 

for an optimal configuration of the system parameters than 

conventional Liang and Mendel’s approach in our case where 

generalization properties are emphasized (see section III-B).  

In the first training stage, the conventional steepest descent 

was applied with learning rates, α, reduced by factor of 2 

every ten epochs. Their initial values were part of the model 
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identification with the grid search (0.05≤ α ≤0.20). The update 

equations for the parameters P were derived from (8) as 

explicitly shown in [34],[35],[48]. 

An algorithm based on the dynamic optimal rate theorem 

was applied in the second phase with a view to speeding up 

the convergence of tuning the consequents of the IT2FLS. It 

involved the combination of sample-by-sample training of 

standard deviations sfuzz_inp and antecedent parameters m1, m2, 

s with a batch update of consequents cleft, cright, using the same 

first derivative based formulae as in the first learning stage 

(conventional gradient descent [34],[35],[48]). The learning 

rates for sfuzz_inp, m1, m2, s were kept constant at the level 

inherited from the first learning stage whereas the optimal 

learning rates, (opt)

left  and (opt)

right , for cleft and cright, were 

calculated every epoch according to the formulae derived in 

[37] based on the stability criterion for Lyapunov function 

defined as L2. The batch updates for cleft, cright at epoch j were: 

 

)(

)(

|)()()(

|)()()(

)(

)(

1

1

jpochright

jpoch

ecc

ecc

right
right

opt

rightrightright

leftleft
left

opt

leftleftleft

c

L
cc

c

L
cc

jepochjepochjepoch

jepochjepochjepoch





















 (9) 

 

with the rates estimated at each epoch (index j is dropped for 

clearer notation) according to [37]: 

 

   
( ) ( )

2 2
4 , 4 ,opt opt

left right

- -
N N

- -
  

T T T T T T T T

T T T T T T

r re l l re r l le r l re l

l lr r l r l l r r l r

 (10) 

 

where  1 2, ,..., Ne e ee is the column error vector for all N 

samples, and the column vectors l, r are defined as [37]: 

 T

l ll Q Q e  and  T

r rr Q Q e , with (1) ( ),..., N   l l l
Q q q  and  

(1) ( ),..., N   r r r
Q q q  consisting of N (for each sample) so-called 

left and right, respectively, rule firing strengths column 

vectors, ql and qr, obtained in the T2 fuzzy inference (type 

reduction using an iterative Karnik-Mendel method [49]). 

In the third step, the same conventional gradient descent 

algorithm as in the first stage was utilized to fine tune IT2FLS 

with the learning rates reduced by a factor of 5. The resulting 

setup of the system parameters was accepted only if the 

classifier’s training accuracy improved in comparison with the 

outcome of the second stage. Otherwise, the parameter 

configuration was rolled back. This last learning phase led to 

the significant enhancement of the IT2FLS performance on 

the validation set (20% of data available for setup) in over 

60% of cases. The early stopping criterion was applied on the 

validation set at all stages of the learning algorithm in order to 

enhance generalization capabilities.  

An analogous learning algorithm was developed for a 

T1FLS classifier (with dynamical optimal training for 

consequents [50]) in order to carry out a fair comparative 

analysis. The efficacy of the last phase of the hybrid learning 

algorithm was at a comparable level to that for the IT2FLS. 

 

Alg. 2. Pseudocode of the proposed three-stage hybrid algorithm for gradient 

descent based IT2FLS optimization. 

BEGIN 

Stage I: 

FOR epoch=1 TO max_epochsI (=100) 


 FOR iter=1 TO Nsamples in Dtrn 

 Update P with learning rate αI according to (8) 

END_FOR 

 Estimate IT2FLS valid accuracy, CAvld (epoch), on Dvld 

 IF CAvld(epoch) < CAvld(epoch-1)  

 P(epoch) = P(epoch-1)  

 GOTO Stage II 

END_IF 

 Reduce learning rate αI  every few epochs  

END_FOR 

Stage II: 

FOR epoch=1 TO max_epochsI (=50) 

 FOR iter=1 TO Nsamples in Dtrn 

 Update P with learning rate αII according to (8) 

END_FOR 

 Estimate optimal ( )opt

left , ( )opt

right  for cleft, cright (10) 

 Perform batch update of cleft, cright according to (9) 

 Estimate IT2FLS valid accuracy, CAvld (epoch), on Dvld 

 IF CAvld(epoch) < CAvld(epoch-1)  

 P(epoch) = P(epoch-1)  

 GOTO Stage III 

END_IF 

END_FOR 

Stage III: 

FOR epoch=1 TO max_epochsIII (=15) 

 FOR iter=1 TO Nsamples in Dtrn 

 Update P with learning rate αIII according to (8) 

END_FOR 

 Estimate IT2FLS valid accuracy, CAvld (epoch), on Dvld 

 IF CAvld(epoch) < CAvld(epoch-1)  

 P(epoch) = P(epoch-1)  

 GOTO Rollback_Condition 

END_IF 

END_FOR 

Rollback_Condition:   

IF CAvld < CAvld
II (CAvld

II  is CAvld at the end of Stage II) 

 Roll back P updates in Stage III, return P from Stage II  

END_IF 

END 

 

3) Other BCI Classifiers 

The IT2FLS and T1FLS designed in this work were 

compared to four other classifiers commonly used in the 

domain of MI-based BCI (e.g. [23],[38]) – LDA, KFD with a 

Gaussian kernel and two SVM methods, linear (SVMlin) and 

nonlinear with a homoscedastic Gaussian kernel (SVMGauss). 

The implementation of SVM classifiers rested on a quadratic 

programming problem solver adopted from the SVM-KM 

toolbox [51]. Regularization parameters for SVMs as well as 

the variance of the Gaussian kernel for SVMGauss and KFD 

were identified by maximizing the performance for the 

validation set, as for the fuzzy classifiers. 
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D. Performance Measures  

The aim of the classification procedure was simply to 

assign the entire EEG trials (off-line study case) or their short 

snippets (continuously sliding windows in the on-line study) 

to classes of the associated mental tasks – imagination of 

either left or right hand movement. Since the BCI classifiers 

produced a real-valued output, the class assignment was made 

by thresholding the output. Then, the proportion of correct MI 

class assignments determined the CA. Although it was 

straightforward to quantify the overall performance for full 

trial recognition in the off-line case study, in continuous mode 

of operation of an on-line BCI system it became more 

arbitrary as the CA could be measured as a function of time. 

Here, the time course of the CA was ultimately quantified by 

its maximum value, mCA (cf. Fig. 9). The corresponding time 

point is referred to as classification time (cf. Fig. 9) and is 

relevant to BCI performance – the shorter this time is, the 

faster BCI communication can be. This communication aspect 

of BCI is reflected in the information transfer rate (ITr), 

measured in bits per minute, which serves as the upper bound 

for a practically achievable communication throughput of the 

BCI system [12]. Additionally, the information content of the 

real-valued output of the on-line BCI classifier, y(t), in relation 

to the target label of MI class was estimated using the mutual 

information (MInf) measure [52]:  

  
   2

2 var ( )
MInf ( ) 0.5log ,

var ( ) | var ( ) |LEFT RIGHT

y t
t

y t y t

 
  

 

 (11) 

 

where  /var ( ) |LEFT RIGHTy t is the class dependent variance of 

the classifier’s responses at time t. MInf offers more insight 

into the credibility of the output class assignments (labels).  

III. RESULTS AND DISCUSSION 

A. Analysis of Uncertainty Effects in the Session-To-Session 

Feature Distribution 

 We first investigated the nature of session-to-session 

variations in the EEG feature distributions. To this end, an 

intuitive and illustrative approach was adopted by representing 

the features in the reduced PCA space. In particular, PCA was 

performed on the EEG features extracted from data obtained 

in one session as the reference. Then the features from the 

consecutive sessions were projected according to the new set 

of directions of the largest variance. For visualization, only the 

first two components accounting for at least 70% of the total 

variance were used (Fig. 6).  

The shift between the means representing the same MI from 

one session to another is noticeable. Although this effect can 

vary in size, most feature sets in the study exhibit considerable 

inter-session changes comparable to those shown for SIII and 

SV (Fig. 6). Moreover, there does not seem to be any clear 

deterministic mechanism explaining the direction of the data 

translation. This incoherent nature of inter-session changes in 

the feature distribution gave rise to the problematic issue of 

uncertainty, and resulted in rather limited session-to-session 

classification performance (Fig. 6), especially with a linear 

method, LDA. The fuzzy classifiers, especially IT2FLS, 

produced more accurate rates as they handled variability in 

local cluster structures. 

B. Analysis of Fuzzy Rule-Base Initialization and Learning 

Schemes in Off-line Study 

To begin with, a comparative analysis of different 

initialization (mpMCA, spMCA, subtractive and FCM 

clustering; see section II-C-1) and learning (our three-stage 

hybrid and conventional gradient descent method [35]) 

schemes for IT2FLS and T1FLS rule-bases was conducted on 

an arbitrarily selected subset of three subjects and two sessions 

from the off-line study. Firstly, ten runs of five-fold cross-

validation on the training data set (the first one of the two 

selected sessions) were carried out. Next, the same data was 

utilized to tune/train fuzzy classifiers and the subsequent 

recording session for each of the three subjects considered in 

this analysis served as a test data set. This one-pass training-

test procedure was repeated ten times to examine the 

consistency of different combinations of initialization and 

learning schemes. Table I presents the mean CAs and the 

average standard deviations over ten runs across the chosen 

subjects. Although it is hard to draw any statistically 

significant conclusions from Table I, several valuable 

observations can be made. The outcome of this analysis is 

 
Fig. 6.  The distribution of EEG spectral features in a two-dimensional 

normalized PCA space (over 70% of variance explained in the reference 

experimental session, ES(k)), complemented with ellipses surrounding the 

MI class means and radii corresponding to the standard deviations, in four 

consecutive sessions ES(k)...ES(k+3) for (a) SIII and (b) SV in the off-line 

study. The top row illustrates a pair of sessions: ES(k) and ES(k+1); middle 

row: ES(k) and ES(k+2); bottom row: ES(k) and ES(k+3). The results of the 

corresponding session-to-session test classifications are also included in the 

panels (LDA, Gaussian SVM, T1FLS, IT2FLS). 
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influential particularly for the IT2FLS-based BCI classifier. At 

first, the MCA-based clustering algorithms were examined in  

the framework of T1FLS and IT2FLS. As expected, mpMCA 

considerably reduced the inter-run variance and improved the 

performance of the resultant classifiers, both T1FLS and 

IT2FLS, when compared to spMCA.  

Then, two unsupervised methods often employed in the 

classical T1FLS structure identification, FCM and subtractive 

clustering, were validated for both fuzzy classifiers. They 

resulted in a comparable level of performance of the target 

fuzzy classifiers but at the cost of higher run-to-run variations 

and slower convergence. The need to specify a priori the 

number of clusters for FCM was also considered inconvenient. 

In conclusion, it was decided to rely on the fast and robust 

mpMCA implementation for the rule-base initialization. As 

for the hybrid learning approach, it tended to result in better 

generalization performance for both fuzzy classifiers than the 

classical algorithm [35]. On average, it also converged faster 

with the lower number of training epochs, by a factor of ~1.4 

for IT2FLS and ~1.2 for T1FLS (data not shown). 

C. Off-line Classification of MI-related EEG Patterns 

In the first place, the overall efficacy of the classifiers was 

estimated and, most importantly, the selection of initial 

conditions (dm, Δc, a and learning rates for IT2FLS and 

T1FLS) was made using five-fold cross-validation scheme run 

ten times on training session data (Table II, column five-fold 

cross-valid.). The optimized values of initial parameters were 

employed in the second type of experiments to examine inter-

session performance transfer of the BCI classifiers by tuning 

them on a training session data set (with 20% of data for 

validation) and testing in a single pass on the subsequent 

sessions, acting as test data sets. In order to investigate a 

temporal character of the evolution of the classifiers’ 

performance over the test sessions, all possible combinations 

of training-test data sets maintaining their sequential order 

were evaluated for all subjects. In other words, from four 

sessions, six test and three training CA rates were obtained. 

The selection of training-test session pairs is shown in Fig. 7. 

The overall results in this experimental setup were grouped 

into three categories reflecting a temporal relationship 

between a training and a test session. Next, they were 

averaged within these categories resulting in four mean CAs 

for every subject. Test results produced from three training-

test pairs, session I–II, II–III and III–IV, constituted the first 

category (Cat.I). The second one (Cat.II) consisted of test CAs 

from experiments involving session pairs: I–III and II–IV, and 

the third category (Cat.III) with the largest temporal gap 

between a training and a test data set was composed of one 

CA result obtained with a classifier trained on session I and 

tested on session IV. There were only the first and the second 

category of the experimental results evaluated for subjects SA, 

SB and SC since only two data sets were available, session I 

and II. The last three columns of Table II report the results in 

the respective categories averaged across the subjects. 

The CA results reported in Table II were processed 

independently in each column in the statistical framework of 

one-way analysis of variance (ANOVA) with repeated 

measures. No significant differences between the mean CAs 

were found for the results obtained with the cross-validation 

approach, which demonstrates the overall within-session 

performance of the classifiers without accounting for inter-

session uncertainty effects. Special attention was drawn to 

session-to-session test results presented in the last three 

columns of Table II. They reflect the capability of the 

classifiers to effectively account for the inherent inter-session 

variability of the MI induced EEG patterns. Hence, they are 

particularly relevant to the BCI research community. The 

ANOVA carried out on these sets of CA rates revealed 

statistically significant (p<0.05) differences in the classifiers’ 

performances. Tukey’s honestly significant difference 

TABLE I 

COMPARATIVE ANALYSIS OF INITIALIZATION AND LEARNING SCHEMES FOR 

IT2FLS AND T1FLS ON A SUBSET OF TWO SESSIONS AND THREE SUBJECTS  

 Three-stage hybrid approach Conventional gradient descent 

 

Session I Session II Session I Session II 

CA ± std.dev. [%] a 

Nrules
b 

CA ± std.dev. [%] a 

Nrules
b 

five-fold 

cross-valid.  
test 

five-fold 

cross-valid.  
test 

IT2FLS 

mpMCA 68.0 ± 6.4 68.3 ± 1.1 7.0 67.4 ± 8.4 67.0 ± 2.0 6.7 

spMCA 66.9 ± 7.4 64.9 ± 4.6 5.9 67.3 ± 9.3 64.0 ± 4.7 5.9 

FCM 68.7 ± 8.7 67.3 ± 2.1 6.0 66.3 ± 8.9 65.3 ± 2.8 6.0 

subtractive 69.0 ± 7.7 67.9 ± 2.0 7.0 67.8 ± 8.3 66.8 ± 2.4 7.2 

T1FLS 

mpMCA 67.3 ± 6.7 64.9 ± 1.2 6.7 66.8 ± 9.1 64.4 ± 1.7 6.8 

spMCA 65.9 ± 7.9 62.4 ± 5.3 5.5 65.5 ± 9.3 58.5 ± 2.6 6.0 

FCM 68.0 ± 8.8 65.3 ± 2.9 6.0 66.1 ± 9.1 59.4 ± 3.7 6.0 

subtractive 68.2 ± 7.7 65.1 ± 2.3 7.9 66.9 ± 8.1 64.2 ± 3.2 8.0 

aCA and std.dev. were estimated across ten repetitions for both five-fold 

cross-validation and test evaluations. 
bNrules stands for the average number of rules. 

 

TABLE II 

MULTI-SESSION PERFORMANCE OF THE FUZZY CLASSIFIERS, SVMS, KFD 

AND LDA ACROSS EIGHT SUBJECTS 
A

  

Classifier 

Training 

Session 
Test Cat.I Test Cat.II Test Cat.III 

CA ± std.dev. [%]  

five-fold 

cross-valid.  
single-pass tests (inter-session) 

IT2FLS 71.2 ± 8.4 73.4 ± 9.0b 64.8 ± 6.7 65.4 ± 6.7 

T1FLS 70.4 ± 8.3  71.8 ± 9.1 63.6 ± 6.3 63.9 ± 7.5 

LDA 71.5 ± 8.4 67.5 ± 9.3 61.8 ± 8.0 60.7 ± 7.1 

KFD 70.9 ± 8.9 69.3 ± 8.8 61.9 ± 8.6 60.6 ± 7.7 

SVMlin 71.1 ± 9.3 69.8 ± 9.9 61.7 ± 7.5 60.3 ± 6.4 

SVMGauss 71.0 ± 9.3 69.7 ± 9.8 61.8 ± 7.0 60.4 ± 6.9 

a Eight subjects: SA, SB, SC and SI – SV (c.f. section II-A-1). 
b Best results in their categories are marked in bold. 
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criterion (at the significance level of α=0.05) was used to 

conduct the post test simultaneous comparison of the mean 

CAs in each category of the test results. In consequence, 

IT2FLS was found to outperform LDA, KFD, SVMlin and 

SVMGauss for all categories of the test CA results (Table II, 

columns Test). When T1FLS was considered, the only non-

significant difference (α=0.05) was detected in the second 

category of the test results, i.e. when the classifiers were 

trained on the session directly preceding the test session. The 

T1FLS classifier was shown then to perform better than LDA, 

which delivered the poorest CA rates (Table II, column Test – 

cat. II). Overall, the proposed fuzzy approaches proved to 

possess better capabilities in accounting for the inter-session 

uncertainty effects in MI-related EEG discrimination. 

Although the differences between the corresponding mean CA 

rates delivered by IT2FLS and T1FLS classifiers were not 

shown to be statistically significant in the ANOVA 

framework, the superiority trend of the IT2FLS approach was 

found consistent for every category of the presented results 

across all the subjects. This clearly demonstrates the potential 

of the designed IT2FLS in offering enhanced robustness 

against the variability of brain dynamics reflected in EEG. The 

ability of the IT2FLS classifier to learn inter-trial uncertainty 

in the EEG feature patterns over a training session and 

encapsulate it within the FOU for use on subsequent test 

sessions is considered to be crucial in this regard.   

The computing time involved in the IT2FLS optimization 

was comparable to that of the T1FLS classifier due to rather 

small rule-base sizes used in the given application (c.f. Table 

I). Attempts to increase the number of rules in the FLS led to 

significant deterioration of their performance. It was also 

observed that the computational time required for training 

larger IT2FLSs grew exponentially in relation to that of 

analogous T1FLSs. Finally, a concise structure of the FLSs 

devised in this work facilitates potential approaches to 

interpretation of the classification rules. 

D. On-line BCI Classification with IT2FLS 

In the case study involving on-line BCI classification where 

the IT2FLS was employed to control the real-time 

neurofeedback, the evaluation was concentrated on the last 5 

sessions (out of 7 feedback sessions; sessions no. 5–10), for 

which the classifier remain unchanged with the exception of 

two subjects, S1 and S5. In their case, the IT2FLS had to be 

re-trained prior to sessions no. 8 and 9, respectively, following 

poor performance in the preceding session (training error 

~40%) due to problems with the recording equipment with 

negative impact on the subjects’ concentration. For the 

classifier’s re-calibration, the recordings collected in that 

weaker session for a given subject (no.7 and 8) were combined 

with those obtained in the previous session (no.6 and 7, 

respectively) to form a training/validation data set. For all the 

subjects, the process of initial calibration of the classifiers was 

performed on the data collected during the two first feedback 

sessions (no.4–5), which were not considered in the 

evaluation. The training/validation procedure with the 

selection of initial parameters was analogous to computations 

performed in the off-line case study. In parallel with the 

evaluation of the on-line IT2FLS, other classifiers, i.e. LDA, 

KFD, SVM and T1FLS, were applied retrospectively to the 

recorded EEG data to simulate feedback in the off-line setting 

for post hoc comparative analysis. Their training, validation 

and testing followed the same schedule as the on-line IT2FLS. 

For this reason, the results of the comparative analyses should 

be treated with caution. After all, the on-line classifier directly 

benefits from the subject’s adaptation during BCI sessions. 

An example of an IT2FLS rule-base of an on-line BCI 

classifier is shown in Fig. 8. This six-rule FLS was designed 

for S6 on session 8 data. Varying levels of uncertainty 

captured by antecedents in different rules are worth noting. 

Further, the scheme for evaluating on-line BCI performance in 

a session is exemplified in Fig. 9. It depicts the time course of 

the CA during the event-related part of a trial. A steady nature 

of the CA increase is worth noting.   

The average BCI performance, in terms of mCA, ITr and 

MInf, for each subject (S1-S8) across five neurofeedback 

sessions is shown in Fig. 10. As can be seen, the average 

performance of the IT2FLS is consistently higher for each 

subject, though with different effect sizes, when compared to 

the other BCI classifiers simulated off-line retrospectively on 

 

Fig. 8.  Fuzzy rule base structure of the IT2FLS classifier trained on session 

8 for subject S6. The order of antecedent T2FSs, ( )r

kA   (k – antecedent 

index, r – rule index), matches the structure of the input F (c.f. (4)). The 

consequents, ( )rC , are T2 centroids in the form of interval T1FSs. 

 
 

Fig. 7.  Illustration of the inter-session experimental design for four-session 

data (lines connect training sessions with the corresponding test sessions). 

session I session II session III session IV

training

testing
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the recorded data. It is worth noting that the performance level 

varies across the subjects, which is particularly evident in the 

evaluation of the ITr and MInf. They account for the speed of 

communication and the cross-trial distribution of the real-

valued outputs produced by the classifiers, respectively. The 

dominance in the performance of subjects S6 and S3 should be 

mentioned in this regard. 

The grand average (across the population of eight subjects) 

performance indicators, shown in Table III, confirm that the 

proposed IT2FLS compares favorably with other methods 

tested in this study. The results were tested with ANOVA and, 

after the null hypothesis was rejected (p<0.01), the Tukey-

Kramer test [53] (at the significance level of α=0.05) was used 

for post-hoc pair-wise comparisons between the classifiers. 

The parametric analysis was conclusive only for the mCAs 

since the conditions underlying parametric tests for ITr and 

MInf results were not met. Instead, nonparametric Kruskal-

Wallis test was employed at α=0.05. However, the comparison 

of the ITr and MInf statistics turned out to be inconclusive due 

to nonsignificant outcome of the test.  

Overall, the IT2FLS was shown to deliver statistically 

significant higher mCAs than the rest of classifiers. In 

addition, a planned comparison between the two fuzzy 

classifiers, IT2FLS and T1FLS, was conducted for each 

subject (across five feedback sessions) using Student’s t-test. 

The superiority of the enhanced apparatus of the IT2FLS 

approach for handling uncertainty effects in the classification 

of MI induced EEGs for all the performance measures and 

subjects was clear (p<0.05), though the fact that T1FLS could 

only be tested post-hoc off-line has to be highlighted. 

Finally, the study participants were asked to comment on 

the facilitating role of the neurofeedback provided through on-

line IT2FLS classification and the majority expressed positive 

opinions. Subject S5 was an exception as he complained about 

the inconsistency and low correlation of the BCI responses 

with his mental efforts (MI). The rest however emphasized 

rather smooth nature of the BCI output controlling the 

horizontal displacement of the ball in the basket. The 

retrospective qualitative analysis of the continuous 

neurofeedback signal generated by the IT2FLS was consistent 

with the subjects’ opinions. Also, there were no problematic 

issues with the real-time constraints of the IT2FLS 

implementation and for the clear majority of the subjects no 

extra calibration between the recording sessions was needed 

(except the initial setup before session no.6, i.e. the first 

evaluation session). 

E. Robust Approaches to Handling Nonstationarity Effects in 

EEG-based MI BCI 

The most prevalent BCI approaches to the problem of short- 

as well as long-term EEG nonstationarity fall into two major 

categories. The objective of methods in the first group is to 

identify stable aspects of the EEG dynamics and thus enhance 

the model’s invariance capabilities. For example, Blankertz et 

TABLE III 

BCI PERFORMANCE (MCA, ITR, MINF) OF THE IT2FLS, T1FLS, LDA, 

KFD, SVMLIN AND SVMGAUSS CLASSIFIERS, AVERAGED OVER FIVE BCI 

NEUROFEEDBACK SESSIONS FOR EIGHT SUBJECTS  

Classifiers 
mCA ± 

std.dev. 

ITr ± 

 std.dev. 

MInf ± 

 std.dev. 

On-line IT2FLSa 69.2 ± 3.8b 3.6 ± 2.6 0.16 ± 0.07 

T1FLS 66.5 ± 3.7  2.5 ± 1.6 0.10 ± 0.05 

LDA 65.8 ± 3.7 2.8 ± 1.8 0.10 ± 0.07 

KFD 66.6 ± 3.6 2.9 ± 1.9 0.10 ± 0.08 

SVMlin 66.5 ± 3.4 2.9 ± 2.2 0.11 ± 0.08 

SVMGauss 66.9 ± 3.5 3.0 ± 2.1 0.12 ± 0.07 

aThe IT2FLS was used to control neurofeedback in on-line BCI 

whereas the remaining classifiers were simulated off-line on previously 

recorded data. 
bThe mean values and std. dev. were estimated across subjects S1–S8. 

 

 
Fig. 10.  Comparison of the average on-line BCI performance of the IT2FLS 

classifier with the off-line performance of retrospectively simulated T1FLS, 

LDA, KFD, SVMlin and SMVGauss in terms of (a) the CA, (b) the ITr, and (c) 

the MInf. The mean values and std. dev. (error bars) were estimated for each 

subject, S1-S8, across their last five neurofeedback sessions. 

 

 
Fig. 9. The time course of the CA estimated over a set of trials within a 

recording session no.8 for S6 with the markings of the mCA and the 

optimal classification time. 
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al. [25] developed an invariant version of well-established 

common spatial patterns EEG features, which improved cross-

session performance by 5% per subject in a small two-session 

study. The second group of approaches relies on adaptive 

mechanisms in the presence of nonstationary phenomena. It 

has been proposed to adapt a BCI classifier relying on 

supervised [57] or unsupervised learning techniques [21],[31]. 

Unsupervised approaches with covariate shift adaptation 

methods in the first place attract growing attention due to their 

practical value. Sati et al. [54] reported the increase of the 

average CA from 73.9% to 78.6% as a result of applying 

covariate shift minimisation along with common spatial 

patterns and LDA. The nine-subject study was carried out on a 

five-session data set. However, the relevant inter-session 

evaluation was limited to pair configurations with the first 

training session and the remaining four test sessions. 

Furthermore, Vidaurre et al. [31] confined their comparative 

analysis of supervised and unsupervised LDA adaptation 

routines just to multiple independent pairs of calibration and 

feedback sessions. In various tests, the performance of the 

better unsupervised approach ranged from ~72% to 85% on 

average. Apart from the adaptation of BCI classifiers, there 

have also been attempts to adapt the feature space with the aim 

of minimizing the mismatch between different recording 

sessions [22],[55]. Arvaneh et al. [22] proposed a data space 

adaptation technique that could be used in either supervised or 

unsupervised mode with single or continuous trial-by-trial 

adaptation, and demonstrated its superior performance over 

non-adaptive methods with the average accuracy of ~72% in a 

two-session evaluation.  

Although the aforementioned off-line BCI evaluations with 

or without simulated feedback have clearly dominated the 

literature, it is desirable that EEG nonstationarity effects for 

BCI systems should be examined in on-line studies with real-

time feedback to fully understand their scope and the 

challenging nature. In early work Brunner et al. [56] trained a 

linear classifier on the off-line calibration data to later provide 

on-line feedback in consecutive MI BCI sessions without 

making any adaptations. As a result, they reported CA 

oscillating between 49% and 54% for the first two sessions 

and 60-67% for the third one. In a later study, Vidaurre et al. 

[57] tested on-line BCI performance of a non-adaptive LDA 

classifier trained on non-feedback session data. The on-line 

CA in two-class MI task did not exceed 60% over multiple 

sessions. Nonstationary effects were mitigated with an 

adaptive LDA, allowing the performance to grow to 74-84% 

[57]. Similarly, high CA rates (77%-87%) were reported in 

[58] with the on-line use of a probabilistic adaptive classifier 

in the virtual reality environment supporting MI practice. 

F. Related work on FLS approaches to BCI classification 

One of the first attempts at classifying MI EEGs for BCI 

purposes with a FLS was reported to result in the three-data-

set average session-to-session CA of 79%, slightly lower than 

for SVM [4]. A more advanced neuro-fuzzy approach, S-

dFasArt, has been evaluated on multi-session 8-channel EEG 

data recorded from three experienced BCI users each 

performing three mental tasks [10]. On average, for different 

training configurations of three-session data, the CAs reported 

for each subject on the fourth test session were ~83%, 68% 

and 48%. With additional model boosting the average CA of 

~76% was obtained. Overall, it should be noted that these 

offline studies have been reported on limited (just a few 

subjects and recording sessions) but good-quality data 

originating from BCI competition benchmarks. There is very 

little evidence of deploying fuzzy classifiers in on-line EEG 

classification. Only recently, an IT2FLS approach to the 

discrimination of wrist and finger MIs has been validated with 

on-line, but not instantaneous, neurofeedback [30]. Four 

binary classifiers were trained on three-day data and tested on-

line during two consecutive days. The average CA rate of 

~78% was reported for eight subjects when tailored extreme 

energy ratio features were extracted from 14-channel EEGs. 

However, the communication throughput of the real-time 

system was rather limited with ITr of ~1.8 bits/min. 

IV. CONCLUSIONS 

This paper has investigated the application of an IT2FLS 

classifier to the MI-related EEG discrimination task. The 

effectiveness of the proposed fuzzy approach in handling both 

long- and short-term manifestations of uncertainty effects 

inherent to BCI was evaluated in both off-line and on-line case 

studies. Firstly, in the comprehensive off-line analysis 

conducted on multi-session data, IT2FLS was proven to 

outperform some state-of-the-art BCI classifiers such as LDA, 

KFD, linear and Gaussian SVMs. In this regard, a vital role of 

the proposed fuzzy design methodology should be noted. 

Additionally, the IT2FLS was found to consistently deliver 

higher CA rates than T1FLS. The difference was statistically 

significant in cases where uncertainty manifestations were 

more challenging to address due to the larger gap between the 

recording times of training and test sessions.  

Secondly, the on-line study demonstrated the feasibility of 

employing an IT2FLS classifier within a real-time BCI 

system. It was verified that the proposed system is capable of 

producing reasonable on-line performance, though for 

effective utilization in practical applications further progress is 

desirable. In the comparative retrospective simulations of the 

other BCI classifiers, including the counterpart T1FLS, tested 

off-line, the devised IT2FLS classifier was shown to offer 

more potential in effective handling the uncertainty effects 

associated with the observed variability of MI induced EEG 

patterns at various time scales. IT2FLS generated not only 

higher CA rates but also more informative feedback responses 

correlated with subjects’ MIs, as reflected in MInf. Still, 

special care has to be taken when interpreting these results due 

to a different nature of retrospective BCI evaluation in 

comparison with on-line tests accounting for instantaneous 

neurofeedback effect. The overall level of BCI performance 

reported in this study is limited, which can partly be explained 

by the BCI novice status of the  subjects involved in the 

presented evaluation, relatively infrequent BCI sessions and 

simple spectral EEG features extracted without any extensive 

optimization from only two-channel EEG recordings. 
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An important aspect of the work reported here is the data-

driven design of the IT2FLS. The initialization scheme 

involving the modified mpMCA clustering and the enhanced 

gradient descent-based learning algorithm were found 

effective in alleviating the problem of poor initial conditions, 

sensitivity to initial parameter values and slow convergence, 

indicated earlier in [53]. The consistency and improved 

generalization capabilities of the FLSs in the given application 

are worth noting. Even though the IT2FLS’s setup time is 

short (on the order of a couple of minutes), the system does 

not have to be retrained very frequently to maintain 

performance for relatively novice BCI users across recording 

sessions over the span of even a few weeks.  

The major limitation of the proposed method is rather a 

sizeable amount of data required to tune the antecedent and 

consequent parameters of the IT2FLS, partly given the non-

convex nature of the optimization problem. A mitigating 

factor is the robustness of the fuzzy classifier with respect to 

the meta parameters that control rule-base initialization. This 

implies a less demanding search for their suitable values, still 

ensuring good generalization even on smaller data sets. 

Besides, our gradient descent based approach does not support 

the use of any arbitrary non-differentiable form of T2FSs. 

In conclusion, the contribution of this work is three-fold. 

First, the paper reports on a systematic and comprehensive 

evaluation of the pioneering T2FLS approach to handling 

uncertainty effects in multi-session EEG classification. 

Second, a hybrid method for data-driven design of an IT2FLS 

classifier has been proposed and validated. Third, to the best 

of our knowledge, this is the first study that has examined in 

depth, providing evidence from multi-session experiments on 

multiple subjects, the applicability of FLS classifiers to on-line 

EEG-BCI with instantaneous feedback in real-time conditions.  

As for further research, it would be desirable to investigate 

how the proposed IT2FLS could be slowly adapted or trained 

incrementally to sustain the adequate balance between the 

existing knowledge rule-base learnt from data and novel 

trends, especially if they become repetitive, and not merely a 

consequence of outliers or incidental anomalies. Here, training 

on multiple preceding sessions appears as a promising 

direction for further investigation. In addition, it is intended to 

explore how the uncertainty bounds of the classifier’s output 

can be effectively exploited with the aim of improving the 

performance of the classifier. Only the central point of the 

output interval has been utilized during recall and as part of 

the loss function for training purposes so far. In particular, the 

problem of initializing uncertainty bounds for the antecedents 

and consequents of an IT2FLS should be investigated further. 

Finally, the inherent interpretability of FL methodology could 

be exploited to examine the nature of fuzzy rules underlying 

robust BCI classification.  
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