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 

Abstract— This study develops a fault estimation and 
accommodation scheme for the image-based visual servoing 
(IBVS) system to eliminate the effects of the faults due to the 
image feature extraction task, which is named as bias virtual 
sensor fault. First, a bias virtual sensor fault in visual servoing is 
declared. Then, fault diagnosis (FD), which includes fault 
detection, isolation and estimation, is designed based on the means 
of particle filter (PF). Finally, a fault accommodation law is 
developed based on the information obtained from the fault 
estimation to compensate for the effects of the fault in the system. 
The proposed fault estimation and accommodation is verified 
through simulation and experimental studies, and the results 
show that the system can estimate and eliminate the unknown 
fault effects effectively. 
 

Index Terms— Fault diagnosis, Fault tolerant control, Image-
based visual servoing, Particle filter, Robot control. 

I. INTRODUCTION 

MAGE BASED VISUAL SERVOING (IBVS) has been proven as 
an effective method for the robotic system guided by visual 
information due to its easy in implementation and high 

accuracy [1]. There are increasing numbers of applications 
which can significantly benefit by using the IBVS approaches 
to extract position of the geometric feature/target which has 
inherent error. For example, robotic laser welding process 
guided by real-time seam tracking or edge detection (welding 
on the fly) [2]; or application of laser or white light scanners 
used for in-process or in-line 3D parts geometry inspections 
[3]. However, the current visual servoing approaches 
encounter some limitations as discussed below. In traditional 
visual servoing approaches, the image features are defined 
based  on  the  geometric  characteristic  of  the  object  such as  
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points,   ellipses,   straight lines,   or segments,   etc [4-5].  The 
control law is calculated based on the displacement of the 
designed image features during visual servoing. Based on this 

principle, the robot tracks the object precisely when the 
displacements of all the designed image features are precisely 
identified. However, this major task has sometime been failed 
due to the effects of the complex environment during visual 
servoing [5-6]. In general, the failures can be caused by: (1) 
image singularities [6-7], (2) inadequate field of view (FOV) 
of camera [8-9]: due to the visibility constraint of the camera, 
some features may go out of FOV of camera during visual 
servoing, and (3) the environment noises: due to the change of 
the environment such as light condition, obstacles during 
visual   servoing,    some   designed   image features could  be 
occluded, or some undesired image features could be 

appearing. In order to discard the image singularities, effective 
visual features such as polar features [6] or moment [7] have 
been proposed. To avoid the loss of features due to the 

visibility constraint, numerous published literatures have been 
developed to increase the FOV of camera [8-11]. The 
innovations of these methods have been thoroughly reviewed 
in [12]. To reduce the collision with obstacle, surface laser 
scanning has been developed [13]. Although these approaches 
can effectively avoid the failures due to the lack of FOV of 
camera, collision with obstacle and image singularities, the 
failure of the image feature extraction task due to the image 
noises has not been considered yet; in fact this failure scenario 
is usually occurred in real applications. For example, the bias 
fault due to image noise in seam extraction of robotic welding 
system as illustrated in Fig. 1: the demand of the feature 

extraction task in seam extraction for V-groove type is to 
identify the three image feature points, as shown in Fig. 1a); 
however, due to the similar property of the desired feature 
point and the noise feature point, the system extract the noise 
image feature point instead of the desired feature point, and 
thus the displacement of the designed feature will be 
calculated incorrectly, as shown in Fig. 1b). In order to 
monitor the failure due to the feature extraction task, fault 
diagnosis observer based on Kalman filter has been developed 
[12, 14]. In this approach, a nonlinear dynamic model of the 
visual servoing, in which the camera velocity is defined as the 
input and the displacements of the feature points are defined as 

the output, was investigated. Based on the defined dynamic 
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model of the visual servoing, the failure of the feature 
extraction tasks can be considered as the virtual sensor faults 
[12, 14]. Then, a fault detection and isolation scheme was 
established based on the Kalman filter. However, this 
approach has not yet considered the fault estimation, which is 
a crucial task to identify the severity level of the fault. In 
addition, the approach has not yet investigated for the fault 
accommodation, which is extremely desired in real 
applications to compensate for the effect of the fault to 
guarantee that the system can guarantee the desired 
performance even in the presence of fault. 

In this paper, as a second part of our previous approach 
[12], we investigate a fault diagnosis scheme, which includes 
fault detection, isolation and estimation, for IBVS. The fault 
diagnosis observer is designed based on Particle filter (PF). 
The PF is employed because it has a good capability to handle 
nonlinear and non-Gaussian models, as well as it is robust and 
flexible compared to Kalman filter or other filters [15-18].  
After a fault is diagnosed, it is desired that the controller 
should be reconfigured to reduce the effect of the fault [19-
20]. This task is known as fault accommodation, or fault 
tolerant control (FTC). Generally, there are two ways to 
compensate for the effects of a fault in the system [21]: (1) 

Passively, FTC is designed based on the assumption that the 
set of possible system faults can be predicted in advance, and a 
fixed control law is designed based on the predicted fault for 
both normal and fault operations [22]. However, the prior 
knowledge of the possible system fault is difficult to be 
obtained in visual servoing system since the level of noise of 
the system is difficult to get in advance. (2) Actively, namely 
active FTC (AFTC), the control law is adjusted based on the 
fault information, which is obtained from a fault diagnosis 
observer scheme [23-24]. The operation of the AFTC consists 
of two stages. In the first stage, a FD observer is designed to 
estimate the system faults online. In the second stage, the 

system uses the obtained fault information to reconfigure the 
control law. Compared to the passive FTC, the active approach 
has a better performance when the magnitude of fault is 
correctly estimated, and thus is desired in real applications. 

In summary, the contribution of this paper can be marked by 
the following significant points: 

 Virtual sensor fault in visual servoing system is 
broadly reviewed. 

 A FD observer is designed to detect, isolate, and 

estimate the severity of virtual sensor fault, based on 
Particle filter. 

 An AFTC control law is developed to compensate 
the effect of faults in the system. 

The rest of this paper is organized as follows. In section II, 
problem formulation is stated. In section III, FD and FTC 
strategies based on Particle filter are presented. In section IV, 
we verify the proposed methodologies based on simulation 
study. The performance of the proposed strategies is further 
verified through experimental study detailed in section V. The 
conclusion and future work are provided in section VI. 

II. PROBLEM FORMULATION 

Considering the pinhole perspective model of camera used 
in visual servoing system [1, 4], the projection of the 3D 

points , ,
T
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where   is the focal length of the camera. The relationship 
between the displacement of the feature point in the image 
plane s  and the spatial velocity of camera 
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z  is the depth of the image features and is assumed to be 
known [4].  

The target of the control law in visual servoing system is to 
minimize the error e , which is defined as the different 

between the current feature point  s  and their goal value s , 
*e -s s . The traditional control law is designed as 

+
sL̂ ecV    (3) 

where   is a positive gain and +
sL̂  is an approximation of 

pseudoinverse of 1 2L [ , ,.. ]Ts nL L L . 

Discretization is applied to (2) [12]: 
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where 1 1, ,..., ,
T

n ns u v u v       denotes the state variable of 

the system, cKV   is the control input, where K  is the 

sampling time, k  is used to represent the system uncertainty, 

which is defined as the error when discretizing (2) to (4) [12], 


 
and ζ  are the model uncertainty and measurement noise, 

respectively. The coefficient matrix are defined as  

 2×n,2×nA=I ,  1 2 2×n,6
B= , ...,

T
s nL L L L     (5) 

 2×n,2×nC=I  (6) 

When a virtual sensor fault occurs, the true value of the 
designed image feature may not be determined. This means 
that the input signal is measured as ( ) ( ) ( )s t s t s t   , where 

( )s t  is the true signal and ( )s t  
is the fault signal.  

In the presence of a virtual sensor bias fault, the system 
dynamics is changed to 
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                                                            c) 
Fig. 1. Sensor bias fault in weld seam extraction of a welding robot system. a) 
normal operation, b) virtual sensor bias fault, c) welding robot system. [12]. 
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where sT

 

 is the time that the fault occurs.  

The objective of this paper is twofold: (1) design a fault 
diagnosis scheme based on Particle filter to detect, isolate, and 
estimate the unknown fault ( )t , and (2) design a fault 

accommodation scheme such that the visual servoing can self-
compensate the effect of faults and continue to work reliably  
with an acceptable performance even though the faults still 
exist in the system. 

III. FAULT DIAGNOSIS AND FAULT TOLERANT CONTROL 

BASED ON PARTICLE FILTER 

Based on the property of the faults, fault diagnosis problem 
can be categorized into three major tasks [19-21]: 1) Fault 
detection: makes a binary decision whether and when any 
abnormal event in the monitored system happens, or if 
everything works well, 2) Fault isolation: identifies the root of 
the fault, 3) Fault identification or fault estimation: specifies 
the magnitude of the fault. In the following the Particle filter-
based fault diagnosis is presented.  

A. Particle Filter 

Consider the dynamic system of interest is described by 
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where k  is the state variable,  k  
is the measurement. The 

system and measurement noises k  and ζk  are assumed to be 

independent of k . However, unlike the Kalman filter, they 

need not be Gaussian distributed. Since the visual servoing 
system described in (4) may not be a Gaussian distributed 
system due to the uncertainty  , the Particle filter would be 
effective to approximate the system states.  

From a Bayesian perspective, the problem of the state 
estimation is to calculate the probability density function (pdf) 

1:( )k kp    of the state k  based on the sensor data available 

up to time k ,  1: 1 2, ,...,k k    . Starting from the values 

of the initial condition 0 0 0( ) ( )p p    and the 

pdf, 1 1: 1( )k kp     at time 1k  , there are two steps to update 

the pdf at the time k , 1:( )k kp   .  

i) Prediction step: 
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where 1: 1( )k kp     is a normalizing factor that depends on 

the pdf ( )k kp   . 

In theory, the Bayesian filter can estimate the true state 
variable by using the two above recursive steps (10) and (11). 
However, the approach can only give optimal solution if the 
system can satisfy two assumptions: the noises are Gaussian 
distribution and the system is linear. However, these 
assumptions are not usually satisfied in real applications. To 
overcome the limitation, Particle filter, which is an 
approximation method of Bayesian filter, has been proposed. 
The PF approximates the pdf using a set of N  particles, 

{ , }i i
k k  , where i

k  presents the ith particle and  i
k  presents 

its associated weights.  
In literature, many algorithms have been developed for the 

Particle filter. In this paper, we use sequential importance 
resampling (SIR) [15] due to its efficient and simple 
implementation. In the following, the structure of the SIR 
algorithm is presented. 
 
SIR Algorithm [15]. 

1) For i=1,…, N, a new particle i
k  is generated  based on the 

pdf  1| i
k kp     and the corresponding weight is computed 

as  |i i
k k kp   . 

2) Compute the sum of weights 
1

N
i

w k
i




   and then 

normalize the particle weights: 1i i
k w k   . 

3) Do a sampling process: 
3.1. Start from 0 0c  , construct the cumulative sum of 

weights (CSW) by computing 1
i

i i kc c    for 1,...,i N . 

3.2. Give 1i   and generate a starting point 1  from the 

uniform distribution 10,U N 
 

. 

3.3. For  1,...,j N  

 Make  1
1 ( 1)j N j     . 

 While j ic   make 1i i  . 

 Assign j i
kk  . 

 Assign 1j
k N    

a) b) 



 
 

B. Fault Detection and Isolation Based On Particle Filter 

The PF estimate output for the dynamic model described in 
(7) is: 
ˆ ˆ=C   (12) 

where ̂  is the PF state estimation outputs, which are 

determined as the output of the SIR algorithm applied for the 
system (7). 

In fault diagnosis task, it is crucial significant to choose the 
effective residual, which can be used to easily distinguish 
between normal condition and fault condition when the system 
changing from a normal operation to a fault operation, and the 
corresponding threshold. In this paper, the error e , which is 
defined as in (13), is chosen as the residual. 

ˆe -   (13) 

In normal operation, the Particle filter state tends to 
approximate the state variable of the system. Thus, from (7) 
and (12), the residual e  tends to approximate the system 

uncertainties and noises, e    , where ζ   .  

Assumption 1: the system uncertainties and noises are 

bounded by The    , where The  is a known constant.  

The assumption 1 is reasonable in real application because the 
noise value is usually bounded by a constant. In practice, the 
bound value of the system uncertainty and noise are usually 
obtained by experiments. Since e     when the system in 
normal operation, the bound value of the uncertainty and 
noises,    , can be estimated based on the bound value of 
the error e . In this paper, we employ this method. The 
procedure to obtain the bound value is performed offline, and 
is as follows. Firstly, a desired image is obtained by moving 
the robot to the target position and capturing the desired 
image. Then, starting from an arbitrary position, but guarantee 
that the object is placed within the FOV of camera, the robot is 
commanded to track the object using the control law (3). The 
fault diagnosis observer based on Particle filter is employed 
and the residual e is obtained when the system in normal 
operation. As shown in Figs. 4 and 12 (will be discussed 
latter), the residual e converges close to zero with small 
variation due to the noises and uncertainties. The bound value 

The  is selected such that it is bigger than the peak value of the 

variation.  
Robustness property: the robustness property of the fault 

detection scheme is to prevent a false alarm due to the effects 
of the system uncertainties and noises prior to the fault 

occurring. Since The e     when the system in normal 

operation, by choosing The  as the threshold, the robustness of 

the fault detection can be guaranteed. Fault decision is made 

when the residual, ( e ), surpass its corresponding threshold 

The .  

From (1), the change of the state variables u  or v  can be 
represented by the change of s . Thus, in order to facilitate the 
process of fault detection and isolation of a feature point, the 
residuals of two state variables u  and v  should be 
represented by s , as follows: 
  

TABLE I 
FAULT-SIGNATURE TABLE 

Fault 1r  2r  3r  4r  … nr  

None 0 0 0 0 … 0 
Sen. 1 1 0 0 0 … 0 
Sen. 2 0 1 0 0 … 0 
Sen. 3 0 0 1 0 … 0 
Sen. 4 0 0 0 1 … 0 
… … … … … …  
Sen. n 0 0 0 0 … 1 

 

 
 
Fig. 2. Fault diagnosis and fault tolerant control scheme for visual servoing 
system. 
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where 
iue  and 

ive  represent the PF estimation errors of the 

state variables iu  and iv  of the feature point i , respectively, 

and 
ise  is used to represent the PF estimation error of the 

feature point i . 
Then, the decision rule is defined as 
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where 2 2

u vi i
i Th Th

Th e e   , where 
uThu

e   
 

and 

vThv
e    , is a chosen threshold. 

The robustness property of the fault diagnosis system is 
guaranteed and can be explained as follows: when the system 
in normal operation, the residual is approximated as 

is
e   ,  and  based  on  the  assumption  1, the residual is 

always smaller than the selected threshold value, i.e, 
is ie Th  

and 0ir  . However, when a fault occurs, the residual is 

approximated as 
is

e     . This residual signal will 

overshoots the threshold value 
is ie Th  and  1ir  , the fault 

decision will be made. Fault detection and isolation rules are 
defined as in Table I. 

In summary, fault detection system for a given visual 
servoing system is configured and calibrated based on the 
following steps: 

Step 1: Identify the system uncertainties and noises,    ,  
by an offline experiment procedure explained above. 

Step 2: Determine the bound value, The , of the system 

uncertainty and noise. 
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Fig. 3. Tracking performance of simulated visual servoing when the system in 

normal operation. a) Image space, b) control inputs (noted that x y 
 
in 

the figure), c) image error. 
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Fig. 4. Residual values and the selected thresholds when the system in normal 
operation. 

 
Step 3: Set the bound value  The  as the threshold. 

Step 4: Make a fault decision if the residual, e , surpass its 

corresponding threshold The . 

Remark 1: Table I is also used to define multiple faults 
working conditions.  For example,   when   faults occur  in the 
sensors   1,   2   and   3   at   the  same time, the corresponding 
residuals are 1 1r  , 2 1r   and 3 1r  . 

Remark 2: The threshold value is chosen as the same as the 
bound value of the system uncertainties and noises. Therefore, 
for a given visual servoing system, the threshold value should  
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Fig. 5. Comparison between Kalman filter (KF), unscented Kalman filter 
(UKF) and Particle filter (PF). 

 
be calibrated based on the level of the system uncertainties and 
noises: the bigger the system uncertainties and noises, the 
bigger threshold need to be selected. However, it is necessary 
to obtain the precise bound value of the system uncertainties 
and noises prior to implementing the fault diagnosis system.  

C. Fault Estimation 

In the previous section, the analyses show that the PF 
approximates the image feature states with a very small error 
when the system in normal operation, se    . However, 

when a fault occurs at the time sT , the estimation error se  

tends to approximate the fault component, se      . 

Because       is  usually  much smaller compared to  , the 

estimation error approximates the fault magnitude, se  . 

Thus, the fault magnitude can be approximated as 
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          b) 

Fig. 6. Tracking performance of simulated visual servoing when the faults in 
the points 1, 2 and 3 occur. a) Image space, b) control inputs. 
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Fig. 7. Residual values when the faults in the points 1, 2 and 3 occur. 

 

Δs( ) e
s st T t Tt    (16) 

However, sT

 

is an unknown time. It can only be predicted by 

using the information obtained from the fault detection and 
isolation scheme. Therefore, if we denote dT  as the time when 

the fault is detected, fault magnitude can be estimated as 

Δs( ) e
s dt T t Tt    (17) 

where e
dt T  denotes the PF estimation error at the time dT . In 

practice, if the fault detection and isolation scheme works well, 
we will have d sT T . 

D. Fault Tolerant Control 

After a fault is diagnosed, it is desired that the fault should 
be compensated to reduce its effects in the system. In the 
traditional visual servoing, the system is controlled by the 
conventional law (3). The desired system performance is 
satisfied only when it operates in normal condition, wherein 
the system gets the feedback from the correct image feature 
input s . However, when a fault occurs, the fault feature value 

( ) ( ) ( )s t s t s t    is used as the input signal to the controller 
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Fig. 8. KF, UKF and PF state estimation errors when the faults in the points 1, 
2 and 3 occur. a) KF, UKF and PF estimation errors for the feature point 1, b) 
KF, UKF and PF estimation errors for the feature point 2, and c) KF, UKF 
and PF estimation errors for the feature point 3. 

 
that will generate incorrect control input and decrease the 
tracking performance consequently. In order to increase the 
system performance, the correct  image  feature  value  ( )s t   at  

the  time  sT  should be reconstructed and fed back to the 

controller instead of the fault value ( )s t . The correct feature 

value can be simply calculated as ( ) ( ) ( )s t s t s t   . 

However, since the correct fault value ( )s t  cannot be 

calculated, its estimation value, which is obtained from the 
fault estimation scheme (17), is used instead. Then, the value 
of the correct image feature at the time sT , ˆ( )s t , can be 

estimated as: 
ˆ( ) ( ) e

dt Ts t s t    (18) 

Afterward, when a fault is detected, to reduce its effect on 
the system, the controller is reconfigured as 

+ *
sL̂ ( ( ) e s )

dc t TV s t      (19) 

Finally, the whole FTC law for the visual servoing system is 
designed as: 
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L̂ ( ( ) e )

d
c

d

s s t T
V

s t s t T





  
 

   

 (20) 

The overall FD and FTC schemes developed in this paper 
are illustrated in Fig. 2. 

IV. SIMULATION STUDY 

In this section, the performances of the visual servoing 
system with and without FTC are simulated to show the 
effectiveness of the FD and FTC schemes. The target used in 
this simulation is masked by four feature points. The image 
resolution is 1000x1000 pixel. The sampling time is 5 frame-
per-second (fps). The number of particles is set as N=500; this 
value is chosen based on the trial and error validation through 
several experiments. Eight internal states, 1 1 2 2 3 3, , , , ,u v u v u v  

and 4 4,u v  are approximated by the PF. Starting from the 

initial camera location, where the four points can be seen by 
dashed lines in the image space in Fig. 3a), the target of the 
visual servoing system is to locate the camera at the position 
such that the four points can be seen by dot-dashed lines in the 
image space in Fig. 3a). In order to compare the tracking 
performance of the system among normal operation, fault 
operation without FTC and fault operation with FTC, the 
visual servoing system is modeled in three different working 
conditions. In the first case, the visual servoing system is 
modeled to operate in normal condition. In the second case, a 
multiple faults condition is generated to the system without 
FTC to illustrate both the single and multiple faults effects. In 
the third case, the proposed FTC control law is employed to 
reduce the effects of faults generated in the second case.  

A. Visual Servoing System in Normal Operation 

Considering the operation of the system in normal operation,  
as shown in Fig. 3, the PF approximates the nonlinear visual 
servoing system with a small error due to the uncertainties and 
noise,    , as shown in Fig. 4. We can see from Fig. 3 that 
the camera tracks the object very well. From Fig. 4,  the  PF  
estimation  errors  converge close to zero very quick (after a 
few iterations). To distinguish between the effects of the 
uncertainties and faults, the threshold values Th  are selected 
as the red line, as shown in Fig. 4.  

To further evaluate the performance of the PF to 
approximate the system states, we simulate the system with the 
measurement noise 5  . In addition, we compare the 
performance of the PF with different number of particles used 
with Kalman filter (KF) and unscented Kalman filter (UKF). 

The approximation errors of KF, UKF and PFs are shown in 
Fig. 5.   For    easy    in comparison, the root mean square error 
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Fig. 9. Tracking performance of simulated visual servoing when the faults 
existed in feature points 1, 2 and 3 with FTC. a) Image space, b) control 

inputs (noted that x y   in the figure).
 

 
(RMSE) and standard deviation (STD) and the computation 
time of these methods are also reported in Table II. From the 
results we can see that the PF filters provide a lower RMSE 
and STD than the KF and UKF. On the other hand, the used of 
higher number of particle provides a better performance: the 
performance of the PF with N=500 is better than the PF with 
the lower number particles (N=200). However, there is a 
tradeoff between the approximation capability and the 
computation time of the PF. The higher number of particles the 
better approximation performance but higher computation 
time, and vice versa. Since the PF generated the residual 
smaller than KF and UKF, the threshold for the system using 
PF can be set as a smaller value compared to the use of KF or 
UKF. The lower threshold value has several advantages such 
as reducing the detection time and increasing the sensitivity of 
the fault detection system [23]. However, according to the 
Table I, the computation time of the PFs is much higher 
compared to the KF and UKF. Fortunately, this still guarantees 
the real time computation of visual servoing system. 

B. Visual Servoing System with Assumed Virtual Sensor Faults 

In order to show the effects of virtual sensor bias fault in the 
visual servoing system and to verify the performance of the 
developed FD and FTC schemes, we generate a bias fault to 
the visual servoing system. Particularly, we simulate the 

TABLE II 
COMPARISON BETWEEN KALMAN FILTER, UNSCENTED KALMAN FILTER (UKF) AND PARTICLE FILTERS (PFS) 

Method 
Point 1 Point 2 Point 3 Point 4 Computation 

 time RMSE VAR RMSE VAR RMSE VAR RMSE VAR 
KF 0.6649 0.5343 0.8436 0.6272 0.8348 0.6554 0.7548 0.5801 0.000168 

UKF 0.0903 0.0420 0.0892 0.0425 0.0896 0.0515 0.0971 0.0438 0.000754 

P
F 

N=200 0.0922 0.0595 0.1065 0.1061 0.0995 0.0528 0.1072 0.1250 0.009644 
N=500 0.0450 0.0256 0.0478 0.0250 0.0450 0.0312 0.0496 0.0289 0.019350 

 



 
 

system with a multiple faults condition, 1 [30,30]s  , 

2 [50,50]s   
and 3 [100,100]s  . The three faults are 

assumed to be occurred at the same time at the iteration 20. 
Figure 6 illustrates the variation of the system performance 
when the system changes from normal operation to fault 
operation. Comparison results between Fig. 3 and Fig. 6 show 
that the motion of the camera is incorrect when the 
displacement of a feature is incorrectly extracted. In particular, 
due to the effect of the virtual sensor faults, the corresponding 
velocity control input is discontinuous at the iteration 20, as 
shown in Fig. 6b), that will make the visual servoing system 
unstable. Due to the effect of the fault, the convergence of the 
PF is broken, as shown in Fig. 7. The residuals of the feature 
points 1, 2 and 3 overshoot the corresponding thresholds at the 
iteration 20, indicating that the faults are existed in the virtual 
sensors 1, 2 and 3. Thus, in this experiment, the system has 
detected and isolated the faults successfully.  

In the next, we consider fault estimation performance. At the 
iteration 20, where the existing faults in the feature points 1, 2 
and 3 were detected and isolated successfully, fault estimations 
were then calculated by using the formulation defined in (17). 
Fig. 8 shows the fault estimation results using the KF, UKF 
and PF. According to (17) and Fig. 8, the computed fault 

estimations using PF are 1 20
ˆ e [28.83, 27.72]

dt Ts      for 

the virtual sensor 1, 2 20
ˆ e [46.03, 44.08]

dt Ts      for the 

virtual sensor 2, and 3 20
ˆ e [97.08,100.1]

dt Ts      for the 

virtual sensor 3. The estimated fault values, 1
ˆ s

 
, 2

ˆ s  
and 

3
ˆ s , are very close to the assumed fault values, 1s , 2s  and 

3s . In addition, the comparison results shown in Fig. 8 verify 

that the PF provides better fault estimation compared to the KF 
and UKF. Thus, from the comparison results shown in Fig. 5 
and Fig. 8, we can verify that the PF gives higher performance 
than the KF and UKF for both fault detection and estimation. 

C. Visual Servoing System With Fault Tolerant Control 

As shown in Fig. 5b), the effects of the faults generate a 
discontinuous control input, and consequently break the 
stability of the system. To reduce the effects of the faults, the 
developed FTC law in (20) is employed based on the feedback 
information of the estimated fault using PF obtained in Fig. 8. 
The performance of the developed FTC for the visual servoing 
is shown in Fig. 9. Comparison results between Fig. 9 and 
Figs. 2 and 5 show that the FTC system compensates the 
effects of the faults very well. The system performance of the 
visual   servoing   under   FTC  is  comparable  to  the  normal 
operation. The velocity control input of the system with FTC is 
continuous, as shown in Fig. 9b). Thus, we can conclude that 
the fault has been accommodated successfully. 

 
Remark 3: If we consider the sensor fault only and assume 
that the actuator (camera motion) is always healthy, the 
proposed fault diagnosis and accommodation can detect and 
compensate for the heavy sensor fault case, where all the 
sensors are failed at the same time.    However,  if  we consider 

 
Fig. 10. Experiment setup of eye-in-hand visual servoing. 
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  b) 

Fig. 11. Tracking performance of experimented visual servoing when the 
system in normal operation. a) Image space, b) control inputs. 

 
both the actuator and sensor fault scenarios, the control system 
will isolate a wrong actuator fault instead of sensor faults if all 
the sensors are failed at the same time [12]. Fortunately, this 
situation is rarely occurring in real applications.   
 
Remark 4: There are many active fault tolerant approaches 
published in the literature [21]. Among them, the approach, 
which uses a nominal controller plus a fault compensator, 
which is taken from a fault estimation scheme, is mostly 
applied because it is simple in design and effective in fault 
compensation [23, 24]. This paper follows this design 
procedure. It is obvious to see that the performance of this 
FTC strategy is mainly dependent on the performance of the 
fault estimation. Therefore, instead of comparing the 
performance   among    AFTC    approaches,   we compare the 
performance of fault estimation using KF, UKF and PF. The 
results shown that the PF provides very accurate fault 
estimation, and thus the developed AFTC would be effective 
compared to other FTC approaches. 

V.  EXPERIMENTAL STUDY 

In order to show the tracking performance of the system 
with   FD   and  FTC, a  lab experimental setup is developed as  
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Fig. 12. Residual values of experimented visual servoing and the selected 
threshold values.  

 

                                                                                                                       
 
 
Fig. 13. Image feature in a) normal extraction, b) virtual sensor bias fault.
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Fig. 14. Tracking performance of visual servoing when the fault existed in the 
virtual sensor (feature point 4) without FTC. a) Image space, b) control 
inputs. 

 
shown in Fig. 10. The Baxter industrial robot [25] is used to 
perform experiment. The Baxter is a new generation industrial 
robot and has been widely using in industrial application and 
research. The Baxter has two independent arms and each has 
seven degree-of-freedom (DOF). Each arm was attached with 
an eye-in-hand configuration. In this study, we used the left-
arm and left-hand camera to do experiments. The object to be 
tracked includes four feature points, as shown in Fig. 13. The 
camera capturing rate is 30 fps (frame/s), and the image 
information is sent into the host Linux PC to processing. The 
camera of the Baxter robot has 640x400 pixels resolution and 
has an effective focal length of 1.2 mm.  
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Fig. 15. PF estimation errors when the experimented visual servoing sytem in 
normal operation. 

 

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

u (pixels)

v 
(p

ix
e

ls
)

 

 

Starting points

End Points

s1

s2

s4

s3

 
a) 

0 10 20 30 40 50
-1

-0.5

0

0.5

1

Iteration

C
a
rt

e
s
ia

n
 V

e
lo

c
it
y

 

 

V
x

V
y

V
z


x


y


z

The effect of fault is reduced

 
b) 

Fig. 16. Tracking performance of the experimented visual servoing system 
when the fault existed in the feature point 4 with FTC. a) Image space, b) 
control inputs. 

 
Faults are introduced in the virtual sensor by changing the 

displacements of the image feature points at an arbitrary time. 
In the following, we present the performance of the visual 
servoing system without FTC and with FTC when the system 
in normal and fault operations. 

A. Visual Servoing in Normal Operation 

In fault-free working condition, the visual servoing system 
tracks   the   object   very   well,   as  shown in Fig. 11. The PF 
estimation errors, which are used as the residuals in this paper, 
are shown in Fig. 12. The results from Fig. 12 show that the 
PF estimation errors are quickly convergent after a few 
iterations. As analyzed in section IIIB, the residual value 
obtained when the system in fault-free operation is the 
uncertainty and noise components,    ,   of   the   system.   
Thus, to avoid any incorrect fault decision due to the effects of 
the system uncertainties and noises, the threshold values Th  
are selected to be bigger than the bound value of    . The 
selected thresholds are the red lines shown in Fig. 12.   
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B. Visual Servoing System under Virtual Sensor Bias Fault 
without Fault Tolerant Control  

In the presence of a bias sensor fault, the controller system 
read a noise feature value instead of the true designed feature, 
as an example shown in Fig. 1. To simulate a bias fault, we 
change the displacement of the feature point 4 at the iteration 
25, as illustrated in Fig. 13. Fig. 14 shows the transition of the 
tracking performance when changing from normal operation to 
fault operation. From Fig. 14b), due to the presence of the 
fault at the iteration 25, the computed control velocity input is 
changed suddenly. Due to the effects of the fault, the 
convergence of the PF estimation error is broken, as shown in 
Fig. 15. In Fig. 15, the residual of the feature point 4 
overshoots the corresponding threshold at the iteration 25, and 
thus the fault decision is made. 

C. Visual Servoing with Fault Tolerant Control Under Virtual 
Sensor Fault 

The generated bias virtual sensor fault provides 
discontinuous control input as shown in Fig. 14b). To tackle 
this problem, the developed FTC law in (20) is employed. Fig. 
16 shows the results of the fault compensation. By comparing 
Fig. 16b) with Fig. 14b), we can see that the effects of the fault 
in the computed control input are much reduced. From this, we 
can conclude that the fault has been estimated precisely and its 
effects in the visual servoing system have been correctly 
compensated by the developed FTC law. 

 
Remark 5: The performance of the fault estimation and 
accommodation is dependent on the level of uncertainty and 
noise of the visual servoing system. 

VI. CONCLUSION 

This paper reviews the failure scenarios of the feature 
extraction task in visual servoing system, namely virtual sensor 
bias fault. Then, the PF-based FD is developed to monitor the 
presence of the faults. An AFTC is developed based on the 
estimated fault information to compensate for the effects of the 
faults. Both the designed FD and FTC schemes have a simple 
structure and easy implementation in real application. 
Simulation and experimental results verify that the presence of 
the failures due to the sensor bias faults can be detected 
accurately and its effects can be compensated effectively.  

According to [12], the failure of visual servoing system 
could be caused by incorrect robot motion, namely actuator 
fault. Fault estimation and accommodation for the failures of 
actuator fault will be investigated in our future work. 
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