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Abstract— The processing capabilities of the biological vision 

system are still vastly superior to artificial vision, which has been 

an active area of research for over half a century. Current 

artificial vision techniques, motivated by this robust 

performance, integrate many insights from biology yet they 

remain far-off the capabilities of animals and humans in terms of 

speed, power and performance. With respect to modelling the 

retina, this is due to an insufficient understanding of the complex 

interactions between the cells and their organisation within the 

system. The core components within this system are the retinal 

ganglion cells as they convey the accumulated data of real world 

images as action potentials onto the visual cortex via the optic 

nerve. Computational models that approximate the processing 

that occurs within these visual neurons can be derived by 

quantitatively fitting particular sets of physiological data using 

an input-output analysis where the input is a known and its 

output is recorded. Techniques capable of mapping this input-

output response involve computational combinations of linear 

and nonlinear models that are generally complex and lack any 

relevance to the underlying biophysics. In this work we illustrate 

how system identification techniques, which take inspiration 

from biological systems, can accurately model ganglion cell 

behaviour, and are a viable alternative to traditional linear-

nonlinear approaches. 

 
Index Terms—Retinal ganglion cells, computational modelling, 

biological vision, receptive field, artificial stimuli. 

I. INTRODUCTION 

imicking biological vision systems has been a consistent 

challenge in the visual research field for many years. 

Vision begins with light that is projected to the back of the eye 

onto the retina which is an extension of the brain 

approximately 0.3-0.4mm thick and covers an area of 

approximately 520mm2 [1]. Around 125 million rod and cone 

photoreceptors transform visible light into neural signals [2]. 

This is in comparison to 1 million ganglion cells which 

receive the signal information, having been filtered through 

intermediate layers consisting of horizontal, bipolar and 

amacrine cells. There are around 15-20 distinct types of retinal 

ganglion cells (RGC) which transform the signal information 

into what are known as action potentials (spikes) and transmit 

the information via synaptic connections to the visual cortex 
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for higher processing. Previously, the retina was thought of as 

a simple spatiotemporal filter, with the real processing 

beginning in the visual cortex. However this view has been 

substantially revised in recent times [3].  

There is very little feedback from the brain to the retina thus 

it is an ideal biological system to derive computational models 

of a stimulus-response relationship, as the inputs can be 

precisely controlled whilst the output can be extracellularly 

recorded from RGCs through the use of a multi-electrode 

array [4]. Each RGC pools signals from multiple 

photoreceptors via a networked infrastructure of the various 

cell types. Collectively, the spatial area of photoreceptors 

which contribute to a RGC eliciting a response is known as the 

receptive field (RF), which can also be referred to as the 

region of the sensory space in which visual stimulus triggers a 

neuron to fire. The general shape of this spatial area is 

commonly approximated to be either a circular [5] or an 

elliptical region that is often defined with a 2D Gaussian 

spatial profile [6], [7]. In reality, however, the actual shape of 

the RF is highly irregular as demonstrated in Figure 1 where 

RGCs from macaque monkeys are shown to closely interlock 

and span the entire area of the visual window. Derived models 

which accurately describe this relationship progress our 

functional understanding of the retina and inspire future image 

processing research [8]. In fact, biologically inspired models 

of the retina, between stimulus and response, have been shown 

to outperform various machine vision techniques in terms of 

speed, power and performance [9]. 

Modelling of these temporal neural recordings, however, is 

challenging due to insufficient knowledge about the internal 

structure and interconnections between cells. Linear-nonlinear 

(LN) cascades are a popular class of quantitative models used 
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Figure 1: Recorded receptive fields from 'parasol' ganglion cells in 

macaque retina [1] 

 



to describe the stimulus–response relationship [10]. In 

particular, LN models have been used to describe the 

processing in the retina [11] though the main drawback is that 

they lack any relationship between the derived parameters and 

underlying biophysics of the system [10]. System 

identification tools are useful in this case as they are suited to 

dynamical systems and allow for a better insight into the 

underlying physics of the biological system. First used to 

understand the responses of auditory neurons [12], output 

responses were recorded using white noise stimuli and 

inferences were made on mapping the stimulus to the 

response. As is often the case, white noise stimulation is 

preferred for modelling biological vision systems [13] as it 

remains controlled and is easily analysed mathematically. 

However, there is evidence that the use of artificial stimuli 

produces models that do not adequately describe responses to 

natural visual scenes [14]. Therefore, models created under 

these conditions using artificial stimuli may only be 

considered a subset of the full biological model under certain 

conditions. 

Artificial Neural Network (ANN) methodologies, by 

definition, are designed to mimic biological aspects of the 

human brain [15] and through extension; the vision system. 

Specifically, Nonlinear Autoregressive Network with 

Exogenous Inputs (NARX) and k-Nearest Neighbours (kNN) 

approaches have been applied to neural encoding models in 

human vision [16] whilst methods, such as TDNN (Time 

Delayed Neural Network), MLP (Multi-layer Perceptron) and 

other ANN implementations have been used to derive models 

of retinal ganglion cell visual processing [17]–[19]. The 

NARMAX (nonlinear auto-regressive moving average with 

exogenous inputs) model [20]; a parametric system 

identification technique, which is a natural extension to 

NARX, has also been used within vision studies to model 

adaptation of photoreceptors to light in flies [21]. The 

NARMAX technique lends itself to a broad range of 

applications in several areas which include modelling robot 

behaviour [22], time series analysis [23], iceberg calving and 

detecting and tracking time-varying causality for EEG data 

[24]. In previous work, [18], [25] the NARMAX methodology 

has been utilised to help formulate a retina modelling 

development process and in particular, to express the 

biological input-output relationship using polynomial models. 

In this work we expand on [25] by introducing, in addition 

to the NARMAX model, the self-organising fuzzy neural 

network (SOFNN) and NARX methodologies. The predictive 

performance of the investigated methodologies to adequately 

model a retinal ganglion cell’s output is evaluated. 

Performance is compared amongst these popular approaches, 

outlined in Section 2, with specific reference to the standard 

LN cascade technique. Section 3 provides details on the 

physiological experiments used for data collection and the 

methods utilised to pre-process the data to form and input-

output time series configuration suitable for modelling. The 

results are presented in Section 4 where models have been 

derived based on two types of artificial stimuli. These models 

are then analysed further to determine any underlying system 

dynamics. Finally, a concluding discussion based on the 

findings of this work is presented in Section 5 along with 

future directions for investigation. 

II. METHODS 

Deriving a quantitative relationship between stimulus and 

response of a RGC is challenging if we consider the internal 

cell structure that precedes them or the numerous interactions 

over the many interconnections between cells. To simplify 

this, we consider the problem with a black-box approach 

which aims to estimate a mathematical model for a regression 

dataset and apply a number of different methods to form this 

model. In keeping with traditional approaches, the Linear-

Nonlinear (LN) cascade approach is also utilised as a 

comparison to the investigated approaches.  

A. Linear-Nonlinear (LN) 

The Linear-Nonlinear (LN) cascaded approach is a popular 

method of estimating the output firing rate of a neuron by 

applying the input to a linear temporal filter followed by a 

static non-linear transformation [10] and can be described by 

Eq. 1; 

 𝑟(𝑡) = 𝐹(𝑎 ∗  𝑆𝑡) (1) 

where 𝑎 is the temporal linear filter, F is a static non-linearity 

and 𝑎 ∗ 𝑆𝑡 is the convolution of the temporal linear filter and 

stimulus 𝑆𝑡. The first step in estimating the response of the 

retina to visual stimuli is to compute the linear filter. This is 

typically accomplished by computing the spike triggered 

average (STA), which is simply the average stimulus 

preceding each spike (See Figure 2 for example). 

 
Figure 2: Calculating spike-triggered average 

In [13], this is defined by Eq. 2 where T is the duration of 

the stimulus recording, 𝑆𝑡𝑓𝑡 is the stimulus preceding a spike, 

𝑓𝑡. Thus, the STA is the sum of all stimuli preceding a spike 

divided by the total number of spikes within the recording. 

 
𝑎 =  

∑ 𝑆𝑡𝑓𝑡
𝑇
𝑡=1

∑ 𝑓𝑡
𝑇
𝑡=1

 (2) 

The size of the temporal window is determined by examining 

the duration of the average response and ascertaining the point 

at which it converges to zero [13].  

Determining the latter element of the LN cascade entails the 

convolution of the stimulus with the computed STA (𝑎 ∗ 𝑆𝑡 ,
𝐸𝑞. 1) and computing the static non-linearity (F). This is 

achieved by plotting the spike count as a function of the 

convolved stimulus and fitting a curve. 



B. Nonlinear autoregressive exogenous model (NARX) 

NARX (Nonlinear Autoregressive eXogenous) is part of the 

ANN family and is a model of a nonlinear neural network 

which accommodates dynamic inputs from a time series type 

dataset. It can learn to predict future values of the time series 

based on past information from the same time series, feedback 

input, and an additional time series referred to as the 

exogenous time series. Based on the same architecture as 

conventional recurrent neural networks, NARX provide a 

powerful solution to time series prediction that offers more 

effective learning and faster convergence over other ANNs 

[26]. A further advantage in principle is that one can use 

NARX networks, rather than conventional recurrent networks 

with complex differentiable nonlinearities, without any 

computational loss [27]. 

The topology of the network incorporates input, hidden and 

output processing element (PE) layers with the input to the 

network being fed by a number of delay units. Feedback from 

the output is also fed back to the hidden layer via delay units 

[28] as shown in Figure 3. 

 
Figure 3: Architecture of a NARX network [28] 

The description of the example model (Figure 3) can be denoted 

as: 

 
𝑦(𝑡) = 𝑓 (∑ 𝑎𝑖𝑦(𝑡 − 𝑖) +

𝑁

𝑖=1

∑ 𝑏𝑖𝑥(𝑡 − 𝑖)

𝑀

𝑖=1

), (3) 

where 𝑁, 𝑀, 𝑎𝑖 and 𝑏𝑖 are constants;  𝑥(𝑡) is the source input 

and 𝑦(𝑡) is the output of the network. Previously, NARX have 

been used to model various elements of the visual system 

including  human tracking for robot vision applications [29] 

and the encoding of the natural visual system in humans 

through in vivo experimentation [16]. Although it has been 

proven that NARX is effective in its predictive performance of 

complex time series data [30], one of the disadvantages of 

models created via NARX is that they are not easily analysed 

due to their opaque nature in terms of the obtained mapping. 

This makes it very difficult to understand any underlying 

system dynamics that might otherwise be apparent in 

alternative nonlinear system identification methods, for 

example NARMAX, which is discussed in the next section. 

C. Nonlinear autoregressive moving average model with 

exogenous inputs (NARMAX) 

A further improvement to the predictive powers of the 

NARX model can be achieved when the previous errors of the 

system are integrated as controlled variables [31]. A 

NARMAX model is formed as the result of this. The 

NARMAX approach is a popular system identification 

technique used when attempting to model the nonlinear 

relationship between the inputs and outputs (stimulus and 

response). It does this by representing the problem as a set of 

nonlinear difference equations. The NARMAX model, which 

is a natural extension of the ARMAX model [32], can be 

defined by: 

𝑦(𝑡) = 𝐹[𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 𝑑), … , 𝑢(𝑡 − 𝑛𝑢), 

𝑒(𝑡 − 1), … , 𝑒(𝑡 − 𝑛𝑒)] + 𝑒(𝑡) 
(4) 

which accounts for the combined effects of noise, modelling 

errors and unmeasured disturbances concerning the inputs and 

outputs. Here, 𝑢(𝑡) and 𝑦(𝑡) are the input and output vectors 

respectively; 𝑒(𝑡) is system noise which is considered bounded and 

cannot be measured directly and 𝑛𝑦, 𝑛𝑢 are the max output and input 

delays respectively. 𝐹[. ] , which is an unknown nonlinear 

function, is typically taken to be a polynomial expansion of 

the arguments. 

To develop a NARMAX model, the structure of the 

nonlinear equation must first be identified along with the 

estimation of its parameters. The overall approach is made up 

of the following steps [24]: 

1) Structure Detection: determine the terms within the model.  

2) Parameter Estimation: tune the coefficients.  

3) Model Validation: analyse model to avoid overfitting. 

4) Prediction: output of the model at a future point in time.  

5) Analysis: analyse model performance and determine the 

underlying dynamics of the system. 

As the structure is typically unknown prior to the 

implementation, a range of possibilities exist to approximate 

the function including polynomial, rational and various ANN 

implementations [32], such as the NARX network. The 

polynomial models however offer the most attractive 

implementation with regards to visual modelling as they allow 

for the underlying dynamical properties of the system to be 

revealed and analysed. One solution to determine the 

important terms of the model can be achieved using an 

orthogonal least squares approach by computing the 

contribution that each potential model term makes to the 

system output. Building the system this way, term by term, 

exposes the significance of each new term added and allows 

for the avoidance of overfitting due to an excessive use of time 

lags or nonlinear function approximations [32] by ensuring 

that the model is as simple as possible and contains good 

generalisation properties. This approach simulates 

investigative modelling techniques where the important model 



terms are introduced first and then the model is refined by 

adding in less significant terms. The only difference is that in 

the NARMAX method, the model terms can be identified 

directly from the data set. The unknown parameters and 

system noise can then be estimated and accommodated within 

the model. These procedures are now well established and 

have been used in many modelling domains [33]. 

D. Self-Organising Fuzzy Neural Network (SOFNN) 

Another method which can be utilised to model and analyse 

time series type datasets is the Self-Organising Fuzzy Neural 

Network (SOFNN). A SOFNN is a hybrid network which has 

the capability to model and forecast a complex nonlinear 

system. It is capable of self-organising its architecture by 

adding and pruning neurons as required based on the 

complexity of the dataset. This alleviates the requirement of 

predetermining the model structure and estimation of the 

model parameters as the SOFNN can accomplish this without 

any in-depth knowledge of neural networks or fuzzy systems. 

The SOFNN approach has demonstrated good performance in 

applications of function approximation, complex system 

identification and time series prediction, further details of 

which can be found in [34]–[37]. 

The main architecture of the SOFNN is a five layer fuzzy 

neural network as depicted in Figure 4. These include an input 

layer, EBF (ellipsoidal basis function) layer, normalized layer, 

weighted layer and output layer. The SOFNN has the ability to 

reorganise the connections between these layers during the 

learning process. In the EBF layer, each neuron is a T-norm of 

Gaussian membership function (MF) attributed to the 

networks inputs (see Figure 5) where each neuron signifies the 

if-part of the fuzzy rule. The output from this layer is 

computed by products of the membership values of each input. 

The output of the EBF layer is normalised by the third layer, 

which contains an equal number of neurons, by dividing each 

output by the sum of all outputs. 

The fourth network layer of the network is the weighted 

layer and signifies the consequent then-part of the fuzzy rules. 

Each neuron in this layer has two inputs, one of which is 

directly related to the output of the previous layer whilst the 

other is fed by a weighted bias. The product of these two 

inputs translate as the output to the final layer which contains 

a single neuron representing the summation of all incoming 

signals. 

During the learning process of the SOFNN, its internal 

structure is dynamically modified through adding and pruning 

of neurons within the EBF layer to achieve an economical 

network size. Before adding a neuron to the network, existing 

membership functions are first examined to ascertain whether 

or not they can be modified to accommodate the new training 

sample while considering the generalisation performance of 

the overall network. This is determined using the following 

error criteria: 

 |𝜖(𝑡)| = |𝑑𝑡 − 𝑦𝑡|, (5) 

where 𝑑𝑡 is the desired output of the system and 𝑦𝑡 is the 

network output. If this error is greater than some user defined 

threshold, 𝛿, adding a new EBF neuron to the network will be 

considered, otherwise an existing membership function may 

be modified so that it appropriately clusters the new training 

sample. 

Pruning of a neuron is governed by the importance of each 

neuron based on its contribution to the overall networks 

performance. The strategy is based on the optimal brain 

surgeon approach [38] which uses second derivative 

information to find the least important neuron and prune it 

from the network. If the subsequent performance of the 

SOFNN remains unchanged, the neuron is permanently 

deleted. Consequently, the neuron is restored should the 

performance be significantly degraded. An in depth 

explanation of the adding and pruning strategy is outlined in 

[36]. 

III. STIMULUS AND DATA PRE-PROCESSING 

Neuronal data were recorded from retinas, which were 

isolated from dark adapted adult axolotl tiger salamanders, 

similar to the approach in [4], [39], where the retina is divided 

in half, with each half placed cell side down onto a multi-

electrode array. Each image was projected onto the RGCs by a 

miniature organic light-emitting diode (OLED) display with 

 
Figure 4: Layer Structure of SOFNN 

 

 
Figure 5: Internal Structure of EBF Neuron 

 



white light. A lens then de-magnifies the image and focuses it 

onto the photoreceptor layer of the isolated retina. The 

stimulus display ran at 60 Hz whilst the stimulus itself was 

updated at 30Hz, meaning a new stimulus presentation was 

made approximately every 33
1

3
 ms. The neural responses 

(spikes) were recorded at 10kHz and binned at the stimulus 

update rate; meaning that all spikes that occur within the 

stimulus presentation timeframe are summed. Recorded spikes 

were sorted off-line by a cluster analysis of their shapes, and 

spike times were measured relative to the beginning of the 

stimulus presentation. 

A.  Stimulus 

These recordings were performed while under stimulation 

using temporal and spatio-temporal Gaussian white noise 

sequences. Artificial white noise sequences are frequently 

utilised when determining various characteristics of RGCs, 

including the STA (Section 2.1), as this avoids cell adaptation 

to sustained stimuli, is relatively robust and spans a wide 

range of visual inputs [13]. An example of the stimulus is 

presented in Figure 6, where each image in the temporal 

sequence is presented sequentially. Figure 6(a) shows a set of 

images drawn from a randomly distributed Gaussian white 

noise sequence, used for full field illumination, where all 

pixels within each image are illuminated with the same light 

intensity, thus no spatial arrangement is observable. This is 

referred to as Full Field Flicker (FFF) and is the least complex 

form of artificial stimulus used within these experiments. 

Deriving models under these conditions, however, would only 

be relevant under a certain subset of conditions as the model 

would only consider the temporal component. Thus Figure 6(b) 

extends the stimulus input range to include a spatio-temporal 

input by introducing the binary checkerboard pattern. The 

Checker-Board Flicker (CBF), again drawn randomly from a 

Gaussian distribution, extends the complexity of the input due 

to the additional spatial component and is commonly used to 

determine characteristics of a cell’s receptive field [40]. 

B. Data Pre-processing 

The overall goal of the pre-processing stage is to manipulate 

the data so that they form a regression or classification dataset, 

i.e. input-output corresponding to the stimulus-response, 

which then can be used for developing the computational 

models. Recordings were supplied for a number of ganglion 

cells and organised within two datasets, both containing the 

visual stimuli and neural spike responses. The first dataset 

contained a large set of non-repeated stimuli (216000 samples 

for FFF and 258000 samples for CBF) that are suitable to 

ascertain characteristics such as the STA and to ensure that a 

sufficient number of varied stimuli are presented in order to 

evoke cell responses. The second dataset contained a much 

smaller set of stimuli (1200 samples) which were presented to 

the cells repeatedly. 

Traditionally, only stimulus values within a cell’s RF are 

considered for analysis as only values within this sensory 

space contribute to a cell’s response. However, as FFF 

stimulus has uniform spatial intensity throughout, there is no 

need to extract the specific stimulus in the region of the RGCs 

RF, thus the average intensity of each presented image is 

extracted instead. The neural response, originally recorded as 

a frequency of 10kHz, were binned at 30Hz to align well with 

the stimulus input forming a single input – output dataset. 

As a pre-processing step for the CBF stimuli, the pertinent 

stimulus values must first be extracted from the checkerboard 

pattern (Figure 7(a)); here we extract only those checkerboard 

values located either inside, or on the border of the cell’s RF. 

The RF is determined using a standard reverse-correlation 

method [4], [13] which is a technique for studying how 

sensory neurons summate signals from different times and 

locations to generate a response [41]. 

To emulate the processing that occurs between the 

photoreceptors and RGCs, the local stimulus within the RF is 

weighted using a 2D Gaussian filter (with a support of 3) [8], 

which is illustrated in Figure 7(b). From the resulting weighted 

stimulus, shown in Figure 7(c), the pixels within the region of 

the RF (green ellipse) are extracted and summed to form an 

input for the derived models. This results in a single value 

representing the CBF pattern for each time step rather than the 

individual pixel values (This is the standard approach [42] but, 

as it will be discussed later, the authors believe it merits 

further investigation). The binned neural response is again 

used as the output which is binned according to the stimulus 

update rate. In the case of the second dataset, i.e. the repeated 

trials, the mean of the binned spike rate is computed using the 

43 trials and used as the model output. 

 
Figure 6: Pseudo-random sequence of a) Gaussian temporal sequence and b) 

spatio-temporal sequence. 

 

 
Figure 7: Pre-processing step which shows how the local stimulus pertaining 

to a cells receptive field is weighted with a 2D Gaussian filter. (a) Local 

stimulus for a cells receptive field. (b) 2D Gaussian used to weight the 

stimulus intensities. (c) Weighted image of the local stimulus intensities. 



IV. RESULTS 

Recordings of the ganglion cell neural responses (spikes) to 

the FFF and CBF stimulation were provided for a number of 

different ganglion cells. Here we demonstrate analysis of two 

selected ganglion cells for each stimulus set, one ON-cell and 

one OFF-cell. The cell type is traditionally characterised by 

the shape of its temporal profile (STA) [13], [43], [44], whilst 

the length of the temporal window can be assessed by 

examining the duration of the average response and 

ascertaining the point at which it converges to zero [13]. Figure 

8 illustrates the calculated profiles for both cells, where it was 

determined that 21 lagged values (700ms) of the time series 

were sufficient to capture the required behaviour. Figure 8(a) 

shows a temporal profile akin to what is described as a 

biphasic OFF type cell in [43]; we refer to this cell simply as 

an OFF-cell in this work. Figure 8(b) shows a profile that is 

typical of an ON-cell. 

 

A. Temporal Artificial Stimuli 

Determining the STA profile of the cell is also useful for 

indicating the number of lagged values to use for training the 

models. For instance, for results presented in this section, it 

was estimated that 21 lagged values would be sufficient to 

train each algorithm. Upon further investigation it was 

established that the use of 10 lagged values, essentially 

capturing the main STA characteristics (Figure 8(a)-(b)), was 

sufficient to train both the NARX and NARMAX methods and 

provided a marginal improvement in the estimated response. 

For the SOFNN method however, the full range of STA values 

worked best.  

Results of the derived models for the FFF stimuli are 

presented in TABLE I and TABLE II respectively. For each of the 

different approaches model accuracy is measured using the 

root mean square error (RMSE) between the predicted and 

actual spike rate. From the results shown, it can be observed 

that the NARX method performs significantly better than the 

other investigated methods for both cells. Specifically, the 

performance increase of the NARX method over the LN 

method is quite substantial, with respect to the OFF-cell for 

both training and testing datasets. Surprisingly, integrating the 

previous errors of the system as controlled variables did not 

improve the predictive qualities of the model (Section II.C), as 

is evident by the NARMAX output.  

Although the NARMAX approach achieved good results for 

the OFF-cell surpassing both the LN and SOFNN methods in 

performance, it did not improve upon the NARX model output 

which is less complex and requires considerably less 

computational power. Additionally, the SOFNN method, 

which has shown good performance in modelling output 

responses of isolated mice retinas [17], fails to provide an 

improved performance over the LN model for the salamander 

data. 

To demonstrate the visible difference in performance of the 

NARX vs. LN method, the training and testing outputs are 

plotted in Figure 9 for 200 samples. The results presented here 

are for the ON-cell, which shows the performance of the 

NARX method to be improved in terms of the magnitude even 

though performance in terms of RMSE is not as significant in 

comparison to the OFF-cell. This is evident when comparing 

Figure 9(b) and Figure 9(d), which relates to the testing output. It 

can be observed that both methods perform well in terms of 

TABLE I   

RMSE VALUES FOR OFF-CELL USING FFF STIMULI 

Model Training RMSE Testing RMSE 

LN 0.71 0.63 

NARMAX 0.67 0.61 

NARX 0.52 0.49 

SOFNN 0.77 0.68 

TABLE II  

RMSE VALUES FOR ON-CELL USING FFF STIMULI 

Model Training RMSE Testing RMSE 

LN 0.37 0.35 

NARMAX 0.38 0.37 

NARX 0.34 0.33 

SOFNN 0.42 0.41 

 

 

 

 
Figure 8: STA profile of (a) OFF-cell and (b) ON-cell using FFF stimuli 

 



predicting the timing of the spike rate though the NARX 

method additionally improves the magnitude of the predictions 

and in the majority of cases, reaches the target spike rate. 

 

B. Spatio-Temporal Artificial Stimuli 

To increase the complexity of the derived models, such that 

they can generalise over a more complex stimulus set, the 

CBF dataset is utilised. The results of the experiments for both 

datasets for the OFF-cell and ON-cell are outlined in TABLE III 

and TABLE IV respectively where model accuracy is measured 

in terms of the RMSE between the predicted and actual spike 

rate. Although the same cells are in use for these experiments, 

the stimulus sets differ and thus the results between datasets 

are not directly comparable. One observation, immediately 

noted, is that there is no clear separation between the 

performances of the LN approach vs. the other investigated 

methods. This is discussed later. 

In terms of the RMSE values, the NARX method 

outperforms the other models for both cells during the training 

phase. Within the testing datasets however, the LN method 

performs on par with the NARX method for both testing sets 

with respect to the ON-cell and for the second dataset with 

respect to the OFF-cell. Among the remaining system 

identification models, the NARMAX model outperforms the 

SOFNN model for both the OFF-cell and ON-cell, with the 

exception of the SOFNN model achieving an equivalent 

performance on ‘Dataset 1’ for the ON-cell. Emphasis is 

drawn to the fact that amongst the number of methods 

investigated, there is no significant improvement over the 

 
Figure 9: Prediction results of the ON-cell model using the LN and NARX models for FFF stimuli for: (a) the training samples of the LN method, (b) the 

testing samples of the LN method, (c) the training samples of the NARX method and (d) the testing samples of the NARX method. 

TABLE III  

 RMSE VALUES FOR MODELS OF OFF-CELL USING CBF STIMULI 

Model Training 

RMSE 

(Dataset 1) 

Testing 

RMSE 

(Dataset 1) 

Testing 

RMSE 

(Dataset 2) 

LN 0.35 0.35 0.27 

NARMAX 0.35 0.36 0.28 

NARX 0.34 0.35 0.27 

SOFNN 0.36 0.37 0.30 

TABLE IV  

RMSE VALUES FOR MODELS OF ON-CELL USING CBF STIMULI 

Model Training 

RMSE 

(Dataset 1) 

Testing 

RMSE 

(Dataset 1) 

Testing 

RMSE 

(Dataset 2) 

LN 0.38 0.38 0.24 

NARMAX 0.39 0.38 0.25 

NARX 0.37 0.37 0.24 

SOFNN 0.39 0.38 0.27 

 



standard LN approach. We believe that, due to the increased 

spatial complexity of the stimulus, important information is 

being lost through the interpretation of the receptive field. 

This is currently achieved by extracting pertinent values inside 

the RF and simply summing or averaging to a single 

representative value. Interpreting the RF in this way disregards 

any spatial characteristics that may have proven to be 

important to the cells behaviour. This concept is explored 

further in Section V. 

C. Model Analysis 

The various models derived were analysed further to 

ascertain any underlying system dynamics that may be of 

interest to provide areas for further investigation. Models 

developed for both the FFF and CBF stimulus showed similar 

characteristics when under review thus here we report only on 

the analysis for the FFF stimulus set. 

Analysis of the NARMAX model reveals some interesting 

observations within the model terms. To discuss further, we 

first compute the spike triggered average (STA) using the 

standard approach reported in [13]. The terms for each derived 

NARMAX model are then plotted and compared to the STA. 

Figure 10 illustrates the calculated STA and plotted NARMAX 

terms for both cells where the similarities between them are 

clearly observable. It is important to note that the NARMAX 

terms are based on what the model deems as important when it 

is being derived. Therefore, for the OFF-cell, Figure 10(b) 

shows the terms considered most important when training the 

model which suggest that dramatic changes in the stimulus 

contrast levels are important. This is also the case when 

comparing the STA and terms for the ON-cell which are 

displayed in Figure 10(c) and Figure 10(d). 

Due to the opaque nature of the NARX approach it is 

difficult to gain insight into any RGC models created using 

them. However, when analysing the weights of the input and 

hidden layers, a similarity can also be drawn with the 

calculated STA of the cell. Figure 11(a)-(b) shows this strong 

similarity when considering the most prominent neuron for the 

OFF-cell. Again, this is evident for the ON-cell illustrated in 

Figure 11(c)-(d). 

Finally, the SOFNN technique allows us to gain some 

insight into the underlying dynamics of the data by analysing 

the fuzzy rules generated. For example, a rule generated by the 

SOFNN for the OFF-cell under FFF stimulation is as follows: 

 

Rule 1:  If Input 1 is A(-0.19113, 1.0375) AND Input 2 is 

A(0.15069, 1.0375) AND Input 3 is A(0.10993, 1.0375) AND 

Input 4 is A(-0.088315, 1.0375) AND Input 5 is A(0.30136, 

1.0375) AND Input 6 is A(-0.085507, 1.0375) AND Input 7 is 

A(-0.064816, 1.0375) AND Input 8 is A(-0.08625, 1.0375) 

 
Figure 10: Plot illustrating STA and linear terms from cubic NARMAX model showing the (a) STA of the OFF-cell, (b) NARXMAX terms for the OFF-cell 

model, (c) STA of the ON-cell and (d) NARXMAX terms for the ON-cell model. 

 



AND Input 9 is A(0.23699, 1.0375) AND Input 10 is A(-

0.12157, 1.0375) AND Input 11 is A(-0.71477, 0.96985) AND 

Input 12 is A(0.15307, 1.0375) AND Input 13 is A(0.15517, 

1.0375) AND Input 14 is A(0.16102, 1.0375) AND Input 15 is 

A(0.16543, 1.0375) AND Input 16 is A(-0.010237, 1.0375) 

AND Input 17 is A(0.074938, 1.0375) AND Input 18 is 

A(0.1176, 1.0375) AND Input 19 is A(0.00056977, 1.0375) 

AND Input 20 is A(-0.20507, 1.0375) THEN 

 

Output is 0.33452 + -0.0070681 * Input 1 + 0.0029931 * 

Input 2 + -0.42334 * Input 3 + -1.4056 * Input 4 + -0.89218 * 

Input 5 + 0.67233 * Input 6 + 1.428 * Input 7 + 1.1801 * Input 

8 + 0.59511 * Input 9 + 0.12145 * Input 10 + -0.10781 * Input 

11 + -0.26965 * Input 12 + -0.29999 * Input 13 + -0.34188 * 

Input 14 + -0.17775 * Input 15 + -0.053445 * Input 16 + -

0.034553 * Input 17 + 0.018151 * Input 18 + 0.050873 * 

Input 19 + 0.01101 * Input 20. 

 

where A (centre, width) describes the membership function for 

each input. Similar to the machine learning models, the inputs 

to the SOFNN are lagged values of the stimulus sequence, so 

Input 1 corresponds to the current value of the series (i.e. zero 

milliseconds delay), and Input 20 corresponds to the value 

nineteen time steps in the past (i.e. 700ms delay). The result of 

plotting the coefficients of the consequent part of the rule is 

shown in Figure 12(b). Remarkably, this approximately 

resembles the STA of the OFF-cell, which is shown in Figure 

12(a) for comparison. Analysing the rules for the ON-cell 

yields a similar outcome (Figure 12(c) and Figure 12(d)). We 

hypothesise that the SOFNN, similar to the previous two 

methods, has identified the temporal characteristics of the 

STA as being the most important attribute of the stimulus that 

contribute to a cells response though further work in this area 

is ongoing. Both cells were adequately modelled by one 

neuron, corresponding to 1 fuzzy rule. Under CBF stimulation, 

the SOFNN model consisted of two neurons and consequently 

two fuzzy rules to model each cell. The increased network 

size, i.e. number of neurons, indicates that CBF stimuli are 

more complex to model than the FFF stimuli. 

V.  DISCUSSION AND FUTURE WORK 

Modelling retinal ganglion cells within the retina is difficult 

due to insufficient knowledge about the internal components, 

their organisation and the complexity of the interactions 

within the system. Existing computational models are 

traditionally derived by quantitatively fitting particular sets of 

physiological data using an input-output analysis involving 

computational combinations of linear and nonlinear models 

 

 
Figure 11: Plot illustrating the (a) STA of the OFF-cell, (b) NARX network weights for the OFF-cell model, (c) STA of the ON-cell and (d) NARX network 

weights for the ON-cell model. 



that are generally complex and lack any relevance to the 

underlying biophysics. The work outlined in this paper 

explores the application and feasibility of modelling RGC’s 

with system identification techniques as an alternative to the 

traditional linear-nonlinear approach. We present results based 

on the application of a selection of system identification 

techniques, namely NARX, NARMAX and SOFNN, to both 

temporal and spatio-temporal data revealing any underlying 

system dynamics that are observed after the modelling 

process. 

 The full-field temporal stimulus presented in Section 3.1 

was the least complex stimulus considered for the work and 

consequently the explored models showed good performance 

in predicting the relationship between stimulus and response. 

In particular, the NARX method outperformed the other 

techniques in modelling both the OFF-cell and ON-cell. This 

performance increase is also clearly observable when 

reviewing the model for the ON-cell which shows the least 

difference in terms of the RMSE when compared to the LN 

model. Surprisingly, the NARMAX method did not offer a 

better performance with its increased complexity through 

integration of previous errors as controlled variables. 

Although the results show that the NARMAX outperformed 

both the SOFNN and LN techniques, it was not able to 

outperform NARX which is significantly less complicated. 

The SOFNN did not perform as favourably in modelling the 

salamander RGCs but has shown good performance in past 

applications with mouse RGCs [17]. Its ability to capture 

characteristics that align well with the RGCs STA surpasses 

the representation observed through the NARMAX 

polynomial terms or the NARX internal layer weights though 

for this application it seems more appropriate to choose the 

simpler models that can generalise well over the input data, 

such as the NARX model. 

 With these interesting results for the temporal stimulus, we 

extended these modelling approaches to a more complex 

spatio-temporal stimulus (outlined in Section 3.1). The spatio-

temporal artificial stimuli increased the complexity of the 

stimulus as it introduced the need to process the receptive field 

information pertaining to each cell by extracting pixels within 

the region of interest, weighting with a Gaussian filter and 

summing the result. Of the methods investigated to model the 

relationship of the increased complexity between the input and 

output, the NARX method again performed favourably in 

comparison to the other methods investigated. However, 

where the NARX clearly performed better for the FFF dataset, 

 

 
Figure 12: Plot illustrating the (a) STA of the OFF-cell, (b) Coefficients of fuzzy rule for OFF-cell model, (c) STA of the ON-cell and (d) Coefficients of 

fuzzy rule for ON-cell model. 



the difference observed between the NARX and LN within the 

CBF dataset was diminished in terms of the RMSE. Here, the 

NARX had an improved performance with respect to the 

training dataset for both cells but performed on par with the 

LN method for the testing sets. The NARMAX method 

provided a slightly improved performance over the SOFNN 

method for the OFF-cell but an equal performance for the ON-

cell. Similarly with the temporal data, characteristics akin to 

the STA of each cell were observable in all the system 

identification methods presented for the CBF data. The 

readability of such characteristics offers an advantage over 

more opaque approaches like LN that may provide a more in 

depth understanding of the underlying dynamics of the system, 

however further investigation into the relationship between 

these characteristics and the STA is ongoing. 

 Although the models presented adequately fit the real neural 

response, specifically the NARX method, there is quite a 

significant difference between the results for the temporal and 

spatio-temporal datasets. While not directly comparable, it can 

be observed that within the temporal data results, there is a 

clear separation between the performances of the standard LN 

approach vs the more bio-inspired techniques.  Analysis of the 

spatio-temporal results revealed results which were not as 

clearly discriminable. 

A. Future Work 

Stemming from the comparative analysis between the 

temporal and spatio-temporal modelling approaches, we 

further investigated various aspects of the spatio-temporal 

modelling process. In particular, we questioned the 

transformation process of the receptive field and queried 

whether summing all of the spatial information to a singular 

representative value is sufficient enough to model an RGC 

efficiently. Given the increased complexity of the spatio-

temporal to that of the temporal dataset it was hypothesised 

that summing the Gaussian weighted data within each 

receptive field was resulting in the significant loss of spatial 

information which could account for the increased complexity 

of fitting a model to the neural response. In [45] a method for 

retaining the spatial information is presented which calculates 

the STA spatially as well as temporally, filtering the stimulus 

with spatial information to create the input stimulus to a 

model. In this method, it is the LN method which benefits 

from this approach thus our initial investigation lead to 

constructing the linear filter within the LN approach from a 

spatial STA analysis. 

The results obtained from this approach were marginally 

better in terms of RMSE and the magnitude of the nonlinear 

estimate; however the associated computational cost would be 

extremely large for the NARX and other bio-inspired methods 

without reducing the input space. This warrants further 

investigation into how the data within the receptive field can 

be compressed so that its influence is calculated correctly and 

with efficient computational complexity. 
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