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Abstract 15 

Multiple anthropogenic threats have caused vulture populations to decline globally, 16 

with serious ecological and socio-economic implications. The Cape vulture (Gyps 17 

coprotheres) has declined throughout its range in southern Africa, recently being 18 

listed as extinct as a breeding species in Namibia. It has been suggested that 19 

climate change might have contributed to the decline of Cape vultures in northern 20 

parts of the range. To provide a first assessment of the potential impacts of climate 21 

change on the occurrence of Cape vultures, a presence-only ecological niche 22 

modelling method (Maxent) was used to predict the spatial occurrence patterns of 23 

wild-caught vultures fitted with GPS tracking units in northern Namibia and northern 24 

South Africa, under current and future climatic conditions. The models showed high 25 

predictive power (AUC >0.868±0.006), with precipitation seasonality and other 26 

bioclimatic variables identified as the most important variables for predicting Cape 27 

vulture presence. Of the area estimated to be suitable for Cape vultures under 28 

current conditions, 28-55% was predicted to become unsuitable under future climate 29 

conditions, with a pole-ward shift in the mean centre of the range of 151-333 km and 30 

significant range loss from the former breeding range in north-central Namibia and 31 

the core breeding range in northern South Africa. Expansions of suitable conditions 32 

into areas where the species has been historically absent in the south of the range 33 

were also predicted. The coverage of predicted suitable areas by protected areas 34 

was predicted to decrease from 5.8-7.9% to 2.8-3.8%, suggesting that private land 35 

will become increasingly important for Cape vulture conservation.  36 
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1. Introduction 40 

Successful efforts to plan and implement conservation strategies in key areas are 41 

often reliant on the ability to describe the ecological niche and map the spatial 42 

distribution of threatened species to inform their management, ecosystem 43 

restoration, reintroduction programs and population viability analysis (Elith et al. 44 

2011; Razgour et al. 2011; Guillera-Arroita et al. 2015). Ecological niche modelling 45 

(ENM) or species distribution modelling (SDM) methods estimate the relationship 46 

between species presence records at sites and the environmental characteristics of 47 

those sites, and are widely used in conservation biology and ecology (Elith et al. 48 

2011). Increasingly Global Positioning System (GPS) tracking data provide the 49 

species presence records necessary for ENM analyses (Hebblewhite and Haydon 50 

2010) for conservation themed studies on terrestrial (Swanepoel et al. 2013; Van 51 

Gils et al. 2014) and avian species (Jiguet et al. 2011; Gschweng et al. 2012; 52 

Liminana et al. 2014). Maxent (Phillips et al. 2006) is a common and favoured 53 

method for ENM analysis using tracking data because it does not require true 54 

absence data and has been shown repeatedly to outperform other presence-only 55 

modelling techniques (Elith et al. 2006; Hernandez et al. 2006). Examples of its 56 

successful application with avian tracking data include predicting the extent of 57 

suitable wintering habitats for pallid (Circus macrourus) and Montagu’s (Circus 58 

pygargus) harriers in sub-Saharan Africa (Liminana et al. 2012; Liminana et al. 59 

2014), and the response of Eleonora’s falcons (Falco eleonorae) to environmental 60 

change (Gschweng et al. 2012). 61 

African vulture populations are declining across the continent due to multiple 62 

anthropogenic threats such as poisoning (Ogada et al. 2015a), collisions and 63 

electrocutions on the expanding power line network (Boshoff et al. 2011) and food 64 

shortages due to depleted wild ungulate populations and improved livestock 65 

husbandry (Mundy et al. 1992; Krueger et al. 2015; Ogada et al. 2015b). The 66 

potential consequences of continuing declines are likely to be far reaching due to the 67 

essential ecosystem services that vultures provide (e.g. nutrient recycling; limiting 68 
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the development and spread of disease (Sekercioglu 2006; Moleon et al. 2014; 69 

Morales-Reyes et al. 2015)). However, despite an increasing number of remote 70 

tracking studies on African vulture species (Phipps et al. 2013a; Spiegel et al. 2013; 71 

Kendall et al. 2014; Krueger et al. 2014) to our knowledge there has been no attempt 72 

to investigate what drives their spatial distribution using GPS tracking data and 73 

multivariate ENM methods.  74 

The Cape vulture (Gyps coprotheres) is endemic to southern Africa and is listed as 75 

Endangered on the IUCN Red List due to recently estimated population declines of -76 

92% over three generations (48 years), at a median annual rate of -5.1% (Ogada et 77 

al. 2015b; BirdLife International 2016). It is a gregarious cliff-nesting species with a 78 

global population estimated at 8,000–10,000 individuals (circa 4,000 breeding pairs) 79 

(BirdLife International 2016). The largest remaining breeding colonies are located in 80 

the north-eastern provinces of South Africa with smaller, more dispersed colonies in 81 

the Maloti-Drakensberg mountains of Lesotho and south-east South Africa 82 

(Rushworth and Kruger 2014; Wolter et al. 2016). An isolated breeding colony 83 

located on the cliffs of the Waterberg Plateau Park in north-central Namibia that 84 

numbered 500 Cape vultures in 1940 was reduced to as few as 13 individuals in 85 

1985 (Brown 1985) and the species has recently been classified as extinct as a 86 

breeding species in the country (BirdLife International 2016). The declines have 87 

been mainly attributed to the widespread use of poisons for killing predators in the 88 

region and the loss of foraging habitat due to shrub encroachment (Brown 1985; 89 

Mundy et al. 1992; Bamford et al. 2007; Schumann et al. 2008; Bamford et al. 2009). 90 

It has also been suggested that climate change may have played a role in the 91 

extinction of Cape vulture colonies in the north of their range since the 1950s due to 92 

the increasing temperatures and changing rainfall patterns recorded in the region 93 

during that time period (Simmons and Jenkins 2007; IPCC 2014). Southern Africa, 94 

and Namibia in particular, is predicted to experience particularly significant changes 95 

to climatic conditions (e.g. rising temperatures and altered rainfall patterns (Conway 96 

et al. 2015; van Wilgen et al. 2016)) which are expected to drive pole-wards range 97 

shifts and loss of climatically suitable conditions for many species from different taxa 98 

(Simmons et al. 2004; Thuiller et al. 2006b; Midgley and Thuiller 2011; Garcia et al. 99 

2012). There is evidence to suggest that breeding Cape vultures suffer increased 100 

levels of heat stress in higher temperatures and longer sunlight exposures 101 
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(Chaudhry 2007); rainfall patterns influence vulture breeding success (Bridgeford 102 

and Bridgeford 2003; Virani et al. 2012); and increased temperatures and carbon 103 

dioxide levels enhance woody vegetation cover (Midgley and Bond 2015), inhibiting 104 

the visual foraging of vultures by obscuring carcasses (Bamford et al. 2009). 105 

Simmons and Jenkins (2007) therefore propose that climate change may work in 106 

concert with other factors to push Cape vultures away from their northernmost 107 

colonies in a southwards direction, and further work is required to investigate the 108 

potential impacts of climate change on Cape vulture occurrence (Krueger et al. 109 

2015). 110 

In this study we use Maxent modelling to provide a first description of the spatial 111 

niche characteristics for Cape vultures and identify some of the environmental 112 

factors driving their occurrence. The presence locations were derived from GPS 113 

tracking data from wild caught vultures from northern South Africa (Phipps et al. 114 

2013b) and from some of the last remaining Cape vultures in Namibia (Bamford et 115 

al. 2007). We investigate the potential influence of climate change on the extent of 116 

areas predicted to be currently suitable by projecting the models onto future 117 

bioclimatic conditions. We compare results from models using only data from South 118 

African tagged vultures with models from data from all vultures to assess whether 119 

conditions in north-central Namibia are predicted to be suitable for Cape vultures 120 

under current and future climate scenarios. We also evaluate the coverage provided 121 

by protected areas to areas modelled to be suitable for Cape vultures under current 122 

and future conditions as species turnover in protected areas is expected to be high in 123 

the region (Hole et al. 2009). The intention of this study is to provide a first 124 

description of the spatial niche of a sample of Cape vultures from the core breeding 125 

range of the species and to assess whether vulture occurrence patterns might be 126 

influenced by global climate change.       127 

2. Methods 128 

2.1. Modelling method and study area 129 

The presence-only method Maxent (Phillips et al. 2006) was used to model the 130 

ecological niche of the Cape vulture as it does not require true absence data (Elith et 131 

al. 2011) and has been used previously with avian tracking data obtained from a 132 

small number of individuals (Gschweng et al. 2012; Liminana et al. 2012; Liminana 133 
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et al. 2014). The geographical area used for ecological niche modelling was 134 

delineated by the national borders of South Africa, Lesotho, Swaziland, Zimbabwe, 135 

Botswana and Namibia, to correspond with the historical distribution of the Cape 136 

vulture (Mundy et al. 1992; BirdLife International 2016).  137 

2.2. GPS tracking and presence data 138 

Presence locations were derived from two studies that fitted GPS tracking units to 139 

wild-caught Cape vultures using walk-in cage traps (Bamford et al. 2007; Phipps et 140 

al. 2013b). The first capture site was located on a private livestock and game farm in 141 

the Waterberg region of north east Namibia (20o15’54”S, 17o03’53”E) while the 142 

second was on a private wildlife reserve in the North West Province of South Africa 143 

(25o13’S, 27 o18’E). Vultures captured in Namibia were fitted with solar-powered 144 

Argos/GPS PTT-100 tracking units made by Microwave Telemetry Inc. (Columbia, 145 

Maryland)  programmed to record GPS locations every hour from 06:00 to 21:00 146 

CAT (Bamford et al. 2007). The vultures captured in South Africa were fitted with 147 

battery-powered Hawk105 GPS-GSM tracking units programmed to record GPS 148 

locations up to four times per day at 07:00, 11:00, 13:00 and 15:00 CAT (Phipps et 149 

al. 2013b). Tracking units were fitted to vultures with Teflon® ribbon backpack-style 150 

harnesses and GPS locations were accurate to within 10 m. Data were derived from 151 

a total of five adult and four immature Cape vultures tagged in South Africa and five 152 

adults tagged in Namibia. The nine South African tagged vultures were tracked from 153 

2009 to 2011 for 31-558 days (median tracking period = 300 days; median number of 154 

GPS locations = 922, range = 84-1860), and the five vultures from Namibia were 155 

tracked from 2004 to 2009 for 57-1656 days (median tracking period = 1231 days; 156 

median number of GPS locations = 15 447, range = 654-19400). 157 

Two datasets of presence locations were selected for modelling purposes. Firstly, 158 

one dataset consisted of GPS locations only obtained from the nine South African 159 

tagged vultures, while the second consisted of GPS locations from all 14 vultures. 160 

This was done to compare results based on data from only South African tagged 161 

birds (i.e. captured in the “core” of the species’ breeding range (Mundy et al. 1992; 162 

BirdLife International 2016)) to those that included presence locations from Namibia 163 

where the species formerly bred but is now considered extinct as a breeding species 164 

(Brown 1985; BirdLife International 2016). This provided an indication of the 165 

suitability of environmental conditions in northern Namibia compared to the rest of 166 
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the study area and whether or not the region was predicted to be more or less 167 

affected by climate change compared to more southern areas during subsequent 168 

analyses.   169 

Spatial preparation of GPS location and environmental variable data was performed 170 

in SDMtoolbox v1.1b (Brown 2014) in ArcMap (ESRI 2014) with all data projected to 171 

the Africa Albers Equal Area Conic coordinate system. For both presence datasets 172 

only stationary (<10 kmh-1) GPS locations were selected to more accurately 173 

represent actual use of a given area. The Namibian tracking dataset was filtered 174 

further by only including GPS locations recorded every two hours from 09:00 to 175 

17:00 CAT to reduce spatial autocorrelation and to correspond with the diurnal 176 

activity patterns of the vultures (Bamford et al. 2007). To further reduce spatial 177 

autocorrelation, which can influence species distribution model performance (Boria 178 

et al. 2014), the presence locations for each individual vulture were filtered by using 179 

the spatially rarefy occurrence data tool in SDMtoolbox v1.1b (Brown 2014) in 180 

ArcMap (ESRI 2014) to reduce clusters of presence locations to a single presence 181 

location within a Euclidean distance of 1 km. In order to reduce the influence of the 182 

disparity in tracking periods, and therefore the number of GPS locations per 183 

individual (Gschweng et al. 2012; Liminana et al. 2014), the mean number of 184 

stationary GPS locations rarefied by 1 km for the nine South African tagged vultures 185 

was calculated (mean±SD = 238±151 GPS locations per individual) and used to 186 

select a random subsample of 238 GPS locations for all individuals for which more 187 

than 238 stationary rarefied GPS locations were available using statistical software R 188 

v3.1.1 (R Core Team 2014). The maximum number of GPS locations per vulture was 189 

therefore limited to 238 and all stationary rarefied GPS locations were retained for 190 

vultures with less than 238 stationary rarefied GPS locations. Finally, the GPS 191 

locations for all individuals were merged into one shapefile and further spatially 192 

rarefied to a Euclidean distance of 1km. The two final presence location datasets 193 

consisted of 1437 presence locations for the South African tagged individuals and 194 

2123 presence locations for the South African and Namibian tagged vultures 195 

combined (i.e. 686 presence locations for the five Namibian vultures; Fig. 1a).  196 

Capture and tagging procedures were approved by the ethical review committee of 197 

the School of Animal, Rural and Environmental Science, Nottingham Trent 198 

University, and permits were granted by the Department of Agriculture, 199 
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Conservation, Environment and Rural Development, North West Provincial 200 

Government, Republic of South Africa (Permit: 000085 NW-09) and the Namibian 201 

Ministry of Environment and Tourism (Permit: 1578/2004-2005). All procedures were 202 

carried out by South African Bird Ringing Unit permit holders.    203 

2.3. Environmental variables     204 

Only environmental variables with a pairwise Pearson’s correlation coefficient of less 205 

than 0.7 (assessed using SDMtoolbox v1.1b (Brown 2014)) were included in the 206 

modelling process to reduce multi-collinearity effects (Phillips and Dudik 2008). 207 

Environmental variables were subsequently selected based on prior knowledge of 208 

their ecological relevance to Cape vultures and their contribution to preliminary 209 

models in an effort to achieve parsimony to reduce the risk of over-fitting (Anderson 210 

and Gonzalez 2011; Van Gils et al. 2014). The models included a total of 14 211 

environmental variables (Table 1, Table A1) at a spatial resolution of 30 arc-seconds 212 

(approximately 1 km2 at the equator): seven bioclimatic variables from the WorldClim 213 

database (http://www.worldclim.org/; (Hijmans et al. 2005)); two topographic 214 

variables (elevation and slope) derived from the digital elevation model (DEM) data 215 

from the WorldClim database; Normalised Difference Vegetation Index (NDVI) data 216 

for August derived from the SPOT (Satellite Pour l'Observation de la Terre; 217 

http://www.cnes.fr/web/CNES-en/1415-spot.php) program; the Food and Agriculture 218 

Organisation (FAO) global cattle density dataset  (FAOcattle05; http://www.fao.org; 219 

(Robinson et al. 2007)); the FAO ruminant production systems dataset (Robinson et 220 

al. 2011)); Global Land Cover 2000 (Mayaux et al. 2004); and the World Wildlife 221 

Fund (WWF) terrestrial ecoregions of the world dataset classified by ecoregion ID 222 

code (http://www.worldwildlife.org/biome-categories/terrestrial-ecoregions; (Olson et 223 

al. 2001)). Similar variables have previously performed well when modelling bird 224 

distributions (Barbet-Massin et al. 2009; Jiguet et al. 2011; Liminana et al. 2012; 225 

Liminana et al. 2014) and are known to influence vulture flight patterns (e.g. 226 

isothermality; (Pennycuick 1972; Harel et al. 2016)) and the availability of carrion due 227 

to seasonal changes in ungulate mortality driven by fluctuations in vegetation 228 

productivity (Houston 1974b; Mduma et al. 1999; Owen-Smith et al. 2005; Ogutu et 229 

al. 2008). More detailed information on the selection of environment variables can be 230 

found in the “Environmental Data” section in Supporting Information.   231 

http://www.worldclim.org/
http://www.cnes.fr/web/CNES-en/1415-spot.php
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For projections to future climatic conditions the current Bioclim variables were 232 

replaced with the corresponding Bioclim variables for the year 2050 from the 233 

WorldClim database from the HadGEM-AO model under emissions scenario RCP 234 

8.5 which is a “worst case” scenario that predicts increasing greenhouse gas 235 

emissions and a likely global mean temperature increase of 1.4 – 2.6oC between 236 

2046 and 2065 (Riahi et al. 2007). In the absence of credible projections to our 237 

knowledge, other environmental variables remained the same for projected models 238 

as for the current models. We acknowledge this is unlikely given projected climate, 239 

land use and socio-economic changes.  240 

2.4. Ecological niche modelling procedure 241 

Models were run using default settings in Maxent version 3.3.3 (Phillips et al. 2006) 242 

apart from the maximum number of iterations which was set at 5000 to achieve 243 

algorithm convergence (Elith et al. 2011; Kassara et al. 2013). Ten replicate models 244 

were run each using repeated random subsampling of 75% of the presence locations 245 

to train the model with the remaining 25% used to evaluate its predictive 246 

performance (i.e. test dataset). Results are presented as the mean and standard 247 

deviations of the ten replicate models. Two metrics were used to evaluate model 248 

performance (Elith and Graham 2009). Firstly, the area under the curve (AUC) of the 249 

receiver operating characteristics (ROC) was used to measure the model probability 250 

of correctly distinguishing presence from random locations, with values of 0.5 251 

indicating models that predict no better than random and values greater than 0.75 for 252 

models with high model discrimination ability  (Phillips et al. 2006; Elith et al. 2011). 253 

The second metric, regularized training gain, describes how well the model 254 

prediction fits the presence data compared to a uniform distribution, with the 255 

exponential of the model gain indicating the sample likelihood compared to random 256 

background pixels (Phillips et al. 2006; Gormley et al. 2011).  257 

Variable importance was assessed using two heuristic tests (percent contribution 258 

and permutation importance) and the jacknife procedure in Maxent. Percent 259 

contribution was calculated as the proportional contribution of each variable to the 260 

model training gain which is dependent on the path of the Maxent algorithm (Phillips 261 

et al. 2006). The permutation importance metric is independent of the algorithm path 262 

and represents the influence of the given variable on the training AUC value, 263 

normalized to percentages (Phillips et al. 2006). For the jacknife tests variables were 264 
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successively omitted and then used in isolation to measure their relative and 265 

absolute contribution to model gain, providing a measure of their explanatory power 266 

when considered alone (Elith et al. 2011; Gschweng et al. 2012).   267 

2.5. Assessment of environmental suitability and impact of climate change  268 

The logistic output from the Maxent model was used to display the spatial predictions 269 

of the probability of Cape vulture presence across the study area with values ranging 270 

from 0 to 1 (Phillips and Dudik 2008). To classify the model predictions into areas of 271 

binary suitability (1) and unsuitability (0) the mean (0.31) of the maximum training 272 

sensitivity plus specificity logistic threshold (MaxTSS) for the model with only South 273 

African tagged vulture presences (MaxTSS = 0.28) and the model with both 274 

presence datasets (MaxTSS = 0.33) was used. The MaxTSS threshold is 275 

independent of prevalence of presence locations and is recommended for use with 276 

presence only data as an objective method of binary suitability threshold selection 277 

(Jiguet et al. 2011; Liu et al. 2013). Binary maps of suitability were created using this 278 

method for both current and future (for the year 2050) climatic conditions for the two 279 

different presence datasets on which the models were based (i.e. Model_SA = 280 

presence locations from South African tagged vultures; Model_NamSA = presence 281 

locations from both South African and Namibian tagged vultures). Subsequently the 282 

areas predicted to be unsuitable and suitable were compared for each model 283 

separately under the current and future environmental conditions. This was done in 284 

ArcMap to produce a raster dataset with areas predicted to be unsuitable in both 285 

current and future conditions; suitable under current but not future environmental 286 

conditions (range contraction); unsuitable under current conditions but suitable under 287 

future conditions (range expansion); and suitable under both current and future 288 

conditions (stable range). The distance between the mean centres of the extent of 289 

the suitable areas under current and future conditions was calculated in ArcMap to 290 

quantify the directional range shift from current to future conditions.   291 

2.6. Evaluation of protected area coverage 292 

To assess the level of protection afforded to areas predicted as suitable for Cape 293 

vultures based on the binary suitability maps, the number of suitable raster cells 294 

located within nationally and internationally designated protected areas in the 2015 295 

World Database on Protected Areas (IUCN and UNEP-WCMC 2015) were counted 296 
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for current and future models in ArcMap (Liminana et al. 2012; Swanepoel et al. 297 

2013; Liminana et al. 2014). 298 

3. Results 299 

3.1. Ecological niche model description and variable importance 300 

The model constructed with the presence locations only from the South African 301 

tagged birds (Model_SA) and the model constructed with presence locations from 302 

South African and Namibian tagged birds (Model_NamSA) showed good predictive 303 

power based on mean AUC values of the 10 replicate runs (Model_SA AUC = 304 

0.886±0.009; Model_NamSA AUC = 0.868±0.006), although the regularized training 305 

gain was lower for Model_NamSA (0.906±0.009) compared to Model_SA 306 

(1.084±0.009). 307 

Model_SA classed 15.08% of the study area (460,801 km2) as suitable for Cape 308 

vultures under current environmental conditions, while Model_NamSA classed 309 

16.09% (491,655 km2) of the area as suitable. The majority of the suitable area 310 

predicted by both models consisted of an almost continuous area in northern South 311 

Africa across most of the North West Province, the western half of the Limpopo 312 

Province and into south-east Botswana, corresponding with the extent of the known 313 

distribution for the species (Fig. 1b and c; Fig. A1). The suitable area also extended 314 

into the north-east of the Northern Cape Province and the western part of the Free 315 

State. A relatively narrow area of suitability was predicted along the south- and 316 

north-eastern edges of the Drakensberg escarpment bordering Lesotho in the north-317 

eastern Eastern Cape and western edge of KwaZulu-Natal Provinces. This area was 318 

separated from the main region of suitability by an area of unsuitability estimated to 319 

extend in a south-west to north-easterly direction, almost 700 km long by 200 km 320 

wide across southern Gauteng, southern Free State and the south-west of 321 

Mpumulanga Province (Fig. 1b and c). In addition, Model_NamSA predicted 322 

environmental suitability in an isolated area in north-central Namibia extending up to 323 

300 km south and east of the Waterberg Mountains (Fig. 1c). Outlying areas of 324 

suitability were predicted in south-east Namibia, north-west Northern Cape and 325 

south-east Zimbabwe for Model_SA (Fig. 1b); and north-west Zimbabwe and an 326 

isolated area across the Namibia-Botswana Trans-Kalahari border for 327 

Model_NamSA (Fig. 1c). 328 
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According to the heuristic tests of variable importance bioclimatic variables were the 329 

most influential to model predictions in terms of percent contribution and permutation 330 

importance (Fig. A2), with precipitation seasonality (Bio_15) contributing 331 

29.88±2.14% (35.98±2.72% permutation importance) to Model_SA and five 332 

bioclimatic variables (Bio_2, 12, 6, 3 and 1 in descending order) collectively 333 

contributing 73.70% to Model_NamSA (Fig. A2). The four variables that contributed 334 

the most to Model_SA (Bio_15, 6, 12 and 19 in descending order) collectively 335 

contributed 70.44% to the model. Elevation (alt) was also a relatively important 336 

variable with a permutation importance of 20.99% for Model_NamSA and 10.08% for 337 

Model_SA. The jacknife tests for variable importance identified precipitation 338 

seasonality (Bio_15) as the most important variable for both models, followed by 339 

precipitation of the coldest quarter (Bio_19), minimum temperature of the coldest 340 

week (Bio_6) and WWF ecoregion ID for Model_SA (Fig. A2). WWF ecoregion ID 341 

was also identified as an important variable for Model_NamSA, followed by altitude, 342 

minimum temperature of the coldest week (Bio_6) and NDVI in August (Fig. A2). 343 

According to the jacknife tests exclusion of the variables from the models did not 344 

identify any obvious single variable that contained information that was lacking in the 345 

other variables, although the omission of precipitation seasonality (Bio_15) and 346 

isothermality (Bio_3) resulted in the greatest decrease in gain for Model_SA and 347 

Model_NamSA, respectively (Fig. A2). 348 

The average variable values for raster cells predicted to be suitable for Cape 349 

vultures were similar for Model_SA and Model_NamSA (Table 1). The elevational 350 

range of cells predicted to be suitable for Cape vulture occurrence under current 351 

conditions for both models was 517 – 3 308 m·asl compared to 389 – 3 148 m·asl 352 

under future conditions. For all models, cells predicted to be suitable for Cape vulture 353 

occurrence tended to consist, on average (median and mode), of “livestock-only 354 

ruminant production systems in arid areas” with mean (±SE) cattle densities from 355 

9.34±0.014 cattle·km-1 (Model_NamSA current) to 13.31±0.023 cattle·km-1 356 

(Model_NamSA 2050), in areas of “open grassland with sparse shrubs” land-cover in 357 

the Highveld grasslands or Kalahari xeric savannah ecoregions (Table 1).  358 

3.2. Projected extent of predicted environmental suitability  359 
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Of the 460,801 km2 predicted by Model_SA to be suitable for Cape vultures under 360 

current conditions, 28% was predicted to become unsuitable in 2050 with a pole-361 

ward 151 km shift of the mean centre of the suitable area (Fig. 1b). However, under 362 

future conditions the overall suitable area was predicted to increase from 15% to 363 

19% (594,964 km2) of the study area, of which 44% (264,070 km2) extended into 364 

areas predicted to be unsuitable in current conditions (Fig. 1b). For Model_NamSA a 365 

greater degree of current suitable range loss was predicted, with 55% of the 491,655 366 

km2 current suitable range predicted to become unsuitable in 2050, with a pole-ward 367 

333 km shift of the mean centre of the suitable area (Fig. 1c). 56% (284,662 km2) of 368 

the area predicted to be suitable in 2050 was predicted to be unsuitable in current 369 

conditions, resulting in a relatively small increase in the area predicted to be suitable 370 

across the study area to 504,911 km2 (Fig. 1c). Both models predicted that the 371 

largest area of range contraction would be in the western half of the Limpopo 372 

Province, South Africa, and south-east Botswana (Fig. 1b and c). Almost the whole 373 

area in north-central Namibia predicted to be suitable under current conditions by 374 

Model_NamSA was predicted to become unsuitable under climatic conditions in 375 

2050 (Fig. 1c; Fig. A1). The mean elevation (alt) for areas predicted to be suitable 376 

increased by 124 m and 171 m for Model_SA and Model_NamSA, respectively 377 

(Table 1).    378 

3.3 Protected area coverage under current and projected suitability 379 

Of the area predicted by Model_SA to be suitable for Cape vultures, 5.85% (26 961 380 

km2) and 3.79% (22 560 km2) was included within protected areas under current and 381 

future conditions, respectively. The protected areas covering more than 1,000 km2 of 382 

suitable area under current conditions were the Waterberg Biosphere Reserve (BR) 383 

in Limpopo Province, South Africa, the Drakensberg World Heritage Site (WHS), and 384 

the Central Kalahari Game Reserve (GR) in south-east Botswana, whereas under 385 

future conditions only the Kalahari-Gemsbok National Park (NP) and the 386 

Drakensberg WHS covered more than 1,000 km2. For Model_NamSA, 7.91% 387 

(38,874 km2) and 2.77% (13,963 km2) of the predicted suitable area was included 388 

within protected areas under current and future conditions, respectively. The 389 

protected areas covering more than 1,000 km2 of suitable area under current 390 

conditions were several conservancies in north-central Namibia, the Waterberg BR 391 

in Limpopo Province, South Africa, and the Central Kalahari GR in south-east 392 
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Botswana. Under future conditions only the Drakensberg WHS and the Waterberg 393 

BR in Limpopo Province, South Africa, covered more than 1000 km2 of suitable area. 394 

4. Discussion 395 

This study provides a first description of the environmental characteristics of the 396 

spatial niche occupied by the Cape vulture using a presence-only ENM method 397 

based on GPS tracking locations from vultures caught from the wild in north-central 398 

Namibia and north-central South Africa. As with previous ENM studies on raptor 399 

species the most important variables determining the limits of predicted suitability 400 

were bioclimatic variables, with precipitation seasonality (i.e. variation in monthly 401 

precipitation totals across the course of the year (Table A1)) consistently identified 402 

as one of the most influential variables (Gschweng et al. 2012; Liminana et al. 2012). 403 

The areas predicted to be suitable for Cape vultures by both models broadly 404 

corresponded with the known current and historical distribution of the species, with a 405 

core range in the highveld and bushveld of the northern provinces of South Africa 406 

and a secondary region of suitability in the more mountainous south-east of the 407 

country, mainly along the Maloti-Drakensberg escarpment (Mundy et al. 1992; 408 

BirdLife International 2016). The area of suitability also extended beyond the current 409 

western boundary of the recognised species distribution range, which has been 410 

linked to the relatively recent construction of power lines in an area otherwise devoid 411 

of suitable roost sites (Phipps et al. 2013b).  412 

A first estimate of the potential impact of climate change on the distribution of 413 

suitable areas for Cape vultures predicted a pole-ward shift in suitable conditions 414 

away from their core breeding and foraging range in northern South Africa, which 415 

conforms with projected patterns of bird species’ responses to climate change in the 416 

region (Simmons et al. 2004; Hole et al. 2009). The model that included the 417 

presence locations from the vultures tagged in Namibia predicted that the majority of 418 

an isolated area of suitable conditions centred approximately on the former breeding 419 

colony in the Waterberg region would become unsuitable under future (2050) 420 

climatic conditions. In proportion to the regional coverage of protected areas in 421 

southern Africa (circa 23% of land area, excluding Mozambique; circa 9% of land 422 

area for South Africa, Lesotho and Swaziland (IUCN and UNEP-WCMC 2015)), the 423 

area predicted to be suitable for Cape vultures located within protected areas (5.85% 424 



14 
 

of suitable area for the model based only on data from South African tagged 425 

vultures) was small and predicted to decrease under future conditions. 426 

4.1. Influence of environmental variables on predicted probability of presence 427 

Overall, bioclimatic variables, and precipitation seasonality in particular, were the 428 

most influential in both models, which is consistent with previous studies that used 429 

GPS tracking data to model the ecological niche of raptors (Gschweng et al. 2012; 430 

Liminana et al. 2012). Vegetation production is dependent on climatic conditions and 431 

precipitation patterns determine forage abundance and quality, and subsequently 432 

nutrition-related mortality rates for ungulates (Boone et al. 2006; Ogutu et al. 2008; 433 

Chamaille-Jammes and Fritz 2009). Vulture movement patterns have been shown to 434 

be closely associated with seasonal ungulate mortality rates driven by seasonal 435 

changes in vegetation productivity indicated by changes in NDVI, with tracked 436 

vultures preferring to forage in areas with higher ungulate mortality during the dry 437 

season in the Masai Mara, Kenya (Kendall et al. 2014). NDVI in August was 438 

identified as the most important variable in the preliminary model which included only 439 

the twelve monthly NDVI variables, as well as for both models including all variables. 440 

As August is one of the coldest and driest months in southern Africa and mortality of 441 

both wild and domestic ungulates can be relatively high during that time as a 442 

consequence of nutritional stress (Owen-Smith et al. 2005; Mapiye et al. 2009), it is 443 

likely that the models reflect the influence of seasonal vegetation production on Cape 444 

vulture occurrence by affecting the availability of carrion. Correspondingly, the 445 

probability of Cape vulture presence was highest in areas with very low levels of 446 

precipitation during the coldest quarter (Bio_19; Fig. A3b) and temperatures of 2oC 447 

to 5oC in the coldest week (Bio_6; Fig. A3c), which would result in seasonal periods 448 

of low grass productivity and potentially higher ungulate mortality rates (Owen-Smith 449 

2008). These results suggest that bioclimatic factors might play a role in driving 450 

Cape vulture occurrence and movement patterns, most likely through climatic effects 451 

on vegetation production which directly influences the availability of food in the form 452 

of ungulate carrion, as reported for vultures in Kenya (Kendall et al. 2014). This 453 

provides a partial explanation (together with the availability of cliff nesting sites) for 454 

why the core breeding and foraging ranges of the species are located in the northern 455 

provinces of South Africa which are characterised by distinct wet summer (October – 456 

April) and dry winter (May – September) seasons (Benson et al. 1990; Mundy et al. 457 
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1992; Borello and Borello 2002), as Cape vultures and other Gyps species tend to 458 

coincide their breeding seasons with the highest availability of ungulate carrion in the 459 

dry season (Houston 1974b; Piper et al. 1999; Virani et al. 2010; Virani et al. 2012). 460 

This is consistent with previous studies that have found an inverse relationship 461 

between vulture breeding success and rainfall in the previous year due to reduced 462 

ungulate carrion availability (Bridgeford and Bridgeford 2003; Virani et al. 2012). 463 

As large soaring fliers, vultures are reliant on suitable climatic conditions to provide 464 

sufficient air currents and thermals to allow them to cover the large distances 465 

required to locate their naturally ephemeral food source and it has been suggested 466 

that high rainfall and adverse weather conditions limit their ability to do so 467 

(Pennycuick 1972; Lambertucci and Ruggiero 2013; Harel et al. 2016). The influence 468 

of local climatic factors such as temperature range and precipitation in determining 469 

the occurrence of large soaring birds has been shown for the Andean condor (Vultur 470 

gryphus), which should, according to a modelling study, prefer roost sites on 471 

climatically stable cliffs in areas of low rainfall (Lambertucci and Ruggiero 2013). The 472 

importance of isothermality (a measure of diurnal and annual temperature ranges) in 473 

both models (Bio_3; Fig. A3f) and the higher probabilities of occurrence in areas with 474 

moderate seasonal rainfall, are consistent with this and possibly reflect the influence 475 

of meteorological variables on the local flying conditions for large vultures which tend 476 

to require strong up-draughts and drier conditions (Shepard and Lambertucci 2013; 477 

Harel et al. 2016).       478 

African vultures locate carcasses by sight alone (Houston 1974a) and it has been 479 

shown that high tree densities reduce their ability to locate and land at carcasses, 480 

decreasing their foraging efficiency (Schultz 2007; Bamford et al. 2009). The results 481 

from this study provide further evidence that vegetation and habitat characteristics 482 

influence vulture movement and occurrence patterns. WWF ecoregion ID was 483 

identified as an important variable for both models, with higher probabilities of Cape 484 

vulture presence in habitats characterised by relatively limited tree density and more 485 

open habitats (e.g. highveld grassland and southern African bushveld (Olson et al. 486 

2001)). In addition, the most prevalent land cover type in the modelled suitable areas 487 

was open grassland with sparse shrubs which is also defined by relatively low tree 488 

densities (Table 1 (Mayaux et al. 2004)). These results correspond with previous 489 

descriptions of suitable Cape vulture habitat (Mundy et al. 1992) and support 490 
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suggestions that they avoid heavily wooded areas and might be susceptible to the 491 

increasing rate and extent of bush encroachment in southern Africa (Schultz 2007; 492 

Bamford et al. 2009).  493 

Although variables related to land use and farming practices (FAO ruminant 494 

production systems; Global Land Cover 2000; FAO cattle density for 2005) were not 495 

identified as particularly important variables for either model, relatively high 496 

probabilities of presence were predicted in livestock-only systems compared to more 497 

arable-dominated landscapes (Fig. A4b), with an average cattle density of 498 

approximately 10 cattle km-2 in suitable areas and a sharp decrease in probability of 499 

presence predicted above approximately 20 cattle km-2 (Fig. A4c). This supports 500 

suggestions that ungulate mortality rather than abundance is a main driver of vulture 501 

presence (Kendall et al. 2014), particularly as more intensive farming systems 502 

remove carcasses more frequently, reducing food availability for vultures (Murn and 503 

Anderson 2008; Margalida et al. 2014). These patterns are also consistent with 504 

observations that Cape vultures often utilise commercial farmland in addition to more 505 

extensive systems to exploit all sources of available carrion, including domestic 506 

livestock, as well as wild ungulates (Benson et al. 2004; Murn and Anderson 2008; 507 

Phipps et al. 2013b). Consequently, food availability is likely to remain the primary 508 

factor in determining vulture occurrence patterns, and it is possible that the growing 509 

number of supplementary feeding sites for vultures in southern Africa will influence 510 

their movement patterns (Phipps et al. 2013a) and possibly assist them to adapt to 511 

fluctuating ungulate mortality patterns caused by the changing climate (Cortés-512 

Avizanda et al. 2016).  513 

4.2. Projected influence of climate change 514 

The pole-ward shifts and increase in mean altitude of areas predicted to be suitable 515 

for Cape vultures in 2050 by both models correspond with previous studies that have 516 

predicted similar responses to changing climatic conditions in bird species in 517 

southern Africa (Simmons et al. 2004; Hole et al. 2009; Willis et al. 2009; BirdLife 518 

International and Durham University 2015). Although the model that used presence 519 

locations from Namibian tagged vultures predicted an area of suitability in the north-520 

central region of the country (Fig. 1c and A1c), the model that only used presence 521 

locations from South African tagged vultures predicted a very low probability of 522 
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presence in the same area (Fig. 1b and A1a). This indicates that bioclimatic 523 

conditions are very different in north-central Namibia compared to the majority of the 524 

predicted suitable area in South Africa and south-east Botswana (Williams et al. 525 

2007). Under future conditions the area modelled to be suitable in north-central 526 

Namibia was predicted to contract away from its current extent in a southwards 527 

direction more than 170 km from the former Cape vulture breeding colony on the 528 

cliffs of the Waterberg Plateau (Fig. 1c). This is consistent with previous studies that 529 

predict that northern Namibia is likely to be particularly vulnerable to the effects of 530 

climate change as current climatic conditions shift pole-wards or even disappear, 531 

causing high rates of range loss for a high number of species from different taxa 532 

(Thuiller et al. 2006a; Thuiller et al. 2006b; Williams et al. 2007; Garcia et al. 2012). 533 

Significant range loss was also predicted by both models in the current core 534 

breeding range of Cape vultures in northern South Africa and south-east Botswana 535 

(Fig. 1b and c), areas which have previously been predicted to undergo high levels 536 

of bird and mammal species turnover and range loss driven by climate change 537 

(Thuiller et al. 2006a; Hole et al. 2009). These modelled patterns of range 538 

contraction support the suggestion that the most northernmost Cape vulture 539 

breeding colonies could be at risk of becoming climatically unsuitable for the species 540 

in the future, and that climate change might have already played a role in the 541 

extinction of the only breeding colony in northern Namibia (Simmons and Jenkins 542 

2007). Correspondingly, recent colony surveys indicate that while several peripheral, 543 

northern colonies have been abandoned, the core breeding population in the 544 

Magaliesberg mountains remains stable, where an increase in supplementary 545 

carrion at vulture feeding sites might have led to higher local survival rates and 546 

recruitment from more peripheral colonies (Wolter et al. 2016), potentially mitigating 547 

any adverse impacts of climate change. The influence and interaction of these 548 

factors requires further investigation, however.    549 

In contrast to the loss of suitable areas in the north of the modelled range, an 550 

increase in the overall extent of the suitable area was predicted by both models, 551 

largely as a result of a southwards range expansion into the highveld grassland of 552 

the Free State and south-west Mpumalanga Provinces (Fig. 1b and c). This region is 553 

considered to be outside the historical distribution of the Cape vulture partly due to 554 

the relatively long distances from major breeding colonies but also due to the 555 
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relatively low abundance of trees for roosting and perching after long-term 556 

overgrazing suppression and habitat degradation (Mundy et al. 1992; Low and 557 

Rebelo 1998; Olson et al. 2001). Therefore, although large bodied species, such as 558 

Cape vultures, that exhibit evidence of nomadic-like movements (Phipps et al. 559 

2013a; Phipps et al. 2013b) are predicted to be more capable of dispersing to 560 

suitable areas under future climate change scenarios (Simmons et al. 2004; Dodge 561 

et al. 2014), dispersal capabilities were not considered in this study and so any 562 

predicted range expansions should be considered with caution, particularly as there 563 

are no active breeding colonies in the area and other factors such as land use 564 

change were not accounted for (Guisan and Thuiller 2005). Nevertheless, fluctuating 565 

carrion availability regularly forces vultures to shift their movement patterns (Kendall 566 

et al. 2014), and they even forage beyond their historical distribution by perching on 567 

newly constructed power line structures in areas previously devoid of natural 568 

perches (Phipps et al. 2013b), indicating that they might show a degree of plasticity 569 

in their movement patterns in response to future climate change (Simmons et al. 570 

2004; Dodge et al. 2014). 571 

4.3. The current and future role of protected areas 572 

The limited coverage (<6% for Model_SA) of the modelled suitable Cape vulture 573 

range by protected areas under current climatic conditions reflects the distribution of 574 

relatively small, isolated protected areas in the majority of South Africa, particularly 575 

away from the east of the country, that cover just over 9% of the land surface (Fig. 576 

1a (IUCN and UNEP-WCMC 2015)). This provides further evidence that vultures in 577 

southern Africa, and South Africa in particular, are likely to spend a significant 578 

amount of time foraging beyond the boundaries of protected areas, exposing them to 579 

multiple threats across the region (Murn and Anderson 2008; Phipps et al. 2013a; 580 

Phipps et al. 2013b). 581 

Under future climate conditions the models predicted a decrease in the suitable area 582 

covered by protected areas to less than 4% for both models. The largest losses of 583 

protected area coverage were predicted in the core breeding range of the Cape 584 

vulture in the North West and Limpopo Provinces of South Africa (e.g. the Waterberg 585 

Biosphere Reserve), and in northern Namibia (Fig. 1b and c). In contrast, protected 586 

areas in the south of the range, such as the Maloti-Drakensberg mountain reserves, 587 
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were predicted to retain or even gain areas predicted to be suitable under future 588 

climatic conditions. Two of the largest remaining Cape vulture colonies are located 589 

within protected areas adjacent to or part of the Waterberg Biosphere Reserve 590 

(Kransberg in Marakale National Park, and Blouberg in Polokwane Nature Reserve 591 

(Mundy et al. 1992; BirdLife International 2016)) and were predicted to become 592 

unsuitable in the future by both models (Fig. 1 b and c). Although breeding season 593 

monitoring indicates that the populations of both colonies are currently stable 594 

(Benson 2015; Wolter et al. 2016), the predictions from this study that Cape vulture 595 

colonies in the north of the range are potentially at greater risk from the effects of 596 

climate change than those in the south, and that the Maloti-Drakensberg mountains 597 

could play an increasingly important role for breeding vultures in the future, support 598 

previous concerns and calls for additional research (Simmons and Jenkins 2007). 599 

4.4. Conservation implications and limitations      600 

The modelling methods used in this study can only provide an approximation of the 601 

potential effects of climate change on the distribution of environmentally suitable 602 

conditions for Cape vultures and cannot provide definitive information about the 603 

underlying mechanisms driving those effects, or predict how vultures will respond to 604 

the changing climate in real circumstances (Thuiller et al. 2008; Elith and Leathwick 605 

2009; Elith et al. 2011). Moreover, the future climate data used in this study (a “worst 606 

case” scenario) are derived from modelling methods that vary in accuracy regionally, 607 

with some variables performing better than others (Braconnot et al. 2012; Waltari et 608 

al. 2014), particularly in southern Africa where high levels of seasonal variance are 609 

expected (Winsemius et al. 2014). Even so the findings from this study, based on 610 

accurate presence locations from tracking data, provide the first evidence to support 611 

suggestions that the northern bounds of the Cape vulture range are potentially 612 

vulnerable to the effects of future climate change (Simmons and Jenkins 2007). 613 

Considering higher temperatures and longer sunlight exposures have been shown to 614 

cause higher heat-stress on nesting Cape vultures (Chaudhry 2007) and cliff-nesting 615 

seabirds (Oswald and Arnold 2012), and rainfall patterns influence breeding success 616 

of other African vulture species (Bridgeford and Bridgeford 2003; Virani et al. 2012), 617 

it is possible that warming temperatures and changes to precipitation patterns 618 

observed over the last few decades (IPCC 2014) may have already affected the 619 

breeding distribution of Cape vultures by contributing to the extinction of the 620 
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Waterberg Plateau breeding colony in north-central Namibia (Simmons and Jenkins 621 

2007; Krueger et al. 2015). It is unlikely, however, that climate change is solely 622 

responsible for the observed declines in Cape vultures in Namibia or elsewhere 623 

across their range, and the severe impacts of widespread poisoning (Ogada et al. 624 

2012; Ogada 2014), fatal interactions with power lines (Boshoff et al. 2011), habitat 625 

degradation (Bamford et al. 2009), food shortages (Krueger et al. 2015) and other 626 

factors, are widely recognised. Our findings do, however, provide a first indication 627 

that climate change might pose an additional serious threat to vultures particularly 628 

when considering the potential effects of climate driven changes to vegetation 629 

characteristics (Thuiller et al. 2006b; Chamaille-Jammes and Fritz 2009) and 630 

mammal distributions (Thuiller et al. 2006a) that could consequently reduce suitable 631 

foraging habitat and carrion availability.  632 

It remains unknown exactly how Cape vultures will respond to future climate change 633 

in real terms and further related research is required (Simmons and Jenkins 2007; 634 

Krueger et al. 2015), particularly as this study involves a relatively small sample of 635 

individuals. However, if southern areas such as the Maloti-Drakensberg mountains 636 

do become more important for Cape vultures in the future, then additional 637 

conservation measures to prevent or mitigate the impacts of proposed wind farms 638 

(Rushworth and Kruger 2014), power lines (Boshoff et al. 2011) and ongoing 639 

poisonings (Krueger et al. 2015) will be essential throughout their range. In addition, 640 

the small proportion of suitable range predicted to occur within protected areas 641 

provides further evidence that it will be essential to continue to direct vulture 642 

conservation measures to private land as well as to the existing protected area 643 

network, as acknowledged for other carnivore species (Lindsey et al. 2004; St John 644 

et al. 2012; Swanepoel et al. 2013). From a global perspective, the findings from this 645 

study provide a first indication that changing climatic conditions should be 646 

considered when planning to mitigate worldwide vulture population declines.  647 

 648 

 649 

 650 

 651 



21 
 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 



22 
 

Figures and Tables. 663 

 664 

Figure 1. (a) Presence locations used for Maxent modelling from GPS tracking data from Cape vultures tagged in South Africa 665 
(black circles) and Namibia (dark grey squares). Capture sites are indicated by blue triangles and protected areas are shown by 666 
filled green polygons. Letters indicated abbreviated country names and provinces of South Africa (NC = Northern Cape; WC = 667 
Western Cape; EC = Eastern Cape; KZN = KwaZulu-Natal; MP = Mpumulanga; NW = North West; LI = Limpopo; LS = Lesotho; 668 
SW = Swaziland; Nam. = Namibia; Bots. = Botswana; Zim. = Zimbabwe). Areas predicted by Maxent models to be unsuitable in 669 
both current and future (2050) climatic conditions (unsuitable), suitable in both (stable), suitable in current but not future conditions 670 
(range contraction) and suitable in future but not current conditions (range expansion) are shown by different shaded polygons for 671 
(b) Model_SA which was modelled with presence locations from South African tagged vultures only and (c) Model_NamSA which 672 
was modelled with all presence locations. The red arrows show to scale the movement of the mean centre of the suitable area 673 
under current conditions to the mean centre under future conditions. Red stars indicate some of the main Cape vulture colonies.  674 

 675 

 676 

(a) (b) (c) 
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Table 1. Mean (±SE), minimum and maximum values for environmental variables in raster cells modelled to be suitable under current 677 
and future (2050) climatic conditions using two presence location datasets from Cape vultures fitted with GPS tracking units in South 678 
Africa (n=9) and Namibia (n=5). Median and mode values are given for categorical variables. The mean (±SE), minimum and 679 
maximum values of the logistic probability of presence for each area of modelled suitability are also provided. The number of grid 680 
cells predicted to be suitable by each model are given in parentheses after the model name.    681 

*bio_1 = annual mean temperature; bio_2 = mean diurnal temperature range; bio_3 = isothermality (%/10); bio_6 = minimum temperature of the coldest week; bio_12 = annual 682 
precipitation; bio_15 = precipitation seasonality (% - coefficient of variation); bio_19 = precipitation of the coldest quarter; Alt = elevation above sea level; ndvi_aug = NDVI in 683 
August (NDVI*1000); slope_perc = slope percent rise; FAOcattle05 = FAO cattle density; rum_prod_sys = FAO ruminant production systems (2 = Livestock-only systems in 684 
arid areas; 4 = Livestock-only systems in temperate areas or tropical highlands); GLC2000 = Global Land Cover from the year 2000 (14 = Open grassland with sparse shrubs); 685 
WWF_ecoregion_ID = WWF ecoregion (31009 = Highveld grasslands; 31309 = Kalahari xeric savannah). Refer to ‘Environmental Data’ in Supporting Information. 686 

 Model_SA current (n=593,816) Model_SA 2050 (n=766,707) Model_NamSA current (n=633,576) Model_NamSA 2050 (n=650,658) 

Variable* Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max. 

bio_1 (oC) 17.88±0.0029 5.80 22.30 19.98±0.0026 7.50 24.40 18.41±0.0026 6.40 22.20 16.06±0.0022 5.60 21.50 

bio_2 (oC) 15.69±0.0013 7.30 19.00 16.10±0.0014 9.90 19.20 15.90±0.0011 11.50 18.90 15.66±0.0013 10.40 18.10 

bio_3 (%/10) 5.38±0.0004 4.40 6.40 5.44±0.0003 4.60 6.30 5.48±0.0005 4.40 7.30 5.32±0.0004 4.40 7.30 

bio_6 (oC) 1.61±0.0025 -5.90 6.90 3.48±0.0019 -3.00 9.80 2.21±0.0027 -5.90 9.90 0.03±0.0020 -5.90 9.80 

bio_12 (mm) 499.49±0.2286 81 1605 495.44±0.2316 77 1218 480.50±0.1938 103 1489 534.90±0.2408 105 1489 

bio_15 (%) 72.74±0.0123 35 105 73.88±0.0121 34 98 78.51±0.0187 29 134 66.23±0.0130 20 136 

bio_19 (mm) 21.58±0.0199 2 326 24.09±0.0172 3 333 17.47±0.0163 0 235 29.12±0.0157 0 233 

Alt (m asl) 1222.61±0.3567 517 3084 1346.14±0.3225 596 3308 1248.70±0.3199 519 2946 1420.00±0.3349 389 3143 

ndvi_aug 
(NDVI*1000) 

103.91±0.0189 10 245 100.67±0.0169 10 255 101.56±0.0157 10 185 101.06±0.0165 10 223 

slope_perc (%) 2.23±0.0049 0 52.01 2.38±0.0042 0 52.01 1.75±0.0039 0 52.55 2.59±0.0047 0 52.55 

FAOcattle05 
(cattle·km-1) 

10.53±0.0152 0 121.94 11.74±0.0165 0 
468.6
0 

9.34±0.0141 0 468.60 13.31±0.0234 0 468.60 

Probability of 
presence 

0.48±0.0001 0.31 0.89 0.55±0.0002 0.31 0.93 0.46±0.0001 0.31 0.88 0.59±0.0002 0.31 0.97 

Categorical 
variables 

Median (Mode)    Median (Mode)    Median (Mode)    Median (Mode)    

rum_prod_system 2 (2)     4 (2)     2 (2)     4 (2)     

GLC2000 14 (14)    14 (14)    14 (14)    14 (14)    

WWF_ecoregion
_ID 

31009 (31309)    31009 (31009)    31009 (31309)    31009 (31009)    
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