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Preface

Over the past 50 years or so, boundary integral methods have become established for solving
a wide variety of problems in science and engineering. UK based researchers have been active
and made substantial contributions in the theory and development of boundary integral formu-
lations, as well as their analysis, discretisation and numerical solution. The UKBIM conference
series aims to provide a forum where recent developments in boundary integral methods can be
discussed in an informal atmosphere. The first UK conference on boundary integral methods
(UKBIM) was held at the University of Leeds in 1997. Subsequent UKBIM conferences have
taken place in Brunel (1999), Brighton (2001), Salford (2003), Liverpool (2005), Durham (2007),
Nottingham (2009), Leeds (2011), Aberdeen (2013) and Brighton (2015). The success of these
events has made the conference a regular event for researchers based in the UK, and elsewhere,
who are working on all aspects of boundary integral methods.

This book contains the abstracts and papers presented at the Eleventh UK Conference on
Boundary Integral Methods (UKBIM 11), held at Nottingham Trent University in July 2017.
The work presented at the conference, and published in this volume, demonstrates the wide
range of work that is being carried out in the UK, as well as from further afield. I am grateful to
the members of the scientific committee for their advice and support during the past year, and
to all the authors and reviewers for their hard work in producing the high quality peer-reviewed
papers for this book.
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Chapter 1

Abstract only submissions

I. Invited Plenary Talk:
The Unified Transform for elliptic PDEs and for water waves

Thanasis Fokas

DAMTP, Centre for Mathematical Sciences,
University of Cambridge,
Wilberforce Road
Cambridge
UK

Abstract. The unified transform (also referred to as the Fokas method) will be reviewed.
In particular, it will be shown that this transform yields unexpected results even for such
classical problems as the heat equation. Details will be presented for the analysis of el-
liptic PDEs in the interior of a polygon and for the problem of water waves with moving
boundaries, with emphasis on the numerical solution of the so-called global relation.
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2 CHAPTER 1. ABSTRACT ONLY SUBMISSIONS

II. Function extension with radial basis functions for solving non-
homogeneous PDEs

Fredrik Fryklund

Department of Numerical Analysis, KTH Royal Institute of Technology,
Stockholm
Sweden

Abstract. In many applications it is desirable to solve partial differential equations on
irregular domains with high accuracy and speed. Integral equation based methods offer this
ability for homogeneous elliptic PDEs. For the non-homogeneous Poisson equation the solu-
tion would involve evaluating a volume potential over the irregular domain, which is difficult
to do accurately. Instead the problem can be split in two parts: In the first the given right
hand side function is extended to a rectangular domain, discretized with a uniform grid; a
problem well suited for fast spectral solvers. The second part consists of solving Laplace’s
equation on the irregular domain with modified boundary conditions. For this, a boundary
integral method with special techniques for highly accurate numerical integration of singular
and nearly singular integrands is employed.
The success of our method relies on a technique to efficiently compute a high-regularity

extension of a function to a domain embedding the given irregular domain. To do so, the
domain is tiled with overlapping partitions. In any partition that intersects the original
boundary, an interpolant based on radial basis functions is computed based on the interior
and boundary data. A weighted sum of the partitioned interpolants, evaluated outside the
given irregular domain, gives the smooth compactly supported function extension.
Numerical results are provided to illustrate the performance of the full method when solving

the Poisson equation on irregular 2D domains, with relative errors down to fourteen digits
of precision.
Function extension is an essential component in increasing the applicatility of boundary in-

tegral methods to non-homogeneous PDEs, which is needed e.g. in extension from Stokes to
Navier-Stokes equations. Our method is the only general high regularity extension method
that we are aware of. Due to the nature of radial basis functions, it is applicable to problems
of higher dimensionality as well.

This contribution is joint work with Anna-Karin Tornberg (KTH Royal Institute of
Technology, Sweden) and Erik Lehto (KTH Royal Institute of Technology, Sweden).
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III. A pollution effect for BEM in acoustics

Steffen Marburg

Department of Mechanical Engineering,
Technical University of Munich,
Munich
Germany

Abstract. The pollution effect is a well-known and well-investigated phenomenon of the fi-
nite element method for wave problems in general and for acoustic problems in particular. It
is understood as the problem that a local mesh refinement cannot compensate the numerical
error which is generated and accumulated in other regions of the model. This is the case for
the dispersion error of the finite element method which leads to a phase lag resulting in very
large numerical errors for domains with many waves in them and is of particular importance
for low order elements. Former investigations of the author have shown that a pollution ef-
fect resulting from a dispersion error is unlikely for the boundary element method. However,
numerical damping in the boundary element method can account for a pollution effect. A
further investigation of numerical damping reveals that it has similar consequences as the
dispersion error of the finite element method. One of these consequences is that the number
of waves within the domain may be controlling the discretization error in addition to the
size and the order of the boundary elements. This will be demonstrated in computational
examples discussing traveling waves in rectangular ducts. Different lengths, cross sections,
element types and mesh sizes are tested for the boundary element collocation method.

IV. Integral potential operators for nonsmooth-coefficient Brinkman
PDE system in exterior domains

Sergey E. Mikhailov

Department of Mathematics,
Brunel University London,
Uxbridge
London
UK

Abstract. A variational approach is used to define the generalised Newtonian and layer
potentials for the nonsmooth-coefficient Brinkman system (which can be considered as a
modification of the Stokes system for viscous fluid flow in porous medium) in a Lipschitz
exterior domain in R3, and prove the mapping properties of the associated operators. Some
new weighted Sobolev spaces are introduced to correctly describe behaviour of the pressure
field at infinity. We show that the Newtonian and layer potentials provided by the variational
approach coincide with the well known Brinkman layer potentials in the integral form in the
case of constant coefficient Brinkman system.

This contribution is joint work with Mirela Kohr (Babeş-Bolyai University, Romania).
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V. The use of the boundary element method in structural topol-
ogy optimisation: Two and three-dimensional algorithms

Baseer Ullah

Centres of Excellence in Science and Applied Technologies (CESAT),
Islamabad
Pakistan

Abstract. A level set based structural topology optimization method is presented in this
study. Initially, a two-dimensional algorithm is proposed for linear elastic problems. The
structural boundary is implicitly represented through the level set method, which evolves
an initial geometry towards an optimal design using the bi-directional evolutionary struc-
tural optimization approach. At each optimization step only the structural boundary is
discritised and the structural response is evaluated using the boundary integral equations.
In comparison with the finite element method the boundary element method is attractive
because it requires discretisation only at the design boundary. This reduction of problem
dimensionality considerably simplifies the re-meshing task (especially in three-dimensions),
which can be performed efficiently and robustly. Thus, its rapid and robust re-meshing and
accurate boundary solutions make the boundary element method a natural choice for the
solution of level set based topology optimization problems. In two-dimensions the classical
level set method is not capable to nucleate holes, hence, a hole insertion mechanism has
been proposed in this study to overcome this deficiency. However, in three-dimensions the
level set method allows nucleation of new holes through the intersection of two approaching
surfaces. This suggests that perturbing only the boundary can give rise to changes not only
in shape, but also in topology. Complete algorithms are presented and tested for both two
and three-dimensional problems and the optimal geometries generated are in close agreement
with those available in the literature of structural topology optimisation.

This contribution is joint work with John Trevelyan (Durham University, UK), Muham-
mad Rehan (CESAT, Pakistan) and Himayat Ullah (CESAT, Pakistan).



Chapter 2

DRBEM formulation for
convection-diffusion-reaction
problems with variable velocity

Salam A. Al-Bayati1 and Luiz C. Wrobel2

1 Department of Mathematics,
Brunel University London
Uxbridge UK
UB8 3PH,

2 Department of Mechanical Engineering,
Brunel University London
Uxbridge UK
UB8 3PH,

Abstract. A dual reciprocity boundary element method (DRBEM) formulation for the
solution of steady-state convection-diffusion-reaction problems with variable velocity is de-
veloped in this paper. This scheme is based on utilising the fundamental solution of the
convection-diffusion-reaction equation with constant coefficients. In this case, we decompose
the velocity field into an average and a perturbation part, with the latter being treated
using a dual reciprocity approximation to convert the domain integrals arising in the bound-
ary element formulation into equivalent boundary integrals. Two different approaches were
implemented to treat the convective terms with variable velocity. The first expands the
concentration as a series of functions, while the other expands the concentration gradient
instead. Numerical applications are included for two simple problems for which analytical
solutions are available, to establish the validity of the approach and to demonstrate the
efficiency of the proposed method.

2.1 Introduction

The boundary element method (BEM) has been applied to steady-state convection-diffusion-
reaction problems with variable velocity by various researchers [1, 2, 3, 4, 5, 6, 7, 8]. However,
the solution of this problem is still considered a big challenge, particularly for variable and high
velocities. The BEM does have an inherent advantage for the solution of convection-diffusion-
reaction problems with constant velocity as the existing fundamental solution of the problem
introduces the exact amount of upwind, contrary to finite element or finite-difference methods
where the upwind is numerical [7]. The solution of problems involving variable coefficients is

5



6 CHAPTER 2. CONVECTION-DIFFUSION-REACTION WITH VARIABLE VELOCITY

more difficult to achieve with the BEM as fundamental solutions are only available for a small
number of cases, for coefficients with very simple variations in space. The approach adopted
in this paper is to split the velocity field into an average and a perturbation; the average
velocity (constant) is included in the fundamental solution, while the perturbation generates a
domain integral which is treated with the DRBEM. A new particular solution has been used
with corresponding dual reciprocity expressions. Two different approaches were implemented to
treat the convective terms with variable velocity. The first expands the concentration as a series
of functions, while the other expands the concentration gradient instead. Results of two simple
tests are presented and compared to analytical solutions. They show that the boundary element
formulation developed in this work produces accurate results for diffusion-dominated problems
with low velocity values.

2.2 Boundary Element Formulation

The two-dimensional governing equation for the steady-state convection-diffusion-reaction prob-
lem may be expressed as

D∇2φ− vx
∂φ

∂x
− vy

∂φ

∂y
− kφ = 0, (2.1)

where vx = vx(x, y) and vy = vy(x, y) are the components of the velocity vector v, D is the
diffusivity coefficient (assuming the medium is homogeneous and isotropic) and k represents
the reaction coefficient. The variable φ can be interpreted as temperature for heat transfer
problems, concentration for dispersion problems, etc, and will be herein referred to as a potential.
The mathematical description of the problem is complemented by boundary conditions of the
Dirichlet, Neumann or Robin (mixed) types. For the sake of obtaining an integral equation
equivalent to the above partial differential equation, a fundamental solution of equation (2.1) is
necessary. However, fundamental solutions are only available for the case of constant velocity
fields. Thus, the variable velocity components vx = vx(x, y) and vy = vy(x, y) are decomposed
into average (constant) terms v̄x and v̄y, and perturbations Px = Px (x, y) and Py = Py (x, y),
such that

vx (x, y) = v̄x + Px (x, y) ,

vy (x, y) = v̄y + Py (x, y) . (2.2)

This permits rewriting equation (2.1) as

D∇2 φ − v̄x
∂φ

∂x
− v̄y

∂φ

∂y
− kφ = Px

∂φ

∂x
+ Py

∂φ

∂y
. (2.3)

The above differential equation can now be transformed into the following equivalent integral
equation

φ (ξ) − D

∫

Γ

φ∗
∂φ

∂n
dΓ + D

∫

Γ

φ
∂φ∗

∂n
dΓ +

∫

Γ

φφ∗v̄n dΓ = −
∫

Ω

(
Px
∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ, (2.4)

where v̄n = v̄·n, n is the unit outward normal vector and the dot stands for the scalar product. In
the above equation, φ∗ is the fundamental solution of the convection-diffusion-reaction equation
with constant coefficients. For two-dimensional problems, φ∗ is of the form

φ∗ (ξ, χ) =
1

2πD
e−( v̄.r2D )K0 (µr) , (2.5)

where

µ =

[( v̄

2D

)2

+
k

D

] 1
2

, (2.6)
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and in which ξ and χ are the source and field points, respectively, and r is the modulus of r, the
distance vector between the source and field points. The derivative of the fundamental solution
with respect to the outward normal direction is given by

∂φ∗

∂n
=

1

2πD
e−( v̄.r2D )

[
−µK1 (µr)

∂r

∂n
− v̄n

2D
K0 (µr)

]
. (2.7)

In the above, K0 and K1 are Bessel functions of second kind, of orders zero and one, respectively.
The exponential term is responsible for the inclusion of the correct amount of upwind into the
formulation [7]. Equation (2.4) is valid for source points ξ inside the domain Ω. A similar
expression can be obtained, by a limit analysis, for source points ξ on the boundary Γ, in the
form

c (ξ)φ (ξ)−D
∫

Γ

φ∗
∂φ

∂n
dΓ + D

∫

Γ

φ
∂φ∗

∂n
dΓ +

∫

Γ

φφ∗ v̄n dΓ = −
∫

Ω

(
Px
∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ,

(2.8)
in which c (ξ) is a function of the internal angle the boundary Γ makes at point ξ.

2.3 DRM Formulation for Convection-Diffusion-Reaction Prob-
lem

In the present formulation, we concentrate on the implementation of the dual reciprocity formu-
lation DRM based on the fundamental solution to the steady-state convection-diffusion-reaction
equation, where the convective velocity is assumed to be variable and is split into two parts,
constant and perturbation, respectively. The basic idea is to expand the non-homogenous per-
turbation term on the right-hand side of equation (2.3) in the form

Px
∂φ

∂x
+ Py

∂φ

∂y
=

M∑

k=1

fααk. (2.9)

This series contains a sequence of known functions fk = fk (x, y) which are dependent only on
geometry, and a set of unknown coefficients αk. Using this approximation, the domain integral
in equation (2.8) can be approximated in the form

∫

Ω

(
Px
∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ =

M∑

k=1

αk

∫

Ω

fkφ
∗dΩ. (2.10)

The next step is to consider that, for each function fk, there exists a related function ψk which
is a particular solution of the equation

D∇2ψ − v̄x
∂ψ

∂x
− v̄y

∂ψ

∂y
− kψ = f. (2.11)

Thus, the domain integral can be recast in the form

∫

Ω

(
Px
∂φ

∂x
+ Py

∂φ

∂y

)
φ∗dΩ =

M∑

k=1

αk

∫

Ω

(
D∇2 ψk − v̄x

∂ψk
∂x
− v̄y

∂ψk
∂y
− kψk

)
φ∗dΩ. (2.12)

Substituting equation (2.12) into (2.8), and utilising integration by parts in the domain integral
of the resulting equation, we finally obtain a boundary integral equation of the form

c (ξ)φ (ξ)−D
∫

Γ

φ∗
∂φ

∂n
dΓ + D

∫

Γ

φ
∂φ∗

∂n
dΓ +

∫

Γ

φφ∗ v̄n dΓ (2.13)
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=
M∑

k=1

αk


c (ξ)ψk (ξ)− D

∫

Γ

φ∗
∂ψk
∂n

dΓ + D

∫

Γ

ψk
∂φ∗

∂n
dΓ +

∫

Γ

ψkφ
∗v̄ndΓ


.

2.4 Discretisation

Equation (2.13) can now be re-written in discretised form in which the integrals over the bound-
ary are approximated by a summation of integrals over individual boundary elements, i.e.

ciφi −
N∑

j=1

D

∫

Γj

φ∗
∂φ

∂n
dΓ +

N∑

j=1

∫

Γj

(
∂φ∗

∂n
+
v̄n
D
φ∗
)
φdΓ (2.14)

=
M∑

k=1

αk


ci ψik (ξ)− D

N∑

j=1

∫

Γj

φ∗
∂ψk
∂n

dΓ +
N∑

j=1

∫

Γj

(
∂φ∗

∂n
+
v̄n
D
φ∗
)
ψkdΓ


,

where the index i means the values at the source point ξ and N elements have been employed.
The functions φ, q = ∂φ/∂n, ψ and η = ∂ψ/∂n within each boundary element are approximated
in this study using constant elements. It should be remarked that functions ψ and η need not
be approximated as they are known functions for a specified set f . However, doing so will
greatly improve the computer efficiency of the technique with only a minor sacrifice in accuracy.
Applying equation (2.14) to all boundary nodes using a collocation technique results in the
following system of equations

Hφ−Gq = (Hψ −Gη)α. (2.15)

As shown in the above system, the same matrices H and G are used on both sides. Both ψ and
η are also geometry-dependent square matrices (assuming, for simplicity, that the number of
terms in expression (2.10) is equal to the number of boundary nodes), and φ, q and α are vectors
of nodal values. The next step in the formulation is to find an expression for the unknown vector
α. Applying equation (2.10) to all M nodes, it is possible to write the resulting set of equations
in the following matrix form

Px
∂φ

∂x
+ Py

∂φ

∂y
= F α, (2.16)

where Px and Py can be understood as two diagonal matrices with components Px (xi, yi) and

Py (xi, yi), respectively, while ∂φ
∂x and ∂φ

∂y are column vectors. Inverting expression (2.16), one
arrives at

α = F−1

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
. (2.17)

Substituting into equation (2.15),

Hφ−Gq = (Hψ −Gη) F−1

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
. (2.18)

Defining a matrix S in the form
S = (Hψ −Gη) F−1 (2.19)

one can write equation (2.18) as

Hφ−Gq = S

(
Px

∂φ

∂x
+ Py

∂φ

∂y

)
. (2.20)

Once functions fk are defined, matrix S can be established as this matrix depends on geometry
only. Furthermore, the coefficients of matrices Px and Py are also known. Therefore, there
remains to be found an expression relating the derivatives of φ to reduce equation (2.20) to a
standard BEM form.
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2.5 Convective Term

In this section, emphasis will be placed on convective terms. A mechanism must be established
to relate the nodal values of φ to the nodal values of its derivatives. Two approaches will be
discussed in the next subsections.

2.5.1 The Gradient-Expansion Approach

In this approach, each of the derivatives is independently expanded using again an expansion
like that of expression (2.10), generating the expressions

∂φ

∂x
=

M∑

k=1

Ψx
k βk and

∂φ

∂y
=

M∑

k=1

Ψy
k βk, (2.21)

where βk are constants, different from the αk in equation (2.10). This will imply finding the
values of φ by integrating equation (2.21). Assuming then that the function φ can be represented
by

φ =
M∑

k=1

=k βk, (2.22)

where =k is the result of integrating the functions Ψx
k and Ψy

k, we shall have in matrix form,
collecting together the approximations at all points, that

β = =−1 φ. (2.23)

Consequently, equation (2.21) will produce

∂φ

∂x
= Ψx=−1 φ and

∂φ

∂y
= Ψy =−1 φ. (2.24)

Now, we can re-write equation (2.20) in the form

(H − P ) φ = Gq

where

P = S [Px Ψx + Py Ψy] =−1. (2.25)

2.5.2 The Function-Expansion Approach

We now start by expanding the values of φ at an internal point by using expression (2.23).
Differentiating it with respect to x and y produces

∂φ

∂x
=

M∑

k=1

∂=k
∂x

β and
∂φ

∂y
=

M∑

k=1

∂=k
∂y

βk. (2.26)

Applying equation (2.22) at all M nodes, a set of equations is produced that can be represented
in matrix form by

φ = = β (2.27)

with corresponding matrix equations for expressions (2.26) and (2.27) given as

∂φ

∂x
=
∂=
∂x
=−1 φ and

∂φ

∂y
=
∂=
∂y
=−1 φ. (2.28)
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Equation (2.20) then takes the form

(H − P ) φ = Gq, (2.29)

where

P = S

(
Px

∂=
∂x

+ Py
∂=
∂y

)
=−1. (2.30)

The coefficients of the perturbation matrix P are all geometry-dependent only. Thus, boundary
conditions can be applied to equation (2.30) and the resulting system of algebraic equations
solved by a direct or iterative scheme.

2.6 Choice of Radial Basis Function

This study focuses on DRBEM approximations with Radial Basis Functions (RBF). Partridge
and Brebbia [3] have shown that a variety of functions can in principle be used as global interpo-
lation functions fk. The approach used by Wrobel and DeFigueiredo [4] was based on practical
experience rather than formal mathematical analyses and motivated by a previous successful
experience with axisymmetric diffusion problems in which a similar approach was used [9]. In
the present work, it was decided to start with a simple form of the particular solution ψ and
find the related expression for function f by substitution into equation (2.11). The resulting
expressions are

ψ = r3,

η = 3 r [(x− xk) nx + (y − yk) ny ] ,

f = 9D r − 3 r [(x− xk) vx + (y − yk) vy ]− k r3,

in which (xk, yk) and (x,y) are the coordinates of the k-th boundary or internal point and a
general point, respectively. It is important to notice that the set of function f produced depends
not only on the distance r but also on the diffusivity D, velocity components vx and vy as well
as the reaction rate k, therefore, it will behave differently when diffusion or convection is the
dominating process.

2.7 Test Cases

The present section is concerned with the application of the DRBEM for the solution of steady-
state convection-diffusion-reaction problems with variable velocity. We shall examine some test
examples to assess the performance of the proposed formulations.

2.7.1 Test case I

This example, although one-dimensional, is treated here as a two-dimensional convection-diffusion-
reaction problem with a variable velocity field in the x-direction. The velocity vx is a linear
function of x expressed as

vx (x) = k x+ c1,

where

c1 = ln

(
φ1

φ0

)
− k

2
.

The problem geometry, discretisation and boundary conditions are schematically described
in Figure 2.1. The problem is modelled as square-shaped body with side length 1m and mixed
boundary conditions (Neumann-Dirichlet). There is no flux in the y-direction and the values
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φ0 = 300 and φ1 = 10 are specified at the faces x = 0 and x = 1, respectively, and the
diffusivity coefficient takes the value D = 1. The problem is discretised with 120 constant
elements, 30 on each face, and 8 internal points. The exact solution of the problem is given by

φ = 300 e(
k
2 )x2+c1 x.
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Figure 2.1: Geometry, discretisation, boundary condition and internal points with side lenght
1m
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Figure 2.2: Variation of potential φ along face y = 0, with k = 0
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Figure 2.3: Variation of potential φ along face y = 0, with k = 5

A plot of the variation of the potential φ along the x-direction is presented in Figure 2.2 for
k = 0, representing a case with constant velocity. It can be noticed that the agreement with the
analytical solution is very good. Figures 2.3 to 2.4 present the cases k = 5, (vx = −3.401± 2.5)
and k = 10, (vx = −3.401 ± 5). It is obvious that, as the velocity increases, the potential
distribution becomes steeper and more difficult to reproduce with numerical models. However,
all BEM solutions are still in good agreement with the corresponding analytical solutions.
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Figure 2.4: Variation of potential φ along face y = 0, with k = 10

2.7.2 Test case II

This test considers a two-dimensional convection-diffusion-reaction problem over a square chan-
nel Ω = (0, 1) × (0, 1) as described in Figure 2.5. In the present example, a uni-directional
velocity field in the x-direction depending on the coordinate y was defined by the expression

vx (y) = A (y −B)2.

The velocity field is now a second-order function of the y-coordinate, with A and B defined as
constants; the values of the other coefficients are D = 1 and k = 0. The constant B defines the
symmetry of the velocity field with respect to the coordinate y. If B = 0.5, the velocity and the
potential profiles are both symmetric. The analytical solution to this problem is given by

φ = φ̄eA
1/3(A1/3 y (B− y2 )+x),

with φ̄ = 300. The mixed boundary conditions (Neumann-Dirichlet) corresponding to the
problems are defined as

∂φ

∂n
= q = −300 A

2
3 B e

(
A

1
3

)
x
, y = 0 ; 0 ≤ x ≤ 1,

φ = 300 e
A

1
3

(
A

1
3 y (B− y

2 )+1
)
, x = 1; 0 ≤ y ≤ 1,

∂φ

∂n
= q = 300A

2
3 (B − 1) e

A
1
3

(
A

1
3 (B− 1

2) +x
)
, y = 1 ; 0 ≤ x ≤ 1,
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Figure 2.6: Variation of potential along face y = 0 with A = 4 and B = 0.5
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Figure 2.7: Variation of potential along face y = 0m for A = 1, B = 1
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Figure 2.8: Variation of potential along face y = 0 with A = 0.5 and B = 2

φ = 300e
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)
, x = 0 ; 0 ≤ y ≤ 1,

The boundary is discretised with 120 constant elements, 30 on each face, and 11 internal points
adopted. Figure 2.6 shows the variation of the potential along the horizontal faces for the case
B = 0.5, compared to the analytical solution, as the results are symmetric in this case. Figure
2.7 shows the BEM results for the potential φ along the face y = 0 for the case B = 1, A = 1.
In this case, the quadratic velocity field has a minimum at the extreme y = 0. Next, the value
of B is considered as B = 2 to make the velocity profile significantly non-symmetric. Figure
2.8 compares the BEM and analytical solutions for this case. Once again, the results show very
good agreement.
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2.8 Conclusions

In this paper, a BEM formulation for two-dimensional steady-state convection-diffusion-reaction
problems with variable velocity fields is presented, employing the fundamental solution of the
corresponding equation with constant coefficients and a dual reciprocity approximation of the
perturbation velocity. The DRBEM is used to transform the domain integrals appearing in
the BEM formulations into equivalent boundary integrals, thus retaining the boundary-only
character of the standard BEM. Two proposed approaches were implemented to treat the con-
vective terms with variable velocity. The first expands the concentration as a series of functions,
while the other expands the concentration gradient instead. Both are shown to produce similar
results. Such formulations are expected to be stable at low Péclet numbers (i.e. diffusion-
dominated problems). Numerical applications are included to demonstrate the validity of the
proposed technique, and its accuracy was evaluated by applying it to two simple tests with
different velocity fields.
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Chapter 3

Accurate quadrature methods with
application to Stokes flow with
particles in confined geometries

Joar Bagge and Anna-Karin Tornberg

KTH Mathematics, Linné FLOW Centre/Swedish e-Science Research Centre,
Royal Institute of Technology
100 44 Stockholm, Sweden

Abstract. Boundary integral methods are attractive for simulating Stokes flow with parti-
cles or droplets due to the reduction in dimensionality and natural handling of the geometry.
In many problems walls are present, and it becomes necessary to evaluate singular or nearly
singular layer potentials over the wall. In this paper we show how this can be done using
quadrature by expansion (QBX), a relatively new method based on local expansions of the
layer potential. We present results for the Laplace single layer potential and the Stokes dou-
ble layer potential. QBX can be used to evaluate the potentials to high accuracy arbitrarily
close to the wall and on the wall. We also discuss how some quantities can be precomputed
and how geometric symmetries can be used to reduce precomputation and storage.

3.1 Introduction

3.1.1 Singular and nearly singular integrals

The motivation for this work is to study microscale flows with solid particles or droplets immersed
in a fluid. In such flows, inertial effects are often negligible, and they can therefore be modelled
as Stokes flow. The flow in each fluid domain Df ⊆ R3 is then governed by the Stokes equations

{
∇P = µ∇2u,

∇ · u = 0,
x ∈ Df (3.1)

with appropriate boundary conditions on each particle surface or drop interface. Here, P is
the pressure, µ is the viscosity and u is the velocity. Since (3.1) are linear equations, they
can be solved using boundary integral methods, which are attractive since they reduce the
dimensionality of the problem and provide a natural way of handling the moving geometry.

In a boundary integral method, the velocity in the fluid domain is expressed using a single
layer potential, a double layer potential, or a combination thereof (see e.g. [6]). The Stokes

15
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single layer potential is given by1

Si[σ](x) =

∫

Γ
Sij(x,y)σj(y) dSy, Sij(x,y) =

δij
r

+
rirj
r3

, x,y ∈ R3 (3.2)

with r = x− y and r = ‖r‖. Here, Γ is the boundary of the fluid domain, and the vector field
σ defined on Γ is called the Stokes single layer density and determines the flow. The Stokes
double layer potential is given by

Di[q](x) =

∫

Γ
Tijk(x,y)qj(y)nk(y) dSy, Tijk(x,y) = −6

rirjrk
r5

, x,y ∈ R3, (3.3)

where n is a unit normal of Γ. The vector field q is called the Stokes double layer density and
plays the same role as σ. The tensors Sij and Tijk appearing in (3.2) and (3.3) are called the
stokeslet and the stresslet, and they are the free-space Green’s functions for velocity and stress,
respectively.

To determine the density σ or q in (3.2) or (3.3), one lets x approach Γ and uses boundary
conditions, which leads to an integral equation for the density. To solve it, one must be able to
evaluate the potential S or D for x ∈ Γ, which amounts to computing an integral with a singular
integrand since the kernel Sij or Tijk is singular for x = y. We refer to the case x ∈ Γ as the
singular case. Applying a standard quadrature rule designed for smooth integrands to this case
would yield inaccurate results. Another problematic case is when x is inside the fluid domain
but close to Γ, which happens e.g. if one part of the boundary (such as a particle) is close to
another part, or if the velocity close to the boundary is computed during postprocessing. As x
and y get close, the integral kernel becomes sharply peaked and hard to resolve. We refer to this
case as the nearly singular case. As illustrated in Fig. 3.1, the error of a standard quadrature
rule grows exponentially as x approaches the boundary Γ, which in this example is a flat wall.
Increasing the grid resolution will move the problematic region closer to the wall, but it will not
remove it.
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Figure 3.1: The error of a standard quadrature rule grows exponentially as the evaluation point
approaches the boundary Γ. In this example, Γ is a wall in the x1x2-plane (seen from the side),
and the quadrature rule is the one described in Section 3.2. The potential here is the Laplace
single layer potential (3.5) with density given by (3.20), but the same behaviour is seen in the
Stokes layer potentials as well. The setup is the same as in Section 3.5.1.

Many different techniques have been proposed to overcome these challenging cases. In two
dimensions excellent methods exist, but in three dimensions this is still a very active research
topic. For an overview, see [5] and the references therein.

In this paper we treat both the singular and nearly singular case using a relatively new
method called quadrature by expansion (QBX), which is based on computing local expansions

1Throughout this paper we use Einstein’s summation convention, with all indices ranging over the set {1, 2, 3}.
δij denotes the Kronecker delta.
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of the layer potentials. The method was first introduced by Klöckner et al. for the Helmholtz
equation in two dimensions [5], and has subsequently been implemented for rigid spheroidal
particles in three-dimensional Stokes flow by af Klinteberg and Tornberg [1], yielding highly
accurate results also for tightly packed particles in unbounded flows and periodic flows. Com-
puting the local expansions is expensive, but most of the work can be done as a precomputation.
The same precomputed data can be used for all particles of the same shape, and geometric sym-
metries of the spheroids such as axisymmetry and mirror symmetry greatly reduces the amount
of storage needed for the precomputed data, which renders the method highly efficient.

3.1.2 Walls

In many problems, we are interested in the interaction between particles or droplets and the
fixed surrounding geometry, for example in the form of walls. While unbounded flow problems
are easy to treat using boundary integral methods, walls require more effort. For a single flat
wall, it is possible to use the method of images (see e.g. [4]), which avoids the need to discretize
the wall itself. This does not work in the case of several walls, or walls of more general shapes,
which requires the walls to be discretized as a part of the external boundary. In this paper, we
deal with the implementation of QBX for a rectangular flat wall. The techniques described here
can be extended also to pipes and to boundaries of more general shapes, although complicated
shapes would limit precomputation due to lack of symmetries.

The wall is discretized by dividing it into patches, which makes adaptivity possible. In the
final flow problem, periodic boundary conditions would be imposed along the sides of the wall as
shown in Fig. 3.2, but we will not discuss the solution to such a problem in this paper. Instead,
we focus on the evaluation of the Stokes double layer potential over the wall, i.e. (3.3) with Γ
taken as a rectangular wall, for evaluation points x on the wall or close to it. We consider here
the double layer density q as a given function with compact support on the wall. The treatment
of the singular and nearly singular case would be the same in the full periodic problem.

The layer potentials (3.2) and (3.3) for Stokes flow can be related to the corresponding single
and double layer potentials for Laplace’s equation. Considering the Laplace single layer potential
for a particular but nontrivial choice of density, we can derive an analytical expression for the
potential for x on the wall, and a semianalytical solution for x outside the wall. This allows us
to carefully measure the accuracy of our numerical evaluation both in the singular and nearly
singular case.

The paper is structured as follows: In Section 3.2 we introduce the discretization of the wall
and the basic quadrature associated with it. In Section 3.3 we describe QBX which is used to
handle the singular and nearly singular case, which cannot be done using the basic quadrature.
We discuss precomputation in Section 3.4, and then present some numerical results for the
Laplace single layer potential and the Stokes double layer potential in Section 3.5.

Periodic Pe
rio
di
c

Γ

Figure 3.2: The type of flow problem serving as motivation for this paper: several particles in
Stokes flow bounded by a flat wall (Γ). The problem is periodic along the sides of the wall.
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3.2 Discretization and direct quadrature

Let Γ be a rectangular wall of size L1×L2, discretized into M patches Pα of size a1×a2 so that
Γ = ∪Mα=1Pα. On each patch, we apply a tensor product Gauss–Legendre quadrature rule with
n× n points, shown in Fig. 3.3. In general the size of the patches could vary over Γ to allow for
adaptivity, but we will not consider such cases here. For simplicity, we will furthermore assume
that L1 = L2 = L and a1 = a2 = a. An integral over Γ can then be approximated as

∫

Γ
f(y) dSy =

M∑

α=1

∫

Pα

f(y) dSy ≈
M∑

α=1

N∑

j=1

f(yα,j)wj , (3.4)

where yα,j are the N = n2 grid points of patch Pα and wj are the weights of the tensor product
Gauss–Legendre quadrature. We will call this quadrature rule the direct quadrature associated
with the wall. The direct quadrature works well for smooth integrands and can be used for
evaluating the layer potentials (3.2) and (3.3) over those patches that are sufficiently far away
from the evaluation point, but it cannot handle the singular or nearly singular case. Therefore,
the specialized quadrature method described in the next section must be used on those patches
that are too close to the evaluation point, as indicated by Fig. 3.3.

Γ

L1

L2

a1

a2

Figure 3.3: The wall Γ discretized into 25 patches, each with n × n Gauss–Legendre points. If
the evaluation point is on the red shaded patch or sufficiently close to it, QBX will be used to
evaluate the contribution to the layer potential from that patch and its eight neighbours (red),
while direct quadrature is used on the other patches further away (black).

3.3 Quadrature by expansion

Quadrature by expansion (QBX) is based on the observation that the layer potential (3.2) or
(3.3) that we want to evaluate is a smooth function in the fluid domain Df , and therefore it
can be written as a local series expansion around some point in this domain. This expansion is
valid inside a ball which touches the boundary at exactly one point, and can therefore be used
to evaluate the potential in both the singular and nearly singular case [3]. The coefficients of
the expansion can be computed accurately using the direct quadrature as long as the expansion
centre is sufficiently far away from the wall.

The expansion depends on the integral kernel of the layer potential that we want to evaluate.
In the following we first introduce QBX for the Laplace single layer potential, which is a simple
example that still lets us describe all the ideas in the method. Then we outline QBX for the
Laplace double layer potential and the Stokes double layer potential.
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3.3.1 Laplace single layer potential

The Laplace single layer potential is given by

G[γ](x) =
M∑

α=1

∫

Pα

G(x,y)γ(y) dSy =:
M∑

α=1

Gα[γ](x), G(x,y) =
1

‖x− y‖
, (3.5)

where γ is a scalar density defined on Γ. For example, if γ is a charge density, G is the electrostatic
potential. We consider Gα, which is the contribution to the potential from patch Pα. To expand
Gα we begin by expanding the kernel G. This can be done using the so-called Laplace expansion,
given by

1

‖x− y‖
=

∞∑

l=0

4π

2l + 1

l∑

m=−l
rlxY

−m
l (θx, ϕx)

1

rl+1
y

Y m
l (θy, ϕy). (3.6)

The centre of this expansion is denoted by c, and (rx, θx, ϕx) and (ry, θy, ϕy) are spherical
coordinates of x and y with respect to c. It is assumed that rx = ‖x − c‖ is smaller than or
equal to ry = ‖y− c‖, as shown in Fig. 3.4. The spherical harmonics functions Y m

l are given by

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimϕ, (3.7)

where P
|m|
l is the associated Legendre polynomial of degree l and order |m|.

Plugging (3.6) into (3.5) and moving terms related to x out of the integration leads to the
expansion

Gα[γ](x) =
∞∑

l=0

l∑

m=−l
dα,lm[γ]rlxY

−m
l (θx, ϕx) (3.8)

with complex-valued coefficients

dα,lm[γ] =
4π

2l + 1

∫

Pα

1

rl+1
y

Y m
l (θy, ϕy)γ(y) dSy. (3.9)

We assume that miny∈Γ ry =: r > 0 so that the integral in (3.9) is not singular; r is the distance
from the expansion centre c to the wall. Note that this expansion is based on a separation
of source y and target x; the contribution from all sources are stored in the coefficients dα,lm,
which once computed can be used to evaluate the potential for any target within the ball of
convergence using (3.8).

The expansion given by (3.8)–(3.9) is an exact representation of the potential Gα. However, in
order to use it numerically, we must introduce two approximations. First, we must truncate the
infinite series in (3.8) at some lmax = p. This introduces an error which we call the truncation

y Γ

x
r

c

Figure 3.4: The distance ‖x − c‖ must be smaller than or equal to ‖y − c‖ for the Laplace
expansion (3.6) to be valid. This means that the expansion (3.8) is valid inside a ball of radius
r = miny∈Γ ‖y − c‖.
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error. Second, the coefficients dα,lm must be computed using some quadrature rule, which
introduces an error that we refer to as the coefficient error. An estimate for the truncation error
is given in [3] and for the coefficient error in [2].

We use the direct quadrature (3.4) to compute the coefficients (3.9), and in doing so we
upsample the density γ by a factor κ. This means that the density is interpolated onto a
refined Gauss–Legendre patch with κn×κn grid points, which is needed to properly resolve the
Y m
l (θy, ϕy)/r

l+1
y part of the integrand, which becomes more oscillatory and peaked as l increases.

To summarize, QBX has three parameters: r, p and κ. The expansion radius r is the
distance from the expansion centre to the wall, and also the radius of the ball of convergence;
the expansion degree p is the maximum l included in the expansion; the upsampling factor κ
controls how much the original grid is refined. To this list we can add the side length a and
number of points N = n2 of the patch, which control the grid resolution of the direct quadrature.
A discussion of the QBX parameters and how to choose them can be found in [1].

The QBX approximation of Gα is denoted by G(r,p,κ)
α and given by

G(r,p,κ)
α [γ](x) =

p∑

l=0

l∑

m=−l
d

(r,κ)
α,lm[γ]rlxY

−m
l (θx, ϕx), (3.10)

with coefficients

d
(r,κ)
α,lm[γ] =

4π

2l + 1

(κn)2∑

j=1

1

rl+1
j

Y m
l (θj , ϕj)(Uγα)jwj , (3.11)

where j enumerates all κ2n2 grid points on the refined version of Pα, (rj , θj , ϕj) are spherical
coordinates of the jth grid point with respect to c, and wj are the quadrature weights. The

vector γα ∈ Rn2
contains the value of γ at every grid point on Pα, and the matrix U ∈ R(κn)2×n2

upsamples this onto the refined patch. Note that the coefficients from all neighbouring patches
(red in Fig. 3.3) can be added before computing the QBX potential using (3.10).

Fig. 3.5 shows how the error of the QBX approximation from a single expansion centre
decreases when p is increased. Note that to cover all grid points on the wall and most of its
neighbourhood, one expansion centre per grid point is needed. This may seem expensive, but
most of the work can be done as a precomputation, as explained in Section 3.4.

3.3.2 Laplace double layer potential

The Laplace double layer potential is given by

F [ρ](x) =

M∑

α=1

∫

Pα

Fj(x,y)ρj(y) dSy =:

M∑

α=1

Fα[ρ](x), Fj(x,y) =
∂

∂yj

1

r
=
rj
r3
, (3.12)

with r = x − y and r = ‖r‖. The vector density ρ can be interpreted as a density of electric
dipoles on Γ. Note that the integral kernel Fj is the gradient of the single layer kernel G from
(3.5). We can therefore use the Laplace expansion (3.6) again, and in the same way as in
Section 3.3.1 we arrive at the expansion

Fα[ρ](x) =
∞∑

l=0

l∑

m=−l
zα,lm[ρ]rlxY

−m
l (θx, ϕx) (3.13)

with coefficients

zα,lm[ρ] =
4π

2l + 1

∫

Pα

ρ(y) · ∇y
(

1

rl+1
y

Y m
l (θy, ϕy)

)
dSy. (3.14)

These coefficients can be computed up to some lmax = p using the direct quadrature with
upsampling as in Section 3.3.1.
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Figure 3.5: The error when QBX is used in a ball of radius r = 0.04, with increasing expansion
degree p and upsampling factor κ = 4. The direct quadrature is shown for comparison outside
the ball of convergence. The grid and density are the same as in Fig. 3.1 and Section 3.5.1.

3.3.3 Stokes double layer potential

To apply QBX to the Stokes double layer potential (3.3) we need an expansion that separates
source and target, like the ones provided by the Laplace expansion in the preceding sections. To
find such an expansion, we use a result by Tornberg and Greengard [7] that expresses the kernel
of the Stokes double layer potential in terms of the Laplace double layer kernel Fj , namely

Tijk(x,y)nk =

(
(xj − yj)

∂

∂xi
− δij

)
Fk(x,y)nk +

(
(xk − yk)

∂

∂xi
− δik

)
Fj(x,y)nk. (3.15)

Multiplying this relation by qj and rearranging terms, we find that the integrand of (3.3) can
be written as

Tijk(x,y)qjnk =

(
xj

∂

∂xi
− δij

)
Fk(x,y)(qjnk + njqk)−

∂

∂xi
Fj(x,y)(ykqknj + yknkqj). (3.16)

Thus the contribution from patch Pα to the Stokes double layer potential can be written as

Dα,i[q](x) =

(
xj

∂

∂xi
− δij

)
Fα[qjn+ njq](x)− ∂

∂xi
Fα[ykqkn+ yknkq](x), (3.17)

where Fα is the Laplace double layer potential given by (3.12). In order to evaluate (3.17),
we must compute four expansions (3.13) of Fα associated with the densities ρ(j) = qjn + njq,
j = 1, 2, 3, and ρ(4) = ykqkn+ yknkq. The four sets of expansion coefficients are given by (3.14)
as

zα,lm[ρ(j)] =
4π

2l + 1

∫

Pα

(qjn+ njq) · ∇y
(

1

rl+1
y

Y m
l (θy, ϕy)

)
dSy, j = 1, 2, 3, (3.18)

zα,lm[ρ(4)] =
4π

2l + 1

∫

Pα

(ykqkn+ yknkq) · ∇y
(

1

rl+1
y

Y m
l (θy, ϕy)

)
dSy. (3.19)

These coefficients are computed up to lmax = p using the direct quadrature as before.
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3.4 Precomputation

In this section we briefly describe the precomputation scheme for the Laplace single layer po-
tential. The same basic principles apply also to the other layer potentials, but we do not have
room to discuss them here.

First note that since the spherical harmonics given by (3.7) are conjugate symmetric in m, i.e.
Y −ml (θ, ϕ) = Y m

l (θ, ϕ)∗, the same conjugate symmetry holds also for the expansion coefficients
given by (3.9), i.e. dα,l,−m[γ] = dα,lm[γ]∗. It is therefore enough to compute dα,lm for 0 ≤ m ≤ l,
meaning that Np = (p + 1)(p + 2)/2 coefficients must be computed per expansion centre. One
can view (3.11) as a matrix M

(r,κ)
α ∈ CNp×N multiplying the vector γα ∈ RN to yield the Np

coefficients. This matrix contains only geometric quantities and can therefore be precomputed
and later applied to any density.

In principle, one M
(r,κ)
α matrix is needed for every expansion centre, but once the matrices

have been computed for one patch they can be reused, with appropriate scaling factors, for all
patches of the same aspect ratio. Furthermore, the four mirror symmetries of a square can be
used to reduce the precomputation needed. By performing the necessary reflections, one can get
the coefficients for all expansion centres based only on the M

(r,κ)
α matrices for the points in the

shaded eighth in Fig. 3.6, thus reducing the required storage space and precomputation time by
approximately a factor 1/8. (If the patch is rectangular there are only two mirror symmetries
and the factor is 1/4.)

Figure 3.6: Symmetries of a patch that can be used to reduce precomputation.

One can also view (3.10) as a matrix Θx ∈ C1×Np multiplying the vector of coefficients. This
matrix depends on the target x, but it can be precomputed for a given target (e.g. the grid point
where the ball of convergence touches Γ). This way a matrix H

(r,κ)
α,j = Θyα,jM

(r,κ)
α ∈ R1×N

can be precomputed for each grid point yα,j in the shaded eighth in Fig. 3.6, and used in the
singular case for computing the potential at that grid point from the density vector γα.

3.5 Results

3.5.1 Laplace single layer potential

As a test case, we take the wall Γ as the unit square in the x1x2-plane and let the Laplace single
layer density be given by a Gaussian

γ(x) = e−β‖x−x∗‖
2
, x ∈ Γ, (3.20)

where x∗ ∈ Γ is the centre of the Gaussian and β > 0 controls its width. Provided that γ has
compact support on Γ (up to some tolerance), the single layer potential can be shown to be

G[γ](x) = 2πe−βR
2
∗

∫ ∞

0

Re−βR
2

√
R2 + x2

3

I0(2βRR∗) dR, x ∈ R3, (3.21)

where x3 is the distance to Γ from x, R∗ = ‖x∗ − x̂‖ with x̂ = projΓ x, and I0 is a modified
Bessel function of the first kind. The integral in (3.21) can be evaluated accurately e.g. using
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MATLAB’s integral function. For x ∈ Γ we have x3 = 0 and (3.21) simplifies to

G[γ](x) =

√
π3

β
e−βR

2
∗/2I0(βR2

∗/2), x ∈ Γ. (3.22)

In this example we choose x∗ = (0.51, 0.498, 0) and β = − log(10−14)/0.492 ≈ 134.26.

We discretize Γ into 7× 7 patches of equal size with 16× 16 Gauss–Legendre points on each
patch. We place an expansion centre a distance r = 0.04 above the grid point (0.5068, 0.5068, 0)
and evaluate the potential directly above the grid point using QBX with κ = 4 and varying p,
both near the wall and on it. As Fig. 3.7 shows, QBX permits evaluation of the potential to very
high accuracy arbitrarily close to the wall. Note that simply using upsampling together with
the direct quadrature is not sufficient very close to the wall, but it works well further away. In
this case, one could for example use QBX for x3 < 0.04 and direct quadrature with upsampling
for 0.04 ≤ x3 < 0.08.
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Figure 3.7: Evaluation of the Laplace single layer potential using QBX with different p. Left: off-
surface evaluation (cf. Fig. 3.5). For comparison, the direct quadrature with different upsampling
factors κ is also shown in grey. Right: Evaluation at the grid point on Γ. The dominating error
is the truncation error for p < 19 and the coefficient error for p > 19. An estimate for the
coefficient error given by [2] is also shown.
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Figure 3.8: Evaluation of the Stokes double layer potential using QBX with different p, in the
fluid domain (left) and on the wall (right). Compare with Fig. 3.7.
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3.5.2 Stokes double layer potential

We take all parameters as in Section 3.5.1 and the Stokes double layer density

qi(x) = e−β‖x−x∗‖
2
, i = 1, 2, 3, x ∈ Γ, (3.23)

with β and x∗ as before. In this case we have no exact solution, so we compare with a reference
solution with upsampling κ = 5 and degree p = 25. Fig. 3.8 shows that the errors achieved by
QBX are about two orders of magnitude larger than for the Laplace single layer potential.

3.6 Conclusions

In this paper we have shown how QBX can be used to evaluate singular and nearly singular layer
potentials over a flat wall. The method can achieve high accuracy arbitrarily close to the wall,
which we demonstrated in two test cases: one for the Laplace single layer potential in a case
where a semianalytic solution is available, and one for the Stokes double layer potential with a
numeric reference solution. We have also explained how certain quantities can be precomputed
and how geometric symmetries can be used to reduce the amount of storage and time needed
for precomputation.
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Chapter 4

On discretisation schemes for a
boundary integral model of
stochastic ray propagation

Janis Bajars and David J. Chappell

School of Science & Technology,
Nottingham Trent University
Nottingham
UK

Abstract. A boundary integral operator method for stochastic ray tracing in billiards was
recently proposed in [1]. In particular, a phase-space boundary integral model for propagat-
ing uncertain ray or particle flows was described and shown to interpolate between deter-
ministic and random models of the flow propagation. In this work we describe discretisation
schemes for this class of boundary integral operators using piecewise constant collocation
in the spatial variable and either the Nyström method or the collocation method in the
momentum variable. The simplicity of the spatial basis means that the corresponding spa-
tial integration can be performed analytically. Convergence properties of the discretisation
schemes and strategies for numerical implementation are presented and discussed.

4.1 Introduction

Boundary integral formulations for propagating particle or ray densities along ray trajectories
in computer graphics applications are often termed the rendering equation [2]. This equation
therefore lies at the heart of a wide variety of algorithms, both for applications in computer
graphics [2] and beyond [3, 4, 5]. The point of departure for this study stems from the obser-
vation that the rendering equation may be formulated using deterministic transfer operators of
Frobenius-Perron (FP) type [5, 6]. Replacing the deterministic transfer operator with a stochas-
tic one results in a boundary integral formulation for stochastic propagation of ray densities. The
simplest implementation of a stochastic treatment is to assume that rays propagate uniformly
with equal probability of all admissible propagated ray vectors. This formulation is known as
the radiosity method (with Lambertian reflection) in the room acoustics community [3, 4]. A
more widely applicable implementation arises if one assumes that the mapped ray vector is
normally distributed, with mean given by the associated deterministic dynamics. The resulting
stochastic evolution operator will be of Fokker-Planck type as discussed in [7, 8]. The choice of
variance in this approach allows the model to be tuned to the level of uncertainty prescribed by
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the application. Example applications arise in fluid dynamics [9], weather forecasting [10], linear
wave dynamics or in general in describing the evolution of phase-space densities of a dynamical
system.

In this work, we discuss two possible discretisation schemes for a family of boundary integral
operators for stochastic ray propagation. Our discretisation strategy is based on a piecewise con-
stant collocation method in the spatial variable, together with an exact integration procedure for
the corresponding spatial integral. For the momentum variable we apply the Nyström method,
which takes care of the integral over the momentum variable within the discretisation approach,
or the collocation method, which separates dependence of the integral over the momentum
variable from the discretisation approach. We then discuss the implementation strategies and
convergence properties of the discretisation schemes.

4.2 Boundary integral operator model for the stochastic prop-
agation of phase-space densities

Consider phase-space in two-dimensions with position vector r ∈ R2 and momentum (or slow-
ness) vector p ∈ R2. Let Ω denote a finite two-dimensional domain with an associated speed of
propagation c. The Hamiltonian Ĥ = c|p| = 1 describes the ray trajectories within Ω between
reflections at the boundary Γ = ∂Ω. We write the phase-space coordinates on the boundary
of Ω as X = (s, p), where s is an arc-length parametrisation of Γ and p = c−1 sin(θ) is the
tangential component of the momentum vector p at the point s, where θ ∈ (−π/2, π/2) is the
angle between the trajectory leaving the boundary at s and the normal vector to Γ (also at s).

The stochastic propagation of a density ρ through phase-space is described by an operator
of the form [1]

Lσρ(X) =

∫

Q
fσ(X − ϕ(X ′))ρ(X ′) dX ′. (4.1)

Here Q = Γ × (−c−1, c−1) denotes the phase-space on the boundary and ϕ : Q → Q defines
the boundary flow map, which maps a vector in Q to another vector in a subset of Q, leading
to a deterministic evolution of the form ϕ(X ′) = X, where X ′ = (s′, p′) and X = (s, p).
Geometrically, ϕ corresponds to the composition of a translation (from s′ to s) and a rotation
to the direction corresponding to a specular reflection. The kernel of the boundary integral
operator (4.1) is given by a probability density function (PDF) fσ such that

∫

Q
fσ(X) dX = 1, (4.2)

and σ is a parameter set controlling its shape.

With reference to applications in vibro-acoustics, this probabilistic behaviour could be at-
tributed to, for example, uncertain fluctuations in the wave speed c, roughness of the reflecting
surface or uncertainties in the boundary conditions/source terms. In all cases we assume that
the total energy Ĥ = c|p| = 1 remains fixed and that the total probability is conserved, that is,
condition (4.2) holds throughout. Note that in contrast to the models considered in [7, 8], the
range of integration in the domains considered here is in general bounded, which has implica-
tions for the choice of suitable PDFs fσ. The simplest case is to take fσ = const, upon which
one arrives at a model describing propagation to all admissible positions and directions with
equal probability. The system is thus by definition ergodic and independent of the underlying
classical dynamics. In general, we would like to arrive at a stochastic operator which includes
both deterministic propagation and the random propagation model described above as limiting
cases [1]. In addition, the PDF fσ needs to obey conditions on the sampling ranges due to the
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Figure 4.1: Source: Ref. [1]. Tracking ray trajectories via a noisy boundary map and truncation
limits s± for the random variable sε.

limited range of the boundary map ϕ. For simplicity, we will restrict to convex domains Ω to
avoid additional complications due to incorporating visibility functions.

For an initial boundary distribution ρ0 on Q, the final equilibrium distribution (including
contributions from arbitrarily many reflections) may be computed using the following boundary
integral equation (see for example [1] and [5]):

(I − Lσ)ρ = ρ0. (4.3)

Note that for the solution ρ to converge, energy losses must be introduced into the system, which
could take place at the boundaries themselves, or along the trajectories. In general, a weight
factor w will be added inside the integral in the definition of Lσ which contains a dissipative
term, and for the extension to multiple domains connected at interfaces w will also contain
reflection/transmission probabilities at these interfaces.

We may interpret the evolution given by the operator in Eq. (4.1) as originating from a
stochastic boundary map ϕσ with added noise, that is,

ϕσ(X ′) = X

= ϕ(X ′) +Xε, (4.4)

where Xε = (sε, pε) are random variables drawn from the PDF fσ. Note that sε is understood
as a shift in (anti-clockwise) direction. For X ∈ Q given, we have to ensure that ϕ(X ′) = X−Xε

is in the range of the deterministic map ϕ; this yields restrictions on the possible values of Xε

and thus on the domain of fσ.

We express ϕ = (ϕs, ϕp) in terms of its position and momentum components and again write
the initial coordinate as X ′ = (s′, p′). The range of admissible values for ϕs(X

′) is [0, L) \E(s′),
where E(s′) is the (closed) set of all points on the same straight edge as s′, see Fig. 4.1. Note
that for curved edges we set E(s′) = s′ as shown in the right plot of Fig. 4.1. Furthermore, we
have that ϕp(X

′) ∈ (−c−1, c−1). It is therefore necessary to truncate the ranges from which Xε

are sampled to the ranges where for fixed X, ϕ(X ′) ∈ ([0, L) \E(s′))× (−c−1, c−1) in Eq. (4.4).
Denoting these truncated ranges by (X−, X+) where X± = (s±, p±), the PDF fσ will have
support on Xε ∈ (X−, X+) only. A cut-off function χ(Xε;X

−, X+) for restricting the support
of fσ to (X−, X+) can be defined in the usual way using Heaviside step functions. Having
obtained the domain of the PDF, we can now derive a PDF from an uncorrelated bivariate
Gaussian distribution with mean 0 = (0, 0) and standard deviation σ = (σ1, σ2). A scaled PDF
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is obtained by setting

fσ(Xε;X
−, X+) =

χ(Xε;X
−, X+) exp

(
− s2

ε

2σ2
1

)
exp

(
− p2

ε

2σ2
2

)

2πσ1σ2ψσ1(s−, s+)ψσ2(p−, p+)
, (4.5)

where the scaling defined through ψσ1 and ψσ2 is given as

ψσ1(s−, s+) =
1

2

(
erf

(
s+

√
2σ1

)
− erf

(
s−√
2σ1

))
, (4.6)

and ψσ2 is defined analogously. The scaling ensures that the PDF satisfies condition (4.2) for the
truncated sampling ranges specified through χ. Note that the mean and variance of fσ differs in
general from that of the underlying Gaussian distribution, but can be computed from the PDF
(4.5) using standard formulae.

Taking the limit of (4.5) as σ → 0 then the distribution becomes increasingly sharp and
the bivariate Gaussian tends to a two-dimensional delta distribution localised around Xε =
X − ϕ(X ′) = 0, which leads to a deterministic model. Taking the limit as σ1, and σ2 go to
∞ and using the leading order asymptotic expansion of the error function about 0 returns a
uniform distribution for sε ∈ (s−, s+) and pε ∈ (p−, p+), leading to the fully stochastic regime
described above. See [1] for a more complete discussion of the behaviour of fσ in the limit of
small and large σ.

4.3 Discretisation of the boundary integral operator

In this section we detail the approximation of the boundary integral operator (4.1) and the energy
density ρ(X), where X = (s, p) as before. We begin our presentation with the discretisation
using a piecewise constant collocation method in the spatial variable s and a Nyström method
for the momentum variable p. Consider an N -sided closed convex polygon with boundary Γ and
a local subdivision of each edge into a number of boundary elements. Then the approximation
of the energy density ρ(X) on the boundary Γ may be written

ρ(X) =

n∑

j=1

bj(s)ρj(p), (4.7)

where n ≥ N is the total number of boundary elements, ρj(p) are a set of directionally dependent
expansion functions to be determined and bj(s) are piecewise constant spatial basis functions,
i.e. bj(s) = 1 if s lies on the jth element and zero elsewhere.

Substituting (4.7) into (4.1) we obtain

Lσρ(X) =

n∑

j=1

∫

Q
fσ(X − ϕ(X ′))ρj(p

′)bj(s
′) dX ′

=

n∑

j=1

∫ c−1

−c−1

ρj(p
′)

[∫

ej

fσ(X − ϕ(X ′)) ds′

]
dp′, (4.8)

where ej denotes integration over the jth boundary element. Note that the spatial integral with
respect to s′ appearing in (4.8) can be solved analytically in terms of the error function erf; this
remains tractable if we include an additional damping factor of the form exp(−µd(s, s′)), where
µ > 0 is a (viscous) damping parameter and d(s, s′) denotes the Euclidean distance between the
boundary points s′ and s. In what follows, we denote this spatial integral as Sµ, where

S0(s, p′) = − χs′

2ψσ1

erf

(
s− s′√

2σ1

)∣∣∣∣
s′=S′max(p′)

s′=S′min(p′)
(4.9)
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for the undamped case when µ = 0.
We now change the variable in the momentum integration from p = c−1 sin(θ) to the direction

angle θ and define collocation points si, i = 1, ..., n, where si is chosen as the centroid of the
ith boundary element. First, note that the PDF fσ defined in Eq. (4.5) can be separated into
spatially dependent and directionally dependent components of the form

fσ(sε, pε) =


χs

exp
(
− s2ε

2σ2
1

)

√
2πσ1ψσ1




χp

exp
(
− p2

ε

2σ2
2

)

√
2πσ2ψσ2


 = fσ1(sε)fσ2(pε).

Applying a numerical integration rule such as trapezoidal, Gaussian or Clenshaw-Curtis quadra-
ture with nodes pk and weights wk, for k = 0, ...,K, then the combined collocation and Nyström
method discretisation of equation (4.1) is given by

(Lσρ)(si, pκ) = c−1
n∑

j=1,j 6=i

K∑

k=0

wkρj(θ
′
k)fσ2(pε(θk, θ

′
k))Sµ(si, c

−1 sin(θ′k)) cos(θ′k), (4.10)

where i = 1, ..., n and κ = 0, ...,K. The discretisation (4.10) reduces the operator equation (4.3)
to a linear system. The solution of this linear system then leads to an approximation for the
final equilibrium density distribution ρ given by (4.7), at a set of momenta pκ, κ = 0, ...,K.

Notice that the specific set of direction values pκ in (4.10) are defined by the choice of
the numerical quadrature method. In addition, the size of the transfer matrix grows with the
number of quadrature nodes. In the small σ limit, that is, close to the deterministic dynamics,
special numerical quadrature methods could be employed to more efficiently handle the singular
perturbation in the PDF as σ2 → 0. In this case, it would be desirable to remove the dependence
of the quadrature scheme (for approximating the integral over the momentum variable) from the
momentum space discretisation, and hence from the size of the transfer matrix. This is directly
achievable by replacing the Nyström method with collocation method in the momentum variable
p.

To apply the collocation method in p we consider a finite basis approximation of the direc-
tionally dependent functions ρj(p) in (4.7)

ρj(p) = φT (p)ρj , (4.11)

where φ(p) ∈ RNp is an Np dimensional vector of basis functions and ρj ∈ RNp are unknown
expansion coefficients to be determined for each j = 1, ..., n.

Substituting (4.7) together with (4.11) into (4.1) we obtain

Lσρ(X) =
n∑

j=1

[∫ c−1

−c−1

φT (p′)fσ2(pε)Sµ(s, p′) dp′

]
ρj .

As above we consider spatial collocation points si, i = 1, ..., n, taken as the centroids of the cor-
responding boundary elements and introduce directional collocation points pκ for κ = 1, ..., Np.
The combined collocation method discretisation of equation (4.1) may therefore be written in
the form

(Lσρ)(si, pκ) = c−1
n∑

j=1

[∫ π/2

−π/2
φT (θ′)fσ2(pε(pκ, θ

′))Sµ(si, c
−1 sin(θ′)) cos(θ′) dθ′

]
ρj

= vT (si, pκ)ρj (4.12)

with pε(pκ, θ
′) = pκ−c−1 sin(θ′) for all i = 1, ..., n and κ = 1, ..., Np. In compact matrix notation

we may write
Φρi = V (si)ρj , ∀ i = 1, ..., n,
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Figure 4.2: Convergence of the integral of the final stationary boundary density along the left
hand edge at x = 0 for different values of σ2. Left: using a direct approximation of the integrals
over the momentum variable p. Right: using a subdivision strategy for the integral over the
momentum variable p. Parameter values: σ1 = 0, c = 1, µ = π and n = 8.

where Φ is a collocation/interpolation matrix with rows Φκ = φT (pκ) and V (si) is a matrix of
integral values with rows given by V (si)κ = vT (si, pκ).

Integrals over the direction angle θ′ in (4.12) can be approximated numerically by any de-
sirable quadrature method. Alternatively, special quadrature strategies may be considered for
simulations with small σ2 values due to the singular perturbation as σ2 → 0. In addition,
notice that the total size of the transfer matrix compared to the Nyström method above has
been changed from n(K + 1) × n(K + 1) to nNp × nNp. In the next section we discuss and
compare different implementation strategies of (4.10) and (4.12) leading to different convergence
properties for smooth densities ρ.

4.4 Implementation strategies and convergence properties

In this section, we consider a rectangular domain (x, y) ∈ (0, l) × (0, 0.25) where l = 0.75, and
apply uncertain boundary source term of the form

ρ0(s, p) =
exp

(
−p2/(2σ2

2)
)

√
2πσ2

2erf
(
1/(
√

2σ2c)
) (4.13)

along the left hand edge at x = 0. A source term (4.13) arising from an uncertain boundary
condition was originally proposed in [1]. For small σ2, this corresponds to a unit boundary
density propagating (on average) in the direction p = 0, perpendicular to the boundary. For
large σ2 it corresponds to randomly directed propagation from the boundary. Such a condition
may be applied for all s ∈ Γ, or on a subset of Γ as in [1]. As σ2 → 0, this rectangular
domain problem has an analytical ray tracing solution for the stationary interior density ρΩ(x)
as detailed in Ref. [11].

In Fig. 4.2 we study the convergence of the integral

I =

∫ c−1

−c−1

ρj(p) dp = c−1

∫ π/2

−π/2
ρj(θ) cos(θ) dθ = c−1

K∑

k=0

wkρj(θk) cos(θk), (4.14)

where ρj(p) is the directionally dependent expansion function in (4.7), which we compute along
the left hand edge at x = 0. The integral is approximated with the same quadrature rule used
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in (4.10). We fix the boundary element mesh size taking n = 8 elements in total and take
parameter values c = 1, µ = π and σ1 = 0. Note that due to the nature of the exact solution,
the spatial dependence of the solution along each edge of the rectangular domain is only slowly
varying when σ1 and σ2 are relatively small and so a relatively coarse boundary element mesh
suffices. The number of quadrature nodes is given by Km = 2m + 1, where m = 1, ..., 12 in
the left plot of Fig. 4.2 and m = 1, ..., 8 in the right plot of Fig. 4.2. In both plots we plot
the absolute error between the integral (4.14) values computed with Km and Km+1 quadrature
nodes. The plots show the absolute errors corresponding to the Km+1 node number values per
element in the left plot and node number values per subdivision in the right plot, respectively.

Note that due to the polygonal nature of the domain and the discontinuous spatial collocation
scheme, the direction dependent function Sµ is not continuous over the whole interval, but is at
least piecewise smooth. In order to achieve spectral convergence for smooth density solutions
in the discretisation schemes presented above, we must subdivide the momentum coordinate
integral in (4.8). The left plot of Fig. 4.2 shows the convergence results for different values of σ2

for a direct approximation of the integral over direction using the Nyström method (4.10) with
Gaussian quadrature. This direct approximation of the directional integral leads to the loss of
the spectral convergence, and one only obtains second order convergence for a sufficiently large
number of quadrature nodes. The right plot shows the convergence results when subdividing the
integral over direction and approximating each sub-integral separately via Gaussian quadrature.
In this case we do indeed obtain spectral convergence. Equivalent results can also be obtained
using the collocation method (4.12).

4.5 Conclusions

We have described a boundary integral model for uncertain high-frequency wave problems and
detailed two discretisation schemes for the approximation of the wave energy density. We have
discussed implementation strategies to preserve the spectral convergence properties of high order
approximation schemes. However, the number of integration subdivisions grows with the number
of spatial collocation points and this quadrature data must be saved or constantly recomputed.
Furthermore, in the singularly perturbed case σ2 → 0, it would be beneficial to be able to
adaptively refine the quadrature to resolve the increasingly sharp peak in the Gaussian PDF.
Again, the implementation of such an adaptive scheme in the Nyström method would require
a new set of fixed quadrature points for each element. These issues can be directly addressed
by instead using a (spectral) collocation method in the momentum variable, which allows for
a greater flexibility to tailor the quadrature scheme. Hence, the results presented here serve
as motivation to further develop collocation methods for the discretisation in the momentum
variable in future.
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Abstract. We discuss algebraic preconditioning strategies for solving electromagnetic scat-
tering problems expresed in an integral formulation. The proposed preconditioners are based
on multilevel incomplete factorization and approximate inverse methods. They are computed
using only information contained in the coefficient matrix of the linear system, and can be
applied to different operators and to changes in the geometry by tuning a few parameters.

5.1 The problem

In the past few decades, thanks to the rapid advances in computer technology and the in-
troduction of innovative algorithms with reduced computational and memory complexity, a
rigorous numerical solution of the Maxwell’s equations has become feasible for many practical
applications. Integral equation methods can be an interesting alternative to differential equa-
tion methods for solving large electromagnetic (EM) scattering applications as they reduce a
three-dimensional (3D) volume problem to a two-dimensional (2D) surface problem, simplifying
considerably the mesh generation especially in the case of moving objects. In variational form,
we can formulate the standard EM scattering problem as the following integral equation model:

Find the surface current ~j such that for all tangential test functions ~jt, we have

∫

Γ

∫

Γ
G(|y − x|)

(
~j(x) ·~jt(y)− 1

k2
divΓ

~j(x) · divΓ
~jt(y)

)
dxdy =

i

kZ0

∫

Γ

~Einc(x) ·~jt(x)dx. (5.1)

Eqn. (5.1) is called the Electric Field Integral Equation (EFIE); we denote by G(|y − x|) =

eik|y−x|

4π|y − x|
the Green’s function, Γ is the boundary of the object, k is the wave number and

Z0 =
√
µ0/ε0 the characteristic impedance of vacuum (ε is the electric permittivity and µ the

33
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magnetic permeability). The EFIE formulation can be applied to arbitrary geometries including
those with cavities, disconnected parts, breaks on the surface; hence, it is very popular in
industrial modelling.

By using a Galerkin discretization over a mesh containing n edges, the surface current ~j
is expanded into the set of so-called Rao-Wilton-Glisson basis functions {~ϕi}1≤i≤n [12], then
Eqn. (5.1) is applied to each basis function ~ϕi. Finally, we are led to solving the following linear
system

∑

1≤i≤n
λi

[∫

Γ

∫

Γ
G (|y − x|)

(
~ϕi(x) · ~ϕj(x)− 1

k2
divΓ~ϕi(x) · divΓ~ϕj(y)

)
dxdy

]
=

=
i

kZ0

∫

Γ

~Einc(x) · ~ϕj(x)dx, (5.2)

in the unknowns λi for 1 ≤ i ≤ n, each λi being associated with the vectorial flux across an edge
in the mesh. The set of equations (5.2) can be recast in matrix form as

Aλ = b, (5.3)

where A = [Aij ] and b = [bi] have elements

Aij =

∫

Γ

∫

Γ
G (|y − x|)

(
~ϕi(x) · ~ϕj(y)− 1

k2
divΓ~ϕi(x) · divΓ~ϕj(y)

)
dxdy,

bj =
i

kZ0

∫

Γ

~Einc(x) · ~ϕj(y)dx.

Note that the coefficient matrix A is dense complex symmetric, and the right-hand side varies
with the frequency and the direction of the illuminating wave.

Linear systems arising from boundary element discretizations can be extremely large in appli-
cations as the number of unknowns grows linearly with the size of the scatterer and quadratically
with the frequency of the incoming radiation. The scattering of a plane wave by a perfectly elec-
trically conducting (PEC) sphere with a diameter of 1800λ would give rise to a matrix with more
than three billion unknowns [11]. Clearly, direct methods based on both in-core and out-of-core
variants of Gaussian elimination are not affordable to solve problems of this size even on modern
parallel computers, due to the large memory requirements. Iterative Krylov methods can solve
the problems of space of direct methods as they are based on matrix-vector (M-V) multipli-
cations. By combining Krylov subspace solvers with the Multilevel Fast Multipole Algorithm
(MLFMA) [10], it is possible to solve an n × n matrix problem in α · Niter · O(n log n) arith-
metic operations, where the constant α depends on the implementation of the specific iterative
algorithm and Niter is the number of iterations required to achieve a certain accuracy.

Briefly, multipole techniques exploit the rapid decay of the Green’s function by computing
interactions of degrees of freedom in the mesh at different levels of accuracy depending on their
physical distance. Upon partitioning the 3D mesh of the object into boxes of roughly equal size
recursively, until their size is a fraction of the wavelength, multipole coefficients are computed for
all boxes starting from the smallest ones and then recursively for each parent cube by summing
together multipole coefficients of the children. Interactions of degrees of freedom within an
observation box and its nearby boxes are computed exactly by using the Method of Moments;
interactions between boxes that are not neighbours each other but whose parents are neighbours
are computed by using the FMM algorithm. All other interactions are approximated depending
on their mutual distance in the mesh.

In the last twenty years, significant research efforts have been devoted to implement multiple
techniques efficiently on distributed memory parallel computers to speedup M-V multiplications
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involving dense boundary element matrices from O(n2) down to O(n log n) complexity, resulting
in competitive application codes provably scalable to several million discretization points [14,
15, 9, 11]. In this paper we address the other critical component of the iterative solution in this
context, that is the design of effective preconditioners to accelerate the convergence of MLFMA.

5.2 Preconditioning the FMM

The convergence of Krylov methods can be accelerated by transforming the original linear sys-
tem into an equivalent one having better spectral properties, i.e. with most of the eigenvalues
clustered close to one. This pre-processing stage is called preconditioning. The transformed
system has typically the form M−1Ax = M−1b, or AM−1y = b with x = M−1y, depending
if one preconditions from the left or from the right; the matrix M is called the preconditioner.
Preconditioning is critical for the EFIE as the iteration number tends to grow as O(n0.5) when
n is related to the wavenumber [14]. Although some optimal operator-dependent precondition-
ers have been proposed for the EFIE, see e.g. [7, 2], they often lack the necessary robustness
and are not simple to parallelize. In this paper, the preconditioner is computed by using only
information contained in the coefficient matrix of the linear system. Far from optimal for any
specific problem, fully algebraic matrix solvers can be applied successfully to different operators
and geometries only by tuning a few parameters. They can maintain the O(n log n) complexity
of MLFMA and may integrate easily with the data structure of multipole codes.

Most algebraic preconditioning techniques for dense matrices proposed in the literature are
computed by decomposing the linear system in the form

(S +B)x = b, (5.4)

where S is a sparse matrix retaining the most relevant contributions to the singular integrals and
is easy to invert or factorize, while B can be dense. For boundary integral equations of Fredholm
type, if the continuous operator S underlying S is bounded and the operator B underlying B is
compact, then S−1B is compact and

S−1 (S + B) = I + S−1B

so that we may expect that the preconditioned system
(
I + S−1B

)
x = S−1b has a good cluster-

ization of eigenvalues close to one, see e.g. [6, pp. 182-185]. Multipole algorithms yield a matrix
decomposition of the form

A = Adiag +Anear +Afar, (5.5)

where Adiag is the block diagonal part of A associated with interactions of basis functions
belonging to the same box, Anear is the block near-diagonal part of A associated with interactions
within one level of neighbouring boxes (they are 8 in 2D and 26 in 3D), and Afar is the far-
field part of A. In a multipole setting, an appropriate choice for the local matrix can be S =
Adiag+Anear. Two approaches to precondition matrix S are considered in the next two sections.

5.2.1 Sparse approximate inverse preconditioners

Boundary element discretizations introduce a strong local coupling between the edges in the
underlying mesh. Each edge is strongly connected to only a few neighbours. Far-away connec-
tions, although not null, are much weaker suggesting that a very sparse matrix can still retain
most of the relevant contributions to the singular integrals. We can see in Figure 5.2 that the
inverse of A exhibits a very similar structure to A and a good pattern for the approximate in-
verse is likely to be the nonzero pattern of a sparse approximation to A, computed by dropping
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all the entries lower than a prescribed global threshold. In a multipole context, the pattern
can be computed in advance from the nonzero structure of the near-field multipole matrix S.
The actual entries of M may be obtained by minimizing the error matrix ‖I − SM‖F for right
preconditioning (‖I−MS‖F resp. left preconditioning). The Frobenius-norm allows to decouple
the constrained minimization problem into n independent linear least-squares problems, one for
each column (resp. row) of M when preconditioning from the right (resp. from the left). Hence
the construction is inherently parallel. The independence of the least-squares problems follows
from the identity

‖I − SM‖2F =
n∑

j=1

‖ej − Sm•j‖22, (5.6)

where ej is the jth canonical unit vector and m•j is the column vector representing the jth
column of M . In the case of right preconditioning, the analogous relation

‖I −MS‖2F = ‖I − STMT ‖2F =

n∑

j=1

‖ej − STmj•‖22 (5.7)

holds, where mj• is the column vector representing the jth row of M . Usually problems (5.6-
5.7) can be efficiently solved by a dense QR factorization. The columns of M associated to
the edges within the same box have the same structure; therefore their entries can be computed
simultaneously by carrying out only one block dense QR factorization, and the overall setup cost
is reduced to O(n) arithmetic operations [5]. We refer to this preconditioner as SPAI (SParse
Approximate Inverse).

In Table 5.1 we illustrate the numerical behavior of the Frobenius-norm minimization method
combined with parallel MLFMA for solving realistic RCS calculations in industry. The geome-
tries are presented in Figure 5.1. The value of the frequency is in the range between 12 and 42
GHz for the Cetaf problem (i.e. 24− 84λ of physical size) and between 2.3 and 11.4 GHz for the
aircraft problem (14− 73λ). The experiments are run in single precision complex arithmetic on
eight processors of a Compaq Alpha server which is a cluster of Symmetric Multi-Processors. In
Table 5.1 we report on the number of M-V products and solution time for GMRES; “d” means
day, “h” hour and “m” minute. The tolerance for GMRES is fixed equal to 10−3 on the normwise
backward error ||r||||b|| , where r denotes the residual and b is the right-hand side of the linear system.
This order of accuracy matches the relative error of the M-V product operation in our multipole
code, and is accurate enough to enable the correct reconstruction of the RCS of the object. The
SPAI preconditioner enables us to solve fairly large problems but it does not scale very well with
the number of unknowns. The increase in the iteration count is less significant for GMRES(∞),
even though convergence cannot be obtained on the largest systems because we either exceed
the memory limits or the time limit allocated to a single run. On the Cetaf geometry, the solu-
tion time for the GMRES method increases superlinearly for small and medium problems, but
nearly quadratically for large problems. On the largest test case, discretized with one million
unknowns, unrestarted GMRES does not converge after 750 iterations requiring more than nine
hours of computation on 32 processors. The Airbus aircraft is very difficult to solve because the
mesh has many surface details and the discretization matrices become ill-conditioned. On small
and medium problems, the number of GMRES iterations increases with the problem size, and
the solution time increases superlinearly. On the largest test case, discretized with one million
unknowns, full GMRES exceeds the memory limit on 64 processors. In this case, the use of large
restarts (120 in this table) does not enable convergence within 2000 iterations except on a small
mesh of size 94704. In Table 5.2 we observe the very good parallel scalability of the construction
and of the application of the approximate inverse, that makes it a very suitable candidate for
massively parallel implementation. Problems of increasing size are solved on a larger number of
processors, while keeping constant the number of unknowns per processor.
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(a) (b)

Figure 5.1: Geometries considered for the numerical experiments, courtesy of EADS-CCR
Toulouse. (a) The Cetaf problem. The geometry represents a wing with a slit. The physical size
is 50 cm × 30 cm × 5 cm. (b) The aircraft problem. The physical size is 1.8 m × 1.9 m × 0.65 m.

Cetaf

Size Density SPAI Time SPAI
GMRES(∞) GMRES(120)

Iter / Time Iter / Time

86256 0.18 4m 656 / 1h 25m 1546 / 1h 44m
134775 0.11 6m 618 / 1h 45m 1125 / 1h 55m
264156 0.06 13m 710 / 9h 1373 / 4h 46m
531900 0.03 20m 844 / 1d 18m 1717 / 14h 8m

1056636 0.01 37m T.L.E. / >9h(32) - / > 1d

Aircraft

Size Density SPAI Time SPAI
GMRES(∞) GMRES(120)

Iter / Time Iter / Time

94704 0.28 11m 746 / 2h 9m 1956 / 3h 13m
213084 0.13 31m 973 / 7h 19m - / 7h 56m

591900 0.09 1h 30m 1461 / 16h 42m(64) - / 1d 57m

1160124 0.02 3h 24m M.L.E.(64) / N.A. - / > 4d

Table 5.1: Number of matrix-vector products and elapsed time required to converge on two
problems on 8 processors of the Compaq machine, except those marked with (k), that were
run on k processors. Tolerance for the iterative solution was 10−3. The symbol ’-’ means that
no convergence was achieved in 2000 iterations. Acronyms: N.A. ≡ not available. M.L.E. ≡
memory limits exceeded, T.L.E. ≡ CPU time limits exceeded.

5.2.2 Inverse-based multilevel ILU factorization preconditioner

A different preconditioning approach would factorize S instead of explicitly inverting it. In
this section we use a symmetric inverse-based multilevel preconditioner based on an incomplete
LDLT factorization to precondition system (5.1). We first rescale A = S by a symmetric
maximum weight matching [8] such that Ã = DAD has entries |ãij | ≤ 1 whilst |ãi,πi | = |ãπi,i| = 1
for a suitable permutation π. Afterwards, we construct a permutation matrix P0 such that the
entries ãi,πi , ãπi,i are at least located in the tridiagonal part of P T0 DAD P0 having many 2× 2
blocks

(
ai,i ai,i+1

ai+1,i ai+1,i+1

)
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Parallel scalability results

Problem
size

Nb procs
Construction

time (sec)
Elapsed time
precond (sec)

Elapsed time
mat-vec (sec)

112908 8 513 0.39 1.77
221952 16 497 0.43 2.15
342732 24 523 0.47 3.10
451632 32 509 0.48 2.80
900912 64 514 0.60 3.80

Table 5.2: Parallel scalability of the implementation on the aircraft problem.

(a) Pattern of the large entries of
A

(b) Pattern of the large entries of
A−1

(c) Sparsity pattern of
sparsified(A−1)

(d) Sparsity pattern of
sparsified(L−1)

Figure 5.2: Typical decay of the discrete Green’s function for surface integral equations. The
test problem is a small sphere. Large to small magnitude entries are depicted in different colours,
from red to green, yellow and blue. We used a threshold 5.0× 10−2 to drop the smallest entries
of a A−1 and of L−1 in relative magnitude.

such that |ai,i+1|=|ai+1,i| = 1, 1 × 1 blocks ai,i such that |ai,i| = 1, while in exceptional cases
also 1 × 1 blocks with ai,i = 0 may occur. This preprocessing step can improve the diagonal
dominance significantly. Then a symmetric reordering is applied to reduce the fill-in bandwidth.
The symmetric reordering is applied to the compressed graph of P T0 DADP0, i.e., block rows
and block columns associated with a 2×2 block are replaced by a single row and column having
the union of the block column/row pattern as nonzero pattern. This leads to a block-structure-
preserving permutation P1 and the total reordered system is P TDADP , where P = P0P1. We
point out that these scalings and reorderings maintain the symmetry of A. Next, an inverse-
based ILU with static block diagonal pivoting is computed where the block diagonal pivots are
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either 1 × 1 or 2 × 2 pivots depending on which of the two choices yields more block diagonal
dominance. More precisely, during the approximate incomplete factorization Â ≈ LDLT such
that L is unit lower triangular and D is block diagonal, the norm ‖L−1‖ is estimated and if at
factorization step l a prescribed bound is exceeded, the current row l and column l are permuted
to the lower right end of the matrix. Otherwise the approximate factorization is continued. One
single pass leads to an approximate partial factorization

ΠT ÂΠ =

(
B ET

E C

)
≈
(
LB 0
LE I

)(
DB 0
0 SC

)(
LTB LTE
0 I

)
≡ L1D1L

T
1 , (5.8)

with a suitable leading block B and a suitable permutation matrix, where ‖L−1‖ ≤ κ. The
remaining system SC approximates C − EB−1ET and from the relations

{
Bx̂1 + ET x̂2 = b̂1
Ex̂1 + Cx̂2 = b̂2

⇒
{

x̂1 = B−1(b̂1 − ET x̂2)

(C − EB−1ET )x̂2 = b̂2 − EB−1b̂1
,

at each step of an iterative solver we need to store and invert only blocks with B and SC ≈
C−EB−1ET while for reasons of memory efficiency, LE is discarded and implicitly represented
via LE ≈ EU−1

B D−1
B . When the scaling, preordering and the factorization is successively applied

to SC , a multilevel variant of (5.8) is computed. The multilevel algorithm ends at some step
m when either SC is factored completely or it becomes considerably dense and switches to
a dense LAPACK solver. Intermediate Schur complements SC are discarded as soon as the
Schur complement matrix S22 of the next level is computed. After computing an m-step ILU
decomposition, for preconditioning we have to apply L−1

m AL−Tm . From the error equation Em =
A− LmDmL

T
m, we see that ‖L−1

m ‖ contributes to the inverse error L−1
m EmL

−T
m . Monitoring the

growth of this quantity during the partial factorization is essential to preserve the numerical
stability of the solver. Furthermore, at least for real symmetric matrices, eigenvalue inclusion
bounds for the eigenvalues near the origin of SC and A can be shown [3].

Some preliminary experiments on selected linear systems arising from RCS calculation of
realistic targets modelled using the EFIE formulation (5.1) are presented in Table 5.3. Although
the problems are not very large in absolute sense, their solution demanded considerable resources.
For example, storing the coefficient matrix for the Airbus A318 problem required 18 Gb of RAM.
The solution of larger problems would clearly necessitate to use MLFMA for the M-V products
and a parallel implementation of the multilevel ILU algorithm, which is still under development.
In our experiments we used the LAPACK library [1] to carry out the dense M-V products.
Convergence was achieved if the initial residual was reduced by 12 orders of magnitude within
3000 iterations. All the runs were carried out on one node of the Millipede cluster facility located
at the University of Groningen. Each node features 12 Opteron 2.6 GHz cores and 24 GB of
physical RAM.

The factorization was computed from a sparse approximation S to the dense matrix A,
extracted by selecting the p largest entries in each row ofA. We chose a value of p giving a number
of nonzeros in S approximately equal to the expected density of the multipole operator for the
same problem. We used four level of recursive factorization, prescribing bounds ‖L−1

1 ‖ ≤ 100,
‖U−1

1 ‖ ≤ 100 for the inverse factors, and set the threshold parameter t = 1.e − 2 for dropping
the small entries in the triangular factors. However, on the tough aircraft problem, we had
to use t = 1.e − 3 to achieve convergence. The results of Table 5.3 show that the proposed
preconditioner can be very effective to reduce the number of Krylov iterations. The results on
the Airbus aircraft is remarkable: the solver converged in less than one hundred iterations and
the computation of a moderately sparse factorization took around ten minutes on one core. We
were not able to achieve a comparable result with any other algebraic preconditioner that we
tested [4].
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Sphere - density(S) = 0.65% - 535 MHz - κ1(A) = O(1)

prec mem time
GMRES(50)

its time
none - - +3000 +4891.44

MILUT(1e− 2) 5.2 64.12 274 461.49

Airbus A318 - density(S) = 2.73% - 800 MHz - κ1(A) = O(107)

prec mem time
GMRES(50)

its time
none - - +3000 +15278.08

MILUT(1e− 3) 6.8 753.50 98 906.59

Table 5.3: Experiments with inverse-based multilevel ILU preconditioner

5.3 MLFMA as a preconditioner

In the experiments reported in Table 5.1, the solution time for GMRES increases nearly quadrat-
ically with the frequency of the problem. At high frequency the preconditioner is very sparse if
the size of the smallest boxes arising from the object partitioning is related to the wavelength, as
in our code. When S is very sparse, each degree of freedom is coupled to a very few neighbours.
In this case, the far-field information may be totally lost. FMM approximations of an integral
operator compute the near-field interactions exactly and they approximate the far-field by low-
rank matrices. It is natural to incorporate these far-field approximations in the preconditioner
to improve its robustness. We implement the preconditioning operation by carrying out a few
steps of an inner Krylov method with a low accuracy multipole matrix. The outer iterative
solver must allow to use variable preconditioning [5], for instance FGMRES [13] may be used.
Iterations are stopped after a fixed number of steps. A sketch of the overall iterative algorithm
is presented in Figure 5.3. Note that the matrix-vector products in the inner and outer solvers
are carried out using MLFMA with different levels of accuracy. Highly accurate MLFMA is
applied in the outer iterations which govern the final accuracy; less accurate MLFMA is applied
in the inner iterations that only attempt to give a rough approximation of the solution. Different
accuracy for the M-V calculation can be implemented by tuning various parameters in MLFMA
such as the size of the smallest box, the number of multipole levels and of integration points.
Note also that we precondition the inner solver (by SPAI) to decrease rapidly the residual within
a few number of steps.

Figure 5.3: Inner-outer solution schemes in the FMM context. Sketch of the algorithm. Itera-
tions are stopped after a fixed number of step (denoted by MAX INNER ITER).
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Cetaf

Size
GMRES(∞) FGMRES(∞,60) GMRES(120) FGMRES(30,60)

Iter Time Iter Time Iter Time Iter Time

86256 656 1h 25m 17+ 960 55m 1546 1h 44m 17+ 960 55m
134775 618 1h 45m 15+ 840 1h 19m 1125 1h 55m 15+ 840 1h 19m
264156 710 9h 17+ 960 2h 22m 1373 4h 46m 17+ 960 2h 22m
531900 844 1d 18m 19+1080 6h 1717 14h 8m 19+1080 6h

1056636 T.L.E. > 9h(32) 22+1260 14h - > 1d 22+1260 14h

Aircraft

Size
GMRES(∞) FGMRES(∞,60) GMRES(120) FGMRES(30,60)

Iter Time Iter Time Iter Time Iter Time

94704 746 2h 9m 23+1320 2h 30m 1956 3h 13m 27+1560 2h 14m
213084 973 7h 19m 30+1740 6h 11m - 7h 56m 34+1920 5h

591900 1461 16h 42m(64) 43+2520 12h(32) - 1d 57m 57+3300 1d 9h 45m

1160124 M.L.E.(64) > 1d 43+2520 14 h 28m(64) - > 4d 51+2940 16h 41m(64)

Table 5.4: Number of matrix-vector products and elapsed time required to converge on eight
processors of the Compaq machine, except those marked with (k), that were run on k processors.
The values of m and n in the symbol FGMRES(m,n) refer to the restart of the outer and of the
inner solver, respectively. For FGMRES we give the number of inner plus total outer iterations
needed to achieve convergence. The tolerance for the iterative solution was 10−3. Acronyms:
M.L.E. ≡ memory limits exceeded, T.L.E. ≡ CPU time limits exceeded.

We report some results to show the added value of scalability of the two-level scheme in
Tables 5.4. On the geometries considered in the Section 5.2.1, we apply FGMRES as the outer
solver and a SPAI-preconditioned GMRES for the inner iteration. We show the number of in-
ner and total outer M-V products and the elapsed time needed to achieve convergence using
a tolerance of 10−3 on eight processors of the Compaq machine. The comparison with the re-
sults reported in Table 5.1 is fair as GMRES has exactly the same storage requirements as the
combination FGMRES/GMRES. For the same restart value, the storage requirement for the
FGMRES algorithm is twice as large as for standard GMRES because it requires also to store
the preconditioned vectors of the Krylov basis. We observe that the increase in the number of
outer iterations is fairly modest. The scheme enables to solve the largest and difficult aircraft
test cases whereas GMRES failes. On the aircraft problem discretized with 213084 unknowns,
FGMRES is about 2 hours faster than standard GMRES; up to 973 basis vectors are to orthog-
onalize while in the inner-outer scheme only a basis up to 60, leading to a significant saving
in the orthogonalization procedure that is extremely time consuming. Similarly, on the Cetaf
discretized with one million points FGMRES(30,60) converges in 22 outer iterations whereas
GMRES(120) does not converge in 2000 iterations. The savings in time is also noticeable, with
a gain ranging from two to four depending on the geometry.

We recently solved a large rectangular (30λ × 30λ × 300λ) cavity problem with 12,697,120
unknowns by FGMRES(5,15,30) in 58 minutes and 2 outermost steps. The setup of SPAI
costed 30 minutes on 36 processors, with 96GB memory in total. On 120 cores we solved a
Cobra geometry with 21,682,980 unknowns in 38 minutes and a tank with 10,768,581 unknowns
FGMRES in 12 minutes.

5.4 Conclusions

Large-scale scattering simulations demand scalable preconditioners combined with fast solvers
like MLFMA to make boundary element techniques attractive to use in realistic applications.
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We have presented solution approaches based on sparse approximate inverses and multilevel
incomplete factorization methods. Thanks to the use of iterative methods and suitable precon-
ditioners, fast integral solvers involving tens of million unknowns are nowadays feasible and can
be integrated in the design processes where the bottleneck moves from the simulation to the pre-
and postprocessing of the results, as the tools are not yet available to easily manipulate meshes
with several millions of degrees of freedom. Further investigation is necessary to identify the
best class of method for the given problem and the selected computer hardware.
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Chapter 6

Solving the inverse
three-dimensional continuous model
of electrical resistance tomography
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Abstract. This paper discusses the three-dimensional continuous model of electrical
resistance tomography for detecting rigid inclusions embedded in a bounded background
medium. The mathematical model is governed by Laplace’s equation subject to a homo-
geneous Dirichlet boundary condition on the unknown rigid inclusion and Cauchy data on
the outer boundary. The forward solver uses the meshless method of fundamental solutions,
which is a discrete variant of the single layer potential in the direct form of the boundary
element method for harmonic functions, but with source points shifted outside the solution
domain such that singularities in the fundamental solution are avoided. The inverse solu-
tion is based on the Bayesian approach and Markov chain Monte Carlo (MCMC) estimation
technique. The MCMC is used not only for estimating the desirable model parameters,
but also for uncertainty and reliability assessment. Numerical examples are investigated to
demonstrate the effectiveness and the accuracy of the proposed approach.

6.1 Introduction

The paper extends the previous two-dimensional computations of direct and inverse problems [1]
to three dimensions. As a remarkable step towards solving the direct and the inverse complete-
electrode model of ERT in three-dimensions, we will consider first the continuous model.
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Prior to this study, three-dimensional rigid inclusions have been reconstructed in [2, 6, 7] by
standard regularization schemes, where the method of fundamental solutions (MFS) was used
to produce the direct solution and a constrained optimization procedure was employed to de-
termine the boundary of a three-dimensional star-shaped rigid inclusion. In this paper, we use
the Bayesian statistical approach, instead of the gradient-based minimization of [2].

6.2 Main problems

We consider Laplace’s equation

4u = 0 in Ω, (6.1)

in various geometries Ω ⊂ R3.
Problem 1: We consider an annular domain Ω = ΩOuter\ΩInner with a rigid inclusion

(a)

ΩInner =
{

(x, y, z) ∈ R3| x2 + y2 + z2 < (0.5)2
}

(a sphere) (6.2)

or

(b)

ΩInner =

{
(x, y, z) ∈ R3

∣∣∣∣∣
x2

(0.5)2
+

y2

(0.5)2
+

z2

(0.4)2
< 1

}
(an ellipsoid) (6.3)

inside the unit sphere ΩOuter =
{

(x, y, z) ∈ R3|x2 + y2 + z2 < 1
}

. Equation (6.1) is solved
subject to the Dirichlet boundary conditions

u = f on ∂ΩOuter (6.4)

and

u = 0 on ∂ΩInner. (6.5)

On the other hand, in the inverse formulation, since the concern is not only to find the poten-
tial u but also to reconstruct the rigid inclusion ΩInner, the following Neumann current flux
measurement is required to compensate for the unknown geometry:

∂u

∂n
= g on ∂ΩOuter. (6.6)

As a result, the inverse problem of the continuous model of ERT is given by equations (6.1) and
(6.4)-(6.6). Uniqueness of this problem when f 6≡ 0 and Ω is connected is provided in [5].

Problem 2: We consider the domain Ω = ΩOuter\(ΩInner1 ∪ ΩInner1) with two disjoint rigid
inclusions, which need to be detected when the inverse problem is solved, given by

ΩInner1 =
{

(x, y, z) ∈ R3| x2 + (y − 0.5)2 + z2 < (0.4)2
}
,

ΩInner2 =
{

(x, y, z) ∈ R3| x2 + (y + 0.5)2 + z2 < (0.4)2
}
. (6.7)

These are located inside the unit sphere. Then, (6.1) is solved subject to (6.4), (6.6) and

u = 0 on ∂ΩInner1 ∪ ∂ΩInner2. (6.8)
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6.3 The MFS for the direct problem

6.3.1 Mathematical formulation

The MFS seeks an approximation to the solution of (6.1) in a bounded domain with a rigid
inclusion inside, as in (a) or (b), as a linear combination of fundamental solutions in the form

u(p) =

2(N−1)∑

k=1

N∑

l=1

ck,lG(ξ
k,l
, p), p ∈ Ω, (6.9)

where ξ
k,l

are source points located outside Ω and G is the fundamental solution of the three-

dimensional Laplace equation given by

G(ξ, p) =
1

4π|ξ − p|
. (6.10)

The expression (6.9) results from the discretisation of a single-layer boundary integral represen-
tation of the harmonic function u with sources located outside the surface ∂Ω.

The internal source points are located inside the inner domain ΩInner, and are defined, for
Problem 1(a), by

ξ
k,l

= 0.5 ηI

(
sin θ̃k cos φ̃l, sin θ̃k sin φ̃l, cos θ̃k

)
, k = 1, (N − 1), l = 1, N, (6.11)

where 0 < ηI < 1 (ηI is a contraction parameter), and, for Problem 1(b), by

ξ
k,l

= ηI

(
0.5 sin θ̃k cos φ̃l, 0.5 sin θ̃k sin φ̃l, 0.4 cos θ̃k

)
, k = 1, (N − 1), l = 1, N, (6.12)

θ̃k =
πk

N
, k = 1, (N − 1), φ̃l =

2π(l − 1)

N
, l = 1, N.

The external source points are located outside the outer domain ΩOuter, and are defined (for
both Problems 1(a) and 1(b)) by

ξ
k,l

= R
(

sin θ̃k−N+1 cos φ̃l, sin θ̃k−N+1 sin φ̃l, cos θ̃k−N+1

)
, k = N, 2(N − 1), l = 1, N,

(6.13)

where 1 < R < ∞. Similarly, the internal boundary collocation points are located on ∂ΩInner,
and are defined, for Problem 1(a), by

xi,j = 0.5 (sin θi cosφj , sin θi sinφj , cos θi) , i = 1, (M − 1), j = 1,M, (6.14)

and, for Problem 1(b), by

xi,j = (0.5 sin θi cosφj , 0.5 sin θi sinφj , 0.4 cos θi) , i = 1, (M − 1), j = 1,M, (6.15)

where

θi =
πi

M
, i = 1, (M − 1), φj =

2π(j − 1)

M
, j = 1,M.

The external boundary collocation points are located on ∂ΩOuter, and are defined (for both
Problems 1(a) and 1(b)) by

xi,j = (sin θi−M+1 cosφj , sin θi−M+1 sinφj , cos θi−M+1) , i = M, 2(M − 1), j = 1,M. (6.16)
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In order to obtain the coefficient c = (ck,l)k=1,2(N−1), l=1,N
, (6.9) is substituted into the boundary

conditions (6.4) and (6.5). This results in

2(N−1)∑

k=1

N∑

l=1

Gi,j,k,lck,l = fi,j , i = 1, 2(M − 1), j = 1,M, (6.17)

where fi,j = f(xi,j) and Gijkl = 1
4π|ξ

k,l
−xi,j |

for i = 1, 2(M − 1), j = 1,M, k = 1, 2(N − 1) and

l = 1, N . Note that from (6.5), fi,j = 0 for i = 1, (M − 1), j = 1,M . The linear system of
algebraic equations (6.17) consists of 2(M − 1) ×M equations with 2(N − 1) × N unknowns.
If M = N , we can apply the Gaussian elimination method to obtain the MFS coefficients c. If
M > N the least-squares method is used to solve the over-determined system of equations (6.17).
Once the coefficient vector c has been obtained accurately, equation (6.9) provides explicitly the
solution for the potential u inside the domain Ω and, by differentiation, the current flux ∂u/∂n
on the boundary ∂Ω.
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Figure 6.1: (a, d, g) The absolute errors between the MFS and exact interior solutions uMFS(0.6, θ, φ)
and uExact(0.6, θ, φ), (b, e, h) the absolute errors between the MFS and exact outer derivative
(∂u/∂nMFS)(1, θ, φ) and (∂u/∂nExact)(1, θ, φ), and (c, f, i) the absolute errors between the MFS and
exact inner derivative (∂u/∂nMFS)(0.5, θ, φ) and (∂u/∂nExact)(0.5, θ, φ), for M = N = {8, 16, 32}, as
functions of φ/(2π) and θ/π.
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6.3.2 Numerical results

Example 1: Solve, using the MFS, the direct problem 1(a) given by (6.1), (6.4) with f = −1,
and (6.5) which has the analytical solution given by

u(x, y, z) =
1√

x2 + y2 + z2
− 1

0.5
, (x, y, z) ∈ Ω. (6.18)

Solution: Choosing M = N = 16 results in 30× 16 = 480 boundary collocation points and 480
source points. We also take R = 5 and ηI = 0.6.

Figure 6.1 illustrates the absolute errors between the exact and the numerical MFS solutions
for various values of M = N ∈ {8, 16, 32}. From this figure, it can be seen that as M = N
increases, the accuracy of MFS solution increases.

Example 2: Consider the numerical solution of the direct problem 2 given by (6.1), (6.4),
(6.7) and (6.8) using the MFS when

f(x, y, z) = x2 + y2 − 2z2, (x, y, z) ∈ ∂ΩOuter. (6.19)

Note that in this case an analytical solution is not available. The MFS implementation requires
some changes when the two inclusions (6.7) are present but these are straight forward.

Solution: Choosing M = N = 16 results in 45 × 16 = 720 collocation points and 720 source
points. We also take R = 5 and ηI=0.6.

Figure 6.2 illustrates the rapid convergence of the MFS numerical normal derivative on the
external boundary ∂ΩOuter for various M = N = {8, 16, 32, 64}. It is also obvious that the two
peaks are caused by the existence of the two inner rigid inclusions (6.7).

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−5

0

5

10

 

φ/(2π)

(a) 

θ/π
 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−5

0

5

10

 

φ/(2π)

(b) 

θ/π
 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−5

0

5

10

 

φ/(2π)

(c) 

θ/π
 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−5

0

5

10

 

φ/(2π)

(c) 

θ/π
 

Figure 6.2: The MFS outer derivative (∂u/∂n)
MFS
Outer(1, θ, φ), as a function of φ/(2π) and θ/π, for (a)

M = N = 8, (b) M = N = 16, (c) M = N = 32, (d) M = N = 64, when R = 5 and ηI = 0.6.

6.4 The inverse solution in three dimensions

6.4.1 One rigid inclusion (inverse problems 1(a) and 1(b))

Consider a three-dimensional star-shaped object ΩInner centered at the origin in the unit sphere
ΩOuter and parametrised by

ri,j = r(θ̃i, φ̃j), i = 1, (N − 1), j = 1, N, (6.20)
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using the spherical coordinates representation

ΩInner = {r(θ, φ) (sin θ cosφ, sin θ sinφ, cos θ) | φ ∈ [0, 2π), θ ∈ (0, π)}. (6.21)

The boundary potential u is specified as in (6.4) and the current flux ∂u/∂n is obtained
numerically by solving the direct problem in order to provide the current flux data (6.6). After-
wards, the potential and current flux values are corrupted with noise as

wi,j = f(xi,j) + ηi,j , vi,j = g(xi,j) + ζi,j , i = M, 2(M − 1), j = 1,M, (6.22)

where the additive noise variables ηi,j and ζi,j follow independent Gaussian distributions with
zero means and variances σ2

w and σ2
v , respectively.

Based on (6.9), (6.20) and (6.21), the rigid-inclusion condition (6.5) is imposed as

2(N−1)∑

k=1

N∑

l=1

ck,lG
(
ξ
k,l
, ri,j(sin θ̃i cos φ̃j , sin θ̃i sin φ̃j , cos θ̃i)

)
= 0, i = 1, (N − 1), j = 1, N.

(6.23)

Also, (6.4) and (6.6) yield

2(N−1)∑

k=1

N∑

l=1

ck,lG(ξ
k,l
, xi,j) = wi,j , i = M, 2(M − 1), j = 1,M, (6.24)

2(N−1)∑

k=1

N∑

l=1

ck,l
∂G

∂n
(ξ
k,l
, xi,j) = vi,j , i = M, 2(M − 1), j = 1,M. (6.25)

Equations (6.23)-(6.25) create a nonlinear system of (N − 1)×N + 2(M − 1)×M equations
with 3(N − 1)×N unknowns given by the radii r = (ri,j) for i = 1, (M − 1), j = 1, N and the

MFS coefficients c = (ck,l) for k = 1, 2(M − 1), l = 1, N . Although the linearity in c is obvious
in equations (6.24) and (6.25), equation (6.23) clearly shows the nonlinearity between r and c.

The constraint 0 < rij < 1 for i = 1, (N − 1), j = 1, N is imposed to ensure that the inner
star-shaped object remains within the unit sphere during the reconstruction process.

6.4.2 Two rigid inclusions (inverse problem 2)

Now consider two three-dimensional star-shaped objects ΩInner1 and ΩInner2 centered at given
points say, (X0, Y0, Z0) and (X1, Y1, Z1) in the unit sphere ΩOuter and represented by r1 =
(r1
i,j)i=1,(N−1), j=1,N

and r2 = (r2
i,j)i=1,(N−1), j=1,N

, respectively, defined as in (6.20).

Conditions (6.8), (6.4) and (6.6) are

3(N−1)∑

k=1

N∑

l=1

ck,lG
(
ξ
k,l
, ri,j(sin θ̃i cos φ̃j , sin θ̃i sin φ̃j , cos θ̃i)

)
= 0, i = 1, 2(N − 1), j = 1, N.

(6.26)

3(N−1)∑

k=1

N∑

l=1

ck,lG(ξ
k,l
, xi,j) = wi,j , i = (2(M − 1) + 1) , 3(M − 1), j = 1,M, (6.27)
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3(N−1)∑

k=1

N∑

l=1

ck,l
∂G

∂n
(ξ
k,l
, xi,j) = vi,j , i = (2(M − 1) + 1) , 2(M − 1), j = 1,M. (6.28)

Equations (6.26)-(6.28) create a nonlinear system of 2(N −1)×N +2(M −1)×M equations
with 5(N − 1)×N unknowns. We also need to take into account that the distance between the
centres is greater than the sum of the diameters, namely,

S =
√

(X0 −X1)2 + (Y0 − Y1)2 + (Z0 − Z1)2 > diam(ΩInner1) + diam(ΩInner2), (6.29)

where the diameters of ΩInner1 and ΩInner2 are defined as

diam(ΩInneri) = max
x,y∈∂ΩInneri

|x− y|, i = 1, 2. (6.30)

6.4.3 Statistical approach

The solution of the inverse problem (6.23)-(6.25) or (6.26)-(6.28) is obtained using the MCMC,
as described in [1, 4]. Due to the ill-posedness and non-linearity of the ERT inverse problem,
we consider the Bayesian approach which is linked to Markov chain Monte Carlo (MCMC) algo-
rithms to work as a regularization scheme interpreted in terms of prior information. Modelling
the prior information is a very important process in order to obtain reliable conclusions about
the solution.

The main ingredients in the Bayesian statistical framework are the likelihood function and
a prior distribution which describes the model parameters before the data is considered. The
product of the likelihood function and the prior distribution, an application of Bayes theorem,
leads to the posterior distribution (the solution of the inverse problem), see [4] for more details.
In the inverse problem, the model parameters which must be estimated using the potential and
current flux data, are the MFS coefficients c and the radii r. These are high-dimensional param-
eters, for both inverse problems considered in this paper, which make the posterior distribution
complicated to solve numerically using standard methods. This is why the MCMC technique
is used in this paper to estimate the shape and the size of the inner rigid inclusions. Another
advantage of using MCMC is that it also allows deeper understanding of the posterior distribu-
tion in terms of accuracy and reliability, foe example by calculation of credible intervals of the
unknown parameters, [1, 4].

Although the MCMC offers a flexible tool to fully investigate the reliability and quantify
uncertainty of the posterior distribution, it makes intensive use of the forward solver which can
be a drawback especially when three-dimensional ERT problems are being solved. Hence, using
a meshless method, such as the MFS described in the previous subsections, is more advantageous
than using domain or boundary discretisation methods.

The type of MCMC technique which is used here is the Metropolis-Hastings algorithm where
the initial guess of the radii is selected by finding a well-fitting circle for the inner inclusion and
the initial values for the MFS coefficients are chosen to be zero. For more details of similar use
of MCMC see [1, 3, 4].

6.4.4 Numerical results and discussion

Experiment 1. Find the inverse solution of Problem 1(a) satisfying (6.1) and (6.4), with
f = −1, and (6.5) by fitting a star-shaped object model using the data (6.6) from a spherical
inclusion (a) of radius 0.5 centred at (0, 0, 0).

First of all, the current flux ∂u/∂u on the external boundary ∂ΩOuter, is calculated nu-
merically by solving the forward Dirichlet problem (6.1), (6.4) and (6.5) using the MFS with
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(N − 1)N = 35 × 36 = 1260. Then, (6.22) is considered on a set of equally-spaced collocation
points, with (M − 1)M = 13× 14 = 182, on the external fixed boundary ∂ΩOuter. We add noise
to those boundary measurements with a standard deviation σw = σv = 0.01.

We take (N − 1)N = 14 × 15 = 210 which makes the discretised problem (that defined in
(6.23)-(6.25)) under-determined, since it consists of (N−1)N+2(M−1)M = 210+2×182 = 574
equations with 3(N − 1)N = 3× 210 = 630 unknowns. We take ηI = 0.6 and R = 5.

Secondly, the hierarchical structure of the statistical model in [1] is considered. The val-
ues of the hyper-prior parameters of the internal and external MFS coefficients are fixed at
αCI = 0.0116 and αCE = 0.2457, respectively, as well as the hyper-prior parameter value for the
radius at αr = 0.1 (based on previous work [1, 3]).

It can be seen from Table 6.1 that as the number K of MCMC iterations increases, the
three-dimensional reconstruction for the star-shaped model (6.20) become better. This is due
to the average of corresponding estimated radii becoming closer to the true value which is 0.5
and its standard deviation (given in brackets) is much smaller.

Experiment 2. Find the inverse solution of Problem 1(b) by fitting a star-shaped object

K The estimated radius The standard deviation

5 0.4895 0.0153

10 0.4888 0.0103

20 0.4926 0.0178

40 0.4968 0.0094

Table 6.1: The average of the estimated radii with the corresponding standard deviations, for Experiment
1, for various iterations K ∈ {5, 10, 20, 40}.

model using the data from an ellipsoid inclusion of radius given by

r(θ, φ) =
√

(0.5 sin θ cosφ)2 + (0.5 sin θ sinφ)2 + (0.4 cos θ)2, θ ∈ (0, π), φ ∈ [0, 2π). (6.31)

The Dirichlet data (6.4) on ∂ΩOuter is taken as

u(x, y, z) = f(x, y, z) = ex+y, (x, y, z) ∈ ∂ΩOuter. (6.32)

Figure 6.3 shows an excellent three-dimensional reconstruction for the ellipsoid (6.31). The
MCMC algorithm converges to the exact ellipsoid within just a few iterations with a run time,
for K = 80, of about three hours. One way to illustrate that the MCMC works well is to
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Figure 6.3: Star-shaped model reconstruction: The exact inner ellipsoid and the fitted ellipsoids after
K = 80 iterations.

consider the 2-norm values of (rMFS
i,j − rexacti,j ), i = 1, 14, j = 1, 15, as well as the maximum

absolute error values for K ∈ {5, 10, 20, 40, 80}, see Table 6.2. The random fluctuations suggest
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K ||rMFS
i,j − rexacti,j || max |rMFS

i,j − rexacti,j |
5 0.0068 0.0063

10 0.0053 0.0036

20 0.0066 0.0036

40 0.0086 0.0052

80 0.0084 0.0031

160 0.0102 0.0028

320 0.0168 0.0047

Table 6.2: The 2-norm of (rMFS
i,j − rexacti,j ), i = 1, 14, j = 1, 15, and the maximum absolute error, for

Experiment 2, for various K ∈ {5, 10, 20, 40, 80, 160, 320}.

that the MCMC algorithm is in equilibrium and mixing well.
A better way to illustrate the reliability of the MCMC algorithm is to plot, see Figure 6.4,

the object boundary credible intervals for some cross-sections in the xy-plane of the three-
dimensional reconstruction. From this figure, it can be seen that the width of the credible
intervals is very narrow near the top and the bottom of the reconstructed ellipsoid compared to
the ones at the middle due to the data distribution.
Experiment 3. Find the inverse solution of Problem 2 satisfying (6.1), (6.4) with f given by
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Figure 6.4: Credible intervals for various cross-sections (a) θ = π
14 , (b) θ = 3π

14 , (c) θ = 6π
14 , (d) θ = 8π

14 ,
(e) θ = 11π

14 , and (f) θ = 13π
14 and (φ)j=1,15 ∈ [0, 2π), for Experiment 2.

(6.32) and (6.8) by fitting a star-shaped object model using the data (6.6) from two spherical
inclusions (6.7) of radii 0.4 centred at (0, 0.5, 0) and (0,−0.5, 0).

Firstly, the current flux ∂u/∂u is calculated numerically on the external boundary ∂ΩOuter

by solving the forward Dirichlet problem (6.1), (6.4), (6.7) and (6.8) using the MFS with the
same inputs as in Experiment 1. Note that in the inverse problem, by extending the number
of rigid inclusions to two leads to a greater number of equations, 2(N − 1)N + 2(M − 1)M =
2× 210 + 2× 210 = 840 equations with 5(N − 1)N = 5× 210 = 1050 unknowns.

Figure 6.5 shows the credible intervals over some selected cross-sections of the three-dimensional
reconstructions confirming the solution’s reliability.
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6.5 Conclusion

The MFS has been successfully employed in combination with the MCMC to solve the three-
dimensional inverse problem in the continuous model of ERT. The combined method has suc-
cessfully detected three-dimensional star-shaped rigid inclusions (single sphere and ellipsoid, and
two spheres). This was further justified by producing and interpreting cross-sections of credible
intervals for the inner radii. Further work will consider reconstructing rigid inclusions from
voltage measurements resulted from the three-dimensional complete-electrode model of ERT.
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Figure 6.5: Credible intervals for various cross-sections (a) θ = π
14 , (b) θ = 3π

14 , (c) θ = 6π
14 , (d) θ = 8π

14 ,
(e) θ = 11π

14 , and (f) θ = 13π
14 and (φ)j=1,15 ∈ [0, 2π), for Experiment 3.
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Chapter 7

An exponentially convergent
Volterra-Fredholm method for
integro-differential equations
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LS2 9JT

Abstract. Extending the authors’ recent work [15] on the explicit computation of error
bounds for Nyström solvers applied to one-dimensional Fredholm integro-differential equa-
tions (FIDEs), presented herein is a study of the errors incurred by first transforming (as
in, e.g., [21]) the FIDE into a hybrid Volterra-Fredholm integral equation (VFIE). The
VFIE is solved via a novel approach that utilises N -node Gauss-Legendre interpolation and
quadrature for its Volterra and Fredholm components respectively: this results in numerical
solutions whose error converges to zero exponentially with N , the rate of convergence being
confirmed via large-N asymptotics. Not only is the exponential rate inherently far superior
to the algebraic rate achieved in [21], but also it is demonstrated, via diverse test problems,
to improve dramatically on even the exponential rate achieved in [15] via direct Nyström
discretisation of the original FIDE; this improvement is confirmed theoretically.

7.1 Introduction

Although there is a substantial body of literature devoted to the development of methods for
approximating the numerical solution of one-dimensional Fredholm integro-differential equations
(FIDEs), corresponding error analyses, an aspect considered to be a default element in the
exposition of new numerical methods, are relatively scarce. For example, though the independent
studies (in chronological order) [27, 4, 28, 20, 5, 11, 25, 29, 6, 22, 2, 1, 16, 26] present diverse
FIDE-solution techniques of varying degrees of efficiency and (disparate) accuracy, only [20,
29, 22, 1] include a discussion of errors and, in even these cases, error analyses are limited
(see summary in [15, §1]) to estimates of convergence rates: that is, the direct computation of
theoretically predicted error bounds is absent.

The present work is therefore motivated on two fronts: to develop not only a novel numeri-
cal method that converges exponentially in the dimension N of the discrete numerical method,
but also an explicit error analysis that is implementable and yields errors in terms of only the
computed numerical solution. In [15], the authors develop a novel approach for achieving these

53
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two goals, but the method developed therein—based on a combination of numerical quadrature
and numerical differentiation—has a global error dictated by the latter process, which is consid-
erably less accurate than the former. Accordingly, an approach independent of [15] is presently
pursued in which the need for numerical differentiation is circumvented by first transforming the
FIDE (as in, e.g., [21]) into a Volterra-Fredholm integal equation (VFIE); though the solution
of this can be approximated in a number of ways (see, e.g., [18, 12, 10, 7, 24]), a novel approach
is adopted herein.

The remainder of this paper is structured as follows. In §7.2 is presented an FIDE-to-VFIE
conversion approach from [21], in which the VFIE is solved to (only; see below) quadratic order
in the number N of Simpson’s-rule panels used. In §7.3 the VFIE is solved numerically to spectral
order in N , the degree of the highest-order orthogonal polynomial used in the approximation of
the VFIE solution. This approach obviates the need for the numerical differentiation matrices
used in a related paper [15]. In §7.4 is presented a novel error analysis, for the VFIE numer-
ical solution procedure, whose distinctive aspect is computation of the error in the numerical
solution of the original FIDE explicitly in terms of the numerical approximation of the derivate
that results from the VFIE reformulation. In §7.5 numerical results of test problems, some
challenging, are presented that validate to spectral accuracy both the implementation outlined
in §7.3 and the error analysis of §7.4. Brief conclusions are presented in §7.6.

7.2 Conversion from FIDE to VFIE

The canonical form on the normalised interval [−1, 1] of the first-order one-dimensional Fredholm
integro-differential equation (FIDE) for the unknown function u(x) is

u(x)− µ(x)
du

dx
(x)− λ

∫ 1

−1
K(x, y)u(y) dy = f(x) , x ∈ [−1, 1] , (7.1)

in which the source function f : [−1, 1]→ R, the kernel K : [−1, 1]× [−1, 1]→ R and coefficient
function µ : [−1, 1]→ R are prescribed functions of x, y ∈ [−1, 1] and the parameter λ ∈ R is a
constant. By hypothesis, (7.1) is solvable and so u(x) exists. In symbolic form, (7.1) is

u− µD u− λK u = f , (7.2)

where u, f ∈ C ≡ C[−1, 1], the Banach space with supremum norm ||·|| on which the action of
the differential operator D on u is defined by

D u = (D u)(x) ≡ u′(x) ,

wherein a prime denotes differentiation with respect to x. The action in (7.2) of the compact
integral operator K on u is defined by

K u = (K u)(x) ≡
∫ 1

−1
K(x, y)u(y) dy .

The FIDE (7.1) is augmented by the boundary condition (BC)

u(ξ) = ζ, ξ ∈ [−1, 1] , (7.3)

i.e. ζ is a prescribed real constant in the interval containing all Legendre nodes. When the BC
is given for the end-points ξ = ±1, the FIDE can be converted into a Volterra-Fredholm integral
equation (VFIE) following the approach in, e.g., [21]; the details of this conversion for ξ = −1
are as follows. Define the function v(x) by

v(x) ≡ u′(x) , (7.4)
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integration of which, upon using (7.3), yields

u(x) = ζ +

∫ x

−1
v(y) dy , (7.5)

whence the FIDE (7.1) becomes

ζ +

∫ x

−1
v(y) dy − µ(x) v(x)− λ

∫ 1

−1
K(x, y)

(
ζ +

∫ y

−1
v(z) dz

)
dy = f(x) . (7.6)

By the existence of u(x) and (7.5), v(x) is integrable, hence the order of double integration in
the final term on the right-hand side of (7.6) can be exchanged, thereby rendering (7.6) as the
VFIE

v(x) = g(x) +
1

µ(x)

∫ x

−1
v(y) dy − λ

∫ 1

−1
k(x, y) v(y) dy , (7.7)

in which the modified source function g(x) is given by

g(x) =
1

µ(x)

(
ζ − λ ζ

∫ 1

−1
K(x, y) dy − f(x)

)
,

and the modified kernel k(x, y) by

k(x, y) =
1

µ(x)

∫ 1

y
K(x, z) dz . (7.8)

By defining the action of the (Volterra) integral operator V on v ∈ C by

V v = (V v)(x) ≡
∫ x

−1
v(y) dy , (7.9)

and that of the (Fredholm) integral operator F on v ∈ C by

F v = (F v)(x) ≡
∫ 1

−1
k(x, y) v(y) dy , (7.10)

the symbolic form of the VFIE (7.7) corresponding to FIDE (7.2) is

v = g +
V v
µ
− λF v . (7.11)

The FIDE-to-VFIE conversion for the case when the BC is at x = 1 follows analogously by
replacing integrals

∫ x
−1 with

∫ 1
x in (7.5), (7.6), (7.7) and (7.9) and replacing

∫ 1
y with

∫ y
−1 in (7.8).

The original FIDE (7.2) can now be solved via (7.5) and (7.7) without the need for numerical
differentiation. The symbolic equation (7.11) will form the basis of the error analysis in section
§7.4.

7.3 Numerical Solution of the VFIE

Let yj,N , j = 1(1)N be a set of N distinct nodes in [−1, 1] ordered so that −1 ≤ y1,N < y2,N <
. . . < yN−1,N < yN,N ≤ 1, using which the action of the N -node Lagrange-interpolation operator
LN on v ∈ C is defined as

LN v = (LN v)(x) ≡
N∑

j=1

Lj,N(x) v(yj,N) , (7.12)
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wherein the Lagrange basis functions are given by

Lj,N(x) =

N∏

l=1
l 6=j

x− yl,N
yj,N − yl,N

, j = 1(1)N . (7.13)

To approximate the Volterra term in (7.11), define the (Volterra-Lagrange) operator VN ≡ LN V.
Application of the operator V to both sides of the approximate Lagrange interpolation v ≈ LN v
then yields

V v ≈ VN v = (VN v)(x) ≡
N∑

j=1

τj,N(x) v(yj,N) , (7.14)

in which
τj,N(x) = V Lj,N(x) , j = 1(1)N .

To approximate the Fredholm term in (7.11), define the (Fredholm-Gauss) operator FN that
approximates the action of F by the Nyström quadrature

F v ≈ FN v = (FN v)(x) ≡
N∑

j=1

wj,N k(x, yj,N) v(yj,N) , (7.15)

in which wj,N and yj,N are respectively the weights and abscissae of the Gaussian integration
rule. As the weight function in the integral (7.10) for F v is unity, the nodes yj,N can be chosen as
Gauss-Legendre, Legendre-Gauss-Radau or Legendre-Gauss-Lobatto distributions. Via (7.14)
and (7.15), the discrete approximation of VFIE (7.7) is obtained as

vN(x) = g(x) +
N∑

j=1

{
τj,N(x)

µ(x)
− λwj,N k(x, yj,N)

}
vN(yj,N) (7.16)

which, when collocated at nodes x = yi,N , i = 1(1)N , yields the N ×N linear system

(IN −MN) vN = gN . (7.17)

The matrix and vector entries in (7.17) are given by, for i, j = 1(1)N ,

{IN}i,j = δij , {MN}i,j =
τj,N(yi,N)

µ(yi,N)
− λwj,N k(yi,N , yj,N) ,

(7.18)

{vN}i = vN(yi,N) and {gN}i = g(yi,N) ,

wherein δij is the Kronecker delta. Inversion of (7.17) yields the N nodal values vN(yi,N) which,
when substituted into the inversion formula (7.16), give the approximate solution vN(x) of (7.7),
which in symbolic form is

vN = g +
VNvN
µ
− λFNvN . (7.19)

Note that computing vN(x) directly via the inversion formula (7.16) is more accurate [13] than
using Lagrange interpolation (7.12). By (7.5), the exact solutions v and u, of the VFIE and
FIDE respectively, satisfy the symbolic equation

u = ζ + V v , (7.20)

to which application of D to both sides yields D u = DV v, i.e. v = DV v, so that (D)−1 = V.
Additionally, (7.20) implies that there are two cases to consider when recovering the numerical
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solution uN from its derivative vN computed via (7.17)–(7.19). First, if vN(x) is exactly integrable
(case 1) then the approximate numerical solution uN of (7.2) can be computed from vN as

ũN = ζ + V vN . (7.21)

Second, if functions µ(x), K(x, y) and f(x) in IDE (7.1) are such that (7.19) is not exactly
integrable (case 2) then the approximate numerical solution uN of (7.2) must in this case be
computed from vN as

ûN = ζ + VN vN , (7.22)

which yields ûN(x) as a polynomial of degree N in x. Note that this method requires only
(7.17)–(7.18), as vN(x) does not need to be computed via (7.19) since only its nodal values,
given by the solution vector vN of (7.17), are present in the last term in (7.22).

7.4 Error Analysis

A theoretical analysis of the error incurred in computing uN is now presented. Though a basic
consideration of errors appears in the VFIE approach in [21], it not only computes the Volterra
component of the VFIE crudely using Simpson’s rule, but also concerns only convergence rates
of ||v − vN || (NB and not ||u− uN ||) using a known exact solution. By contrast, the present
work computes both Volterra and Fredholm components of the VFIE to spectral accuracy and,
moreover, determines explicit error bounds for ||u− uN || using only the approximate derivative
vN of the numerical solution uN . The error analysis is now presented for cases 1 and 2 given in
(7.21) and (7.22) respectively.

Case 1

Defining the linear operators S and SN as

S ≡ V
µ
− λF and SN ≡

VN
µ
− λFN , (7.23)

the exact solution (7.11) of VFIE (7.7) can be written as

v = g + S v (7.24)

and the numerical solution (7.19) of (7.11) can be written as

vN = g + SN vN . (7.25)

Subtraction of (7.25) from (7.24) yields

v − vN = S v − SN vN = S (v − vN) + (S − SN) vN . (7.26)

Since v = D u and vN = D ũN , (7.26) can be rearranged to yield

(I − S)D (u− ũN) = (S − SN) vN ,

giving an explicit error formula for the exact solution u of the FIDE (7.1) as

u− ũN = (D − S D)−1
(
(S − SN) vN

)
,

yielding the error bound
||u− ũN || ≤ C σN , (7.27)
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where
C =

∣∣∣∣(D − S D)−1
∣∣∣∣ and σN = ||(S − SN) vN || . (7.28)

The term σN can be expressed via (7.25) as

σN = ||S vN − vN + g|| , (7.29)

which demonstrates that the error is proportional to the residual obtained when the numerical
solution vN(x) is inserted into the exact VFIE (7.7). Alternatively, via (7.23), a bound on σN
can be obtained as

σN ≤
||(V − VN) vN ||

||µ||
+ |λ| ||(F − FN) vN || , (7.30)

in which ||(V − VN) vN || is obtained from the definition of VN , which gives

(V − VN) vN(x) = V (I − LN) vN(x) =
V pN(x)

N !
v(N)
N (η) , η ∈ (−1, 1) , (7.31)

wherein pN(x) is the monic polynomial whose roots are the N nodes yi,N , i.e.

pN(x) =
N∏

i=1

(x− yi,N) . (7.32)

Therefore, in (7.31), there results

||(V − VN) vN || ≤ QN

∣∣∣∣v(N)
N

∣∣∣∣ = QN

∣∣∣∣ũ(N + 1)
N

∣∣∣∣ , (7.33)

in which

QN ≡
||V pN(x)||

N !
; (7.34)

moreover, by standard Gaussian quadrature results [19],

||(F − FN) vN || ≤ ψ(ν)
N F2N − ν , (7.35)

in which [15]

ψ(ν)
N ∼

22ν − 1
√
π

N (1− 2ν)/2

( e

4N

)2N

, N →∞ and FM = max
x,y∈[−1,1]

∣∣∣∣
∂M

∂yM
(
k(x, y) vN(y)

)∣∣∣∣ , (7.36)

in which ν corresponds to the number of endpoints included in the distribution, i.e. ν = 0, 1
and 2 for Legendre, Radau and Lobatto nodes respectively. Combining (7.30), (7.33) and (7.35)
yields

σN ≤
QN

∣∣∣∣v(N)
N

∣∣∣∣
||µ||

+ |λ|ψ(ν)
N F2N − ν. (7.37)

With σN in (7.27) bounded by (7.37), the constant C given by (7.28) can be bounded via

C =
∣∣∣∣((I − S)D

)−1
∣∣∣∣ = ||D−1 (I − S)−1|| = ||V (I − S)−1|| ≤||V|| ||(I − S)−1|| , (7.38)

in which, adopting the approach of Atkinson [3, Eqns. (4.1.13)–(4.1.17)], ||V|| is computed as

||V|| = ||V 1|| = max
x∈[−1,1]

|x+ 1| = 2 .

By (7.23), operators S and SN are linear combinations of V, F , VN and FN , for which, by the
definitions of Lagrangian interpolation and Gaussian quadrature respectively, (V−VN) v(x)→ 0
and (F − FN) v(x) → 0 as N → ∞ for all v ∈ C and x ∈ [−1, 1]. That is, SN v is pointwise
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uniformly convergent to S v as N →∞ for all v ∈ C and x ∈ [−1, 1], and hence, by [3, Thm 4.1.2]
and [17, Eq. (4.7.17b)], (I − S)−1 in (7.38) exists and is uniformly bounded by

∣∣∣∣(I − S)−1
∣∣∣∣ ≤ 1 +

∣∣∣∣(I − SN)−1
∣∣∣∣ ||S||

1−||(I − SN)−1|| ||(S − SN)S||
, (7.39)

the denominator of which is positive by construction. The sub-elements on the right-hand side
of (7.39) are computed using the approach in Atkinson [3, Eqns. (4.1.13)–(4.1.17)], which gives
||S|| as

||S|| = ||S 1|| ≡||s|| ,

say, in which s(x) is given by (7.9), (7.10) and (7.23) as

s(x) =
x+ 1

µ(x)
− λ

∫ 1

−1
k(x, y) dy . (7.40)

Similarly, ||(S − SN)S|| in (7.39) is computed as

||(S − SN)S|| = ||(S − SN)S 1|| = ||(S − SN) s||

and ||(I − SN)−1|| as

||(I − SN)−1|| = ||(I − SN)−1 1|| ≡||rN || ,

say, in which rN(x) is the solution of

rN − SN rN = 1 ,

whose left-hand side is of the same form as VFIE (7.25). Consequently, nodal values of rN(x)
are found by solving a linear system with the same matrix as in (7.17), i.e.

(IN −MN) rN = 1 , (7.41)

in which IN and MN are as given in (7.18) and the entries of the vectors rN and 1 are given by

{rN}i = rN(yi,N) and {1}i = 1 , i = 1(1)N .

It is noted that, for the purposes of efficiency, (7.17) and (7.41) can be solved in the partitioned
form

(IN −MN) (vN |rN) = (gN |1) .

Solving (7.41) gives the nodal vector rN , the elements of which are used in the Nyström inversion
formula

rN(x) = 1 +

N∑

j=1

{
τj,N(x)

µ(x)
− λwj,N k(x, yj,N)

}
rN(yj,N) ,

from which ||rN || can be computed directly; similarly, ||s|| can be computed directly from (7.40).
Finally, (7.27), (7.29) and (7.38) give the case-1 theoretical bound

||u− ũN || ≤
2 (1 +||rN || ||s||)

1−||rN || ||(S − SN) s||
||S vN − vN + g|| (7.42)

on the (case-1) error u− ũN that is explicitly computable in terms of only the derivative vN of
the case-1 numerical solution ũN .
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Case 2

Subtraction of (7.22) from (7.21) and addition of u− u = 0 to the resulting left-hand side gives
a bound on the case-2 error as

ũN − u+ u− ûN = (V − VN)vN ⇒||u− ûN || ≤||u− ũN ||+||(V − VN) vN ||

which, by (7.33) and (7.42), yields

||u− ûN || ≤
2 (1 +||rN || ||s||)

1−||rN || ||(S − SN)s||
||S vN − vN + g||+QN

∣∣∣∣v(N)
N

∣∣∣∣ . (7.43)

As the case-2 solution arises when vN(x) is not integrable, the bound (7.43) is not computable as
the operator S contains the Volterra operator V via (7.23). Therefore, the term ||S vN − vN + g||
in (7.43)—defined as σN in (7.29)—must be bounded using (7.37). Similarly, as S s will in
general be uncomputable, a bound (analogous to (7.37)) on ||(S − SN) s|| can be found as

||(S − SN) s|| ≤ QN ||s(N)||
||µ||

+ |λ| ψ(ν)
N S2N − ν ,

in which

SM = max
x,y∈[−1,1]

∣∣∣∣
∂M

∂yM
(
k(x, y) s(y)

)∣∣∣∣ .

Collecting results, the computable case-2 error bound is given by

||u− ûN || ≤
2 (1 +||rN || ||s||)

(
QN

∣∣∣∣v(N)
N

∣∣∣∣+ |λ|||µ||ψ(ν)
N F2N − ν

)

||µ|| −||rN ||
(
QN ||s(N)||+ |λ|||µ||ψ(ν)

N S2N − ν
) +QN

∣∣∣∣v(N)
N

∣∣∣∣ . (7.44)

Computable error bounds (7.42) and (7.44) have now been derived for the general FIDE (7.2).
Asymptotic large-N approximations for QN were obtained in terms of N and ν; the details

are cumbersome and omitted for reasons of space. These approximations explicitly reveal that
the present VFIE approach is of order O(N (ν2 − ν − 7)/2) times more accurate than the direct
FIDE approach, henceforth denoted as “case 0”, used in [15].

7.5 Numerical Results

Using the algebraic manipulator Maple, the methods and bounds derived above were respec-
tively implemented and validated on four test problems, each with known solutions, chosen to
demonstrate the accuracy of the theory on potentially challenging problems. The components
of each test problem are shown in Table 7.1. As the results were qualitatively similar for each
nodal distribution, only the results for the Legendre distribution, for which ν = 0, are presented.

Problem Type Solution u(x) µ(x) Kernel K(x, y) λ

1 Smooth sinx+ x2 secx (x3 − 1) y cos y 1
3

2 Runge 1
1+25x2

1
x−2 (x+ 1)(y2 − 5) −1

2

3 Steep e15x ex ex+y 1

4 Oscillatory cos 12x 1
x5−3x+1

sinx y3 2

Table 7.1: Test problems with solutions of four qualitatively distinct forms. The Runge phe-
nomenon [8, 9], extreme gradient and high-frequency oscillations, in the solutions of problems
2, 3 and 4 respectively, offer well-documented challenges to approximation methods.
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Figure 7.1 shows that, for each test problem, the case-1 errors are lower than the case-2
errors and so, as expected, it is more accurate to integrate the numerical VFIE solution exactly
to obtain the FIDE solution rather than to integrate its Lagrange interpolant. Additionally,
as predicted at the end of Section 7.4, the new case-1 and case-2 errors are smaller in magni-
tude than the case-0 errors incurred in [15], confirming that bypassing the need for numerical
differentiation by converting from FIDE to VFIE form yields a more accurate numerical solution.

Figure 7.1 also reveals that the case-1 error bound is more accurate (by comparison with the
actual computed errors) than the case-2 error bound, particularly for problem 2 in which the
case-2 error bound diverges whilst the true errors converge with increasing N : this divergence,
and the large discrepancy between true case-2 errors and error bounds for the other problems, is
due to the terms

∣∣∣∣v(N)
N

∣∣∣∣ and F2N − ν in the error bound (7.44). Via the mean-value theorem used
to derive (7.31), the truncation parameter η ∈ (−1, 1) that yields the true error (V − VN) vN is
unknown, so v(N)

N (η) must be replaced by
∣∣∣∣v(N)

N

∣∣∣∣, the latter of which may be much greater than
the former. The same argument applies to the Gaussian-quadrature error term (7.35), which
includes the unknown values of x and y in (7.36); as these are unknown, F2N − ν must be computed
by maximising over x, y ∈ [−1, 1], and so the quadrature error may also be over-estimated.

7.6 Conclusions

A novel method for the accurate numerical solution of one-dimensional, first-order Fredholm
integro-differential equations has been developed by first converting the problem into a Volterra-
Fredholm integral equation. The technique has been validated on diverse and challenging test
problems. A novel error analysis has been conducted and validated to yield explicitly computable
(using only the numerical solution) error bounds that predict true computational errors to spec-
tral accuracy. Two independent sub-approaches have been analysed depending upon whether
or not intermediate stages of the novel process admit exact integration. For both cases, errors
are shown theoretically and numerically to be smaller in magnitude than the errors incurred by
a previous approach [15].
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Chapter 8

Application of the Gauss-Chebyshev
quadrature for planar rectangular
cracks

Alexander N. Galybin

The Schmidt Institute of Physics of the Earth
B.Gruzinskaya 10-1, Moscow, Russia

Abstract. This paper presents a modified form of the integral equation in the theory of pla-
nar cracks in space. This form is obtained from the standard form of the integro-differential
equation that is not appropriate for the application of the quadratures of highest order often
used in 2D crack problems. In this study we transform the integro-differential equation to
the singular integral equation over a rectangular domain to unable one to use the Gauss-
Chebyshev quadratures for the discretisation of the integral equation. This is accomplished
by integration by parts, which eliminates the Laplace operator in the integro-differential
equation and produces the Cauchy type kernel in the integrand of the modified equation. As
a consequence one can directly take into account the square root singularity in the sought den-
sity of the displacement discontinuity function and to obtain a two dimensional quadrature
formula rule as the Cartesian product of one-dimensional Gauss-Chebyshev rules. Therefore
the numerical algorithm for the one-dimensional SIE is extended for the two dimensional
SIE without any essential modification of the quadrature formulas. The paper examines the
efficiency of the proposed algorithm by calculation the mode I stress intensity factor along
the crack front for the rectangular cracks and the profiles of crack opening.

8.1 Introduction

Stress intensity factors, SIF, for planar cracks of different shapes can be found in handbooks
[1], [2], where one can also find many references on the original works. It is understood, e.g.
[3], that for the case of arbitrary loads, analytical solutions are available only for penny-shaped
cracks and for elliptical cracks subjected to polynomial loads. Recently Potapenko et al [4]
have reported an effective semi-analytical approach for elliptical cracks under arbitrary loading.
However extension of this technique to the planar crack of a general shape is questionable.
Moreover, the existing approaches are aimed at the calculation of SIF only and do not provide
effective approaches for calculation of crack opening displacements, COD. The latter, however,
is important in some applications, in particular, for studying hydrofracture propagation, which
is a coupled problem of fracture mechanics and fluid dynamics. Although obtaining numerical
solutions do not present essential difficulties, it could be a time-consuming task as in the case
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of hydrofractures. Indeed, in this case the pressure acting inside the crack depends on the crack
opening, therefore modelling of hydrofracture growth requires recalculations of the profiles of
fluid pressures and COD which involves iterations on every time step. Thus, there is a strong
demand to develop fast and accurate numerical methods for finding SIF and COD for arbitrary
loads acting inside the crack of arbitrary shape.

The integro-differential equation for a mode I planar crack can be written in the form [4]

∆xy

∫

Ω

∫
w(x′, y′)dx′dy′

ρ(x− x′, y − y′, 0)
= −4π(1− ν2)

E
p(x, y), (x, y) ∈ Ω (8.1)

Here it is assumed that the planar crack Ω is located on the plane z = 0, the unknown
function w(x, y) presents the displacements parallel to the z -axis (note that COD = 2w), p(x, y)
is the normal pressure acting on the crack surfaces, E is the Young’s modulus and ν is the
Poison’s ratio and the following notations are used

ρ(x, y, z) =
√
x2 + y2 + z2 (8.2)

∆xy =
∂2

∂x2
+

∂2

∂y2
(8.3)

Leonov [5] showed that the two-dimensional Laplace operator can be transferred under the
integral sign, which leads to the following 2D singular integral equation

∫

Ω

∫
w̃(x′, y′)dx′dy′

ρ(x− x′, y − y′, 0)
= −4π(1− ν2)

E
p(x, y), (x, y) ∈ Ω (8.4)

for the determination of the new unknown function

w̃(x, y) = ∆xyw(x, y) (8.5)

The aim of this study is to obtain another singular integral equation, SIE, of the form suitable
for application of the Gauss-Chebyshev quadratures [6] that take into account the square root
singularity of the unknown function near the crack front and, therefore, provide the best possible
accuracy when diverting the integral into the discrete form.

For simplicity we further consider rectangular cracks. It can be mentioned that the hydrofrac-
ture is often considered as the union of rectangular planar cracks [7], thus the case considered
further on has direct application to hydrofracture design provided that certain continuity con-
ditions are introduced for the adjacent rectangles.

8.2 Problem formulation and singular integral equation

Let us consider the configuration depicted in Fig. 8.1 where the domain Ω is rectangular and its
long side is parallel to the x-axis, i.e.

Ω = {(x, y) : |x| < a, |y| < b}, 0 < b ≤ a (8.6)

The crack is loaded by normal load P (x, y) that can be considered as a superposition of internal
and external loads. In this problem the stresses at infinity vanish.

Let us derive a SIE from integro-differential equation (8.1) by using the following relationship

∆xyρ(x, y, z) = ρ−3(x, y, z)− 3zρ−5(x, y, z) (8.7)
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Scheme

x

z

y

a-a

-b

b

z

y

-b

b
PP

b
P=P(x,y)

Figure 8.1: Geometry and loads

On the plane z = 0 the latter term in the right hand side of (8.7) vanishes and (8.1) takes the
following form

b∫

−b

a∫

−a

w(x′, y′) dx′dy′

ρ3(x− x′, y − y′, 0)
= −4π(1− ν2)

E
p(x, y), (x, y) ∈ Ω (8.8)

Taking into account that w(±a, y) = w(x,±b) = 0 and the fact that the crack surface near the
crack front is of ellipsoidal shape one can present the unknown function w(x, y) in the form

w(x, y) =
√
a2 − x2

√
b2 − y2

w0x, y)√
ab

, |x| < a, |y| < b (8.9)

where w0(x, y) is a new unknown dimensionless function continuous in the closed domain.
Evaluating the internal integral in (2.8) by using integration by parts one obtains

a∫

−a

w(x′, y′) dx′

ρ3(x− x′, y − y′, 0)
=

a∫

−a

(y − y′)w′x′(x′, y′) dx′

(x− x′)2ρ(x− x′, y − y′, 0)
(8.10)

Here the non-integral term has vanished due to (8.9). Substitution of (8.10) into (8.8) followed
by changing the order of integration and using integration by parts (taking again (8.9) into
account) results in the following SIE

b∫

−b

a∫

−a

ρ(x− x′, y − y′, 0)w̃x′y′(x
′, y′) dx′dy′

(x− x′)(y − y′)
=

4π(1− ν2)

E
p(x, y), (x, y) ∈ Ω (8.11)

It follows from (8.11) that the new unknown function has square root singularity near the crack
front. On the other hand the kernel of SIE (8.11) has the form of the singular double integral of
the Cauchy type. This fact allows one to use the quadrature formulas of the Gauss-Chebyshev
type for the discretisation of SIE (8.11).

Firstly, let us transform (8.11) to the square domain by introducing dimensionless variables
as follows

x = aϕ, y = bψ, x′ = aϕ′, y′ = bψ′, |ϕ| < 1, |ψ| < 1 (8.12)

Then
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ρ(x− x′, y − y′, 0) = a
√

(ϕ− ϕ′)2 + β2(ψ − ψ′)2 (8.13)

where β = b
a is the aspect ratio. The surface displacement function (8.9) takes the form

w(aϕ, bψ) =
√
ab
√

1− ϕ2
√

1− ψ2w0(ϕ,ψ) (8.14)

Secondly, let us seek the unknown function in SIE (8.11) in the form

w̃xy(aϕ, bψ) =
ω0(ϕ,ψ)√

ab
√

1− ϕ2
√

1− ψ2
(8.15)

Hereafter we consider ω0(ϕ,ψ) as a dimensionless polynomial of the degree n-1 with respect to
both variables.

Now one can present the dimensionless form of SIE (8.11) as follows

1

π
√
β

1∫

−1

1∫

−1

√
(ϕ− ϕ′)2 + β2(ψ − ψ′)2 ω0(ϕ′, ψ′)dϕ′dψ′√

1− ϕ′2
√

1− ψ′2(ϕ− ϕ′)(ψ − ψ′)
= σ(ϕ,ψ), |ϕ| < 1, |ψ| < 1 (8.16)

Here the right had side of (8.11) has been denoted as

σ(ϕ,ψ) =
4(1− ν2)

E
P (aϕ, bψ) (8.17)

It follows from (8.9) that SIEs (8.11) and (8.16) should be complemented by the conditions that
express the absence of normal displacements along the crack front. These can be imposed on
the functions w0(x, y) or ω0(ϕ,ψ). For the latter these conditions assume the following form

1∫

−1

ω0(ϕ′, ψ′)dϕ′√
1− ϕ′2

=

1∫

−1

ω0(ϕ′, ψ′)dψ′√
1− ψ′2

= 0 (8.18)

We further deal with the formulation given by formulas (8.16) and (8.18).

8.3 Numerical approach

8.3.1 System discretisation and its solution

For numerical solution of the system (8.16)-(8.18) we use the Cartesian product of one- di-
mensional Gauss-Chebyshev quadrature rules. Therefore the numerical algorithm for the one-
dimensional SIE is extended to the two-dimensional SIE without any essential modification of
the quadrature formulas. These have the standard form [6] and assume introduction of nodes,
ξk, and collocation points ηj , on (-1,1) as follows

ξk = cos

(
2k − 1

2n
π

)
, ηj = cos

(
j

n
π

)
, k = 1 . . . n, j = 1 . . . n− 1 (8.19)

Application of the Gauss-Chebyshev rule to SIE (8.16) results in

π

n2
√
β

n∑

k=1

n∑

j=1

√
(ξj − ηi)2 + β2(ξk − ηm)2

(ξj − ηi)(ξk − ηm)
Xj,k = σ(ηi, ηm), i,m = 1 . . . n− 1 (8.20)

Here the unknowns Xj,k have been introduced as the values of the sought function at the nodes
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Xj,k = ω0(ξj , ξk), j, k = 1 . . . n (8.21)

The system in (8.20) consists of (n − 1)2 equations while the number of unknowns is n2. In
order to make it consistent one should complement (8.20) by (2n − 1) homogeneous equations
obtained by discretisation of the conditions in (8.18) of the form

n∑

k=1

Xk,j = 0, j = 1 . . . n;
n∑

k=1

Xl,k = 0, l = 1 . . . n− 1 (8.22)

The system (8.20)-(8.22) has dimension n2 × n2, it is solved by a standard procedure built in
MathCAD package.

8.3.2 Calculation of COD

Calculation of COD requires integration of the obtained numerical solution, which can be time
consuming. Therefore we use the following procedure.

Let us seek the unknown function w0 as a polynomial with unknown coefficients cm ,k

w0(ϕ,ψ) =
n−1∑

m=0

n−1∑

k=0

cm,kϕ
kψm (8.23)

Then by substitution of (8.23) into (8.14) followed by differentiation and substitution in (8.15)
one finds the following expression for the sought function ω0(ϕ,ψ)

ω0(ϕ,ψ) =

n−1∑

m=0

n−1∑

k=0

cm,k[kϕ
k−1 − (k + 1)ϕk+1][mψm−1 − (m+ 1)ψm+1] (8.24)

As long as the solution for ω0(ϕ,ψ) is known, this makes it possible to find the unknown
coefficients. This can be accomplished by introducing the matrices X={X j ,k},C={cj ,k} and
M(ϕ) with the coefficients as follows

M(ϕ)j,k+1 = kϕk−1
k − (k + 1)ϕk+1

k , k = 0 . . . n− 2, M(ϕ)j,n = kϕn−2
k , j = 1 . . . n (8.25)

Then the solution of (8.25) can be written in the following matrix form

C = M−1(ξ)
[
M−1(ξ)X

]T
, ξ = (ξ1, . . . ξn) (8.26)

The coefficients of the matrix C being substituted into (8.23) determine the profile of normal
displacements of the crack surfaces. The displacements normalised by the length of the sort side
b can be found from (8.14) and (8.23) in the form

w(aϕ, bψ)

b
=

1√
β

√
1− ϕ2

√
1− ψ2

n−1∑

m=0

n−1∑

k=0

cm,kϕ
kψm (8.27)

The map of (8.27) is shown in Fig. 8.2 for the case β = 1/3 and unit uniform load.
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Figure 8.2: The map of crack opening displacements calculated by (8.27) for aspect ratio β=1/3.

8.3.3 Calculation of SIF

Stress intensity factors can be found from the expressions for crack opening in formulas (8.14),
(8.23) or (8.28). For the sake of comparison they are normalised by the SIF for 2D crack of the
half-length b under uniform load q, which has the form

KI = q
√
πb (8.28)

The normalised mode I SIF along the crack front is proportional to the coefficient at the leading
term in expansion of COD into power series when ϕ or ψ tend to unity. Thus the SIFs KIϕ,
KIψ along the long side, sort side respectively are found as follow

KIϕ(ϕ)

q
√
πb

= 2
√

1− ϕ2w0(ϕ, 1),
KIψ(ψ)

q
√
πb

= 2
√

1− ψ2w0(1, ψ) (8.29)

The profiles of normalised SIFs are shown in Fig. 8.3 for the case of q = 1 and β = 1/3. It is
seen from the figure that the crack profiles along the long side is closed to the value of KI in
(8.28), while the SIF along the sort side are essentially smaller then for plane cracks. The values
reported here have been obtained by using 16 nodes that led to the system of 256 unknowns
which solution (including of COD) required few seconds. The results for calculations have been
quite close to those obtained for n = 8 and n = 32.

In order to obtain the dimensional SIFs one should multiply the normalised ones by KI in
(8.28), which results in

KIϕ(ϕ) = 2q
√

1− ϕ2w0(ϕ, 1)
√
πa, KIψ(ψ) = 2q

√
1− ψ2w0(1, ψ)

√
πb (8.30)

Note that for arbitrary loading the stress q can be considered as a normalisation parameter.
The stress intensity factors for rectangular domains are reported in [1] for the points located

at the middle of the longest side a. They vary in the range from 0.75 to 1 depending on the
aspect ratio. The results of the present study agree with the results from handbook[1]. For
example for the square domain both calculations produce the value for the dimensionless SIF of
about 0.75 of the SIF for a planar crack of the length 2b loaded by the normal stress of the same
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Figure 8.3: Profiles of normalised SIF along short (solid) and long (dashed) sides for aspect ratio
β=1/3.

intensity. Moreover the results in [1] seems to be interpolated by using five points for ratios
b/a = 0, 0.5, 0.2, 0.1, 0, while the present study provides the calculations of SIFs for any given
ratio, which does not require much computational resources.

8.4 Discussion and Conclusions

The efficiency of the algorithm has been verified by calculation the mode I SIF along the crack
front for the rectangular cracks of different aspect ratios (the ratio of the long side of the
rectangular to its short side). It has been found that for uniform normal loads and for β > 3
the SIF along the long side is close to the one for 2D crack of the length equal to the short side,
b. Moreover, not many nodes are required to obtain quite accurate solutions for the cracks with
the aspect ratios between 1 < β < 10. However for β of the order 100 and more, the number
of the nodes in Gauss-Chebyshev quadratures should be increased to obtain accurate SIF along
the short side of the rectangular. For example, for β = 100, eight nodes are enough to calculate
SIF accurately on the long side, while 32 nodes are required to compute the SIF on the short
side with the same accuracy.

It is also shown that the developed approach is capable to handle discontinuous loads, which
is important in modelling of hydraulic fracture propagation.

This study has presented an effective approach for the determination of fracture character-
istics and crack opening for planar rectangular cracks. The method is based on the standard
integro-differential equation to derive the SIE suitable for application of the Gauss-Chebyshev
quadrature rules. This allows one to apply the most effective numerical formulation for solving
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2D SIE, which essentially reduces computational efforts and provides high accuracy.
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Chapter 9

Application of Filon-type methods to
highly oscillatory integrals arising
from the Partition of Unity BEM for
2D wave scattering simulations
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Abstract. The Partition of Unity BEM (PU-BEM) is an enriched numerical method in
which the fundamental wave behaviour is included within the element formulation. With
engineering accuracy in mind, PU-BEM reduces the requirement of 8-10 degrees of freedom
per wavelength (when using conventional BEM) to approximately 2.5 degrees of freedom per
wavelength. However, in order to take full advantage of the consequent reduction in the size
of the system, it is important to develop a method of evaluating the highly oscillatory inte-
grals that arise. Attempts to reduce this expense using numerical steepest descent and/or
coordinate transformations enjoy success in some (simpler) cases, but as yet do not offer a
robust procedure that can be safely used for all boundary integrals. In the current work we
utilise an asymptotic expansion as opposed to the local Taylor expansions relied upon by
conventional quadrature schemes. In particular, we employ the Filon scheme of Iserles and
Nørsett in which we integrate the highly oscillatory component of our integrals analytically
by parts and multiply the results by coefficients of an interpolating polynomial that approx-
imates the non-oscillatory component of our integral. Initial testing on flat elements in the
absence of stationary points demonstrates the ability of this method to reach the required
precision using a small number of computations.

72
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9.1 Introduction

Wave propagation and scattering problems are a rich field of study, in which BEM perfoms
particularly well when compared with FEM. This is largely due to the fact that discretisation
is only required on the boundary rather than having to truncate an entire domain. In the case
of an infinite domain, BEM satisfies the Sommerfield radiation condition at infinity by con-
struction, whereas FEM requires artificial boundary conditions and domain truncation. Further
improvement is achieved by using PU-BEM [2], which provides highly accurate results and re-
quires significantly fewer degrees of freedom than conventional BEM thanks to its plane wave
enrichment. However, this introduces oscillatory behaviour into the integrals which can provide
a challenge for traditional quadrature schemes. This inclusion renders it necessary to investigate
integration schemes developed for this specific purpose.

In order to frame this problem, we begin by presenting the time-harmonic reduction of the wave
equation, the Helmholtz equation

∇2u+ k2u = 0, (9.1)

where the wavenumber k = 2π/λ, in which λ is the wavelength. The unknown potential is u
and ∇2 is the well-known Laplacian operator. Making use of Green’s second identity as in [1]
this potential can be expressed as

u(p)

2
+

∫

Γ

∂G(p, q)

∂n
u(q)dΓq =

∫

Γ

∂u(q)

∂n
G(p, q)dΓq + ui(p), (9.2)

where the boundary Γ is assumed to be smooth, hence the first term in (9.2) is divided by 2.
The points p = (xp, yp) and q = (xq, yq) are the so called ‘source’ and ‘field’ points respectively,
both of which are located on Γ. The vector n is of unit value and is normal to the boundary,
pointing outward. As the focus of this paper remains in two-dimensional space, the Green’s
function G(p, q) is defined

G(p, q) =
i

4
H

(1)
0 (kr), (9.3)

where H
(1)
0 is the Hankel function of the first kind and of order zero. The argument of H

(1)
0

contains the wavenumber and r which is the distance between p and q.

At this point we make the distinction between conventional BEM and PU-BEM. In the the
former, the unknown potential over each element is expressed as

u =

J∑

j=1

Nj(ξ)uj , (9.4)

in which Nj refers to the polynomial shape function (typically Lagrangian), uj are the unknown
nodal potential values and J is the number of nodes in the element. In contrast, PU-BEM
includes an enrichment in the formulation, expressing the unknown potential as a linear combi-
nation of plane waves propagating in different directions, i.e.

u =
J∑

j=1

M∑

m=1

Nj(ξ)Aj,me
ikdj,m·q, (9.5)

where Aj,m are the unknown plane wave amplitudes, dj,m are the direction vectors of the plane
waves, i =

√
−1 and M is the number of planes waves included per node. We obtain the
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integral under investigation by imposing the ‘acoustically rigid’ Neumann boundary condition
in which ∂u/∂n = 0, discretising the boundary into elements, subsequenty parameterising each
element. Hence, when considering a single element, its contribution to the second term of (9.2)
in a PU-BEM setting becomes the integral

I2 = − ik
4

∫ 1

−1
H

(1)
1 (kr)Nj(ξ)e

ikd·q ∂r

∂nq
Jdξ, (9.6)

where H
(1)
1 is the Hankel function of the first kind and of order 1, ξ ∈ (−1, 1) is the parametric

coordinate of the element, and J is the Jacobian. The plane wave enrichment function direction
d can be expressed as (cosφ, sinφ). The focus of this paper is the application of a Filon-type
method to the integral (9.6) for the mid-high frequency range.

9.2 Numerical integration

The most dominant method in FEM and BEM is that of Gaussian quadrature, in which the
panel sizes are not equal (as in the more rudimentary composite rules). The formula for an ‘n’
point Gauss scheme is given by

∫ b

a
f(x)dx ≈ b− a

2

n∑

i=1

wif

(
b− a

2
xi +

a+ b

2

)
, (9.7)

where xi and wi are the abscissas and weights respectively, for i = 1, ..., n. The intention is to
select appropriate xi and wi values in order to create a scheme which is exact when approxi-
mating polynomials of degree 2n − 1 or less. A common theme among traditional quadrature
schemes is the requirement to increase the number of sub-intervals when the integrand becomes
highly oscillatory.

There exist a number of alternatives in the field of asymptotic analysis, such as the asymptotic
expansion which is obtained by repeatedly integrating by parts [5]. This expansion benefits
from increased accuracy as frequency increases but suffers from a drawback that convergence is
not guaranteed for fixed frequency. The method of stationary phase [8] considers the leading
contribution of the integral, located in a window surrounding stationary points in the oscillating
function. Another alternative is the method of steepest descent also in [8], where the path of
integration is deformed into the complex plane, removing the oscillatory behaviour from the
kernel. Before moving on to the focus of this paper (Filon-type methods), it is necessary to
mention some more recent developments. Firstly, the numerical steepest descent in [3] which
applies quadrature methods to integrals arising from the method of steepest descent, and sec-
ondly, the Levin-type methods of [9] where the integrand is reformulated in terms of derivatives,
and the result is approximated. These asymptotic methods essentially suffer inverse drawbacks
when compared with the traditional quadrature schemes in that they require few sample points
but only converge for extremely large frequency. Hence, there is a requirement to investigate
methods which retain the benefits of asymptotic methods but have a controllable error for a
fixed frequency.

The origin of the Filon method [10] dates back to 1928, but is greatly elaborated on by Iserles
in [6] and [7], in which the ideas of Filon are extended to integrals of the form

I =

∫ b

a
f(x)eikg(x)dx, (9.8)
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where f(x) and g(x) are ‘smooth’ functions. There are a variety of Filon-type methods which
have been derived from the original, but the premise remains the same in each; f(x) is ap-
proximated by a polynomial and the oscillatory kernel is multiplied by the coefficients of that
polynomial. This means that the integrand is approximated but then the integral is evaluated
analytically. The main difference between approaches under the the umbrella term of Filon-type
methods lies in the construction of the interpolating polynomial. A versatile method is that of
the Filon-Clenshaw-Curtis (FCC) method [11] where polynomial weights are pre-computed us-
ing the Fast Fourier Transform and the function is sampled at the classic Chebyshev locations.
A benefit of this method is that no derivative information is required and the pre-computed
weights allow applicability to a variety of problems without the requirement of reformulating
and solving a new matrix. In the interest of maximising efficiency, however, the authors opt
for the scheme of Iserles [4], where f(x) is sampled only at the end points of the interval. The
degree of approximating polynomial is increased by providing derivative information rather than
adding extra nodes as in the FCC method. An advantage of this method of construction is that
it targets the end points which are the key locations in evaluating highly oscillatory integrals.

9.3 Application to a PU-BEM integral

In this preliminary work we consider the integration over a single, flat boundary element having
end points (0, 0) and (xe, 0), with midpoint (xm, 0). In order to evaluate (9.6) using the Filon
method, we must approximate the Hankel function with its asymptotic expansion [12] which is
given by

Hv(kr) ∼

(
2

πkr

) 1
2

ei(kr−
1
2
vπ− 1

4
π)
∞∑

s=0

is
as(v)

(kr)s
, as (kr)→∞, (9.9)

with

as =
(4v2 − 12)(4v2 − 32)...(4v2 − (2s− 1)2)

s!8s
, a0(v) = 1. (9.10)

An alternative approximation will be required for when (kr) → 0, but this is not discussed in
the current work. Inserting (9.9) into (9.6) produces

I2 ≈ −
i

4

(
2

π

) 1
2

e−
3iπ
4 J

S∑

s=0

is
as(1)

ks−
1
2

∫ 1

−1
f2(ξ, s)eikg(ξ)dξ, (9.11)

where

f2(ξ, s) =
Nj(ξ)(yq − yp)

rs+
3
2

(9.12)

and
g(ξ) = r + d · q(ξ) =

√
(xm(1 + ξ)− xp)2 + y2

p + xm(1 + ξ) cos(φ). (9.13)

Transforming the coordinate of integration to g, and making use of a Hermite polynomial ap-
proximation of degree M to f2, i.e.

Hs(g) = hs,0 + hs,1g + hs,2g
2 + ...+ hs,Mg

M ≈ fs(ξ(g), s)
dξ

dg
= F2(g, s), (9.14)

subject to the following interpolation conditions:

Hs(a) = F2(a, s) (9.15)

Hs(b) = F2(b, s) (9.16)

H ′s(a) = F ′2(a, s) (9.17)

H ′s(b) = F ′2(b, s), (9.18)
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where a = g(−1), b = g(1), produces the following

I ≈
S∑

s=0

M∑

m=0

hs,m

∫ b

a
gmeikgdg. (9.19)

The integrals in (9.19) are referred to as ‘Filon moments’ and can be evaluated analytically
by parts. Thus, we require only the solution of a small system of equations to determine the
Hermite coefficients hs,m and compute the Filon moments for each value of s.

9.4 Acceptable regions

To achieve ‘engineering accuracy’ in our overall PU-BEM scheme, numerical tests suggest it is
required that the integrals are evaluated to 5 digits of accuracy. Before presenting a numerical
example, it is important to determine the areas in which this is obtainable using the above
scheme. In particular, at certain locations the integrand in I2 will become non-oscillatory or
‘stationary’. At these stationary points, i.e. where g′(ξ) = 0, the overall value of the integral is
largely dictated by the behaviour of the integrand in a window surrounding each point.

Setting g′(ξ) = 0 it is observed that where there is a stationary point xm(1+ξ)−xp = −r cos(φ),
which is reformulated to provide stationary point locations at ξ = ξ∗, where

ξ∗ =
xp ± |yp cot(φ)|

xm
− 1. (9.20)

In the current work, focus is concentrated on cases in the absence of stationary points i.e. g′(ξ) 6=
0 for ξ ∈ (−1, 1), although this still requires locating stationary points in order to determine
the properties of our mapping from ξ 7→ g. We begin by defining xp and yp trigonometrically,
according to Fig. 9.1.

Figure 9.1: Location of source point p and plane wave w.r.t. x-axis.

It can be shown using the definition in (9.20) that when θ = ±φ there is a stationary point at
ξ = 0 and that on either side of this, g(ξ) is either monotonically increasing or decreasing. This
is illustrated in Fig. 9.2 in which φ is fixed, θ is varying from 0 → 2π and r is varying with
respect to the element length xe. The blue regions are those in which we find acceptable error,
and the white regions clearly depict the zones of influence around stationary points.

The symmetry about π that is evident in the figure, combined with the monotonic behaviour
of g(ξ) is important as when mapping ξ 7→ g we must compute dξ/dg and d2ξ/dg2 which differ,
subject to their location with respect to stationary points. The monotonic behaviour on either
side of the stationary point is represented in Fig. 9.3.

A final observation involving stationary point locations is that as either r or k increase, the zone
of influence decreases. This is largely due to the asymptotic approximation of (9.9) becoming
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Figure 9.2: Acceptable error for the case φ = π/2 and k = 500.

Figure 9.3: Monotonic behaviour of g(ξ) for θ varying around an element with some fixed φ.

more valid when its argument increases. This is seen as r/xe becomes larger in Fig. 9.2 but is
also illustrated in Fig. 9.4 by increasing k and observing the narrowing of our ‘unacceptable’
region.

9.5 Numerical example

A simple example is presented to highlight the efficiency of the above method, taking a 3rd
degree polynomial. Consider the case of a flat element lying in y = 0, setting the input variables
(xp = −3, yp = −3, yq = 0, J = 2, φ = π/3) and taking Nj to be the quadratic Lagrangian shape
function

N(ξ) = −1

2
ξ(1− ξ). (9.21)

Table 9.1 compares the time taken in seconds to compute the integral using Filon with competing
techniques: Gauss-Legendre and trapezium rule. Results were obtained using MATLAB on a
64-bit, core i7 desktop.

It is interesting to note from Table 9.1 that as k increases, the Gauss and trapezium methods
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Figure 9.4: Acceptable error for the case φ = π/2 and k = 500 (left), k = 2000 (right).

Filon Gauss Trapezium

k time η time η time η

500 0.032 6.63e− 07 0.051 1.07e− 07 0.733 1.04e− 07

1000 0.035 9.42e− 08 0.079 1.08e− 07 1.412 1.18e− 06

2000 0.034 2.33e− 08 0.138 1.07e− 07 2.787 1.72e− 06

10000 0.033 1.41e− 09 0.594 1.07e− 07 13.792 2.15e− 06

Table 9.1: Solution time in seconds and relative error η.

require more time to maintain their level of accuracy while the Filon approch not only maintains
a shorter run-time but simultaniously increases in accuracy. This accuracy was computed by
comparing with a converged Gauss-Legendre result.

9.6 Conclusions

Preliminary testing has shown the Filon method to perform highly effectively in the ‘accept-
able regions’ which comprise the vast majority of cases, proving it to be a promising inclusion
in a PU-BEM scheme. It retains the desirable properties of asymptotic methods in that the
accuracy increases for higher frequencies but shares the applicability of traditional quadrature
schemes. An important consideration is that when moving into three-dimensional space with
curved elements, the stationary point cases will constitute a larger proportion of the integrals
requiring evaluation. It is therefore necessary to adapt this method to accommodate stationary
points and cases with small r in order to design a robust method.
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A mathematical model of the
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behind moving cells
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Abstract. Chemotaxis is the biological process whereby a cell moves in the direction in
which the concentration of a chemical in the fluid medium surrounding the cell is increasing.
In some cases of chemotaxis, cells secrete the chemical in order to create a concentration
gradient that will attract other nearby cells to form clusters. When the cell secreting the
chemical is stationary the linear diffusion equation can be used to model the concentration
of the chemical as it spreads out into the surrounding fluid medium. However, if the cell is
moving then its motion, and the resulting motion of the surrounding fluid, needs to be taken
into account in any model of how the chemical spreads out.
This paper presents a mathematical model for simulating the concentrations of chemical

secreted into the surrounding fluid medium from a moving cell. The boundary integral
method is used to determine the velocity of the fluid due to the motion of the cell. The
concentration of the chemical in the fluid is modelled by the convection-diffusion equation
where the fluid velocity term is that given by the boundary integral equation. The resulting
differential equation is then solved using the finite element method.

10.1 Introduction

In experimental work in biology it has been widely observed that cells, either singularly or in
small clusters, can move in response to the gradient of chemical in the surrounding fluid medium.
This process is known as chemotaxis. Whilst in some cases the chemical is simply present in the
fluid, in other cases the chemical (in form of proteins) is secreted by a cell in order to signal to
and attract other cells (or clusters of cells) in its immediate vicinity. The paper by Nitta et al
[11], for example, reports on some typical experiments where chemotaxis has been observed due
to the gradient of a chemical which is present in the surrounding fluid.

In much of the existing work, the diffusion-reaction equation has been used to model how the
concentrations of a type of cell change in response to changes in the concentration of a chemical
signal. Such models are often called Keller-Segel models in the literature (see [1, 5, 7, 8] for
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examples of this type of model). However, most of these models only consider the concentrations
of the cells and do not model the motion of the individual cells. Further, as they do not consider
the motion of the individual cells, these models generally do not include the motion of the
surrounding fluid, although the model proposed by [3] does include some effects of the fluid
motion. Models of how an individual cell moves in response to the gradient of a chemical in the
surrounding fluid have also been proposed, see [4] for example.

In the cases where the chemical is secreted by the cells, the process of how the chemical
spreads out through the surrounding fluids has to be taken into account. In recent experimental
work there have been observations of proteins being secreted by cells, as reported in [13, 14, 15]
for example. In these cases the spread of the chemical can be modelled by the linear diffusion
equations as the cells and the surrounding fluid are stationary. However, if the cell is moving
the situation is not so straight-forward as both the motion of the cell and resulting motion of
the surrounding fluid need to be taken into account.

It is noted here that mathematical models of the biological processes by which a cell synthe-
sizes the chemical or protein that it is secreting have also be developed, see [12, 16] for example.
However, such models have not yet been incorporated to the model presented here.

The work in this paper is concerned with modelling how a chemical secreted by a moving
cell spreads into the surrounding fluid. The convection-diffusion equation will be used to model
how the concentration of the chemical evolves over time. For simplicity the process by which
the cell synthesizes the chemical will be modelled using the source term in the governing differ-
ential equation and more sophisticated model of how the cell synthesizes the chemical can be
incorporated later if necessary. As part of the fluid motion model, the cells are assumed to be
rigid bodies as there is experimental evidence that they do not change shape as they move (see
the images in [11] for example). Further, it is assumed that the fluid domain is a thin layer
so that the vertical motion of the fluid and the vertical variation of the concentration of the
chemical can be neglected.The fluid is assumed to be inviscid and incompressible, and the flow
is assumed to be irrotational, so that a potential flow model of a rigid body moving through the
fluid can be used to determine the fluid velocity at any point in the fluid.

10.2 Mathematical model

The concentration c of a chemical spreading through a fluid domain which is moving with velocity
u(x, t) can be modelled using the convection-diffusion equation [10]

∂c(x, t)

∂t
= ∇ · [µ(x, t)∇c(x, t)]−∇ · [c(x, t)u(x, t)] + f(x, t) (10.1)

where µ(x, t) is the diffusion parameter and f(x, t) is a source term. Here the domain Ω of the
differential equation is the whole of the (x, y) plane and is partitioned into two sub-domains, ΩC

which contains the cell and ΩF which contains the fluid exterior to the cell. The values of the
diffusion parameter µ and the fluid velocity term u will depend on which sub-domain x is in.

10.2.1 Calculation of the fluid velocity

Consider the problem of determining the velocity field in the fluid due to the motion of a rigid
cell moving through the fluid. Let Γ denote the boundary of the cell and v denote the velocity
of the cell. As the fluid is assume to be incompressible and inviscid and that the flow is assumed
to be irrotational, the velocity u(x, t) for any x ∈ ΩF can be expressed as the gradient of a
scalar potential φ which satisfies the Laplace equation [9]

∇2φ = 0.
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Assuming that the fluid velocity field tends to zero as the distance from the cell increases,
Green’s theorem can be used to obtain the well known direct boundary integral representation
of the fluid velocity potential [6]

−1

2
φ(x) +

∫

Γ
φ(y)

∂G(x,y)

∂ny
dCy =

∫

Γ
G(x,y)

∂φ(y)

∂ny
dCy (10.2)

where n denotes the unit normal to Γ directed into the fluid domain and

G(x,y) = − 1

2π
ln(|x− y|)

is the free-space Green’s function for Laplaces equation.

Since the velocity of the cell is known, the continuity of normal velocity on the boundary of
each cell gives

∂φ(x)

∂n
= v · n(x) = Jv x ∈ Γ (10.3)

where J is the operator which computes the normal derivative of the potential on the surface of
the cell from its velocity. Substituting (10.3) into (10.2) yields a second kind Fredholm equation
for the velocity potential φ on the boundary of the cell.

Once (10.2) has been solved for the potential φ on the boundary of the cell the velocity at
any point in the fluid can be computed using

u(x) = ∇xφ(x) =

∫

Γ
φ(y)∇x

(
∂G(x,y)

∂ny

)
dCy −

∫

Γ
∇x (G(x,y))

∂φ(y)

∂ny
dCy (10.4)

for x ∈ ΩF .

10.2.2 Modelling the spread of the chemical

As previously stated, the spread of the chemical through both the fluid medium and the cell can
be modelled using equation (10.1). For points x which are in the fluid the diffusion parameter
is µF and the velocity term u is given by (10.4). For points which are in the cell the diffusion
parameter is µC and the velocity term u is taken to be the same as the velocity of the cell v.

Here the finite element method will be used to solve (10.1), although this means that the
infinite domain Ω of the differential equation is replaced by a finite sized approximate domain Ωa

and a suitable boundary condition has to be applied to the artificial outer boundary. However,
truncating the domain should not present any major problems provided that the approximate
outer boundary is chosen to be far enough away so that the chemical signal does not change
significantly from its initial value for points close to the outer boundary. Here the boundary
condition

[µ(x, t)∇c̃(x, t)− c̃(x, t)u(x, t)] · n = 0

has been used for simplicity as it avoids the need to calculate any additional finite element
boundary terms on the external boundary.

Another potential problem is the motion of the cell. If the finite element mesh is partitioned
in to separate parts for ΩF and ΩC , then the domain would need to be re-meshed at every
time-step and the concentrations interpolated to the new nodes. The alternative is to effectively
superimpose the boundary of the cell on top of the finite element mesh and simply use different
parameters in the calculation of the stiffness matrix depending on whether a point is in the fluid
or in the cell. However, this does mean that for some elements the diffusion parameter and
velocity terms will not be continuous over the element.
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If c is used to denote the vector of the value of the concentration at the finite element nodes,
and an over-dot is used to represent differentiation with respect to time, applying the finite
element method to (10.1) yields [17]

M ċ = K(t)c + f(t) (10.5)

where

Mij =

∫

Ωa

ψi(x)ψj(x) dx

Kij(t) = −
∫

Ωa

[µ(x, t)∇ψj(x)− ψj(x)u(x, t)] · ∇ψi(x) dx

fi(t) =

∫

Ωa

f(x, t)ψi(x) dx

and {ψ1, ψ2, . . . , ψm} are the finite element basis functions.

10.2.3 Modelling the production of the chemical by the cell

Mathematical models of how a biological cell produces chemicals and/or proteins is an active
areas of research [12, 16]. The most sophisticated models simulate the processes that take place
inside cells that enable them to produce the chemical signal. However, such detailed processes
are not required for the work presented here and it is assumed that the production of the chemical
inside the cell can be represented by the source term f(x, t) in (10.1). In the results presented
in Section 10.3 the source term function

f(x, t) =





R

2

(
1− cos

(
2πt

T

))
x ∈ ΩC and 0 ≤ t ≤ T

0 otherwise

, (10.6)

has been used, where R is the rate at which the cell is producing the chemical and T is the time
interval over which it is produces the chemical.

10.2.4 Time integration scheme

Let r denote the position vector of a reference point for the location of the cell. In the cases
considered here the reference point will be the centroid of the cell. If subscripts are used to
denote the time-step at which a quantity has been calculated, the time-stepping algorithm used
here is as follows:

1. Calculate the location of the cells reference point at the new time-step using

rn+1 = rn + hv

where h is the length of the time-step. As this is a potential flow model with just one
rigid cell there are no hydrodynamic or external forces acting on the cell so its velocity
does not change. However, if there is more than one cell then the hydrodynamic forces
and acceleration of the cells needs to be taken into account.

2. Use the location of the reference point to determine the locations of the boundary elements
and then use the boundary integral equation (10.2) with the boundary condition given by
(10.3) to calculate the velocity potential. Here the Galerkin boundary element method
with linear elements was used to calculate the results presented in Section 10.3.
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3. Calculate Kn+1, the finite element stiffness matrix at the new time-step, using either (10.4)
to calculate u for x ∈ ΩF or u = v for x ∈ ΩC . Also calculate the vector fn+1 from the
source term (10.6).

4. Calculate the concentrations of the chemical at the new time-step by solving [2]

(2M − hKn+1) cn+1 = (2M + hKn) cn + h (fn + fn+1) . (10.7)

where Kn and fn from the previous time-step are reused.

5. Repeat for the next time-step.

10.3 Numerical results

The results presented in this paper were calculated using the different finite element meshes
described in Table 10.1. For each mesh the approximate domain Ωa was the square −11 ≤
x, y ≤ 11. For all of the results presented here the values µF = 0.05 and µC = 0.1 were used.

Mesh Number of Nodes Number of Elements

A 7,921 15,488
B 31,329 61,952
C 124,609 247,808
D 497,025 991,232

Table 10.1: Details of the finite element meshes used.

The first example is a circular cell of radius 1 unit moving horizontally from left to right (so
vx = 1 and vy = 0). The values R = 1 and T = 1 were used in the source term given by (10.6)
and 20 boundary elements were used to calculate the fluid velocity potential at each time-step.
The maximum value of the concentration at nodes close to the outer edge of the finite element
mesh was less than 6× 10−10 which is of the order of the level of precision used in the iterative
method used to solve the linear system (10.7). This demonstrates that it is reasonable to use the
approximate domain Ωa for solving this problem as by the end of the calculations the chemical
has not had time to spread to the outer edge of the finite element mesh.

Figure 10.1 shows the norm of the difference in the concentrations calculated using meshes A,
B and C are compared to the concentrations calculated using mesh D. The results presented in
this graph show that the finite element method is converging as the mesh is refined. Figure 10.2
shows the norm of the difference in the concentrations when using different boundary element
meshes to calculate the fluid velocity potential with finite element mesh B. Here the values of
the concentration are compared to those where the fluid velocity potential has been calculated
using an exact dipole approach. As expected, refining the boundary element mesh leads to a
smaller difference between the concentrations calculated using the boundary element method
and those calculated using the dipole method.

Figure 10.3 shows the chemical concentrations for the circular cell calculated using mesh D
and 20 boundary elements for the fluid velocity potential, showing that the cell leaves a trail of
the chemical as it moves through the fluid.

Figure 10.4 shows the chemical concentrations secreted by a moving cell which is not circular
calculated using finite element mesh D. The radius of the circular end-caps of the cell were 1
unit and the length of the straight sides were also 1 unit. The velocity of this cell was vx = 1 and
vy = 0 and the values R = 1 and T = 1 were used in the source term (10.6). The fluid velocity
potential for this cell was computed using 82 boundary elements. The results again show that
the cell leaves a trail of the chemical as it moves through the fluid. The concentrations in the
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Figure 10.1: The differences in the concentrations obtained using finite element meshes A, B
and C when compared to the concentrations obtained using mesh D.

Figure 10.2: The differences in the concentrations obtained using linear boundary element
meshes with 20 and 40 when compared to the concentrations obtained a dipole model of the
fluid velocity potential.

trail are higher for this non-circular cell as the area of the this cell is larger than the area of
the circular cell meaning that overall it synthesizes more of the chemical over the same period
of time.

10.4 Conclusions

The results in this paper show that using the finite element finite method to solve convection-
diffusion equation where the boundary integral method is used to determine the motion of the
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Figure 10.3: The concentrations of the a chemical secreted by moving circular cell at times t = 0
(top left), t = 1 (top right), t = 2 (middle left), t = 3 (middle right), t = 4 (bottom left) and
t = 5 (bottom right).

fluid is an accurate method for modelling how a chemical secreted from a moving cell spreads out
into the surrounding fluid medium. In particular, the model shows how a cell can leave a trail of
the chemical in its wake as it moves through the fluid. The use of the boundary integral method
for the determining the velocity of the fluid means that the model can be used to simulate the
secretions from a cell which is not circular in shape.

This model is a partial development of a full simulation of how a cell, or group of cells, move
due to chemotaxis where a chemical is secreted by one cell in order to signal to other nearby
cells. However, an effective mathematical model of how a cell senses the chemical signal (and/or
the gradient of the signal) and moves in response to that signal needs to be developed. A model,
such as the one proposed by Elliott et al [4], where the cell moves by changing shape could be
used. However, there is some experimental evidence that the cells essentially move a rigid bodies
and it may be possible to devise a less complicated model of how a cell moves in response to the
chemical signal.
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Figure 10.4: The concentrations of the a chemical secreted by moving cells at times t = 0 (top
left), t = 1 (top right), t = 2 (middle left), t = 3 (middle right), t = 4 (bottom left) and t = 5
(bottom right).

The fluid mechanics model would also need to be modified for cases where there is more than
one cell. For a single isolated cell moving through a fluid with a simple potential flow model, it
is well known that there are no hydrodynamic forces on the cell. However, if there is more than
one cell it is possible for the motion of one cell to cause a pressure force on a second cell, and
vice versa.
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Abstract. The solution of integral equations is a necessary step in many methods for solv-
ing inverse scattering problems, not least the Point Source Method of Potthast (IMA J. Appl.
Math. 61, 119-140, 1998), which has recently been modified and developed (Proceedings of
IoA: Acoustics 2016. 38(1), 306-316, 2016) to apply to inverse scattering in waveguides.
This involves the solution by Tikhonov regularisation of an ill-posed, first-kind Fredholm
equation whose kernel is the Green’s function for a uniform sound hard waveguide with no
obstruction.
For numerical implementation purposes, discretisation of this integral equation is required,

and we propose and implement a Nyström-type method. We show that this can be inter-
preted as a semi-discrete variant of the PSM in a waveguide, and that many of the conver-
gence theorems from the analysis of the continuous version of the PSM in a waveguide can
be carried over to this semi-discrete form.

11.1 Introduction

We consider the inverse scattering problem of detection and characterisation of obstructions in
waveguides, with the application in mind of sewer pipe inspection by acoustic means. There
has been considerable recent interest [1, 7] in acoustic methods as a cost effective alternative to
CCTV, the methods of [1, 7] employing clever heuristic signal processing and pattern matching
techniques. A popular algorithm in inverse scattering, the so-called Linear Sampling Method
(LSM), has also been employed in a waveguide configuration, [2, 6] providing 3D computational
experiments for acoustic detection of the position and shape of an obstacle within a waveguide.
These numerical experiments are somewhat encouraging, demonstrating very accurate recon-
structions of the position and shape of a number of obstacles. However, the method fails in the
simplest case where there is a complete blockage of the pipe. Additionally, the number of acous-
tic measurements required (many microphone positions and many acoustic source positions)
makes the method much less attractive than the more heuristic methods of [1, 7].

89
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Another well-known inverse scattering algorithm, the Point Source Method (PSM) [8, 9] has
also been adapted [3, 4] for a two-dimensional waveguide configuration, notable advantages of
this method over the LSM being the reduced number of measurements required (many micro-
phone positions but only a single source position), and the successful detection of the obstruction
in the complete blockage case. In this paper we look in more detail at the PSM for a waveg-
uide, and in particular at the ill-posed, first-kind integral equation the method requires us to
solve. We consider a discrete version of the PSM with finite measurement data and show some
theoretical results analogous to the analysis of the PSM at the continuous level. We also show
that this can be interpreted instead as an application of the Nyström method, using the com-
posite midpoint rule, to the original continuous integral equation. We present some results from
numerical simulations, for a single time-harmonic point source and 15 remote measurements,
showing accuracy of the method.

11.2 Inverse Scattering in Waveguides

Assume a time-harmonic acoustic source (e−iωt time dependence) at some point z in a two-
dimensional waveguide of width L > 0. Assume further the waveguide contains a sound-soft
scattering object Γ and let D denote the domain of propagation given that the point source is
located at z, that is, D is the connected component of the waveguide exterior to Γ that contains
z. We focus specifically on the case where Neumann (sound-hard) conditions hold on the walls
of the waveguide ∂D := D ∩ {y : y2 = 0 or L} (as usual, D denotes the closure of D).

Where c is the sound speed, let k = ω/c denote the wavenumber. The complex acoustic
pressure field satisfies the Helmholtz equation

∆u+ k2u = −δz in D, (11.1)

where δz is a Dirac delta function supported at z, and the Dirichlet condition

u = 0 on Γ.

Vertical propagation of the acoustic field is restricted by the walls of the waveguide, explicitly

∂u

∂n
= 0 on ∂D, (11.2)

whereas horizontal propagation out to infinity is governed by the standard waveguide partial
radiation conditions, the requirement that, for some constants a− < a+, it holds that

u(x) =

∞∑

n=0

C−n e
−iβnx1 cos(αnx2), x = (x1, x2) ∈ D̄, x1 ≤ a−, (11.3)

u(x) =
∞∑

n=0

C+
n e

iβnx1 cos(αnx2), x ∈ D̄, x1 ≥ a+. (11.4)

Here
αn :=

nπ

L
,

βn :=

{ √
k2 − α2

n, if αn ≤ k,

i
√
α2
n − k2, otherwise,

and C±n are complex constants. Throughout we impose the condition that the wavenumber k
lies in the set

RL := R+ \
{nπ
L

: n ∈ Z
}
, (11.5)
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Figure 11.1: The inverse scattering problem in a two-dimensional waveguide.

since the solution to this problem, even in the absence of an obstacle, blows up as k approaches
this set. Note that k ∈ RL if and only if βn 6= 0, for all n ∈ Z.

Let ΦL
k be defined by

ΦL
k (x, z) :=

∞∑

n=0

cn
βn

eiβn|x1−z1| cos(αnx2), (11.6)

where

c0 :=
i

2L
, cn :=

i

L
cos(αnz2), n = 1, 2, ..

ΦL
k (·, z) is the Neumann Green’s function for the waveguide, i.e. the total acoustic field due to

a point source excitation at z when the waveguide contains no obstruction. We note that (11.5)
ensures that (11.6) is well defined.

Let

γ := {(p, x2) : 0 ≤ x2 ≤ L}, (11.7)

for some p ∈ R, denote a vertical cross-section of the waveguide, along which we measure the
acoustic field. We assume the measurement line γ, like the point source z, lies to the left of the
scattering object Γ, as in Figure 11.1. The inverse scattering problem we then consider is the
following:

Given a sound-soft bounded object or blockage Γ ⊂ D and noisy measurements of the total field
GL,δk (x, z) for x ∈ γ, and a single source position z ∈ D \ γ, determine the location of Γ.

Here δ > 0 is the noise level and it holds that the L2 norm of the error in the measured data,

∥∥∥GL,δk (·, z)−GLk (·, z)
∥∥∥
L2(γ)

≤ δ. (11.8)

To solve this inverse scattering problem, we employ an adaptation to waveguides [3, 4] of the
point source method for scattering by obstacles in free space proposed by [8, 9]. This method
initially reconstructs the total field GLk (x∗, z), at locations x∗ in the domain. This reconstruction
is given by

GL,α,δk (x∗, z) := ΦL
k (x∗, z) +

∫

γ

[
GL,δk (y, z)− ΦL

k (y, z)
]
φαx∗(y) ds(y), (11.9)

where GL,δk (y, z) for y ∈ γ is the (known, noisy) measured data, and φαx∗ is the solution of a first
kind integral equation regularised with regularisation parameter α > 0. It is shown in [3, 4] why
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Figure 11.2: The setup required for the application of the Point Source method in a waveguide.

(11.9) is an appropriate approximation, and proven that, at least for some locations x∗ in the
waveguide, (11.9) converges to the true total field as α, δ → 0.

For x∗ ∈ D and ζ > 0, let
q := x∗1 + ζ,

and let Γx∗ denote the finite vertical line

Γx∗ = {(x∗1 + ζ, x2) : 0 < x2 < L}

as in figure 11.2.
The function φαx∗ is defined as an approximate solution of the integral equation

∫

γ
ΦL
k (x, y)φx∗(y) ds(y) = ΦL

k (x, x∗), x ∈ Γx∗ . (11.10)

In operator form (11.10) is given by
Kφx∗ = g (11.11)

where g(x) = ΦL
k (x, x∗) and the integral operator K : L2(γ)→ L2(Γx∗) is defined by

Kψ(x) =

∫

γ
ΦL
k (x, y)ψ(y) ds(y), x ∈ Γx∗ . (11.12)

The equation (11.11) has no exact solution, but can be solved approximately to arbitrary accu-
racy since the operator K has dense range [3, 4]. To do this we employ Tikhonov regularisation,
calculating φαx∗ ∈ L2(γ) as the unique solution of

αφαx∗ +K∗Kφαx∗ = K∗g, (11.13)

where K∗ denotes the adjoint of K. We have shown previously the following [4, 3]

Theorem 1. Suppose for all y = (y1, y2) ∈ Γ,

y1 > x∗1 + ζ,

and let GL,α,δk be the approximation for the total field defined by (11.9). Then there exists a
constant C, independent of δ and α, such that

∣∣∣GL,α,δk (x∗, z)−GLk (x∗, z)
∣∣∣ ≤ C ‖Kφαx∗ − g‖L2(Γx∗ ) +

δ√
α
‖g‖L2(Γx∗ ) .
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Further, if we choose α = α(δ) such that

α(δ)→ 0 and
δ2

α(δ)
→ 0, as δ → 0,

then ∣∣∣GL,α,δk (x∗, z)−GLk (x∗, z)
∣∣∣→ 0,

as δ → 0.

11.3 A Point Source Method with finite measurement data

In this section we discuss the main concern of this paper, namely a discrete version of the PSM
in a waveguide, requiring only finite measurements. We shall see this can be interpreted as a
Nyström method approximation, using the composite midpoint rule, to the integral equation
(11.11). We initially consider the semi-discrete operator KM : CM → L2(Γx∗) defined by

KMψ(x) :=
L

M

M∑

j=1

ΦL
k (x, yj)ψj , x ∈ Γx∗ , (11.14)

where yj = (p, (j − 1/2)L/M) ∈ γ, j = 1, ..,M, are discrete measurement points and ψ =
(ψ1, .., ψM )T ∈ CM . By definition, for ψ ∈ L2(Γx∗), K

∗
M : L2(Γx∗)→ CM is given by

(K∗Mψ)i =
L

M

∫

Γx∗
ΦL
k (x, yi)ψ(x)ds(x), i = 1, ..,M,

so K∗MKM : CM → CM , is given by

(K∗MKMψ)i =

(
L

M

)2 M∑

j=1

[∫

Γx∗
ΦL
k (x, yi)Φ

L
k (x, yj)ds(x)

]
ψj ,

=

(
L

M

)2 M∑

j=1

a(yi, yj)ψj , i = 1, ..,M,

where

a(x, y) :=

∫

Γx∗
ΦL
k (z, x)ΦL

k (z, y)ds(z), x, y ∈ γ̄.

Further,

(K∗Mg)i =
L

M

∫

Γx∗
ΦL
k (x, yi)g(x)ds(x) =

L

M
(K∗g) (yi) .

The discrete PSM approximation to the total field is then given by

GL,α1,δ,M
k (x∗, z) := ΦL

k (x∗, z)

+
L

M

M∑

j=1

[
GL,δk (z, yj)− ΦL

k (z, yj)
] (
φα1
x∗,M

)
j
, (11.15)

where φα1
x∗,M is the approximate solution of KMφ

α1
x∗,M = g. Precisely, we find

φα1
x∗,M ∈ CM as the solution of

(α1IM +K∗MKM )φα1
x∗,M = K∗Mg, (11.16)



94 CHAPTER 11. INVERSE SCATTERING IN WAVEGUIDES

for some α1 ≥ 0. That is, to solve the linear system

α1

(
φα1
x∗,M

)
i
+

(
L

M

)2 M∑

j=1

a(yi, yj)
(
φα1
x∗,M

)
j

=
L

M
(K∗g) (yi) , i = 1, ..,M. (11.17)

Remark 1. We have introduced the above scheme (11.16) as a discrete version of the PSM in a
waveguide. It does, however, have another interpretation. The linear system (11.17) is precisely
the same linear system obtained applying the Nyström method [5] to (11.13) using the composite
midpoint rule, provided

α1 =
L

M
α.

We claim the following regarding the semi-discrete operator KM .

Lemma 1. For every positive integer M , the semi-discrete operator KM as defined by (11.14)
is injective.

Corollary 1. For every positive integer M and for every α1 ≥ 0, equation (11.16) has exactly
one solution φα1

x∗,M ∈ CM , and this solution is the (unique) minimiser of

α2
1

∥∥∥φα1
x∗,M

∥∥∥
2

2
+
∥∥∥KMφ

α1
x∗,M − g

∥∥∥
2

L2(Γx∗ )

Unlike the continuous operator K defined by (11.12), KM : CM → L2(Γx∗) does not have
dense range, the range of KM is of dimension M . It is clear, however, that

min
φ∈CM

‖KMφ− g‖L2(Γx∗ ) → 0,

as M → ∞. This follows from the fact that K : L2(γ) → L2(Γx∗) has dense range, C∞(γ̄) is
dense in L2(γ), and that for every φ ∈ C∞[0, L],

∣∣∣Kφ(x)−KMφ
(M)(x)

∣∣∣→ 0,

as M → ∞, uniformly for x ∈ Γx∗ where φ(M) = (φ(y1), .., φ(yM ))T . Using these observations
we can prove the following theorem analogous to Theorem 1.

Theorem 2. Suppose for all y = (y1, y2) ∈ Γ,

y1 > x∗1 + ζ,

and let GL,α1,δ,M
k be the approximation for the total field defined by (11.15). Then there exists a

constant C, independent of δ, α1 and M , such that
∣∣∣GL,α1,δ,M

k (x∗, z)−GLk (x∗, z)
∣∣∣ ≤ C

∥∥∥KMφ
α1
x∗,M − g

∥∥∥
L2(Γx∗ )

+
δ
√
α1
‖g‖L2(Γx∗ ) .

Further, if we choose α1 = α1(δ) and M = M(δ) such that

α1(δ)→ 0, M(δ)→∞ and
δ2

α1(δ)
→ 0, as δ → 0,

then ∣∣∣GL,α1,δ
k (x∗, z)−GLk (x∗, z)

∣∣∣→ 0,

as δ → 0.
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11.4 Numerical Implementation

In this section we shall look at the numerical implementation of the method and provide results
for scattering in a waveguide for a selection of scattering objects. Equation (11.16) is a discrete
Nyström method approximation to (11.13) (equivalently, see Remark 1, a discrete version of
the PSM in a waveguide), but arguably not fully discrete as the computation of the action of
K∗MKM requires computations of the function a(x, y). To obtain a fully discrete scheme we
approximate a by aN , the composite midpoint rule approximation using N points, namely

aN (x, y) :=
L

N

N∑

l=1

ΦL
k (zl, x)ΦL

k (zl, y), x, y ∈ γ̄,

where zj = (x∗1 + ζ, (j− 1/2)L/N), j = 1, .., N. We approximate the right hand side, K∗g by bN ,
the (same) composite midpoint rule approximation using N points, defined by and

bN (x) :=
L

N

N∑

l=1

ΦL
k (zl, x)g(zl).

Putting these approximations into the linear system (11.17), we obtain an equation for a fully
discrete approximation φα1

x∗,M,N ,

α1

(
φα1
x∗,M,N

)
i
+

(
L

M

)2 L

N

M∑

j=1

N∑

l=1

ΦL
k (zl, yi)Φ

L
k (zl, yj)

(
φα1
x∗,M,N

)
j

=
L

M

L

N

N∑

l=1

ΦL
k (zl, yi)g(zl), i = 1, ..,M. (11.18)

For the numerical results presented in this paper, φα1
x∗,M,N ∈ CM has been computed as the

solution of (11.18) with

α1 =
L3

M
cδp,

where c = 2.4 × 10−6 and p = 2/3. The approximation to the total field in the waveguide is
then calculated as

GL,α,δ,Mk (x∗, z) = ΦL
k (x∗, z) +

L

M

M∑

j=1

[
GL,δk (z, yj)− ΦL

k (z, yj)
] (
φα1
x∗,M,N

)
j
.

The “measured (noisy) data” GL,δk (z, y) for y ∈ γ, is computed as the exact solution (or an ap-
proximation using a boundary element method) of the direct scattering problem, with synthetic
noise with normal distribution added independently to each measurement such that the bound
(11.8) is satisfied.

The point source is taken to be located at (z1, 2L/3) with z1 = −10, where the waveguide
occupies the space R× [0, L] with L = 3. The wavenumbers considered are

kj :=
(j − 1/2)π

L
, for j = 1, 2, .., 10,

the geometry allowing for up to j propagating modes at wavenumber kj . The measurement
line γ is located at z1 + L/3 and fifteen measurement positions are considered, specifically
(z1 +L/3, tj := (j − 1/2)L/M), where M = 15. The vertical line Γx∗ is located at x∗1 + ζ where
ζ = L/30, and this is split into N = 15 points.



96 CHAPTER 11. INVERSE SCATTERING IN WAVEGUIDES

Figure 11.3: Results for a vertical screen example. The exact solution is known in this case and
compared to our reconstructions. The object location is determined based on the sum of the
reconstructions for 1 to 10 propagating modes.

Figure 11.4: Results for 3 slanted screens. We note the inaccuracy to the right of x1 = −0.1 is
anticipated by the theory, since we require y1 > x∗1 + ζ for all y = (y1, y2) ∈ Γ.
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Figure 11.5: Results for a semicircle example. We see equally accurate results in this case of a
bounded object contained within the waveguide as with the cases of fully blocked waveguides.

For our inital numerical simulations, we assume a vertical, flat, sound-soft screen is blocking
the waveguide completely. Although arguable the simplest example, this is a setup in which
the LSM mentioned previously fails. Figure 11.3 shows the exact and reconstructed values of
the total field with a vertical screen at x1 = 0 where the noise level δ = 10%. The difference
between these fields is also shown, with results for wavenumber k3 (up to 3 propagating modes)
shown on the left, and wavenumber k5 (up to 5 propagating modes) on the right hand side.

We also consider a slanted screen, results for a slope of 1/3, 2/3 and 1 are presented in Figure
11.4, again with wavenumber k3 and noise level δ = 10%. A boundary element method with 100
boundary elements has been implemented to compute an approximation to the solution of the
direct problem (the “measured” values). The condition of the scattering object Γ being fully
contained to the right of Γx∗ is not satisfied for all locations x∗ in this case, and the accuracy of
the reconstruction is affected.

To determine the location of the scattering object, we compute the summation of the recon-
structed fields over the ten wavenumbers ki, i − 1, .., 10, and (recalling the Dirichlet boundary
condition on Γ) search for locations where this summation of reconstructions is small. In Figure
11.3 and Figure 11.4 a so-called row by row method has been employed, plotting the location of
the minimum value on each row in the waveguide.

The final set of examples presented here are for a semicircle scatterer. Here again a boundary
element method with 100 boundary elements is used to solve the direct scattering problem.
In Figure 11.5 synthetic noise has then been added, this time with δ = 20%. Results for
wavenumber k3 and k5 are given, and the summation over all ten wavenumbers k1, .., k10 used
to predict the location of the scattering object. In this case where the scattering object does
not reside on every row of the waveguide, the location is computed as the positions where the
reconstruction takes a value within the smallest x% of all the reconstructed values, and in Figure
11.5 we show these locations in the cases where x = 5% (on the left) and x = 10% (on the right).
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11.5 Conclusions

We have considered a discrete PSM in a waveguide using finite measurement data and shown
how several of the convergence theorems from the continuous level can be carried through to
this discrete variant. We have also seen this gives rise to a linear system which is identical to the
system obtained through application of the Nyström method, using the composite midpoint rule,
to the original integral equation from the continuous PSM in a waveguide, with the regularisation
parameters linked in a specific way. The theory provided shows our discrete PSM approximation
to the total field tends to the actual value of the total field as the noise level decreases, provided
the Tikhonov regularisation parameter is chosen in a specific way, and provided the scattering
object lies to the right of the line Γx∗ . The numerical results provided illustrate this, and in
Figure 11.4 and Figure 11.5 we see the difficulties arising with detecting obstructions that are
not completely contained to the right of Γx∗ .

Further work is currently being undertaken to adapt the shape of Γx∗ so that the above con-
dition on the geometry is satisfied for more points x∗ ∈ D. Adaptation to the three-dimensional
case, and consideration of different boundary conditions on the scattering object, are also areas
of interest to progress this method further.
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Chapter 12

Coupling modes in high-frequency
multiple scattering problems: the
case of two circles
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Abstract. One can reformulate a high-frequency scattering problem as a boundary integral
equation. In the presence of multiple scattering obstacles, the wave pattern becomes very
complicated, but wavenumber-independent simulation schemes have been proposed based on
ray tracing. In such schemes, one can note that the phases of the corresponding densities
on each of the obstacles converges to an equilibrium after a few iterations. For the case
of two circular scatterers, we will compute a Taylor approximation of this limiting phase,
independently of the incident wave and with a computational complexity independent of the
wavenumber.

12.1 Introduction

Numerical simulations in acoustics are often based on a Boundary Integral equation reformula-
tion of the Helmholtz equation, see for example [10, 21]. An incoming wave that is scattered by
an obstacle with boundary Γ results in a scattered field us(x) that can be represented by the
so-called single layer potential,

us(x) = (Sv)(x) =

∫

Γ
K(x,y)v(y)ds(y). (12.1)

Here, K(x,y) is the Green’s function of the Helmholtz equation with wavenumber k and v(y)
is the unknown density function, defined on Γ. Though other representations of the scattered
field exist, for the analysis in this paper, the equation above is the simplest to proceed with and
sufficient to obtain the results.

So-called hybrid numerical-asymptotic methods aim to avoid refining the discretization for
increasing k by incorporating information about the solution from asymptotic analysis (see the
review [8] and references therein). In particular, phase-extraction methods use information
about the phase g of the solution v(y) in order to discretize only the remaining non-oscillatory
part f in the following factorization:

v(y) = f(y, k)eikg(y). (12.2)

99
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Figure 12.1: Depiction of periodic orbits between three spherical scatterers: one periodic orbit
visits all three scatterers in a triangle-shaped trajectory minimizing the total path length (blue),
and one periodic orbit exists between each combination of two spheres (red).

Phase extraction methods are simplest for convex obstacles, and require ray-tracing or similar
techniques for more complicated domains or multiple scattering configurations [7, 12, 11, 2, 13,
9, 3, 4, 1]. For an overview, see [5, 8].

Ray tracing methods for scattering configurations with multiple obstacles at high frequencies
lead to a sequence of single-scattering problems, where the phase can be extracted in each case.
The first computation is the scattering of the incoming wave by just one of the obstacles. Next,
the reflected field is considered as an incoming wave for another obstacle, and so on. This process
is repeated and care has to be taken to include all reflections by all obstacles until convergence.
It was shown by Ecevit et al. that the sequence of single-scattering problems can be organised
according to certain periodic orbits [11, 2]. Examples of these are illustrated in Fig. 12.1. Each
such orbit consists of the shortest path between a subset of obstacles, and one can intuitively
understand them as follows. Rays originate in a source and reflect off obstacles in the scene.
Rays that do not reflect on another obstacle leave the scene forever. For rays that do, one can
repeat the reasoning on the next iteration of reflections. Fewer and fewer rays will remain, and
those that do are close to the aforementioned periodic orbits. Indeed, a ray that travels exactly
on the shortest path between a collection of obstacles remains trapped in the scene forever,
while any other ray ultimately leaves the scene.

Rays that travel along a periodic orbit induce a density on each of the participating obstacles.
We will call the corresponding density a ‘mode’, and note that it has the same structure as (12.2):

Vj(τ) ∼ vj,smooth(τ)eikφj(τ), j = 1, . . . , J. (12.3)

Here, J is the number of obstacles in the orbit. One can observe that the densities of rays
travelling close to the periodic orbits converge to a limit. One can see this in for example [12,
Fig. 1 & 2], although this feature was not further investigated there. We will aim to calculate
the limiting phases, i.e. the functions φj in the above expression.

The modes can be seen as eigenfunctions of the multiple scattering problem. Indeed, the
existence of a limit indicates that a wave with the density V1 on the first obstacle induces a
density V2 on the second obstacle, V3 on the third obstacle and so on, such that the last density
VJ induces precisely the density V1 again on the first obstacle, up to a constant factor. This
constant factor can be seen as an eigenvalue, and the collection of densities on each of the
obstacles is an eigenfunction of the sequence of single scattering problems.

In our initial study, we restrict ourselves to the case of two circles, as shown in Fig. 12.2. In
this case, there is a single periodic orbit, namely the shortest path between the two circles. We
analyze the limiting phase via its Taylor series around the point where the shortest path hits
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the boundary. Using symmetry, it is sufficient to study a single phase function. The advantage
of the Taylor series approximation is that it leads to fully explicit expressions.

Our implementation of the numerical experiments in this paper is publicly available on
GitHub [18] and a copy of the code can always be obtained from the authors.

12.2 Setting and problem statement

We formulate the problem as an eigenvalue problem for an oscillatory integral operator that
represents scattering by a circle. Looking for eigenfunctions of the form (12.2) leads to oscillatory
integrals. In order to analyze these asymptotically for a large wavenumber k, we use the well-
known method of steepest descent [20, 6]. It deforms the path of integration into the path of
steepest descent h(p) in the complex plane such that oscillating integrands are transformed to
rapidly decaying integrands.

A similar methodology was employed in [14] to find the asymptotic expansion of the solution
of a scattering problem, possibly involving multiple obstacles as well. In particular, the method
of steepest descent was used in [14] to track the forward propagation of rays, given an initial
incoming wave. The main difference is that in our current setting, we are concerned with an
eigenvalue problem instead.

The non-overlapping circles in Fig. 12.2 are separated by a distance d and the corresponding
shortest path is the periodic orbit along which rays will be trapped forever. We parametrize the
circles as

Γ1(τ) = r[sin(2πτ), cos(2πτ)], τ ∈ [0, 1], (12.4)

Γ2(τ) = [0, d+ 2r] + r[sin(2πτ),− cos(2πτ)], τ ∈ [0, 1], (12.5)

with r and d > 0 such that τ = 0 gives the points on the circles closest to each other. The
unknown phase function for the density on Γ1 is denoted φ1(τ). Due to symmetry, we have that
φ2(τ) = φ1(±τ) + ν, where ν is a constant phase factor. We choose φ2(τ) = φ1(τ).

In order to formulate the eigenvalue problem, recall the single layer potential (12.1). We
shall use the notation Sijvi for its application on a density vi defined on Γi, and with the point
x on Γj . An incident wave on Γj is written as uinc

j . Disregarding the possibility of resonances,
for the time being, the single layer potential leads to coupled integral equations of the first kind
for a multiple scattering sound-soft Dirichlet problem,

S11v1 + S21v2 = −uinc
1 , (12.6)

S12v1 + S22v2 = −uinc
2 . (12.7)

The operator under investigation in this paper is given succinctly by

Tv = S−1
11 S21S

−1
22 S12v, (12.8)

and in particular, we look for a function v1 of the form (12.2) such that

Tv1 = λv1. (12.9)

A discretisation of the combined multiple scattering problem leads to a BEM matrix A with
the following block structure form,

A =

(
A11 A21

A12 A22

)
. (12.10)
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Figure 12.2: Two circles under consideration in this paper (left) and a numerical illustration
of the eigenvector Vj,1 of the discrete operator M , divided by different phases (right). The
parameters are k = 29, r = 1

2 and d = 1.

Here, A11 and A22 respectively represent the self-interaction of the first and second obstacle,
while A21 gives the action of the density on Γ2 on the location of the first circle Γ1. A full cycle
of reflections is represented by

M = A−1
11 A21A

−1
22 A12 = V DV −1. (12.11)

The discrete operator M corresponds closely to T in equation (12.8).
In order to illustrate the coupling mode between two circles, we have used a collocation

discretisation with piecewise linear approximation of the density function. In this case, the first
eigenvector of M is the mode we are looking for, evaluated at the collocation points on Γ1. It
is shown in the right panel of Fig. 12.2. This is an oscillatory function, but factoring out the
Taylor approximation of φ(τ) (which we will compute later on) provides a much less oscillatory
function. One can also note that it is supported in the region where the circles can ‘see’ each
other. The corresponding highest eigenvalue D1,1 equals λ, and its phase is 2d. The latter is
the twice the distance between the circles in Fig. 12.2, which is also the length of the periodic
orbit studied in [11, 2] and here.

We proceed by analyzing the operator T asymptotically for large k. Due to symmetry, we
only have to analyze S11 and S21. We proceed with the latter first, since it does not appear with
its inverse in (12.8).

12.3 Field scattered by the second circle onto the first circle

When we calculate the field that Γ2 scatters onto the location Γ1, we obtain

us(τ1) = S21V2 =

∫

Γ2

i

4
H

(1)
0 (kδ[τ1, τ2])V2(τ2)dΓ2, (12.12)

us(τ1) ∼
∫ 1

0

i

4
(kδ[τ1, τ2]π/2)−1/2eikδ[τ1,τ2]−iπ/4v2,smooth(τ2)eikφ2(τ2)‖∇Γ2(τ2)‖2dτ2, (12.13)
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where δ(τ1, τ2) = ‖Γ1(τ1)−Γ2(τ2)‖2 is the Euclidean distance between two points on the circles.

We have replaced the Hankel function H
(1)
0 by the leading order term of its expansion for large

arguments. More terms in the expansion can be found by substituting the full expansion, a
process detailed in [14].

As is standard in asymptotic expansions of integrals [20, 15, 6], one notes that the only
important contribution to an oscillatory integral originates in a region around the stationary
point of the phase. This means finding a function χ(τ) such that

∂δ[τ1, τ2] + φ(τ2)

∂τ2

∣∣∣∣
τ2=χ(τ1)

= 0. (12.14)

The phase of the resulting integral (12.13) will then be δ[τ1, χ(τ1)] + φ[χ(τ1)].

Physically, this means that the scattered field due to density V2 on Γ2 consists of rays, and
that the ray hitting the point τ1 on Γ1 comes from the point χ(τ1) on Γ2. In particular, we
know that χ(0) = 0, since that is precisely the periodic orbit, and we intend to study only local
perturbations of this point.

12.4 Single scattering problem on the first circle

Next, we consider S−1
11 . A full computation of the asymptotic expansion of the solution to a

single scattering problem, even with phase extraction, is rather involved. The computation is
carried out in [14]. The problem of computing the phase of the solution is simpler since, in fact,
it is known that the phase of the solution equals the phase of the incoming wave.

For completeness, the process of obtaining full asymptotics is as follows. Assuming a density
of the form (12.3), the application of the integral operator on Γ1 yields

S11V1(τ1) = u(τ1) =

∫

Γ1

i

4
H

(1)
0 (k‖Γ1(τ)− Γ1(τ1)‖2)

(
v1,smooth(τ)eikφ1(τ)

)
‖∇Γ1(τ)‖2dτ.

(12.15)
A technical complication is the appearance of the logarithmically singular Hankel function, which
in this case can not be replaced by its expansion for large arguments as before in (12.13), where
it led to a simpler oscillatory exponential. An alternative is to substitute the Hankel function
by its Mehler-Sonine integral representation [16, (10.9.10)], which has a complex exponential in
the integrand. After interchanging integration variables, a regular steepest descent analysis can
be applied on the resulting bivariate integral [14].

The main observation to make here is that, in the absence of multiple scattering effects, the
only contribution to the singular oscillatory integral originates in the singularity at τ1 = τ . As
one can apply a path of steepest descent such that the Mehler-Sonine integral representation of

H
(1)
0 does not contribute to the phase of the integrand, the phase of S11V1 indeed equals the

phase of V1.

In order not to change the shape of our mode (12.3) after another reflection, the phase on
Γ1 should equal the phase of the integral (12.13) up to a constant shift µ. This is expressed by
the equation

φ(τ1) + µ = δ[τ1, χ(τ1)] + φ[χ(τ1)]. (12.16)

The phase shift µ will correspond to half the phase of the eigenvalue, i.e. we have that λ = ce2ikµ.
It must equal half the path length of the periodic orbit, and indeed µ = d follows from (12.16)
in the special case τ1 = χ(τ1) = 0 that corresponds to the shortest path.
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12.5 Symbolic computation of Taylor coefficients of φ

The system of equations that φ(τ) and χ(τ) should satisfy is (12.14)–(12.16). This is a non-linear
system which even in the case of two circles does not seem to allow an explicit analytic solution.
We resort to series expansions that do lead to fully explicit expressions for the coefficients.

We look for a Taylor series of the form

φ(τ) ∼
∞∑

i=0

ciτ
i. (12.17)

We are free to choose the constant c0, since it corresponds purely to a constant phase shift and
eigenfunctions are only determined up to a constant factor: we set c0 = d. We expand the other
relevant functions into Taylor series as well:

χ(τ1) ∼
∞∑

j=0

ajτ
j
1 (12.18)

φ[χ(τ1)] + δ[τ1, χ(τ1)]− φ(τ1) ∼
∞∑

i=0

ωiτ
i
1 (12.19)

∂δ[τ1, τ2] + φ(τ2)

∂τ2

∣∣∣∣
τ2=χ(τ1)

∼
∞∑

i=0

ψiτ
i
1 (12.20)

We already know that a0 = 0 since χ(0) = 0. Note that the coefficients ωi and ψi can be
computed explicitly in terms of ai and ci, since we can explicitly expand the Euclidean distance
function δ[τ1, τ2] as well.

The coefficient ω0 may be nonzero because of (12.16): it is equal to µ = d. All other
coefficients are computed in a recursive procedure: for each index i, starting from i = 0, we
solve ωi+1 = 0 = ψi for ai and ci+1. The newly found coefficients can be used in the next
iteration.

For the case of the two circles, ω1 = 0 = ψ0 yields

a1c1 − c1 = 0 = c1 ⇒ c1 = 0, (12.21)

which is intuitively correct due to symmetry. For i = 1, we obtain a system of quadratic
equations

0 =
3

2
π2a2

1 − π2a1 + a2
1c2 + 3/2π2 − c2,

0 = 3π2a1 − π2 + 2a1c2 (12.22)

from which we deduce

c2 =
√

2π2, a1 = 3− 2
√

2. (12.23)

We have discarded the other solution a1 = 3 + 2
√

2, c2 = −
√

2π2 as the left side of Fig. 12.3
indicates that c2 > 0 and, furthermore, a1 > 1 would imply moving away from the periodic
orbit shown in the left part of Fig. 12.2. For higher i, the system of equations is linear in the
coefficients and the solution is unambiguous. Due to symmetry, all ai = 0 = ci+1 for even i.

Further computation leads to the next nonzero coefficients

c4 =
−11

12

√
2π4, a3 = −7π2(17

√
2− 24) (12.24)
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and

c6 =
2783

√
2π6

2520
, a5 = −π

4

84
(1205811

√
2− 1705312), (12.25)

c8 =
−358021

205632

√
2π8, a7 =

−π6

128520
(289615597399

√
2− 409578202752). (12.26)

12.6 A geometric interpretation

We can assign a geometric meaning to the stationary point function χ(τ). Recall that χ(τ1) is
the point on Γ2 from which a ray hits the point Γ1(τ1). By symmetry, the converse also holds,
and applying χ again yields a point back on Γ1. In the sequence χ(χ(τ1)), χ(τ1), τ1, it should
be true that the incoming and reflected ray at the middle point χ(τ1) on Γ2 are at equal angles
with the normal direction. In our setting, this leads to the equation

0 = 4πχ(τ1) + arctan

(
r sin(2πχ(τ1))− r sin(2πχ[χ(τ1)])

d+ 2r − r cos(2πχ(τ1))− r cos(2πχ[χ(τ1)])

)
(12.27)

+ arctan

(
r sin(2πχ(τ1))− r sin(2πτ1)

d+ 2r − r cos(2πχ(τ1))− r cos(2πτ1)

)
.

This equation is again highly non-linear, and is hard to get a symbolic solution on account of
the application of χ on itself. Therefore, one computes a Taylor series of this expression for τ1

near zero, sets all coefficients equal to zero and this results in the same ai as in the procedure
described before.

One can numerically approximate χ using (12.27), and can then obtain the phase in a limited
range of τ via (12.14):

φ(τ) = −

(∫
∂δ(τ1, τ2)

∂τ2

∣∣∣∣
τ2=χ(τ1)

χ′(τ1)dτ1

)∣∣∣∣∣
τ1=χ−1(τ)

. (12.28)

To obtain φ in a wider domain, one notes that the phase is defined in terms of itself and the
distance to a stationary point on the other obstacle, as equation (12.16) expresses. It is this self-
referential definition of the limiting phase that complicates an analytical expression. However,
one can note that phases in high-frequency wave scattering correspond to the length of the
trajectory of a ray. In a homogeneous medium, rays are straight lines and phases correspond
to distances. Our rays originate in a small region around the periodic orbit and reflect outward
until they leave the scene, but it is easier to think of them travelling in the opposite way. The
length of such a path, followed by recursive application of χ, is infinite because of the infinite
number of reflections. However, we already take into account a phase shift µ at each reflection in
the eigenvalue λ. So, writing χ[r] for the function χ applied r times to the identity, a geometrical
interpretation of the phase is

φ(τ) = c0 +

∞∑

r=0

(
δ(χ[r](τ), χ[r+1](τ))− µ

)
. (12.29)

12.7 Results

We first compute χ by applying six functional Newton iterations on (12.27) with an initial guess
χ(τ) ≈ (3− 2

√
2)τ in Chebfun [19]. This satisfies (12.27) up to machine precision and its series

expansion coefficients also correspond to our ai. We have added a few iterations of χ as dashed
purple lines in Fig. 12.2: the ray is nearly indistinguishable from the periodic orbit after the
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second reflection. Next, we compute the phase as (12.29) where we choose c0 = 1 and we end
the summation after r = 10 reflections as the next term is near machine precision. The series
expansion coefficients of this phase also converge to our ci, and φ(τ) is not equal to δ[τ, χ(τ)].

In Fig. 12.3, one can see that this phase lies in between the two physical distances ζ and
ξ shown in Fig. 12.2. These are the distances from a point on Γ1 to the point Γ2(0) or to the
closest point on the other circle respectively. These physical distances may be suitable starting
points for an iterative procedure to solve the non-linear system of equations (12.14)–(12.16) in
a more general setting. In the right part of Fig. 12.3, we also see that our Taylor expansions
with coefficients ci converge with the expected orders. The phase can indeed also be computed
as (12.28), although in a smaller domain due to the inverse of χ.
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Figure 12.3: Distances and phase φ(τ) from (12.29) (left) and relative errors with respect to the
latter for the former, our symbolical series expansion, φ̃ and (12.28) (right).

In order to show that these solutions are indeed related to an eigenvalue problem, we dis-
cretized the scattering problem in a classical boundary element method. The radius r = 1/2,
the wavenumber k = 29 and the number of degrees of freedom N = 10k in a collocation scheme
with piecewise linears. We computed the eigenvalue decomposition of the matrix M and selected
the eigenvector Vj,1 corresponding to the largest eigenvalue, see Fig. 12.2.

From this vector, we compute an approximate phase ˜φ(τ) as follows. We have chosen φ(0) =
d, half the length of the periodic orbit. Assuming that the argument of vsmooth(τ) varies much
more slowly than Arg(exp[ikφ(τ)]), the estimated reference phase φ̃ at other collocation points
τ1,j is:

φ̃ (τ1,j) = φ̃ (τ1,j∓1) +
Arg(Vj,1)−Arg(Vj∓1,1)

k
− 2π

k

⌊
Arg(Vj,1)−Arg(Vj∓1,1)

2π

⌋
. (12.30)

In the right part of Fig. 12.3, the error of φ̃ is about 10−6 due to the accuracy of Vj,1 with
respect to the continuous problem and because we compute its angles. We have also been able
to verify that the coefficients of polynomial approximations of φ̃(τ1) converge to the respective
ci.

12.8 Conclusions

At high frequencies, standard boundary element methods become computationally too expen-
sive, while the cost of hybrid numerical-asymptotic methods can be frequency-independent.
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However, these require a priori information on the phase of the solution, for example via ray
tracing. We note that this phase converges to some equilibrium after a number of reflections
in a multiple scattering scene, and it is given by the phase of the eigenfunction of the operator
representing a full cycle of reflections.

For the case of two circles, we can find all coefficients in the Taylor expansion of the phase
φ(τ1) via a simple and recursive scheme. This phase is given by the distance to the periodic
orbit via an infinite number of reflections, where one subtracts the distance between the circles
at each reflection.

The scheme to compute the Taylor coefficients is not dependent on the wavenumber nor on
the incident wave, an advantage when computing the ‘Radar cross section’ for example. In the
future, we intend to find a series expansion of vsmooth(τ) as well. Though the computations in
this paper were specific to the case of two circles, we also expect a similar methodology to work
for arbitrary collections of more general objects.

Acknowledgments

The authors would like to thank Samuel Groth and Marcus Webb for interesting and useful
discussions on topics related to this paper. The authors were supported by FWO Flanders
[projects G.0617.10, G.0641.11 and G.A004.14].

References
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Towards Isogeometric Boundary
Element Method Based on Adaptive
Hierarchical Refinement of NURBS
for 3D Geometries

Hamed Khaki, Jon Trevelyan and Gabriel Hattori

School of Engineering and Computing Sciences,
Durham University
South Road, Durham, UK
DH1 3LE

Abstract. The considerable potential of isogeometric methods from the promise of cost
and run-time saving to more efficient and accurate results, continuity level, convergence and
refinement properties attracted numerous computational and numerical researchers in engi-
neering and mathematics to work on different aspects of these methods. The core idea of
Isogeometric Analysis (IGA) is to make a shortcut between computer-aided modelling and
analysis by describing precise geometries and using them directly in analysis. The direc-
tion of this research is to study direct design to analysis by Isogeometric Boundary Element
Method (IGABEM) for 3D models by making adaptive refinements to provide reliable so-
lutions even starting from a coarse CAD description. Emphasis will be on the automotive
industry. A key aspect of this work is the development of an effective set of algorithms al-
lowing adaptive refinement of Non-Uniform Rational B-Spline (NURBS) surfaces. This work
started with IGABEM -NURBS for simple 3D models under simple boundary conditions and
the plan is to develop the method for more complex geometries, more boundary conditions,
more accurate and fast results by local refinement of NURBS using an adaptive hierarchical
scheme.

13.1 Introduction

Isogeometric Analysis (IGA) was first introduced by Hughes et al in 2005 [1]. The main idea of
IGA is to use the same basis functions for representing the geometry in CAD and approximat-
ing the solution fields in analysis; therefore, there is no need to do mesh generation which can
considerably reduce the time required for the analysis of complex engineering designs. To un-
derstand the importance of IGA, should have a look at current engineering design and analysis
processes and find the bottlenecks which lead to delays in engineering projects. Analysis in IGA
can also be done by a suitable numerical method such as Finite Element Method (IGAFEM)

109
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or the Boundary Element Method (IGABEM). In comparison to FEM approaches, BEM needs
only the boundary of geometries to be meshed which is even more appealing in combination with
IGA since splines used in CAD geometries only describe the boundary of objects to be modelled.
Hence, the need to generate 3D solid analysis models as required in IGAFEM, being one of the
issues in IGA, is omitted. Existing CAD models, especially those typically used in automotive
industry, are most often NURBS-based. NURBS does not provide a natural possibility for local
mesh refinement. Due to its rigid tensor product structure, refinement of NURBS is a global pro-
cess that propagates throughout the domain. Perhaps one of the most significant developments
to solve this problem is the introduction of T-splines [2] and later PHT-splines[3] that produce
watertight geometries and can be locally refined. However, as NURBS has its own prospectives
and popularities in car manufacturing industry, we aim to use it in our IGA framework and try
to develop a refinement scheme to overcome the deficiencies of NURBS to produce watertight
geometries and allow local refinement. In refinement of NURBS, it is a vital that the chosen
scheme can handle the degree of continuity, singularity, smoothness while adding knots and on
the other hand allow local editing. Forsey and Bartels [4] introduced hierarchical B-splines as
an accumulation of tensor-product splines with nested knot vectors. More precisely, the method
is based on modifying existing surfaces by locally adding patches representing finer details. So,
this research works on isogeometric boundary analysis using adaptive hierarchical refinement of
NURBS for 3D geometries.

13.2 Isogeometric Boundary Element Method (IGABEM)

13.2.1 Boundary Integral Equations (BIE) for 3D Linear Elastostatic Prob-
lem

We solve the problem of elasticity in 3D solids. In absence of body forces we have the well-known
boundary integral equation as:

Cij (sp)ui (sp) +

∫

S
Tij (sp, fp)uj (fp) dS (fp) =

∫

S
Uij (sp, fp) tj (fp) dS (fp) , (13.1)

where Cij is the jump term that arises from the strongly singular integral, and depends on
the geometry of boundaries, S is the domain boundary S = Su ∪ St, Tij is the traction kernel,
Uij is the displacement kernel, ui (sp) is the displacement at a boundary (source) point sp, and
uj (fp) and tj (fp) are the displacement and traction components at fp.

13.2.2 IGABEM Discretization of BIE 3D

To solve equation (1.1) numerically, the boundary S must first be discretized into a series of
elements. In this work we use a NURBS description of the solution variables so the discretized
BIE becomes:

Cij (sp)ui (sp) +

n∑

s=1

m∑

t=1

∫ +1

−1

∫ +1

−1
Tij (sp, fp)Rs,t (u, v) J (u, v) dudvAs,t =

n∑

s=1

m∑

t=1

∫ +1

−1

∫ +1

−1
Uij (sp, fp)Rs,t (u, v) J (u, v) dudvBs,t,

(13.2)

where Rs,t is the NURBS basis function for the control point (s,t). Uij and Tij in equation
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(1.2) are functions of 1/r and 1/r2 respectively, rendering them weakly and strongly singular.
The weakly singular Uij kernel does not generally present a problem and can be easily solved
by Telles Transformation [6]. However, the Tij kernel must be integrated in specific method
suitable for IGABEM to cancel the singularity. A regularization method was used in this work.
The approach is to appropriate manipulation of the BIE identities to reduce the strength of
singularity to at most, weakly singular integrals. Further details of the idea are shown in [7]
with a full implementation.

When collocated at a sufficient number of points, p, the integral equation (1.2) yields the matrix
form:

Hu = Gt, (13.3)

where H is a square matrix containing a combination of the integrals of the traction kernel and
the jump terms, G is a rectangular matrix of displacement kernel integrals, u and t are a mix
of unknown values and the values prescribed by boundary conditions. By swapping unknowns
and knowns the equation (1.3) can be rewritten as:

Ax = b, (13.4)

where A is a fully populated and non-symmetric matrix of coefficients, the vector x contains co-
efficients As,t, Bs,t from which displacement and traction components can be recovered from the
NURBS expansion and the vector b arises from known boundary conditions and corresponding
boundary integrals. The equation (1.4) is a linear system which can be simply solved to obtain
the coefficients As,t, Bs,t, from which values of the unknown displacement and tractions can be
recovered.

13.3 B-Spline, NURBS Curve and NURBS Surface

In order to develop an understanding of B-splines, it is important to start with some key defini-
tions. A knot vector is a non-decreasing set of coordinates, written Ξ = [ζ1, ζ2, ..., ζn+p+1], where
ζi is the ith knot, p is the degree or polynomial order, and n is the number of basis functions.
The basis function Ni,p could be defined using the Cox-de Boor [8] recursion formula:

Ni,0 (u) =

{
1 if ζi ≤ u < ζi+1,
0 otherwise

(13.5)

Ni,p (u) =
u− ζi
ζi+p − ζi

Ni,p−1 (u) +
ζi+p+1 − u
ζi+p+1 − ζi+1

Ni+1,p−1 (u) . (13.6)

B-splines are combined in a linear approach to generate a curve or surface in the following man-
ner:

C (u) =

n∑

i=1

Ni,p (u)Bi, (13.7)

C (u, v) =
n∑

i=1

m∑

j=1

Ni,p (u, v)Mj,q (u, v)Bi,j , (13.8)
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where C (u) and C (u, v) are the location of the physical curve and surface, Bi and Bi,j are
control point coordinates in 2D and 3D, u and v are the spatial coordinate in parameter space,
p and q are the degree of spline and n and m are the number of control points.

13.3.1 Rational B-spline Curves and Surfaces

A rational B-Spline is a type of B-spline with weighted control points, and is formulated as:

Ri,p (u) =
ωiBiNi,p (u)∑n
i=1 ωiNi,p (u)

, (13.9)

Ri,p (u, v) =
ωi,jBi,jNi,p (u, v)Mj,q (u, v)∑n

i=1

∑n
j=1wi,jNi,p (u, v)Mj,q (u, v)

, (13.10)

where ωi and ωi,j are the weights of control points. The rational B-spline curves and surfaces
are given by:

C (u) =
n∑

i=1

Ri,p (u)Bi, (13.11)

C (u, v) =
n∑

i=1

m∑

j=1

Rij,pq (u, v)Bi,j . (13.12)

13.4 Location of collocation points

Contrary to the traditional BEM, the control points in IGABEM may lie off the physical prob-
lem boundary. This requires an additional step to compute feasible locations for the collocation
points. Using the Greville Abscissae method [9] we have:

ζa =
ζa+1 + ζa+2 + ...+ ζa+p

p
a = 1, 2, ., n, (13.13)

where n is the number of control points, p is the order, ζa are collocation points and ζa+i are knot
values. The first and last knots in the knot vector are excluded when applying equation(1.13).

13.5 Numerical Examples

Simple examples are studied with degree of p=2, knot vector Ξ = [0 0 0 1 1 1] in u and v
direction, and all weights are defined to be 1 . Simple geometries like a cube and a quarter
cylinder were created by NURBS starting with 3 × 3 control points in each patch (Figure 1.1)
and the geometry basis functions were used for analysis under different boundary conditions
(Figure 1.2).

A uniform vertical compression of 1MPa was applied over the top patch of the cube and
three patches were constrained by roller supports (Figure 1.2.a). An internal pressure of 1MPa
was considered at the inner radius of the quarter cylinder and rollers were again applied as
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Figure 13.1: Top left: NURBS curve, Top right: NURBS surface, Bottom left: Unit cube and
Bottom right: Quarter cylinder with knot vector Ξ = [0 0 0 1 1 1].

displacement constraints (Figure 1.2.b). The cube is a unit cube and the inner radius of the
quarter cylinder is 0.4m, outer radius is 1m, height is 1m, and the material for both is of steel
with Young’s Modules of 200GPa and Poisson’s ratio of 0.3.

Figure 13.2: Boundary Conditions

13.6 Results

Convergence of the IGABEM algorithm was studied. Knot insertion was used to provide h-
refinement, and the effect of the order of Gauss Legendre quadrature also investigated. Figure
1.3 shows the convergence of the scheme to the analytical displacement of 5× 10−6m at the top
surface for the cube problem.

An IGABEM analysis was used to obtain the distribution of hoop stress of the top patch of
a quarter cylinder and the results by changing the number of Gauss points and the number of
control points are shown in Figure 1.4.
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Figure 13.3: (a): The trend of IGABEM result for cube by increasing number of control points
and number of Gauss points (b): The trend of Matlab run-time by increasing number of knots
and number of Gauss points

Figure 13.4: Hoop Stress calculated by IGABEM and Analytical result for different number of
control points and Gauss points in a quarter cylinder

13.7 Adaptive Hierarchical Refinement of NURBS

Local refinement of NURBS is a key issue as already discussed in introduction. Due to the
tensor-product structure of NURBS, it is difficult to be locally refined and obtain finer grids
without propagation of the refinement. Consequently, for a general local refinement approach it
is vital that it can handle and inherit any given degree of continuity. Hierarchical schemes are
able to meet this requirement. On the other hand, the usage of multiple knots that lead to a
decrease of smoothness is also possible. The hierarchical model allows complete local control of
the refinement by using a spline hierarchy whose levels identify subsequent levels of refinement
for the underlying geometric representation. It looks like a grid which divides the element into
sub-elements and can focus and work on desired ones like on-off system.

It is also necessary to discuss the issue of error estimation for the purpose of adaptivity. We
can classify the existing studies on error estimation into residual type, interpolation error type,
boundary integral equation error type, nodal design sensitivity type and solution difference type.
-Residual type: This method is very easy to calculate (L1 Norm, H0(L2) Norm, H1/2(norm),
H2(Norm)), suitable for FEM and Galerkin BEM but it has uncertainty on Collocation BEM.
The accuracy of the result is strongly dependent on the boundary situation (smooth or non-
smooth). A posteriori residual error estimation type has been developed [11] to solve the problem
of uncertainty for collocation BEM.
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-Interpolation error type: The method is relatively straightforward to implement and it is
widely used in FEM and BEM. The exact solution is approximated by higher order interpolation
functions than the initial analysis and then, the difference between the numerical and predicted
exact solutions is estimated as the error. The problem with this method is that computational
accuracy of the predicted solutions is not guaranteed.
-Integral equation type: The method is suitable for BEM collocation Method. The residual is
estimated using the boundary integral equation and the accuracy can be increased by changing
the position of collocation points. The difficulty of this method in BEM collocation method
is that the residual always disappears on the initial collocation points, special techniques are
necessary for this purpose. In a collocation BEM scheme the residual is by definition of zero at
the collocation points, so residuals need to be calculated at a different set of points.
-Nodal design sensitivity type: Accounted to be a sophisticated scheme since the original
integral equation has the singular property.
-Solution difference type: In this method the solution error is defined as the difference be-
tween the solutions of the initial BEM analysis and some other (usually more refined) simulation.
The method is very simple but has been shown to offer lower accuracy than schemes based on
residual error indicators.[11]

An adaptive scheme proceeds by refining the model in some way (traditionally usually h, p
or hp) in a way informed by the error indicator. In the proposed framework, we will adopt hier-
archical B-splines [4] as a technology that allows local refinement within an isogeometric analysis
code. We note that other solutions are available, notably T-splines, where useful properties like
hanging nodes are permitted.

13.8 Conclusions

The basic Isogeometric Analysis Boundary Element Method (IGABEM) has been presented, and
shown to converge for simple problems in linear elasticity. Results are shown that demonstrate
the convergence for simple models with the number of control points and order of Gauss-Legendre
quadrature. We note that the Gauss order shown considers the integration over an entire bound-
ary patch, and not over an individual knot-span. For this reason, the number of Gauss points
shown appears large compared with conventional BEM schemes. In spite of this consideration,
the results suggest the required Gauss order is likely to be higher than that normally used for
conventional BEM implementations. In this article we have also discussed different methods
for error estimation. By considering the computational accuracy, cost and being suitable for
collocation IGABEM, a posteriori error estimation [11] based on weighted residual error esti-
mation is a great choice for the purpose of adaptive hierarchical refinement. In future work, we
aim to develop an adaptive algorithm through the use of hierarchical NURBS for 3D geometries
and to test its performance for a range of typical solid components found in the automotive
industry by isogeometric boundary element method.
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Can linear collocation ever beat
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Abstract. Computational approaches are becoming increasingly important in neuroscience,
where complex, nonlinear systems modelling neural activity across multiple spatial and tem-
poral scales are the norm. This paper considers collocation techniques for solving neural field
models, which typically take the form of a partial integro-differential equation. In particular,
we investigate and compare the convergence properties of linear and quadratic collocation on
both regular grids and more general meshes not fixed to the regular Cartesian grid points.
For regular grids we perform a comparative analysis against more standard techniques, in
which the convolution integral is computed either by using Fourier based methods or via
the trapezoidal rule. Perhaps surprisingly, we find that on regular, periodic meshes, linear
collocation displays better convergence properties than quadratic collocation, and is in fact
comparable with the spectral convergence displayed by both the Fourier based and trape-
zoidal techniques. However, for more general meshes we obtain superior convergence of the
convolution integral using higher order methods, as expected.

14.1 Introduction

Neural field theory employs a continuum approach to model the activity of large populations
of neurons in the cortex [1]. Such models are of great interest, not only from a mathematical
point of view, but also from an experimental neuroscience point of view, since they are capable
of replicating experimentally observed patterns of brain activity [2, 3]. Typically, such models
take the form of a non-linear partial integro-differential equation such as

∂

∂t
u(x, t) = −u(x, t) +

∫

Ω
w(x− x′)S(u(x′))dx′. (14.1)

Here u(x, t) describes the average activity of the neuronal population at position x ∈ Ω at time
t, while the nonlinear function S represents the mean firing rate, and typically takes the form
of a sigmoid function. The connectivity kernel, w, describes how neurons positioned at x and x′

interact [4]. Note that for special choices of the integral kernel, the neural field model (NFM)
in (14.1) can be reduced to a partial differential equation (PDE), and the theory and tools of
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PDEs can be deployed to investigate its solutions [5]. However, when considering more general,
physiologically realistic kernels, the determination of solutions and their subsequent analysis
requires numerical techniques.

In this work, we consider a two-dimensional NFM of the form (14.1) adapted so as to include
a recovery variable, which acts to repolarise neuronal activity via negative feedback, as in [6].
Thus, we consider the following coupled system of equations

∂u(x, y, t)

∂t
= A

∫ L

−L

∫ L

−L
w(x− x′, y − y′)S(u(x′, y′, t)− h)dx′dy′

− u(x, y, t)− a(x, y, t),

τ
∂a(x, y, t)

∂t
= Bu(x, y, t)− a(x, y, t).

(14.2)

Here, u(x, y, t) denotes population activity and a(x, y, t) the recovery variable, at position (x, y)
and time t. The parameters A, B, h and τ are related to the sensitivities and time-scale of the
problem [6], and we set Ω = [−L,L]2 and impose periodic boundary conditions in both x and y
for all of our experiments.

The role of S is to convert population activity into firing frequency, and it does this at a
rate governed by the steepness parameter β [1]. Explicitly, S takes the form of a sigmoid with
“steepness” parameter β as follows

S(u) =
1

1 + e−βu
.

The integral kernel w(x − x′, y − y′) describes interactions between neighbouring neurons, as
described earlier, and in our work is set to be a Mexican-hat type function

w(x, y) = e−(x2+y2) − 0.17e−0.2(x2+y2).

The main source of error in the numerical approximation of Equation (14.2) is the convolution
integral and so here we propose collocation techniques as a method for evaluating this integral.
The main advantage of such a choice is that it can be directly generalised to the more general,
typically asymmetric domains that result from modern neuroimaging studies. For completeness,
we compare our results against standard techniques that typically use either Fourier based
methods or the trapezoidal rule to compute the convolution integral in (14.2) when simple
rectangular geometries are considered.

The paper is organised as follows. In §14.2 we employ the collocation technique to obtain
a set of equations that can be solved to approximate the NFM in Equation (14.2). Then in
§14.3, we consider the effect of mesh regularity on the accuracy of our solutions, and perform
a comparative analysis against more standard techniques, deploying either trapezoidal rule or
Fourier based techniques to compute the convolution integral in (14.2), in the case of a regular
grid. We finish in §14.4 by giving an overview of the work as well as explaining its possible
implications, before outlining a number of possibilities for future work.

14.2 The collocation method

Collocation is an example of a projection method that approximates an infinite dimensional
problem, such as (14.2), by a finite dimensional one via a suitably defined projection operator
Pn. In what follows we provide brief details of the method as applied to Equation (14.2) (further
details can be found in [7]).
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Figure 14.1: Illustration of a domain that uses Cartesian grid points as triangle vertices.

Consider the following triangulation Tn = {41, ...,4n} of the square [−L,L]2 and suppose
that on each triangle 4k we employ a piecewise polynomial approximation of the unknown
functions u(x, y, t) and a(x, y, t). In this case the projection operator takes the form

Pnu(x, y, t) = un(x, y, t)

=

d∑

j=1

u(vk,j , t)lj(x, y), for (x, y) ∈ ∆k, k = 1, 2, ..., n.

Here, vk,j denotes the (x, y) coordinates of the jth interpolation point of the kth triangle, the
lj are the corresponding Lagrange basis functions, and d denotes the number of interpolation
nodes. In this study we take d = 3 or 6 depending upon whether linear or quadratic interpolation
is applied, respectively.

The above allows us to formulate the following approximation to (14.2):

∂un(x, y, t)

∂t
= APn

{∫ L

−L

∫ L

−L
w(x− x′, y − y′)S(u− h)dx′dy′

}

− un(x, y, t)− an(x, y, t), (14.3)

τ
∂an(x, y, t)

∂t
= Bun(x, y, t)− an(x, y, t).

Assuming this expression holds exactly at the node values v1, v2, ..., vnv , where nv refers to the
total number of globally indexed node points vk,j , we obtain a collocation scheme for (14.2).

To make the above collocation scheme more tractable we perform the integration in (14.3)
by applying a quadrature rule over each triangle and summing the result. More specifically, we
employ the transformation Tk : σ →4k, given by

(x, y) = Tk(r, s) = (1− r − s)vk,1 + svk,2 + rvk,3, (14.4)

which maps the unit simplex σ on to each triangle 4k. This enables us to integrate an arbitrary
function, g say, over the triangle 4k as follows

∫

4k
g(x, y)dxdy = 2Area(4k)

∫

σ
g(Tk(r, s))drds.
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Substituting this expression into (14.3) gives

dun(vi)

dt
= 2A

nt∑

k=1

Area(4k)

∫

σ
w(vi − Tk(r, s))S




d∑

j=1

u(vk,j)lj(r, s)− h


 drds

− un(vi)− an(vi), (14.5)

τ
dan(vi)

dt
= Bun(vi)− an(vi),

for i = 1, ..., nv which is a system of 2nv ordinary differential equations that can be solved to
determine approximate solutions to (14.2).

14.3 Error analysis

When considering the numerical solution of Equation (14.2) the main source of error is the
convolution integral and so we shall focus our analysis on the accurate representation of the
integral

I =

∫ L

−L

∫ L

−L
w(x− x′, y − y′)S(u(x′, y′)− h)dx′dy′, (14.6)

in the remainder of the paper.

We compare the accuracy of both linear and quadratic collocation against fast Fourier trans-
form (FFT) techniques together with the convolution theorem, and the trapezoidal method,
both of which require a regular spatial discretisation such as the one displayed in Figure 14.1.
To probe grid convergence, we consider a sequence of refinements of an initial, regular grid con-
sisting of N0 = 81 nodes, such that at the mth stage of refinement, the number of nodes is given
by Nm = (2m · 8 + 1)2 for m = 1, 2, . . . , 7. If we then denote by Im the numerical approximation
of (14.6) on the grid of size Nm, we can approximate the order of convergence of the respective
discretisation schemes by considering a log-log plot of the absolute error between consecutive
grids |Im − Im+1| versus grid size Nm+1. Here we consider point-wise convergence and so all
results shown are for a representative grid point. Note that we have repeated the analysis for
other grid points and observed almost identical behaviour (experiments not shown).

Our results are displayed in figures 14.2 and 14.3. In particular, from Figure 14.2 we see that
both trapezoidal rule and FFTs display geometric convergence, as expected (see [8] for a discus-
sion of the convergence properties of the trapezoidal rule on a periodic domain); however, we
find, perhaps somewhat surprisingly, that linear collocation also exhibits geometric convergence.
This is in contrast to quadratic collocation, which converges quadratically. To understand the
above result, we consider the collocation technique as applied to (14.6) in more detail below.

Firstly, note that employing linear collocation alongside the three point quadrature rule

∫

σ
G(r, s)drds =

1

6
[G(0, 0) +G(0, 1) +G(1, 0)],

with G(r, s) = g(Tk(r, s)), as defined in §14.2, enables us to construct the following approxima-
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Figure 14.2: The error |Im−Im+1| plotted against grid size Nm+1 reveals geometric convergence
rates for trapezoidal rule, FFTs and linear collocation when computing the integral in (14.6).

tion to (14.6):

I ≈ 1

3

n∑

k=1

Area (∆k)


w(v − Tk(0, 0))S




3∑

j=1

u(vk,j)lj(0, 0)− h


+

w(v − Tk(0, 1))S




3∑

j=1

u(vk,j)lj(0, 1)− h


+

w(v − Tk(1, 0))S




3∑

j=1

u(vk,j)lj(1, 0)− h




 .

(14.7)

We can further simplify the above by noting that since we are solving on a uniform Cartesian
domain, Area (∆k) = ∆x2/2 for all triangles, where here, ∆x (= ∆y) is the local mesh spacing.
Substituting this into (14.7) and evaluating the Lagrange basis functions at the node points
gives

∆x2

6

n∑

k=1


w(v − Tk(0, 0))S(u(vk,1)− h) + w(v − Tk(0, 1))S(u(vk,2)− h)

+w(v − Tk(1, 0))S(u(vk,3)− h)


 .

Recalling that Tk(0, 0) denotes the coordinates of the first vertex in ∆k, Tk(0, 1) the second and
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Figure 14.3: Convergence of quadratic collocation when computing the integral in (14.6) with
the error |Im − Im+1| plotted against grid size Nm+1.

Tk(1, 0) the third, we can rewrite the above as

∆x2

6

n∑

k=1


w(v − vk,1)S(u(vk,1)− h) + w(v − vk,2)S(u(vk,2)− h)

+w(v − vk,3)S(u(vk,3)− h)


 .

(14.8)

However, for a regular grid the triangle vertices are simply the Cartesian mesh points and so
Equation (14.8) is nothing other than the trapezoidal rule for solving (14.6) on a periodic two-
dimensional domain. The factor of 1/6 occurs due to the fact that each node appears six times
in the sum in (14.8). Thus, we have shown that for a regular grid with periodic boundary
conditions solving Equation (14.6) using linear collocation and a quadrature rule based only
on the triangle vertices is equivalent to using the trapezoidal rule. This explains the spectral
convergence observed in Figure 14.2.

Next we consider the effects of mesh regularity on solutions of Equation (14.6). To do this
we deployed the DistMesh Matlab package [9] to generate a general mesh, that is, one in which
the triangle vertices do not lie on a Cartesian grid, as in our previous investigations. As before,
numerical errors were approximated by comparing the numerical solution of (14.6) at the same
grid point across a range of increasingly fine meshes. A refined triangulation was created by
subdividing each triangle into four similar triangles, as shown in Figure 14.4. Results for linear
and quadratic collocation are displayed in Figure 14.3. Note that in contrast to earlier results,



14.4. CONCLUSIONS 123

Figure 14.4: An illustration of the refinement procedure for a general triangulated domain.
Meshes are generated using the DistMesh Matlab package [9].
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Figure 14.5: Convergence of (a) linear and (b) quadratic collocation when computing the integral
in (14.6) using a general triangulation (see Figure 14.1).

superior convergence is now observed for quadratic collocation: linear and quadratic convergence
is attained for linear and quadratic collocation, respectively. Thus, the geometric convergence
displayed previously breaks down for more general triangulations, as expected.

14.4 Conclusions

In this work, we have employed collocation techniques to solve a two-dimensional NFM on a pe-
riodic, square domain Ω = [−L,L]2. Importantly, we found that these techniques were capable
of reproducing solutions found by standard methods, which compute the convolution integral
in the NFM using either Fourier based methods or the trapezoidal rule. Moreover, we found
that when employing a regular triangulation based upon a Cartesian grid then, perhaps sur-
prisingly, linear collocation out performed quadratic collocation. In fact, the linear collocation
scheme was found to exhibit spectral convergence, similar to the Fourier based and trapezoidal
methods. This result can be explained by noting that for a regular mesh with periodic bound-
ary conditions, linear collocation can be shown to be equivalent to the trapezoidal rule for the
particular quadrature methods employed here. For more general meshes the behaviour of lin-
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ear and quadratic collocation was as expected, that is convergence was linear and quadratic,
respectively. Future work shall deploy the methods discussed here, in conjunction with efficient
numerical schemes for computing geodesic distances, to solve NFMs on two-dimensional curved
geometries such as a sphere or torus. The overarching aim will be to extend these methods to
more physiologically realistic cortical domains [10, 11, 12].
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Abstract. We present high order accurate methods for solving the modified Helmholtz and
heat equations on general smooth regions in two dimensions. The methods use new fourth
order accurate techniques we have developed for evaluating certain volume and surface inte-
grals. These integrals are evaluated using fast finite difference methods on larger rectangular
regions in which we embed the smooth integration regions, and require O(n2 log n) oper-
ations where n is the number of mesh points in each direction in the embedding region.
Computational results are provided.

15.1 Introduction

In this paper we present new methods for solving the modified Helmholtz and heat equations
on smooth two dimensional regions. The methods make use of rapid, high order accurate
techniques for evaluating volume integrals whose kernels are the fundamental solution of the
modified Helmholtz equation and surface integrals whose kernels are the normal derivative of the
fundamental solution. The regions of integration can be any smooth curve or region, and the cost
of evaluating either integral is essentially equal to the cost of inverting a discrete approximation
to the modified Helmholtz operator on a rectangular two dimensional region. Thus, by using
Fourier methods [7] both types of integrals can be evaluated in O(n2 log n) operations. Our
method is an extension of one we developed previously for solving Poisson’s and the biharmonic
equation on general regions. See, for example, [10],[11],[12],[5],[3].

The essential idea is the following. Let L denote the modified Helmholtz operator, and
suppose the integral W is such that LW = f in D and LW = 0 outside. (f can be 0 if W
is a surface integral) We first embed D in a larger rectangular region R with a uniform mesh,
and compute a fourth order accurate approximation to LhW , the discrete modified Helmholtz
operator Lh applied to W , at all the mesh points of R. Then we apply an operator that inverts
Lh on R to obtain an approximation to W . It is easy to compute an such approximation at
most mesh points of R. At mesh points inside D that have all their neighboring mesh points
inside D we approximate LhW by f since LW = f on D. Similarly, at mesh points outside D
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whose neighboring mesh points are also outside D, we set LhW = 0 since LW = 0 outside D.
The difficulty arises at the other, ”irregular” mesh points. Because of the discontinuities in the
derivatives of W across the boundary of D the discrete modified Helmholtz operator is not well
approximated by the continuous Helmholtz operator at those points. It turns out, however, that
one can compute an approximation using the discontinuities in W , which depend on f and its
derivatives, and information about the boundary of D.

In order to solve the modified Helmholtz equation we use an integral equation formulation
that was also used by Kropinski and Quaife [9]. They solved the equation using a fast multipole
method, and for the discretization they used hybrid Gauss-trapezoidal quadrature rules. We
used a Nystrom method with the trapezoid rule as the quadrature method, and solved the
resulting linear system of equations using a preconditioned conjugate gradient method. Our
cost of solving the integral equation is therefore O(N2). Our method of evaluating integrals
can and should, of course, be combined with FMM type methods for solving integral equations
[13], [12]. For simplicity we also used the same discretization in time of the heat equat equation
as Kropinski and Quaife, and combined it with our method of evaluating volume and surface
integrals.

The most common methods for evaluating volume integrals involve direct application of a
quadrature formula, and therefore O(n4) operations are needed to evaluate the integral at every
point of an n by n grid, since evaluating each integral requires O(n2) operations. In contrast,
our method only requires O(n2log n) operations.

Another difficulty encountered when using straightforward quadrature formulas is that fun-
damental solutions of the modified Helmholtz equation are discontinuous and have discontinuities
in their derivatives as the point at which one is evaluating the integral nears a point of the region
of integration. Therefore, it is difficult compute these integrals very accurately at points in, or
near, the region of integration. The method we use does not have these problems. We note
other rapid and sophisticated methods have been developed for evaluating volume integrals, but
many require smooth extension of the inhomogeneous term from the irregular region to the rest
of the rectangular embedding region. Our methods have no such requirement.

15.2 Evaluation of volume and surface integrals

In this section we present our method for evaluating an integral whose kernel is a fundamental
solution of the modified Helmholtz equation ∆u− a2u = δ. Here δ is the Dirac function.

15.2.1 Evaluation of volume integrals

We start by embedding the integration region D in a larger rectangular region R with a uniform
grid, say with mesh width h, which ignores the boundary of D.

Let

W (x, y) =
1

2πa2

∫

D
K0

(r
a

)
f(x′, y′)dV (14.1)

where r =
√

(x− x′)2 + (y − y′)2, and K0(r) is the zeroth order modified Bessel function of the
second kind.

We evaluate W by first approximating LhW where Lh is a discrete approximation to the
modified Helmholtz operator at all the mesh points of R. Then we apply an operator, L−1

h which
inverts Lh on R. We note that inverting Lh on a grid with n points only requires O(n log n)
operations [7].

Since

∆W − a2W = f in D and ∆W − a2W = 0 outside D, (14.2)
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at mesh points inside D, which have all their neighboring mesh points inside D we set LhWh = f ,
and at points outside D, with all their neighbors outside we set LhW = 0.

The problem then reduces to approximating LhW at the points which are in one region, but
have neighboring mesh points in the other region. It turns out that in order to approximate LhW
at these points it suffices to know the discontinuities in the derivatives of W in the coordinate
directions at the boundary of the region D. We now show how to find these discontinuities.

Suppose the boundary of D is given by (x(t), y(t)). For a function g defined on R let [g(p)]
denote the discontinuity in g at a point p on ∂D. An integral of the form (14.1) and it’s normal
derivative are continuous across ∂D. Therefore, for p in ∂D

[W (p)] = 0, (14.3)

and

[Wn(p)] = ẏ(t)[Wx(p)]− ẋ(t)[Wy(p)] = 0. (14.4)

Differentiating (14.3) in the tangential direction t, we see

[Wt(p)] = ẋ(t)[Wx(p)] + ẏ(t)[Wy(p)] = 0, (14.5)

so [Wx] = [Wy] = 0.

By (14.2) the second derivatives of W are discontinuous and

[Wxx] + [Wyy] = f (14.6)

Differentiating (14.4) and (14.5) in the tangential direction we have

ẋ(t)2[Wxx] + ẏ(t)[Wyy] + 2ẋ(t)ẏ(t)2[Wxy] = 0. (14.7)

ẋ(t)ẏ(t)[Wxx]− ẋ(t)ẏ(t)[Wyy] + (ẏ2(t)− ẋ2(t))[Wxy] = 0. (14.8)

Equations (14.6), (14.7) and (14.8) determine [Wxx], [Wyy] and [Wxy]. We use similar methods
in order to determine the discontinuities in third and higher order derivatives.

Next we show how to use these discontinuities to approximate LhW . Let w̃(p) denote the
values of W (p) at points p outside D, w(p) denote the values of W (p) at points p inside D, and
let B be the set of irregular mesh points, that is the set of points which have at least one of
their neighboring mesh points on the opposite side of D.

We now show how to approximate Lh at points of B. For simplicity we begin by showing
how to compute a second order accurate approximation, i.e. we let

L5
hW =


 1

h2




1
1 −4 1

1


− a2


W.

Suppose a point p is in D, and the point to the right, pE , is not. Let p∗ be the point on the
line between p and pE which intersects ∂D, let h1 be the distance between pE and p∗, and let
h2 = h− h1.

By manipulating the Taylor series centered at p and pE and evaluated at p∗ we can derive
the following expression for w̃(pE)− w(p): (For details see [10])

w̃(pE)− w̃(p) = [w̃(p∗)− w(p∗)]− h1[w̃x(p∗)− wx(p∗)] +
1

2
h2

1[w̃xx(p∗)− wxx(p∗)]

−1

6
h3

1[w̃xxx(p∗)− wxxx(p∗)] +
1

24
h4

1[w̃xxxx(p∗)− wxxxx(p∗)]
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D

R

B consists of      and         

Figure 15.1: Points of the set B.

−hw̃y(p) +
1

2
h2w̃yy(p)−

1

6
h3w̃yyy(p) +

1

24
h4w̃yyyy(p) +O(h5) (14.9)

Note the first five terms depend on the discontinuities between w and w̃ and in their x derivatives
across ∂D. The other terms are the usual Taylor series terms. Therefore, the right hand side of
(14.9) is a sum of terms we can evaluate in terms of the discontinuities between w and w̃ and
their x derivatives, and terms we would have if the boundary of D did not pass between p and
pE .

Now let pW , pN , pS be the mesh points to the left of, above, and below p. We obtain the

PP

P

P

PW E

S

N

P*
1 2h h

Figure 15.2: Mesh points in the vicinity of point p.

same type of expressions for the differences between the value of W at p and at its other
neighbors, that is W (pW )−W (p),W (pN )−W (p),W (pS)−W (p), except that there will not be
any boundary terms unless ∂D passes between p and that neighbor. Therefore, we can compute
an approximation to L5

hW , which is just the sum of the above four differences divided by h2

minus a2W (p)

L5
hW (p) =

W (pE) +W (pW ) +W (pN ) +W (pS)− 4W (p)

h2
− a2W (p),

at the irregular points when we know the derivatives of the boundary curve and the derivatives
of f .
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More precisely, for points p in B we define m(p) to be the extra terms in L5
hW due to the

discontinuities in W and its derivatives and Wh to be the solution of the equations:

L5
hWh(p) =





f(p) p ∈ D −B
f(p) +m(p) p ∈ B ∩D
m(p) p ∈ B ∩Dc

0 p ∈ R−D ∩B

Wh(p) = W (p) p ∈ ∂R

The accuracy of m(p) determines the accuracy of the solution. In particular, if m(p) is first
order accurate W h will be a second order accurate approximation to W . See [2].

We can also approximate L9
hW where L9

h is a fourth order accurate 9 point approximation
to L. Then, by applying an operator which inverts the operator L9

h we can obtain a fourth order
accurate solution.

Specifically, to evaluate the surface and volume integrals we use the fourth order accurate
approximation to the modified Helmholtz operator :

L9
h =

(
∆9
h −

(
a2 +

a4h2

12

))
u = f +

h2

12
(f + ∆f)

where

∆9
hW =

1

6h2




1 4 1
4 −20 4
1 4 1


W

To see that this operator is fourth order accurate we note that for any smooth function u

∆9
hu = ∆u+

h2

12
∆ (∆u) +O(h4).

So, if ∆u = a2u+ f , then

∆9
hu = a2u+ f +

h2

12
∆
(
a2u+ f

)
+O(h4)

= a2u+ f +
h2

12

(
a2(a2u+ f) + ∆f

)
+O(h4)

=

(
a2 +

a4h2

12

)
u+ f +

h2

12
(f + ∆f) +O(h4).

To approximate ∆9
hW we use the fact that

∆9
h =

2

3
∆5
h +

1

3
∆x
h

where

∆x
hW =

1

2h2




1 1
−4

1 1


W.

In order to compute an approximation to ∆x
hW we need the discontinuities of W in the u =

x+y√
2

and v = x−y√
2

directions. The discontinuities can, of course, be computed in terms of the

discontinuities in the x and y directions. For example, if p∗ is on ∂D, then

[Wu(p∗)] =
[Wx(p∗)]√

2
+

[Wy(p
∗)]√

2
.
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Once we know these discontinuities we may, in the same way as before, use them to compute a
higher order accurate approximation to ∆x

hW , and thereby ∆9
hW and L9

hW .
The accuracy of the resulting method is same as the accuracy to which the discrete Helmholtz

operator is computed. That is, the errors in computed values of the potential Wh are bounded
by a constant times the maximum truncation error of L5

hW or L9
hW , and if the potential function

which is being computed is smooth, the errors are O(h2) or O(h4).

15.2.2 Evaluation of surface integral

We use essentially the same method to compute surface integrals of the form

U(x, y) =
1

2πa2

∫

∂D
µ(s)K0

(r
a

)
ds.

As when we evaluate volume integrals the problem reduces to evaluating LU in the regions inside
and outside D, and evaluating the discontinuities in U and its derivatives across the boundary
of D. We first note that

(∆− a2)U = 0 inside D, and (∆− a2)U = 0 outside D. (14.10)

That is, the integral satisfies the modified Helmholtz in the region inside D and in the region
outside D. It is also known that such an integral is continuous in the normal direction, and has
a discontinuity equal to the density in the tangential direction:

[U ] = µ (14.11)

and

[Un] = 0. (14.12)

It follows that

[Ux] =
µ̇ẋ

ẋ2 + ẏ2
and [Uy] =

µ̇ẏ

ẋ2 + ẏ2
.

To find the discontinuities in the second derivatives of U we note that by (14.10)

[∆U ] = a2 [U ] = a2µ

We also note that by (14.11) and (14.12)

[Utt] = µ̈

and

[Unt] = 0.

The above three equations determine [Uxx], [Uxy] and [Uyy].
To find the discontinuities in the four third derivatives we use the following four equations:

[(∆U)n] = a2 [Un] = 0,

[(∆U)t] = a2 [Ut] = a2µ̇

Uttt = ˙̈µ and Untt = 0.

As before, once determined we use these discontinuities in the derivatives of U to compute
approximations to L5

hU or L9
hU at the irregular mesh points of R, and then apply a fast solver

L−1
h to obtain an approximation to U .
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It is, of course, necessary to provide boundary conditions at the edge of the computational
region R. The integral we obtain an approximation to with this method is is the one associated
with the same boundary conditions as the fast Helmholtz solver we use. For example, if we
use a doubly periodic Helmholtz solver, then we obtain an approximation to the integral whose
kernel is the doubly periodic Green’s function for the modified Helmholtz equation on R. It is
also possible to obtain approximations to integrals which satisfy free space boundary conditions.
In that case we can use a method originally developed by Hockney [6] and later improved by
James [8].

15.3 Solution of modified Helmholtz and heat equations

15.3.1 Modified Helmholtz equation

As in [9], in order to solve the inhomogeneous equation (∆−a2)U = f when Dirichlet boundary
conditions U(x, y) = g(x, y) on ∂D are prescribed we use the representation of the solution as
the sum of a volume integral and an integral of a double layer density function:

U(x, y) = W (x, y) + US(x, y) =

∫

D
f(x′, y′)K0dV +

∫

∂D

∂K0

∂n
µ(s)ds (14.13)

We first evaluate Wh, the approximation to the volume integral W at points of R, and then
we interpolate its values onto the discretization points of ∂D using the known discontinuities in
its derivatives. More precisely, we use the values of Wh at points on both sides of ∂D and the
discontinuities in the second and third derivatives of W to compute the extension of the inside
function w to nearby points of R outside D. We then interpolate values of the extended function
w onto ∂D using fourth order Lagrange interpolation.

Also, as in [9], in order to determine the density µ(s) for the surface integral US we solve
the integral equation

−µ(t)

2a2
+

1

2πa2

∫

∂D

∂

∂ns
K0

( r
α

)
µ(s)ds = ω(t) (14.14)

where ω(t) = g(t)− w(t).
As noted, in our experiments we discretized the above equation using a Nystrom method

with the trapezoid rule with equally spaced points as the quadrature formula [1]. By the Euler
Maclaurin formula the trapezoid rule is highly accurate for smooth functions on periodic regions.

Once we have solved the integral equation we evaluate the surface integral US using the
method described in the previous section.

15.3.2 Heat equation

We also used the surface and volume integrals to solve the heat equation

ut(x, y, t)−∆u(x, y, t) = F (x, y, t), 0 ≤ t ≤ tf

with Dirichlet boundary conditions

u(x, y, t) = f(x, y, t) (x, y) ∈ ∂D, t ∈ [0, tf ]

and initial conditions
u(x, y, 0) = u0(x, y)

prescribed where D is a general two dimensional region.



132 CHAPTER 15. HELMHOLTZ AND HEAT EQUATIONS

Instead of using an integral equation approach based on a fundamental solution of the heat
equation we first discretized with respect to time. Specifically, as in [9] we used the implicit
second order accurate extrapolated Gear method:

∆uN+1 − 1

α2
uN+1 =

1

3α2

(
uN−1 − 4uN + 4δtFN − 2δtFN−1

)
≡ BN (14.15)

where δt is the time step and α2 = 2
3δt.

At the Nth time step the approximation to the solution uN is the sum of a volume integral
WN and a surface integral UNS :

uN = WN + UNS

where
∆WN − α2WN = BN , (14.16)

and
∆UNS − a2UNS = 0 (x, y) ∈ D

UN = f(x, y, tN )−WN (x, y), (x, y) ∈ ∂D.

Thus, at each time step we must solve one integral equation and evaluate two integrals.
We can accurately approximate BN , the right hand side of (14.16) and it’s Laplacian. How-

ever, since we cannot approximate the normal derivative of the right hand side accurately enough,
we cannot accurately approximate the discontinuities in the third and higher order derivatives of
WN . Therefore the method should only be second order accurate in space. In practice, however,
we have found the method to be somewhat more accurate.

15.4 Numerical Experiments

In this section we present results of some of our numerical experiments.
In the experiments we report on the irregular region D was the unit disc, and the embedding

region R was a square of side 1.6. In the tables nx and ny denote the number of mesh points in
the x and y directions.

In our first experiment we chose the volume integral W (x, y) such that

∆W − a2W = 4b

where b = −K1( da)
2da . When D is a disc of radius d the analytic value of the integral is known:

W = b(r2 − d2) +K0

(
d

a

)
for r ≤ d

and
W = K0

(r
a

)
for r > d

The results in Table 1 are for a = .45, the errors are the maximum relative errors, and the
numbers in the last column are the ratios of the consecutive errors.

Table 1
nx ny abs. error rate

17 17 0.181E-03 .

33 33 0.123E-04 14.72

65 65 0.822E-06 14.96

129 129 0.557E-07 14.76

257 257 0.371E-08 15.02
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These numbers confirm that our method of evaluating volume integrals is essentially fourth order
accurate.

In our next experiment we tested our method for solving the integral equation and evaluating
the surface integral. We chose the boundary values

g(x, y) = I1 (ar) .

If the region D is the disc of radius d the density function and the values of the surface integral
inside are

µ = (I1(ad)− cK1(ad))x/r

where I1(r) is the first order modified Bessel function of the first kind, and

US(r) = I1(ar)x/r for r ≤ d and US(r) = cK1(ar)x/r for r > d.

In the table 2 ns is the number of discretization points on ∂D, a = 10.0, and d = .5.

Table 2
nx ns rel. error rate

17 50 0.110E+00 .

33 100 0.156E-01 7.05

65 200 0.120E-02 13.40

129 400 0.809E-04 14.83

257 800 0.532E-05 15.20

In Table 3 we present our results of solving the inhomogeneous heat equation whose solution is
sin(t) sin(x) sin(y) on the unit disc for 0 ≤ t ≤ 1. The numbers nt are the number of time steps
and the errors are the r.m.s. errors at t = 1.

Table 3
nx ns nt error rate

17 50 12 0.966E-03 .

33 100 12 0.160E-03 6.04

65 200 12 0.168E-04 9.52

129 400 12 0.221E-05 7.60

17 50 24 0.198E-03 .

33 100 24 0.332E-04 5.95

65 200 24 0.430E-05 7.72

129 400 24 0.581E-06 7.41

15.5 Conclusions

We have presented rapid, fourth order accurate numerical methods for evaluating volume inte-
grals whose kernels are a fundamental solution of the modified Helmholtz equation and surface
integrals whose kernels are the normal derivatives of such functions. We have also shown how
these methods can be used as part of efficient numerical methods for solving both the modified
Helmholtz and heat equations on general two dimensional regions in space.
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Chapter 16

Design of flexible composites for
high-strain applications

Oleksandr Menshykov, Maryna Menshykova, Igor A. Guz and Snizhana Ross

School of Engineering,
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Aberdeen AB24 3UE
UK

Abstract. The study is focused on stress and strain analysis of multilayered thick-walled
fibre reinforced composite pipes subjected to bending loading and pressure. The problem
is considered for perfectly bonded layers and stress and displacement continuity conditions
imposed on interfaces. The system of integral equations obtained from the moment equilib-
rium relation is solved. The research provides numerical solution and study of stresses and
strains distribution in the pipes with different lay-ups and reinforcement orientations.

16.1 Introduction

Having advantages over conventional materials in weight, strength, stiffness, corrosion resis-
tance etc. composite materials are becoming more and more attractive for structural and non-
structural applications in the modern industry. However, in spite of their undoubted advantages,
the main of which may be the ability to be tailored for specific purpose, their introduction in
the industry is a very slow process. Lack of appropriate performance information, regulatory
requirements, efficient design procedures and reparability issues are the main obstacles. High
specific strength as well as overall weight-saving and resistance to a wide range of fluids (in-
cluding seawater, aerated water, and hydrocarbons) makes the composite materials attractive
for use offshore and onshore. One of the most successful application areas for composites is in
pipework where they are used for both low- and high-pressure applications with a wide variety
of fluids, including hydrocarbons.

In the current paper we investigate composite tubes under bending loading. The composite
pipes subjected to pure bending were considered by a number of researchers. The formulation of
the problem of anisotropic single-layer pipe subjected to bending load was given by [4]. Bending
behaviour of thick-walled filament-wound sandwich pipes made of a non-reinforced core layer and
alternate-ply skin layers was studied by [8]. Laminated plate theory and Lekhnitskii stress func-
tion approach was used for obtaining the analytical solution for multi-layered filament-wound
composite pipes under bending loading. The analytical solution for the design of spoolable
composite tubes was presented by [7]. The prediction of bending strength and failure mode for
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filament-wound composite pipes was given by [6]. The multi-parametric investigation of stress
distribution as a function of the inner layer material properties, its thickness, the number of
layers, lay-up and the magnitude of bending load was carried out by [2], [5].

The study is focused on stress analysis of multi-layered thick-walled fibre reinforced com-
posite pipes subjected to bending loading. The research focuses on the pipes with multi lay-
ered outer part and thin homogeneous inner layer. It provides analytical solution (within the
framework developed [6]) and comparative study of stresses distribution in the pipes with inner
homogeneous layer and inner composite layer of 00 fibre orientation. The investigation of stress
distribution as a function of the inner layer material properties was carried out.

16.2 Stress analysis

Consider a multi-layered fibre reinforced filament-wound composite pipe with r0 inner radius
and ra outer radius subjected to bending load. Each layer of the pipe consists of two laminae
with principal material directions symmetrical to the axial direction. Consequently, each layer
(two adjacent lay-ups) is assumed to behave as an orthotropic unit. For each orthotropic layer
we have the constitutive equation for strains in terms of stresses [6]:




εr
εθ
εz
γrθ


 =




S11 S12 S13 0
S12 S22 S23 0
S13 S23 S33 0
0 0 0 S44







σr
σθ
σz
τrθ


 (16.1)

where Sij are compliance constants and r, θ and z denoted as radial, hoop and axial coordinates.
The compliance constants can be obtained from:

(Sij) =
(
Qij

)−1
(aij) (Pij) , (16.2)

where matrix (aij) can be obtained from engineering constants; matrices (Pij) and
(
Qij

)
are the

coordinate transformation matrices between the on-axis and the cylindrical axis.

The components of the stress field [6] could be presented in the form:

σr = (Br−1+β−Cr−1−β+Aηr) sin θ, σθ = [B(1+β)r−1+β−C(1−β)r−1−β+3Aηr] sin θ, (16.3)

τrθ = −(Br−1+β − Cr−1−β +Aηr) cos θ, σz = (s1Br
−1+β + s2Cr

−1−β + s3Ar] sin θ, (16.4)

where A,B,C are unknown constants and

s1,2 = ∓S13 + S23(1± β)

S33
, s3 = 1− (S13 + S23)η

S33
,

β =

√
1+
R11 + 2R12 +R44

R22
, η =

S23 − S13

R11+2R12+R44−3R22
, Rij = Sij−

Si3Sj3
S33

(i, j = 1, 2, 4)

Radial and hoop displacement have the following form:

ur = (p1Br
β + p2Cr

−β + p3Ar
2) sin θ, uθ = (q1Br

β + q2Cr
−β + q3Ar

2) cos θ, (16.5)

and

p1,2 =
R13 +R12(1± β)

β
, p3 =

(R11 + 3R12)η + S13

2
,

q1,2 =
R11 +R12 ∓R22β(1± β)

β
, q3 =

(R11 +R12 − 6R22)η + S13 − 2S23

2
,



16.2. STRESS ANALYSIS 137

Material properties in laminated multi-layered tube vary from layer to layer, however it is
required that the stress and displacement continuity conditions be satisfied at the layer interfaces
[3]. As the tube is subjected to no inner or outer pressure the boundary conditions have the
following form:

σ(1)
r (r0) = 0, σ(N)

r (ra) = 0. (16.6)

For perfectly bonded layers all displacements must be continuous from layer to layer. For the
displacements and stresses on the layer interfaces the continuity conditions are [8]:

u(k)
r (rk) = u(k+1)

r (rk) , u
(k)
θ (rk) = u

(k+1)
θ (rk) , σ(k)

r (rk) = σ(k+1)
r (rk) k = 1, N − 1 (16.7)

Substituting layer stresses 16.3, 16.4 into boundary conditions 16.6 and displacements 16.5 and
layer stresses 16.3, 16.4 into continuity conditions 16.7 we obtain:

(B(1)r−1+β
0 − C(1)r−1−β

0 +A(1)η(1)r0) sin θ = 0

(p
(k)
1 B(k)rβk+p

(k)
2 C(k)r−βk +p

(k)
3 A(k)r2

k)sin θ=(p
(k+1)
1 B(k+1)rβk+p

(k+1)
2 C(k+1)r−βk +p

(k+1)
3 A(k+1)r2

k)sin θ

(q
(k)
1 B(k)rβk+q

(k)
2 C(k)r−βk +q

(k)
3 A(k)r2

k)cos θ=(q
(k+1)
1 B(k+1)rβk+q

(k+1)
2 C(k+1)r−βk +q

(k+1)
3 A(k+1)r2

k)cos θ

(B(k)r−1+β
k −C(k)r−1−β

k +A(k)η(k)rk) sin θ = (B(k+1)r−1+β
k −C(k+1)r−1−β

k +A(k+1)η(k+1)r2
k) sin θ

for k = 1, N − 1 (
B(N)r−1+β

a − C(N)r−1−β
a +A(N)η(N)ra

)
sin θ = 0 (16.8)

The following relation must be satisfied for equilibrium for bending moment [8]:

∫

θ

∫

r
σzr

2 sin θdrdθ = M r ∈ [r0, ra] θ ∈ [0, 2π] . (16.9)

Substituting axial layer stress 16.4 into the relation above we obtain:

∫

θ

∫

r

(
s1Br

−1+β + s2Cr
−1−β + s3Ar

)
sin2 θdrdθ = M. (16.10)

Consequently, for a filament-wound tube with N layers the equilibrium for bending moment
relation has the following form [2], [5]:

N∑

m=1

s
(1)
1 B(1)

∫

θ

∫ r1

r0

r1+β sin2 θdrdθ+s
(m)
1 B(m)

∫

θ

∫ rm

rm−1

r1+β sin2 θdrdθ+s
(N)
1 B(N)

∫

θ

∫ ra

rN−1

r1+β sin2 θdrdθ+

s
(1)
2 C(1)

∫

θ

∫ r1

r0

r1−β sin2 θdrdθ+s
(m)
2 C(m)

∫

θ

∫ rm

rm−1

r1−β sin2 θdrdθ+s
(N)
2 C(N)

∫

θ

∫ ra

rN−1

r1−β sin2 θdrdθ+ (16.11)

s
(1)
3 A(1)

∫

θ

∫ r1

r0

r3 sin2 θdrdθ + s
(m)
3 A(m)

∫

θ

∫ rm

rm−1

r3 sin2 θdrdθ + s
(N)
3 A(N)

∫

θ

∫ ra

rN−1

r3 sin2 θdrdθ = M

where

∫ 2π

0

∫ r1

r0

r1+β sin2 θdrdθ = π
r2+β

1 − r2+β
0

2 + β

∫ 2π

0

∫ r1

r0

r1+β sin2 θdrdθ = π
r2+β

1 − r2+β
0

2 + β
(16.12)

∫ 2π

0

∫ r1

r0

r1−β sin2 θdrdθ = π
r2−β

1 − r2−β
0

2− β

∫ 2π

0

∫ r1

r0

r3 sin2 θdrdθ = π
r4

1 − r4
0

4
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Substituting the integrals 16.12 into 16.10 we obtain the expression for bending moment equi-
librium for filament-wound multi-layered tube:

s
(1)
1 B(1)π

r2+β
1 − r2+β

0

2 + β
+ s

(m)
1 B(m)π

r2+β
m − r2+β

m−1

2 + β
+ s

(N)
1 B(N)π

r2+β
a − r2+β

N−1

2 + β
+

s
(1)
2 C(1)π

r2−β
1 − r2−β

0

2− β
+ s

(m)
2 C(m)π

r2−β
m − r2−β

m−1

2− β
+ s

(N)
2 C(N)π

r2−β
a − r2−β

N−1

2 + β
+ m = 2, N − 1

(16.13)

s
(1)
3 A(1)π

r4
1 − r4

0

4
+ s

(m)
3 A(m)π

r4
m − r4

m−1

4
+ s

(N)
3 A(N)π

r4
a − r4

N−1

4
= M

For the pipe of isotropic material η = 0 and β = 2. Consequently, the equilibrium for bending
moment equation for the pipe with inner layer of homogeneous material is [2], [5]:

N∑

m=1

s
(1)
1 B(1)

∫

θ

∫ r1

r0

r3 sin2 θdrdθ + s
(m)
1 B(m)

∫

θ

∫ rm

rm−1

r1+β sin2 θdrdθ + s
(N)
1 B(N)

∫

θ

∫ ra

rN−1

r1+β sin2 θdrdθ+

s
(1)
2 C(1)

∫

θ

∫ η

r0

r−1 sin2 θdrdθ+s
(m)
2 C(m)

∫

θ

∫ rm

rm−1

r1−β sin2 θdrdθ+s
(N)
2 C(N)

∫

θ

∫ ra

rN−1

r1−β sin2 θdrdθ+ (16.14)

s
(1)
3 A(1)

∫

θ

∫ r1

r0

r3 sin2 θdrdθ + s
(m)
3 A(m)

∫

θ

∫ rm

rm−1

r3 sin2 θdrdθ + s
(N)
3 A(N)

∫

θ

∫ ra

rN−1

r3 sin2 θdrdθ = M

where

s
(1)
3 A(1)

∫ 2π

0

∫ r1

r0

r3sin2 θdrdθ = s
(1)
3 A(1)π

r4
1 − r4

0

4
s

(1)
1 B(1)

∫ 2π

0

∫ r1

r0

r3sin2 θdrdθ = s
(1)
1 B(1)π

r4
1 − r4

0

4
(16.15)

s
(1)
2 C(1)

∫ 2π

0

∫ r1

r0

r−1 sin2 θdrdθ = s
(1)
2 C(1)π (ln(r1)− ln(r0)) .

Substituting the integrals 16.15 into 16.14 we obtain the expression for bending moment
equilibrium for filament-wound multi-layered tube with homogeneous inner layer:

s
(1)
1 B(1)π

r4
1 − r4

0

4
+ s

(m)
1 B(m)π

r2+β
m − r2+β

m−1

2 + β
+ s

(N)
1 B(N)π

r2+β
a − r2+β

N−1

2 + β
+

s
(1)
2 C(1)π (ln(r1)− ln(r0)) + s

(m)
2 C(m)π

r2−β
m − r2−β

m−1

2− β
+ s

(N)
2 C(N)π

r2−β
a − r2−β

N−1

2− β
+

s
(1)
3 A(1)π

r4
1 − r4

0

4
+ s

(m)
3 A(m)π

r4
m − r4

m−1

4
+ s

(N)
3 A(N)π

r4
a − r4

N−1

4
= M

As a result we derive the following system of equations solving which the stress in the tube can
be obtained:

Boundary condition
Continuity condition

Equilibrium for bending moment




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16.3 Numerical results and discussion

To get the numerical results the software for bending stiffness and bending stress calculation was
developed. As a numerical example we will consider the filament wound pipes of different designs
made of carbon/epoxy composite (T300/LY5052) under bending load. The inner diameter of
the pipes is 2cm and the outer diameter is 6cm. The bi-material pipe consists of inner steel and
outer fibre composite layers. The comparative study of the stress distribution in the bi-material
pipes with inner layer of homogeneous material (steel) and unidirectional inner layer of 00 fibre
orientation was carried out. The properties of steel and composite are given in Table 16.1.

Carbon/Epoxy unidirectional fibre composite (T300/LY5052) [1] Steel

E1(GPa) 135 205

E2(GPa) 8 205

G12(GPa) 3.8 77

ν12 0.27 0.33

ν23 0.49 0.33

Table 16.1: Properties of materials.

Figure 16.1: Effect of the winding angle on the axial,

hoop and radial stresses for the pipe with [0, a,−a] lay-

up (solid line - inner radius; dotted line - outer radius)

Figure 16.2: Effect of the winding angle on the axial,

hoop and radial stresses for the pipe with [steel, a,−a]
lay-up(solid line-inner radius;dotted line-outer radius)



140 CHAPTER 16. FLEXIBLE COMPOSITES FOR HIGH-STRAIN APPLICATIONS

The effect of winding angle on axial and hoop stresses on inner and outer pipe surfaces is
presented in Figures 16.1, 16.2. Axial stresses on inner surface are lower than on outer for pipes
with inner steel and inner 00 fibre layer. The hoop stress in pipe with inner steel layer is higher
on inner surface than on outer for winding angles from 400 till 900 and lower on inner surface
than on outer for winding angles from 00 till 400. But for the pipe with inner 00 fibre layer
the situation is vice versa. The hoop stress in pipe with inner 00 fibre layer is lower on inner
surface than on outer for winding angles from 400 till 900 and higher on inner surface than on
outer for winding angles from 00 till 400. Figures 16.3 - 16.4 give detailed trough the thickness
distribution of axial and hoop stresses for a range or winding angles for the pipes with inner
steel and 00 fibre layers.

Figure 16.3: Effect of the winding angle on the

axial, hoop and radial stresses distribution through

the wall thickness for the pipe with [0, a,−a] lay-up

Figure 16.4: Effect of the winding angle on the

axial, hoop and radial stresses distribution through

the wall thickness for the pipe with [steel, a,−a]

lay-up
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16.4 Conclusion

Due to the advantages over conventional materials in strength, stiffness, corrosion resistance and
the ability to be tailored for the purpose the composite coiled tubing has a potential to replace
the conventional, steel, coiled tubing. Coiled tube is thick walled tube which must withstand
various loading conditions one of which is obviously bending loading. We consider fibre reinforced
coiled tube as thick-walled multi-layered filament wound tube. Due to the manufacturing issues
the inner pipe is used for multi-layered pull winding fibre reinforced tube production. In the
paper the comparative study of stresses distribution in multi-layered fibre reinforced pipes with
inner steel layer and inner 00 fibre layer is presented. The analysis show how the stresses depend
on the material of inner layer
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Abstract. The mixed compressible Stokes system with variable coefficient models the mo-
tion of a laminar compressible viscous fluid in a bounded domain. The mixed boundary value
problem related to the Stokes system is reduced to two different BDIES which are equivalent
to the original boundary value problem, see [2, 10, 11]. These Boundary Integral Equation
Systems can be expressed in terms of surface and volume parametrix-based potential type
operators whose properties are also analysed in appropriate Sobolev spaces. The invertibil-
ity and Fredholm properties related to the matrix operator that defines the BDIES are also
presented.

17.1 Introduction

Boundary integral equations and the hydrodynamic potential theory for the Stokes system with
constant viscosity have been extensively studied by numerous authors, e.g., [6, 7, 4, 14, 15, 5, 16].

Although the compressible Stokes System with variable viscosity has been extensively stud-
ied, it has not yet been reduced to BDIES following a similar approach as in [2]. In contrast
to [2], the BVP approached in this chapter consists of a system of four equations with four
unknowns: the three component velocity field and the scalar pressure field.

In the case of constant viscosity, fundamental solutions for both, velocity and pressure,
are available. Notwithstanding, these fundamental solutions are not available in the variable
coefficient case for which a parametrix (Levi function), (see e.g., [2, 10, 11, 12]) is needed in
order to derive the (BDIES).

However, a parametrix for a certain PDE is not unique and neither is it in the case of a PDE
system. Therefore, the choice of an appropriate parametrix is not a trivial decision at all. In

142
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[11], we develop BDIES for the mixed imcompressible Stokes problem defined over a bounded
domain. Equivalence between the BVP-BDIES is shown, however, invertibility results are not
proved.

In this chapter, we derive two BDIES equivalent to the original mixed compressible Stokes
system defined on a bounded domain. Furthermore, mapping properties of the hydrodynamic
surface and volume potentials are shown. The main results are the equivalence theorems and
the invertibility theorems of the operators defined by the BDIES.

17.2 Preliminaries

Let Ω = Ω+ be a bounded and simply connected domain and let Ω− := R3rΩ
+

. We will assume
that the boundary S := ∂Ω is simply connected, closed and infinitely differentiable, S ∈ C∞.
Furthermore, S := SN ∪SD where both SN and SD are non-empty, connected disjoint manifolds
of S. The border of these two submanifolds is also infinitely differentiable, ∂SN = ∂SD ∈ C∞.

Let v be the velocity vector field; p the pressure scalar field and µ ∈ C∞(Ω) be the variable
kinematic viscosity of the fluid such that µ(x) > c > 0.

The Stokes operator is defined as

Aj(p,v)(x) : =
∂

∂xi
σji(p,v)(x) (17.1)

=
∂

∂xi

(
µ(x)

(
∂vj
∂xi

+
∂vi
∂xj
− 2

3
δji divv

))
− ∂p

∂xj
, j, i ∈ {1, 2, 3},

where δji is Kronecker symbol. Here and henceforth we assume the Einstein summation in
repeated indices from 1 to 3. We also denote the Stokes operator as A = {Aj}3j=1. Ocassionally,

we may use the following notation for derivative operators: ∂j = ∂xj :=
∂

∂xj
with j = 1, 2, 3;

∇ := (∂1, ∂2, ∂3).

For a compressible fluid divv = g, which gives the following stress tensor operator and the
Stokes operator, respectively, to

σji(p,v)(x) = −δji p(x) + µ(x)

(
∂vi(x)

∂xj
+
∂vj(x)

∂xi
− 2

3
δji g

)
,

Aj(p,v)(x) =
∂

∂xi

(
µ(x)

(
∂vj
∂xi

+
∂vi
∂xj
− 2

3
δji g

))
− ∂p

∂xj
, j, i ∈ {1, 2, 3}.

In what follows Hs(Ω), Hs(S) are the Bessel potential spaces, where s ∈ R is an arbitrary real
number (see, e.g., [7, 8]). We recall that Hs coincide with the Sobolev–Slobodetski spaces W s

2 for
any non-negative s. Let Hs

K := {g ∈ H1(R3) : supp(g) ⊆ K} where K is a compact subset of R3.
In what follows we use the bold notation: Hs(Ω) = [Hs(Ω)]3 for 3-dimensional vector spaces. We

denote by H̃
s
(Ω) the subspace of Hs(R3), H̃

s
(Ω) := {g : g ∈Hs(R3), supp g ⊂ Ω}; similarly,

H̃
s
(S1) = {g ∈ Hs(S), supp g ⊂ S1} is the Sobolev space of functions having support in

S1 ⊂ S.

We will also make use of the following space, (cf. e.g. [3, 2])

H1,0(Ω;A) := {(p,v) ∈ L2(Ω)×H1(Ω) : A(p,v) ∈ L2(Ω)},

endowed with the norm

‖ (p,v) ‖H1,0(Ω;L) :=
(
‖ p ‖2L2(Ω) + ‖ v ‖2

H1(Ω)
+ ‖ A(p,v) ‖2L2(Ω)

)1/2
.
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The operator A acting on (p,v) is well defined in the weak sense provided µ(x) ∈ L∞(Ω) as

〈A(p,v),u〉Ω := −E((p,v),u), ∀u ∈ H̃
1
(Ω),

where the form E :
[
L2(Ω)×H1(Ω)

]
× H̃

1
(Ω) −→ R is defined as

E ((p,v),u) :=

∫

Ω
E ((p,v),u) (x) dx, (17.2)

and the function E ((p,v),u) is defined as

E ((p,v),u) (x) : =
1

2
µ(x)

(
∂ui(x)

∂xj
+
∂uj(x)

∂xi

)(
∂vi(x)

∂xj
+
∂vj(x)

∂xi

)

− 2

3
µ(x)divv(x) divu(x)− p(x)divu(x). (17.3)

For sufficiently smooth functions (p,v) ∈Hs−1(Ω±)×Hs(Ω±) with s > 3/2, we can define
the classical traction operators on the boundary S as

T±i (p,v)(x) := γ±σij(p,v)(x)nj(x), (17.4)

where nj(x) denote components of the unit outward normal vector n(x) to the boundary S of
the domain Ω and γ±( · ) denote the trace operators from inside and outside Ω.

Traction operators (17.4) can be continuously extended to the canonical traction operators
T± : H1,0(Ω±,A)→H−1/2(S) defined in the weak form similar to [3, 9, 2] as

〈T±(p,v),w〉S := ±
∫

Ω±

[
A(p,v)γ−1w + E

(
(p,v),γ−1w

)]
dx,

∀ (p,v) ∈H1,0(Ω±,A), ∀w ∈H1/2(S).

Here the operator γ−1 : H1/2(S) → H1(R3) denotes a continuous right inverse of the trace
operator γ : H1(R3)→H1/2(S).

Furthermore, if (p,v) ∈H1,0(Ω,A) and u ∈H1(Ω), the following first Green identity holds,
cf. [3, 9, 2, 11],

〈T+(p,v),γ+u〉S =

∫

Ω
[A(p,v)u+ E ((p,v),u) (x)]dx. (17.5)

Applying the identity (17.5) to the pairs (p,v), (q,u) ∈ H1,0(Ω,A) with exchanged roles
and subtracting the one from the other, we arrive at the second Green identity, cf. [8, 9],

∫

Ω
[Aj(p,v)uj −Aj(q,u)vj + q divv − p divu] dx =

〈T+(p,v),γ+u〉S − 〈T+(q,u),γ+v〉S . (17.6)

Now we are ready to define the mixed BVP for which we aim to derive equivalent BDIES and
investigate the existence and uniqueness of their solutions.

For f ∈ L2(Ω), g ∈ L2(Ω), ϕ0 ∈H1/2(SD) and ψ0 ∈H−1/2(SN ), find (p,v) ∈H1,0(Ω,A)
such that:

A(p,v)(x) = f(x), x ∈ Ω, (17.7a)

div(v)(x) = g(x), x ∈ Ω, (17.7b)

rSDγ
+v(x) = ϕ0(x), x ∈ SD, (17.7c)

rSNT
+(p,v)(x) = ψ0(x), x ∈ SN . (17.7d)
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Such problems arise when modeling the behaviour of a compressible (or incompressible when
g = 0) fluid flowing in a rigid open container (such is the case with the water flowing in a river
when SD is the surface of the river bed and SN is the free surface of the water, [1]. Applying
the first Green identity it is easy to prove the following uniqueness result.

Theorem 3. Mixed BVP (17.7) has at most one solution in the space H1,0(Ω,A).

17.3 Parametrix and Remainder

When µ(x) = 1, the operator A becomes the constant-coefficient Stokes operator Å, for which
we know an explicit fundamental solution defined by the pair of fields (q̊k, ůk), where ůkj represent

components of the incompressible velocity fundamental solution and q̊k represent the components
of the pressure fundamental solution (see e.g. [6, 5, 4]).

q̊k(x,y) =
(xk − yk)

4π|x− y|3
,

ůkj (x,y) = − 1

8π

{
δkj

|x− y|
+

(xj − yj)(xk − yk)
|x− y|3

}
, j, k ∈ {1, 2, 3}.

Therefore, (q̊k, ůk) satisfy

Åj(q̊k, ůk)(x) =
3∑

i=1

∂2ůkj
∂x2

i

− ∂q̊k

∂xj
= δkj δ(x− y).

Let us denote σ̊ij(p,v) := σij(p,v)|µ=1. Then, in the particular case µ = 1, the stress tensor
σ̊ij(q̊

k, ůk)(x− y) reads as

σ̊ij(q̊
k, ůk)(x− y) =

3

4π

(xi − yi)(xj − yj)(xk − yk)
|x− y|5

,

and the boundary traction becomes

T̊i(x; q̊k, ůk)(x,y) : = σ̊ij(q̊
k, ůk)(x− y)nj(x)

=
3

4π

(xi − yi)(xj − yj)(xk − yk)
|x− y|5

nj(x).

Let us define a pair of functions (qk,uk)k=1,2,3 as

qk(x,y) =
µ(x)

µ(y)
q̊k(x,y) =

µ(x)

µ(y)

xk − yk
4π|x− y|3

, j, k ∈ {1, 2, 3}. (17.8)

ukj (x,y) =
1

µ(y)
ůkj (x,y) = − 1

8πµ(y)

{
δkj

|x− y|
+

(xj − yj)(xk − yk)
|x− y|3

}
, (17.9)

Then,

σij(x; qk,uk)(x,y) =
µ(x)

µ(y)
σ̊ij(q̊

k, ůk)(x− y),

Ti(x; qk,uk)(x,y) := σij(x; qk,uk)(x,y)nj(x) =
µ(x)

µ(y)
T̊i(x; q̊k, ůk)(x,y).

Substituting (17.9)-(17.8) in the Stokes system with variable coefficient (17.1) gives

Aj(x; qk,uk)(x,y) = δkj δ(x− y) +Rkj(x,y), (17.10)
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where

Rkj(x,y) =
1

µ(y)

∂µ(x)

∂xi
σ̊ij(q̊

k, ůk)(x− y) = O(|x− y|)−2)

is a weakly singular remainder. This implies that (qk,uk) is a parametrix of the operator A.

17.3.1 Volume and surface potentials

Let us define the parametrix-based Newton-type and remainder vector potentials

Ukρ(y) = Ukjρj(y) :=

∫

Ω
ukj (x,y)ρj(x)dx,

Rkρ(y) = Rkjρj(y) :=

∫

Ω
Rkj(x,y)ρj(x)dx, y ∈ R3,

for the velocity, and the scalar Newton-type pressure and remainder potentials

Qρ(y) = Qjρj(y) :=

∫

Ω
qj(x,y)ρj(x)dx, (17.11)

Qρ(y) = Qjρ(y) :=

∫

Ω
qj(x,y)ρ(x)dx, (17.12)

R•ρ(y) = R•jρj(y) := 2 v.p.

∫

Ω

∂q̊j(x,y)

∂xi

∂µ(x)

∂xi
ρj(x)dx− 4

3
ρj
∂µ

∂yj
, y ∈ R3, (17.13)

for the pressure. The integral in (17.13) is understood as a 3D strongly singular integral in the
Cauchy sense.

For the velocity, let us also define the parametrix-based single layer potential, double layer
potential and their respective direct values on the boundary, as follows:

Vkρ(y) = Vkjρj(y) := −
∫

S
ukj (x,y)ρj(x) dS(x), y /∈ S,

Wkρ(y) = Wkjρj(y) := −
∫

S
Tj(x; qk,uk)(x,y)ρj(x) dS(x), y /∈ S,

Vkρ(y) = Vkjρj(y) := −
∫

S
ukj (x,y)ρj(x) dS(x), y ∈ S,

Wkρ(y) =Wkjρj(y) := −
∫

S
Tj(x; qk,uk)(x,y)ρj(x) dS(x), y ∈ S.

For pressure in the variable coefficient Stokes system, we will need the following single-layer
and double layer potentials:

Pρ(y) = Pjρj(y) := −
∫

S
q̊j(x,y)ρj(x)dS(x),

Πρ(y) = Πjρj(y) := −2

∫

S

∂q̊j(x,y)

∂n(x)
µ(x)ρj(x)dS(x), y /∈ S.

Let us also denote

W ′kρ(y) =W ′kjρj(y) := −
∫

S
Tj(y; qk,uk)(x,y)ρj(x) dS(x), y ∈ S,

L±k ρ(y) := T±k (Πρ,Wρ)(y), y ∈ S,

where T±k are the traction operators for the compressible fluid.
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17.3.2 Mapping properties

The following corollary reflects the mapping property of the vector operator Q̊ which transforms
a scalar function into a vector as opposed as the scalar operator Q̊, which transforms a vector
function into a scalar function, whose mapping properties are already well known, see e.g. [4,
Lemma 5.6.6.] for the constant coefficient case and presented in the previous theorem for the
variable coefficient case.

Corollary 2. The following operators are continuous

Q̊k : H̃s(Ω)→Hs+1(Ω), s ∈ R, (17.14)

Q̊k : Hs(Ω)→Hs+1(Ω), s > −1/2. (17.15)

Theorem 4. The following operators, with s > 1/2,

Rik : Hs(Ω)→Hs(Ω), R•k : Hs(Ω)→Hs−1(Ω),

γ+Rik : Hs(Ω)→Hs−1/2(S), T±ik (R•,R) : H1,0(Ω;A)→H−1/2(S)

are compact.

The theorems in the remainder of this section are well known for the constant coefficient
case, see e.g. [5, 4]. Then by relations 1.10 - 1.16 given in [11], we obtain their counterparts for
the variable-coefficient case.

Theorem 5. The following operators are continuous

(P,V ) : H−1/2(S) −→H1,0(Ω;A), (17.16)

(Π,W ) : H1/2(S) −→H1,0(Ω;A), (17.17)

(Q,U) : L2(Ω) −→H1,0(Ω;A), (17.18)

(R•,R) : H1(Ω) −→H1,0(Ω;A), (17.19)

(
4µ

3
I,Q) : L2(Ω) −→H1,0(Ω;A). (17.20)

Theorem 6. Let τ ∈H1/2(S). Then, the following jump relation holds:

(L±k − L̂k)τ =

γ±
(
µ

[
∂i

(
1

µ

)
W̊k(µτ ) + ∂k

(
1

µ

)
W̊i(µτ )− 2

3
δki ∂j

(
1

µ

)
W̊j(µτ )

])
ni. (17.21)

where
L̂k(τ ) := L̊k(µτ ).

Corollary 3. Let S1 be a non empty submanifold of S with smooth boundary. Then, the oper-
ators

rS1L̂ : H̃
1/2

(S1) −→H−1/2(S),

rS1(L± − L̂) : H̃
1/2

(S1) −→H1/2(S),

are continuous and the operators

rS1(L± − L̂) : H̃
1/2

(S1) −→H−1/2(S),

are compact.

Theorem 7. The following pressure surface potential operators are continuous:

Pk : Hs− 3
2 (S)→ Hs−1(Ω), s ∈ R, (17.22)

Πk : Hs−1/2(S)→ Hs−1(Ω), s ∈ R. (17.23)
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17.4 The Third Green Identities

Let B(y, ε) ⊂ Ω be a ball with a small enough radius ε and centre y ∈ Ω. In this new domain,
the integrands of the operators R and R• belong to L2(ΩrB(y, ε)). In addition, the parametrix
(qk,uk) ∈H1,0(ΩrB(y, ε);A) since we have removed the singularity. Therefore, we can apply
the second Green identity (17.6) in the domain Ω \ B(y, ε) to any (p,v) ∈ H1,0(Ω;A) and to
the parametrix (qk,uk), keeping in mind the relation (17.10) and applying the standard limiting
procedures, i.e., ε→ 0, see, e.g. [13], we obtain

v + Rv − V T+(p,v) +Wγ+v = UA(p,v) + Q(div(v)), in Ω. (17.24)

Theorem 8. An integral representation formula for the pressure p is given by

p+R•v − PT (p,v) + Πγ+v = Q̊A(p,v) +
4µ

3
divv, in Ω. (17.25)

If the couple (p,v) ∈ H1,0(Ω;A) is a solution of the Stokes PDEs (17.7a)-(17.7b) with
variable coefficient, then (17.24) and (17.25) give

p+R•v − PT (p,v) + Πγ+v = Q̊f +
4µ

3
g in Ω, (17.26)

v + Rv − V T+(p,v) +Wγ+v = Uf + Qg in Ω. (17.27)

We will also need the trace and traction of the third Green identities for (p,v) ∈H1,0(Ω;A) on
S. We highlight that the traction operator is well defined applied to the third Green identities
(17.26)-(17.27) by virtue of Theorem 5.

1/2γ+v + γ+Rv − VT+(p,v) + Wγ+v = γ+Uf + γ+Qg, (17.28)

1/2T+(p,v) + T+(R•,R)v −W ′T+(p,v) + L+γ+v = T̃+(g,f) (17.29)

where

T̃+(g,f) := T+(Q̊f +
4µ

3
g, Uf + Qg). (17.30)

One can prove the following three assertions that are instrumental for proving the equivalence
of the BDIES and the mixed PDE.

Theorem 9. Let v ∈ H1(Ω), p ∈ L2(Ω), g ∈ L2(Ω), f ∈ L2(Ω), Ψ ∈ H−1/2(S) and Φ ∈
H1/2(S) satisfy the equations

p+R•v − PΨ + ΠΦ = Q̊f +
4µ

3
g in Ω, (17.31)

v + Rv − VΨ +WΦ = Uf + Qg in Ω. (17.32)

Then (p,v) ∈ H1,0(Ω,A) and solve the equations A(p,v) = f and div(v) = g. Moreover, the
following relations hold true:

P(Ψ− T+(p,v))−Π(Φ− γ+v) = 0 in Ω, (17.33)

V (Ψ− T+(p,v))−W (Φ− γ+v) = 0 in Ω. (17.34)

Lemma 2. Let S = S1 ∪ S2, where S1 and S2 are open non-empty non-intersecting simply

connected submanifolds of S with infinitely smooth boundaries. Let Ψ∗ ∈ H̃
−1/2

(S1), Φ∗ ∈
H̃

1/2
(S2). If

P(Ψ∗)−Π(Φ∗) = 0, VΨ∗(x)−WΦ∗(x) = 0, in Ω, (17.35)

then Ψ∗ = 0, and Φ∗ = 0, on S.
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17.5 BDIES M11

We aim to obtain two different BDIES for mixed BVP (17.7). This is a well known procedure,
see [2, 11, 10] and further references therein.

To this end, let the functions Φ0 ∈ H1/2(S) and Ψ0 ∈ H−1/2(S) be some continuations of
the boundary functions ϕ0 ∈H1/2(SD) and ψ0 ∈H−1/2(SN ) from (17.7c) and (17.7d). Let us
now represent

γ+v = Φ0 +ϕ, T+(p,v) = Ψ0 +ψ on S, (17.36)

where ϕ ∈ H̃
1/2

(SN ) and ψ ∈ H̃
−1/2

(SD) are unknown boundary functions.
Let us now take equations (17.26) and (17.27) in the domain Ω and restrictions of equations

(17.28) and (17.29) to the boundary parts SD and SN , respectively. Substituting there represen-
tations (17.36) and considering further the unknown boundary functions ϕ and ψ as formally
independent of (segregated from) the unknown domain functions p and v, we obtain the fol-
lowing system (M11) consisting of four boundary-domain integral equations for four unknowns,

(p,v) ∈H1,0(Ω,A), ϕ ∈ H̃
1/2

(SN ) and ψ ∈ H̃
−1/2

(SD):

p+R•v − Pψ + Πϕ = F0, in Ω, (17.37a)

v + Rv − V ψ +Wϕ = F , in Ω, (17.37b)

rSDγ
+Rv − rSDVψ + rSDWϕ = rSDγ

+F −ϕ0, on SD, (17.37c)

rSNT
+(R•,R)v − rSNW

′ψ + rSNL
+ϕ = rSNT

+(F0,F )−ψ0, on SN , (17.37d)

where

F0 = Q̊f +
4

3
gµ+ PΨ0 −ΠΦ0, F = Uf + Qg + VΨ0 −WΦ0. (17.38)

By virtue of Lemma 9, (F0,F ) ∈H1,0(Ω,A) and hence T (F0,F ) is well defined.
We denote the right hand side of BDIE system (17.37) as

F11
∗ := [F0,F11] = [F0,F , rSDγ

+F −ϕ0, rSNT
+(F0,F )−ψ0]>, (17.39)

which implies F ∈H1,0(Ω,A)×H1/2(SD)×H−1/2(SN ).
Note that BDIE system (17.37) can be split into the BDIE system (M11), of 3 vector equa-

tions (17.37b), (17.37c), (17.37d) for 3 vector unknowns, v, ψ and ϕ, and the scalar equation
(17.37a) that can be used, after solving the system, to obtain the pressure, p. The system (M11)
given by equations (17.37a)-(17.37d) can be written using matrix notation as

M11
∗ X = F11

∗ , (17.40)

where X represents the vector containing the unknowns of the system

X = (p,v,ψ,ϕ)> ∈ L2(Ω)×H1(Ω)× H̃
−1/2

(SD)× H̃
1/2

(SN )

The matrix operator M11
∗ is defined by

M11
∗ =




I R• −P Π
0 I + R −V W
0 rSDγ

+R −rSDV rSDW
0 rSNT

+(R•,R) −rSNW ′ rSNL


 .

We note that the mapping properties of the operators involved in the matrix imply the continuity
of the operator

M11
∗ : L2(Ω)×H1(Ω)× H̃

−1/2
(SD)× H̃

1/2
(SN )

−→ L2(Ω)×H1(Ω)×H1/2(SD)×H−1/2(SN ).
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Remark 2. The term F11
∗ = 0 if and only if (f , g,Φ0,Ψ0) = 0.

Theorem 10 (Equivalence Theorem). Let f ∈ L2(Ω), g ∈ L2(Ω) and let Φ0 ∈ H−1/2(S) and
Ψ0 ∈H−1/2(S) be some fixed extensions of ϕ0 ∈H1/2(SD) and ψ0 ∈H−1/2(SN ) respectively.

(i) If some (p,v) ∈H1,0(Ω;A) solve the mixed BVP (17.7), then

(p,v,ψ,ϕ) ∈H1,0(Ω;A)× H̃
−1/2

(SD)× H̃
1/2

(SN ),

where

ϕ = γ+v −Φ0, ψ = T+(p,v)−Ψ0 on S, (17.41)

solve BDIE system (17.37).

(ii) If (p,v,ψ,ϕ) ∈H1,0(Ω;A)×H̃
−1/2

(SD)×H̃
1/2

(SN ) solve the BDIE system (17.37) then
(p,v) solve mixed BVP (17.7) and ψ,ϕ satisfy (17.41).

(iii) The BDIE system (17.37) is uniquely solvable in H1,0(Ω;A)× H̃
−1/2

(SD)× H̃
1/2

(SN ).

Theorem 11. The operator

M11
∗ : L2(Ω)×H1(Ω)× H̃

−1/2
(SD)× H̃

1/2
(SN )

−→ L2(Ω)×H1(Ω)×H1/2(SD)×H−1/2(SN ) (17.42)

is continuously invertible.

Theorem 12. The operator

M11
∗ : H1,0(Ω;A)× H̃

−1/2
(SD)× H̃

1/2
(SN ) (17.43)

−→H1,0(Ω;A)×H1/2(SD)×H−1/2(SN ) (17.44)

is continuously invertible.

The last three vector equations of the system (M11) are segregated from p. Hence, we can
define the new system given by equations (17.37b), (17.37c), (17.37d) which can be written using
matrix notation as

M11Y = F11, (17.45)

where Y represents the vector containing the unknowns of the system

Y = (v,ψ,ϕ)> ∈H1(Ω)× H̃
−1/2

(SD)× H̃
1/2

(SN )

The matrix operator M11 is defined by

M11 =




I + R −V W
rSDγ

+R −rSDV rSDW
rSNT

+(R•,R) −rSNW ′ rSNL




Corollary 4. The operator

M11 : H1(Ω)× H̃
−1/2

(SD)× H̃
1/2

(SN ) −→H1(Ω)×H1/2(SD)×H−1/2(SN )

is continuous and continuously invertible.
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17.6 Further Work

Immediate further work will focus on the numerical implementation of the proposed BDIES.
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Chapter 18

MHD combined convection flow in a
lid-driven cavity with sinusoidal
wavy wall
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Abstract. In this study, a numerical analysis is conducted to understand the influence of a
magnetic field on the mixed convection flow and the thermal distribution in a lid-driven cav-
ity with a uniformly heated vertical sinusoidal wavy right surface. Specifically, we consider
the two-dimensional, steady, incompressible and laminar flow of electrically conducting fluid
in an electrically insulated cavity under the effect of a horizontally applied external magnetic
field. The horizontal walls of the cavity are considered to be adiabatic while the isothermal
sidewalls are maintained at different temperatures Th and Tc with Th > Tc. Furthermore,
the left wall moves upward at a constant speed, while the other walls remain stationary. The
coupled nonlinear equations of the mass, momentum and energy governing the present prob-
lem are discretized using the dual reciprocity boundary element method (DRBEM) which
is a boundary only nature technique treating the nonlinear terms by the use of radial basis
functions. The validity of the DRBEM code is ascertained by comparing the present results
with previously published results. The influence of Rayleigh number, Hartmann number and
the number of wavy surface undulation on the flow structure and the heat transfer char-
acteristics are analyzed in details. The obtained results illustrate that the average Nusselt
number increases with an increase in Rayleigh number and the number of undulation, while
it decreases for higher values of Hartmann number.

18.1 Literature Survey

The study of mixed convection and heat transfer in lid-driven cavities under the effect of magnetic
field has attracted many researchers due to its interaction with many engineering and industrial
applications, such as nuclear reactors, cooling of electronic devices, food processing, lubrication
and drying technologies. Mixed convection in cavities occurs as a result of the interaction of
two opposite mechanism, namely shear and buoyancy forces. The shear flow is generated by
the motion of a lid and the buoyant flow is due to the thermal nonhomegeneity of cavity walls.
On the other hand, when the fluid is electrically conducting, the flow and the temperature

152
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distributions can be controlled by the application of an external magnetic field to the convective
system. There are many studies on the solution of the MHD mixed convection flow in regular
cavities with flat walls [2]-[5]. On the other hand, the mixed convective heat transfer for more
complex geometries with irregular surfaces is also great importance since irregular surfaces are
often encountered in many engineering applications, such as solar collectors, underground cable
systems and cooling system of micro-electronic devices. It is worth mentioning that the irregular
cavities with a form of wavy surfaces can be used to control the heat transfer efficiency since the
changes in surface fluctuation have a great impact on the surface temperature. Although there
are many studies given in the literature of natural convection flow in cavities with wavy surfaces
(e.g. [7], [8], [9]), there have been few studies on the mixed convection flow in lid-driven cavities
with irregular surfaces. Rahman et al. [6] investigated the influence of the uniform magnetic field
with Joule heating effects in a lid-driven cavity with heated semi-circular wall. They observed
that, the flow strength and temperature distribution are affected by the magnetic field and Joule
parameter. Wang and Chen [10] solved the forced convection flow in a wavy-wall channel and
analyzed its effect on Nusselt number for various values of Reynolds number. The effect of
sinusoidal wavy wall on mixed convection heat transfer in a lid-driven cavity was investigated
in the work of Al-Amiri et al. [11]. Their results revealed that the average Nusselt number
increases with an increase in the amplitude of the wavy surface and Reynolds number. Later,
Mekroussi et al. [12] worked on the same mixed convection problem in an inclined lid-driven
cavity with a wavy wall. They found that the heat transfer was enhanced with an increase in
the number of undulation as well as the inclination angle of the cavity. Nasrin and Parvin [13]
conducted a study to analyze the mixed convection flow in a lid-driven cavity with a sinusoidal
wavy bottom surface in the presence of a transverse magnetic field. In all these works, a domain
decomposition method (e.g. finite element and/or finite volume methods) was employed for the
discretization of the governing equation.

The aim of the present work is to investigate numerically the influence of both the wavy hot
wall and the externally applied magnetic field on mixed convection flow in a lid-driven cavity
with a wavy right surface by using a boundary only discretization technique, namely DRBEM.
Thus, the coupled nonlinear governing equations are discretized by using DRBEM in which all
the terms except the Laplacian are treated as nonhomogeneity and these terms are approximated
by means of radial basis functions. Hence the solution is obtained with a less computational
cost compared to domain decomposition techniques. Therefore, the present study focuses on
incorporating the use of DRBEM with the effect of physical controlling parameters including
Rayleigh and Hartmann numbers and the number of undulation along the hot wavy surface.

18.2 Statement of the Problem and the Governing Equations

In this study, we consider the two dimensional MHD mixed convection flow in a square lid-driven
cavity of height ` with a sinusoidal wavy right wall (see Figure 18.1). The horizontal walls of the
cavity are assumed to be adiabatic while the isothermal side walls are maintained at constant
temperatures Th and Tc with Th > Tc. Furthermore, the left wall of the cavity moves upwards
with a constant speed U0, while the other walls remain stationary. A uniform magnetic field of
strength B0 is applied in horizontal direction normal to the moving wall and the gravity acts
in the negative y-direction. The magnetic Reynolds number is assumed to be small so that the
induced magnetic field is neglected. Moreover, the flow generated inside the cavity is assumed to
be steady, laminar and it obeys the Boussinesq approximation while the effects of the radiation,
joule heating and viscous dissipation are neglected. Air is selected as the working fluid which
yields Prandtl number of 0.71. Thus, the dimensionless equations governing this flow can be
written as follows [13]
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Figure 18.1: Geometry of the physical problem.

∂U

∂X
+
∂V

∂Y
= 0 (18.1)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

1

Re

(
∂2U

∂X2
+
∂2U

∂Y 2

)
, (18.2)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

1

Re

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+

Ra

Re2Pr
θ − Ha2

Re
V (18.3)

U
∂θ

∂X
+ V

∂θ

∂Y
=

1

RePr

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
(18.4)

by defining the dimensionless variables

X =
x

`
, Y =

y

`
, U =

u

U0
, V =

v

U0
, P =

p

ρU2
0

, θ =
T − Tc
Th − Tc

.

Here, (U, V ) is the velocity field, P is the pressure, θ is the temperature. The dimensionless
parameters are the Reynolds, Prandtl, Rayleigh and Hartmann numbers, which are given re-
spectively as follows:

Re =
U0`

ν
, Pr =

ν

α
, Ra =

gβ(Th − Tc)`3

να
, Ha = B0`

√
σ/µ

in which the parameters α, β, ν, σ and µ are the thermal diffusivity, thermal expansion coeffi-
cient, kinematic viscosity, electrical conductivity and dynamic viscosity of the fluid, respectively.

The physical dimensionless form of the boundary conditions are

At the horizontal walls: U = V = 0, ∂θ/∂n = 0
At sliding left wall: U = 0, V = 1, θ = 0
At wavy right wall: U = V = 0, θ = 1.

(18.5)

The shape of the wavy right wall is taken as sinusoidal which is defined by X = 1 − A[1 −
cos(2nπY )] where A is the dimensionless amplitude of the wavy surface and n is the number of
undulation.

Then, the equations (18.1)-(18.4) can be written in stream function, vorticity and tempera-
ture form as

∇2Ψ = −ω (18.6)
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∇2ω = Re

(
U
∂ω

∂X
+ V

∂ω

∂Y

)
+Ha2 ∂V

∂X
− Ra

RePr

∂θ

∂X
(18.7)

∇2θ = RePr

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
(18.8)

by defining the stream function Ψ and vorticity ω as

U =
∂Ψ

∂Y
, V = − ∂Ψ

∂X
, ω =

∂V

∂X
− ∂U

∂Y
.

The corresponding boundary conditions for stream function and temperature become

At the horizontal walls: Ψ = 0, ∂θ/∂n = 0
At sliding left wall: ∂Ψ/∂Y = 0, ∂Ψ/∂X = −1, θ = 0
At wavy right wall: Ψ = 0, θ = 1

(18.9)

and the unknown boundary conditions of the vorticity will be obtained from (18.6) by using a
radial basis function approximation which is an advantage of DRBEM.

18.3 Numerical Method

The DRBEM is employed to transform the governing equations (18.6)-(18.8) into boundary
integrals by using the fundamental solution of Laplace equation u∗ = 1/2π ln(1/r). Hence, the
Equations (18.6)-(18.8) are weighted with u∗ and the application of the divergence theorem
results in the following equations:

ciDi +

∫

Γ

(
q∗D − u∗∂D

∂n

)
dΓ = −

∫

Ω
bDu

∗dΩ (18.10)

where D is used for each unknown Ψ, ω and θ. Here q∗ = ∂u∗/∂n, Γ is the boundary of the
domain Ω and the constant ci depends only on the boundary geometry at the point i under
consideration. All the terms on the right hand side of Equations (18.6)-(18.8) denoted by bD
are treated as inhomogeneity and they are approximated by using the radial basis functions
fj = 1 + rj , which are linked through the particular solutions ûj of ∇2ûj = fj [1]. That is,

these approximations are given by bD ≈
∑N+L

j=1 αDjfj =
∑N+L

j=1 αDj∇2ûj where the coefficients
αDj are undetermined constants, N and L are the number of boundary and interior nodes,
respectively. Thus, Equation (18.10) take the form

ciDi +

∫

Γ
(q∗D − u∗∂D

∂n
)dΓ =

N+L∑

j=1

αDj

[
ciûji +

∫

Γ
(q∗ûj − u∗q̂j)dΓ

]
(18.11)

which contains only the boundary integrals and q̂ = ∂ûj/∂n. By discretizing the boundary with
constant elements, the matrix-vector form of Equation (18.11) can be expressed in a compact
way for each unknowns D(= Ψ, ω, θ), as

HD −G∂D
∂n

= (HÛ −GQ̂)F−1bD. (18.12)

The matrices Û and Q̂ are constructed by taking each of the vectors ûj and q̂j as columns,
respectively. The matrix F consists of vectors fj of size (N + L) as columns. The components
of the matrices G and H are obtained by taking the integral of the fundamental solution u∗ and
its normal derivative along each boundary elements Γj , respectively. The DRBEM equations
(18.12) are coupled so that they are solved iteratively. In each iteration, the required space
derivatives of the unknowns Ψ, ω and θ, and also the unknown vorticity boundary conditions
are obtained by using the coordinate matrix F [1].
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18.4 Numerical Validation and Results

In the present study, the characteristics of the flow field and temperature distribution in the
lid-driven cavity with a wavy right wall are investigated in order to understand the impact of
various physical parameters such as Hartmann number (Ha = 0, 25, 50, 100), Rayleigh number
(Ra = 103, 104, 105, 106) and number of undulation (n = 0, 1, 2, 3) by keeping Reynolds and
Prandtl numbers fixed as Re = 100 and Pr = 0.71, respectively. The boundary of the cavity
is discretized by using N = 350 constant boundary elements. The choice of this grid is based
on the grid refinement study conducted for the case when Ha = 50, Ra = 105 and n = 3
in order to determine the appropriate grid size required for the optimal relationship between
computational cost and numerical accuracy. The results are visualized in terms of |Ψ|max, |θ|max
and the average Nusselt number Nu along the hot wall. Figure 18.2 displays that the grid of
N ≈ 350 boundary elements ensures the grid independence, and hence is used in the subsequent
computations. Furthermore, in order to assess the validity of our numerical procedure, we
have tested our algorithm for the mixed convection flow in a lid-driven cavity with a heated
wavy bottom wall of three undulation given in the work of Amiri et al. [11]. It is observed
that the present results Ψmin = −0.0928,−0.1351,−0.2997 and Nu = 7.4325, 3.1515, 2.6646
respectively at Ri = 0.01, 1, 10 are in good agreement with the numerical results of Al-Amiri
et al. [11] Ψmin = −0.0919,−0.1278,−0.2564 and Nu = 7.9331, 3.2711, 2.7192 (calculated from
the formula (18) given in [11]), respectively at Ri = 0.01, 1, 10.

|Ψ
| m

a
x

|θ
| m

a
x

N
u

Figure 18.2: Grid dependency for Ra = 105, Ha = 50, n = 3

Figure 18.3 and 18.4 visualize the influence of Hartmann and Rayleigh numbers on the
streamlines and isotherms, respectively, when the number of undulation n = 3. In the conduction
case at Ra = 103, a clockwise rotating (negative) vortex in streamlines is formed along the
vertical left wall due to its motion from bottom to top for each Ha = 0, 25, 50. However, the
core of this vortex becomes weaker and extends vertically along the left wall as Ha increases.
For higher values of Ra, the negative vortex extends vertically taking a more elliptical shape
and it shrinks towards the left wall and finally it vanishes at Ra = 106, following the formation
of a positive vortex in front of the heater at each Ha. The positive vortex extends towards
the left wall and flow becomes dominated by this circulation as Ra increases at each Ha. The
core of positive vortex extends vertically as Ha increases and it tends to become diagonal and
finally horizontal as Ra increases. Moreover, the strength of the Ψ decreases as Ha increases
due to the retarding effect of the magnetic field on the fluid flow, while it increases at higher
values of Ra. On the other hand, the isotherms distribute uniformly in the cavity displaying
almost similar behavior for each Ha at low values of Ra(= 103 and 104) when the heat transfer
is due to the conduction. By increase the buoyant force via increasing Ra, the flow becomes
convection dominated. As a result, isotherms change their profiles from being vertical to almost
horizontal on the center of the cavity forming a thermal boundary layer along the vertical walls
as Ra increases. However, Ha has an opposite effect on isotherms, that is, the isotherms tend to
go from horizontal to vertical (especially at Ra = 105) indicating the suppression of convective
flow at higher Ha.

The effect of the shape of the wavy hot wall determined with different number of undulation
is analyzed in terms of the variation of average Nusselt number Nu on the right hot wall with
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Figure 18.3: Effects of Ha and Ra numbers on streamlines at n = 3.
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Figure 18.4: Effects of Ha and Ra numbers on isotherms at n = 3.
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Hartmann and Rayleigh numbers. The average Nusselt number Nu along the hot wavy wall is
evaluated by Nu = 1

S

∫
Nu ds where Nu = −S(∂θ/∂n) is the local Nusselt number, S is the

length of the wavy surface and s shows the integral calculated along the wavy line. The effect
of the number of undulation n on the average Nusselt number at different values of Ra is shown
in Figure 18.5 (a) Ha = 0, (b) Ha = 10, (c) Ha = 25, (d) Ha = 50. At each Ha, the Nu
is increasing as Ra increases from Ra = 104 to 106 for all n since the heat transfer becomes
dominated by convection for higher values of Ra. However, Nu decreases slightly when the
flow is transferred from the conducting regime (i.e. Ra = 103) to the transition regime (from
conduction to convective) at Ra = 104 regardless of the values of Ha and n. Moreover, the
number of undulation has no significant effect on Nu at Ra = 104. It is well observed that, an
increase in the number of undulation results in an increase in Nu at each Ha and Ra numbers,
except at Ra = 105 when Ha ≥ 25. That is, at Ra = 105 for high values of Ha (Ha ≥ 25) the
average Nusselt number decreases as n increases from n = 2 to n = 3, which indicates reduction
of heat transfer inside the cavity. This results shows that at Ra = 105 the magnetic field of
specific intensity plays a significant role in the heat transfer enhancement in the cavities with a
wavy surface determined by various numbers of undulation.
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u
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(a) Ha = 0 (b) Ha = 10

(c) Ha = 25 (d) Ha = 50

Ra Ra

Ra Ra

Figure 18.5: Variation of average Nusselt number with Rayleigh number at different numbers of
undulation n(= 0, 1, 2, 3) when (a) Ha = 0, (b) Ha = 10, (c) Ha = 25, (d) Ha = 50 .

In Figure 18.6, the variation of average Nusselt number on the right wavy wall with Hartmann
and Rayleigh numbers are shown for the cavity with a right wavy wall of n = 3 undulations.
The average Nusselt number decreases as Ha increases at all Ra. Moreover, the rate of decrease
in Nu increases with an increase in Ra. On the other hand, Nu increases as Ra increases from
Ra = 104 to Ra = 106 at each Ha since the heat transfer is due to the convection. However, as
mentioned before as Ra increases from Ra = 103 to Ra = 104, the Nu decreases especially for
Ha ≥ 10. The reason for this phenomena is that at Ra = 104, namely at the transition regime
from conduction to convection, the buoyancy force is not strong enough to resist the magnetic
field, and hence the heat transfer rate reduces.
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Figure 18.6: Effects of (a) Hartmann and (b) Rayleigh numbers on average Nusselt number at
n = 3.

18.5 Conclusions

Mixed convection heat transfer in a lid driven cavity with a wavy hot right wall under the
effect of a uniform horizontal magnetic field is solved numerically for various values of physical
parameters. The governing equations are discretized using the DRBEM with appropriate number
of constant boundary elements. The present results reveal that the flow behavior and the heat
transfer enhancement are strongly affected by the presence of magnetic field and the shape of the
cavity determined by various numbers of undulation along the hot right wall. The Hartmann
and Rayleigh numbers have opposite effects on the flow and heat transfer rate. That is, the
flow strength and the heat transfer rate increases as Ra increases (when Ra ≥ 104), while they
decrease for higher Hartmann numbers at fixed number of undulation. It is also observed that
the heat transfer generally enhances with an increase in the number of undulation along the hot
wall (except the case when Ra = 105, Ha ≥ 25 as n increases from n = 2 to n = 3). Therefore,
the lid-driven cavity with wavy wall of more undulations can be considered as an effective heat
transfer mechanism at low Hartmann numbers.
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Chapter 19

Adaptive time-stepping for
surfactant-laden drops
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Abstract. An adaptive time-stepping scheme is presented aimed at computing the dynam-
ics of surfactant-covered deforming droplets. This involves solving a coupled system, where
one equation corresponds to the evolution of the drop interfaces and one to the surfactant
concentration. The first is discretised in space using a boundary integral formulation which
can be treated explicitly in time. The latter is a convection-diffusion equation solved with
a spectral method and is advantageously solved with a semi-implicit method in time. The
scheme is adaptive with respect to drop deformation as well as surfactant concentration and
the adjustment of time-steps takes both errors into account. It is applied and demonstrated
for simulation of the deformation of surfactant-covered droplets, but can easily be applied
to any system of equations with similar structure. Tests are performed for both 2D and 3D
formulations and the scheme is shown to meet set error tolerances in an efficient way.

19.1 Introduction

Simulation of micro-scale deforming droplets is a contemporary issue of increasing interest. One
reason for this is the development of miniaturised equipment in the chemical and biological
industries. At these small scales, the fluid flow is dominated by viscous forces, i.e. the Reynolds
number is small. The flow can therefore be modelled by the linear Stokes equations which are
quasi static. Furthermore, the surface to volume ratio is large and surface tension forces have a
significant affect on droplet deformation.

Surface active agents (surfactants) are molecules which alter the surface tension of a droplet
interface. The addition of surfactants can therefore significantly modify the dynamics of the
droplet deformation [3, 12]. Surfactant-laden droplets are relevant to a range of applications,
for example: creating drops through tip-streaming, preventing drop coalescence, and promot-
ing/preventing droplet breakup [19]. This study considers insoluble surfactants, which exist only
on the droplet interfaces and are not exchanged with the bulk-fluid.

As demonstrated in [3, 9, 13, 15], droplet deformation can be simulated using boundary
integral methods (BIM). Other approaches include using level set methods to represent the
interface coupled with an immersed interfaces method [21] or a finite element solver [5] for
the fluid equations. Similarly, the surfactant convection-diffusion (C-D) equation on the droplet
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interfaces can be treated with spectral methods [10] or finite element methods [7], among others.
This study uses a BIM for the droplet deformation, coupled with a spectral method for the
surfactant evolution.

An adaptive time-stepping method, specifically designed for simulating the deformation of
surfactant-covered droplets, is presented. The BIM used to compute the flow velocity is a
highly accurate method in space and in order to appropriately match the spatial and temporal
errors, an adaptive time-stepping scheme is favourable. Due to the use of a BIM, there is
only a first-order constraint on the time-step for the drop evolution. The time-discretisation
to capture the dynamics of drop evolution is therefore straightforward and can be done with
an explicit method, e.g. an explicit Runge-Kutta method (RK ). To solve the C-D equation for
the surfactant concentration is typically more involved due to the diffusion, which makes the
equation stiff. One option is to use a high-order semi-implicit Runge-Kutta method (IMEXRK )
[1], as in [10]. Another approach is to use a lower order scheme, such as Crank-Nicholson [3] or
spectral deferred correction (SDC ) methods [11].

To the knowledge of the authors, no adaptive schemes considering both surfactant concentra-
tion and drop deformation have been reported. This study develops an adaptive time-stepping
scheme, capable of fulfilling the demands of a coupled system. The adaptivity is extended to
both drop deformation and surfactant concentration, with the aim of minimising the number of
Stokes evaluations needed. The scheme (a combination of an RK scheme for the drop evolution
together with an IMEXRK scheme for the surfactant concentration) is applied and demon-
strated for the system of equations specific to the deformation of surfactant-covered droplets.
However, it can easily be applied to any system of equations which couples an expensive BIM
part and a C-D equation. It is demonstrated that the adaptive scheme may be applied to both
2D and 3D formulations.

This paper is organised as follows: in Section 19.2 the governing equations of droplet defor-
mation and surfactant evolution are formulated; Section 19.3 describes the numerical method
for time integration; examples and results are presented in Section 19.4.

19.2 Formulation

The problem motivating this study, which is also used to demonstrate results and comparisons,
is the solution of Stokes equations for surfactant-covered deformable drops both in 2D and 3D.
An example of a pair of deforming drops in a linear shear flow can be seen in Fig. 19.1. A brief
explanation of this problem follows here, for more details see e.g. [15].

To obtain the velocity u with which to move the drop interfaces Γ, the Stokes equations are
solved, here in non-dimensional form:

∆u0 = ∇p0, ∇ · u0 = 0, for x ∈ Ω0,

λk∆uk = ∇pk, ∇ · uk = 0, for x ∈ Ωk,
(19.1)

where Ω0 is the domain surrounding the drops and Ωk the domain inside the drop k. Further-
more, the boundary condition on the drop interfaces is

(p0 − pk) n + (e0 − λkek) · n = σκn−∇sσ for x ∈ Γ, (19.2)

which is a balance of the normal stresses. Here, λk = µk
µ0

is the ratio of viscosity between the
inner and outer fluids, pk, p0 pressure inside and outside the drops, ek, e0 strain tensors, κ mean
curvature, n normal and σ surface tension coefficient. The interface is evolved in time by

dx

dt
= u(x, t), for x ∈ Γ. (19.3)
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The concentration, ρ, of insoluble surfactants on the interfaces Γ is described by the C-D equation

∂ρ

∂t
=
dx

dt
· ∇sρ−∇s · (ρus)− ρκun +

1

PeΓ
∇2
sρ, (19.4)

see [18] for further details. Here, PeΓ is the Péclet number, us = u−n (u · n) and un = u ·n. In
both the surfactant equation and interface condition, ∇s = ∇−n (n · ∇) is the surface gradient
operator. Surfactant concentration ρ and velocity u are coupled through an equation of state.
This study uses the linear equation of state

σ = 1− Eρ, (19.5)

where E is the so-called elasticity number. Different equations of state can be used, see [14] for
further discussion. The diffusion term in (19.4) is preferably treated implicitly, as it is stiff and
linear. The convection term, however, is non-stiff but non-linear and therefore difficult to solve
implicitly. It is then advantageous to split the right hand side of the C-D equation (19.4) into
two parts, treating the convection explicitly and the diffusion implicitly in time, i.e.

∂ρ

∂t
= fE + fI , where

{
fE (ρ,u,x, t) = dx

dt · ∇sρ−∇s · (ρus)− ρκun,
fI (ρ,x, t) = 1

PeΓ
∇2
sρ.

(19.6)

Although the time-stepping scheme was developed with surfactant-laden deforming drops as its
focus, it can be applied to a variety of equations of a similar structure. In general terms, the
aim of this paper is to find a good time-stepping scheme for the coupled system

{
dx
dt = u (x(t), ρ(t)) ,
dρ
dt = f (ρ,u,x, t) ,

(19.7)

corresponding to (19.3) and (19.4). Furthermore, the scheme must handle splitting of the func-
tion f in (19.7) into parts for implicit and explicit treatment, as is the case of (19.6). The
explicit function fE may be non-linear, and both fE and fI contain spatial derivatives.

In the following, it is assumed that an adequate spatial discretisation, xh, exists to compute
both uh and ρh to high accuracy for any time t.

Figure 19.1: Deforming drops in 2D (left) and 3D (right), with concentration of insoluble sur-
factants in colour.

19.3 Numerical method

Given the formulation described in Section 19.2 xih and ρih are computed at each time ti. A
BIM is used for computing u(xih, ρ

i
h, ti), see [15] for a complete formulation. In the 2D case,

the Sherman-Lauricella formulation of the BIM for Stokes equations [9] is used together with an
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interpolatory special quadrature to evaluate the integrals when they are nearly-singular (close
drop interactions) [13]. The surfactant equation (19.4) is solved in space with a pseudo-spectral
collocation method. This is a spectrally accurate method, as the interface is one-dimensional
and periodic and the discretisation equidistant with respect to arc length. In the 2D case,
treating the implicit term fI is trivial, since the surface Laplacian operator for the diffusion
term has an explicit spectral representation. The convection term includes non-linear terms,
thus zero-padding is needed to prevent aliasing.

The problem in 3D is more complicated and expensive to solve: it has an increased number
of degrees of freedom, methods for keeping the point distribution optimal become much more
expensive and the specialised quadrature methods for singular (self-self interaction) and nearly-
singular integrals are different. An accurate discretisation of the drops’ surfaces and surfactant
concentration in 3D is based on Spherical Harmonic Expansion [2, 17]; the special quadrature
needed for singular integrals uses analytical properties of the Spherical Harmonics [4], whilst the
nearly-singular quadrature is based on an interpolation technique, adapting and optimising an
approach proposed by [22]. In 3D, to compute the implicit part of a time-step for the surfactant
evolution (19.4) involves solving a system Ay = b, where y = ρi+1

h and A = I − dt 1
Pe∇

2
s. In

practice this will be solved with a spectral method for the spherical harmonic coefficients.

For both the 2D and 3D case, each BIM computation is significantly more expensive than
solving the C-D equation for the surfactants. To minimise computational costs, it is therefore
necessary to reduce the number of BIM evaluations whilst also maintaining error levels below a
desired threshold. The system (19.7) is spatially resolved with a high fidelity, using a method
of lines approach.

In the example case presented (Stokes flow) the drop evolution described by (19.3) can
be solved explicitly in time. Three Runge-Kutta schemes are investigated: explicit midpoint
(RKMID, 2nd order), Kutta’s method (RK3, 3rd order) and Bogacki-Shampine (RKBS, 3rd

order). All three are made adaptive by comparing to a lower order scheme, see their Butcher
tableaux in Table 19.1.

RKMID
(Explicit midpoint, 2nd

order)
0

1/2 1/2

0 1
1 0

RKBS
(Bogacki-Shampine, 3rd

order)
0

1/2 1/2
3/4 0 3/4
1 2/9 1/3 4/9

2/9 1/3 4/9
7/24 1/4 1/3 1/8

RK3
(Kutta’s method, 3rd order)

0
1/2 1/2
1 −1 2

1/6 4/6 1/6
0 1

Table 19.1: Butcher tableaux for explicit schemes for x.

The variables x and ρ depend on each other through the surface tension described by (19.5).
How the equations are coupled determines which schemes for ρ are applicable. There are several
ways of coupling equations: for example through Strang splitting [20], by using an SDC approach
[11] or by using Runge-Kutta methods with the same stages for both equations. Strang splitting
consists of solving one equation with half a time-step twice, and the other with one whole time-
step. Generally, these two half time-steps can be collapsed into one whole, thus increasing the
efficiency of the scheme, but for adaptive time-steps this is not the case. The benefit of Strang
splitting is that it leaves the choice of scheme for ρ free, as it is computed independently of the
scheme of x. As it is second order, using higher order methods for x and ρ will not increase the
overall order of the scheme.
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Following the approach by [16], where an adaptive SDC scheme was used to simulate vesicles,
the authors tried to employ a similar method. However, it became computationally expensive
in comparison to the other schemes investigated to achieve higher order for the specific coupled
problem in this study.

When coupling two Runge-Kutta methods with the same stages, it is possible to interchange
information between the equations at each stage. This will give the overall method the order
of the lowest-order scheme used in the coupling. However, this adds the constraint that the
two equations in (19.7) must be treated with similar methods. This splitting is referred to as
stage-splitting.

Implicit midpoint
(2nd order)
0

1/2 0 1/2

0 1

Explicit midpoint
(2nd order)
0

1/2 1/2

0 1

Table 19.2: Butcher tableaux for IMEX2 scheme for ρ. Implicit midpoint used for fI and explicit
midpoint for fE .

Equation (19.4) is solved using an implicit-explicit Runge-Kutta method (IMEXRK ), see [1].
The IMEXRK schemes exist in different orders, for this study a second order (IMEX2 ) scheme
is used. This scheme consists of an implicit midpoint rule for fI and an explicit midpoint rule
for fE , as shown in Table 19.2. The benefit of this scheme is that it uses the same stages as
both RKMID and RK3, making both Strang splitting and stage-splitting applicable. Whilst
possible to use higher order IMEXRK schemes, this proves impractical as the stages increase
in complexity and can no longer easily be matched with the schemes for x in stage-splitting.
Moreover, Strang splitting is not suitable, as the splitting itself is only second order.

How to couple IMEX2 with an explicit scheme from Table 19.1 through stage-splitting
is shown in Fig. 19.2 for the RKMID+IMEX2 case. The coupling for RK3+IMEX2 follows

similarly. The RKBS scheme, however, has an additional stage at ti+3/4, for which ρ
i+3/4
h is

needed. To obtain this stage an additional semi-implicit time-step from ρ
i+1/2
h to ρ

i+3/4
h is taken.

Note that every semi-implicit time-step for ρh will boil down to solving a linear system. The
cost of this depends on the nature of fI , but will in general be cheaper than a BIM evaluation.

For the scheme to be adaptive, the local errors of both xi+1
h and ρi+1

h are measured. For x
the standard approach of comparing to a lower order scheme x̃i+1

h is used, since this does not
need extra evaluations, as shown in Table 19.1. For ρ, one option is to use a similar approach
and compare to a first order IMEXRK (IMEX1 ) approximation, ρ̃i+1

h , referred to as IMEX1 -
adaptivity. Another option is to use a constraint on ρ, in the case of insoluble surfactants the
mass must be conserved on the interface, i.e.

d

dt

(∫

Γ(t)
ρ(t)dS

)
= 0.

This can be used to approximate a local error in conservation of mass, the change in mass between
time-steps, and is referred to as conservation-adaptivity. Although not applicable to all systems,
such constraints are common in the case where the second equation in (19.7) corresponds to a
C-D equation in an isolated system.

The total error of a time-step i+ 1 is computed as

ri+1 = max

(
‖xi+1

h − x̃i+1
h ‖∞

‖xi+1
h ‖∞

, ri+1
ρ

)
,
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Figure 19.2: Schematic over RKMID+IMEX2 scheme.

where either ri+1
ρ =

‖ρi+1
h −ρ̃i+1

h ‖∞
‖ρi+1
h ‖∞

or ri+1
ρ =

|
∫
Γi+1 ρ

i+1
h dS−

∫
Γi ρ

i
hdS|

|
∫
Γi ρ

i
hdS|

. If ri+1 is larger than a set

tolerance, tol, the time-step ti → ti+1 will be retaken with a smaller time-step size. This new
time step, dtinew, is chosen using the fact that ri+1 = O(dt2) since x̃i+1

h and ρ̃i+1
h are evaluated

using first order methods. Thus, as the new time-step is required to meet the set tolerance, i.e.
ri+1
new < tol,

(
dtinew
dti

)2

≈ tol

ri+1
,

which in turn gives

dtinew = dti ·
(

0.9
tol

ri+1

) 1
2

. (19.8)

Here, 0.9 is a safety factor to ensure dtinew sufficiently small [6]. Moreover, after each successful
time-step, the next time-step size dt will be updated with the same formula.

It is important not to measure the time-step error too conservatively, i.e. taking too small
time-steps, as this will mean a lot of extra work to reach an accuracy not requested. A good
estimate should generate a solution which is close to the set tolerance in error.

19.4 Results

The different schemes included in this investigation are: 1. RKMID+IMEX2 with Strang split-
ting, 2. RKMID+IMEX2 with stage-splitting, 3. RK3+IMEX2 with stage-splitting and 4.
RKBS+IMEX2 with stage-splitting. The schemes will be investigated using both IMEX1 -
adaptivity and conservation-adaptivity for the second equation in (19.7) together with the stan-
dard lower order scheme comparison for the first.

Results and comparisons of the methods are demonstrated by studying one drop with vis-
cosity ratio λ = 1 in a linear shear flow, u∞ = G (0, x2), G = 0.2. The drop is initially an
ellipse/ellipsoid with aspect ratio 2. The results are in agreement for both initially uniform
and non-uniform ρ. The simulations are run to time T = 1. All errors are computed in the
max norm against a reference solution (xref , ρref ), which is computed with a fixed time-step



19.4. RESULTS 167

dt = 10−5 RKMID+IMEX2 scheme. The spatial discretisation is accurate enough for the time
error to dominate in all simulations.

Despite the different methods used in the 2D and 3D cases respectively, computing uih domi-
nates the computational cost in both. However, whilst in 2D each IMEX computation is cheap,
in 3D it involves solving a linear system. Therefore, for 3D it becomes more important to min-
imise the number of IMEX evaluations than in 2D.

First, the performance of the schemes in 2D is investigated by studying the order of the schemes
when keeping the size of time-steps constant. The interface errors, compared to xref , are shown
in Fig. 19.3 (left). All four schemes are second order in time, w.r.t. x, despite RK3, RKBS being
third order. This is not surprising, as they are coupled with a second order IMEX2 scheme.

For a constant dt, RKMID+IMEX2 gives a significantly larger error in x than the other three
schemes and the splitting used does not affect the error. Contrary, for ρ the error is similar for
all three schemes with stage-splitting, see Fig. 19.3 (left, solid lines) whilst Strang-splitting gives
a slightly smaller error. The conservation error is the smallest for RKMID+IMEX2 with stage-
splitting. Taking the errors of both x and ρ into consideration, the schemes are all on the same
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Figure 19.3: For fixed time-step sizes dt, max norm error in interface position (left) and max
norm error in surfactant concentration (right, solid lines) and surfactant mass conservation
(right, dashed lines) (in 2D).

level. Furthermore, the total number of Stokes evaluations needed for one time-step for each
scheme is displayed in Table 19.3. The number of Stokes evaluations needed for the Strang
splitting scheme is double that of RK3, RKBS and three times that of RKMID, all three with
stage-splitting. This is due to the fact that the two dt

2 time-steps cannot be collapsed into one
without a large overhead when considering an adaptive scheme. For the remainder of this study,
only the schemes with stage-splitting will be investigated further, as they are much cheaper.

Scheme Number of Stokes evaluations

Stage-splitting RKMID+IMEX2 2
Stage-splitting RK3+IMEX2 3

Stage-splitting RKBS+IMEX2 3
Strang splitting RKMID+IMEX2 6

Table 19.3: Number of Stokes evaluations for one time-step.
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With regards to adaptivity, both IMEX1 - and conservation-adaptivity is investigated, for
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Figure 19.4: Error for interface and surfactants (max norm) with adaptive methods (2D). Dashed
lines represent schemes with conservation-adaptivity, and solid lines IMEX1 -adaptivity.

2D in Fig. 19.4 and 3D Fig. 19.5. For RKMID+IMEX2 these two approaches do not differ
significantly in error, neither for x nor ρ, as shown in Fig. 19.4. Moreover, at all times the
errors are below the set tolerance. This is not the case for RK3+IMEX2 and RKBS+IMEX2.
With IMEX1 -adaptivity, these schemes achieve an error almost three orders of magnitude below
set tolerance for x, whilst following the tolerance levels for ρ well. For conservation-adaptivity,
RK3+IMEX2 and RKBS+IMEX2 do not meet the tolerance set for ρ, and can therefore be
disregarded as possible schemes. All schemes show the same behaviour in both 2D and 3D. For
all runs a maximum time-step size was set, which results in the flattening of the curves that can
be seen in Fig. 19.4 and Fig. 19.5.
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Figure 19.5: Error for interface and surfactants (max norm), 3D. Conservation-adaptivity rep-
resented by dashed lines and IMEX1 -adaptivity by solid lines.

In Fig. 19.6 the cost as number of Stokes evaluations for each set tolerance is shown for both
the 2D and 3D case. Here, RK3+IMEX2 and RKBS+IMEX2 with conservation-adaptivity
are not considered since they do not meet the expected tolerances. Of the remaining schemes,
RKMID+IMEX2 is cheaper than the others, with either adaptivity option.
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Figure 19.6: Number of Stokes evaluation of tolerance set, left: 2D, right: 3D.

19.5 Conclusions

In this study, several methods for time-stepping, coupling and controlling the temporal errors
through adaptivity was investigated. The tests have been performed on a system of equations
describing surfactant-covered deforming droplets in Stokes flow, but can generalised to any
system of ODEs containing an expensive equation evaluated through a BIM together with a
“cheaper” equation. Special care has been taken such that the second equation can be handled
semi-implicitly in time, as is the case for the surfactant C-D equation.

For the drop evolution, second and third order explicit schemes have been considered, and
for the surfactant concentration a semi-implicit Runge-Kutta scheme of second order is used.
As the cost of each BIM evaluation is high, the aim of the scheme was to minimise the number
of BIM computations while still meeting the set tolerance in both x and ρ. It is shown that
Strang splitting introduces extra costs, compared to a stage-splitting approach.

The study contained two ways of measuring adaptivity. Whilst for RKMID+IMEX2 the two
approaches gave similar results, for RK3+IMEX2 and RKBS+IMEX2 conservation-adaptivity
under-predicts the errors and IMEX1 -adaptivity strongly over-predicts the error. Moreover,
using IMEX1 -adaptivity introduces an additional system to be solved each time-step for the
surfactant concentration. Thus, the most cost-efficient scheme to meet the set error tolerances
is the RKMID+IMEX2 scheme with stage-splitting and conservation-adaptivity.
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Abstract. We discuss time domain boundary element methods for singular geometries, in
particular graded meshes and adaptive mesh refinements. First, we discuss edge and corner
singularities for a Dirichlet problem for the wave equation. Time independent graded meshes
lead to efficient approximations, as confirmed by numerical experiments for wave scattering
from screens. We briefly discuss adaptive mesh refinement procedures based on a posteriori
error estimates. A modified MOT scheme provides an efficient preconditioner (or stand-alone
solver) for the space-time systems obtained for the Galerkin discretisations.

20.1 Introduction

Boundary element methods provide an efficient, extensively studied numerical scheme for time-
independent or time-harmonic scattering and emission problems. Unlike finite element discreti-
sations, they reduce the computation from the three dimensional domain to its two dimensional
boundary. Recently, boundary elements have been explored for the simulation of transient
phenomena, with applications e.g. to environmental noise [2] or electromagnetic scattering [9].
Galerkin time domain boundary element methods prove to be stable and accurate in long–time
computations and are competitive with frequency domain methods for realistic problems [3].

Here we discuss recent work on adaptive mesh refinements and graded meshes for singular
geometries, as motivated by the sound emission on tires [2].
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20.2 Problem description and time domain BEM

We consider the wave equation outside a scatterer Ω− in R3, where Ω− is a bounded polygon or
a screen with connected complement Ω = R3 \ Ω−. The acoustic sound pressure field u due to
an incident field or sources on Γ = ∂Ω satisfies the linear wave equation for (t,x) ∈ R× Ω:

∂2
t u(t,x)−∆u(t,x) = 0

with Dirichlet boundary conditions u(t,x) = f(t,x) for x ∈ Γ, and u(t,x) = 0 for t ≤ 0.

A single-layer ansatz for u,

u(t,x) =

∫

Γ

φ(t− |x− y|,y)

4π|x− y|
dsy, (20.1)

results in an equivalent weak formulation as an integral equation of the first kind in space-time
anisotropic Sobolev spaces [7, 3]:

Find φ ∈ H1
σ(R+, H̃−

1
2 (Γ)) such that for all ψ ∈ H1

σ(R+, H̃−
1
2 (Γ))

∫ ∞

0

∫

Γ
(V φ(t,x))∂tψ(t,x) dsx dσt =

∫ ∞

0

∫

Γ
f(t,x)∂tψ(t,x) dsx dσt , (20.2)

where dσt = e−2σtdt and

V φ(t,x) =

∫

Γ

φ(t− |x− y|,y)

4π|x− y|
dsy .

A theoretical analysis requires σ > 0, but practical computations use σ = 0.

For the definition of the Sobolev spaces, we focus on the case where Γ = ∂Ω. For σ > 0,
s, r ∈ R the space Hs

σ(R+, Hr(Γ)) consists of distributions φ on R+×Γ, vanishing at t = 0, such
that in local coordinates the space–time Fourier–Laplace transform Fφ satisfies

‖φ‖s,r,Γ =

(∫ ∫
|ω + iσ|2s(|ω + iσ|2 + |ξ|2)r|Fφ(ω + iσ, ξ)|2 dξ dω

) 1
2

<∞ .

For the case of a screen, where ∂Γ 6= ∅, more care is required to define spaces Hs
σ(R+, H̃r(Γ))

and Hs
σ(R+, Hr(Γ)) of distributions which vanish outside Γ, resp. which extend to a larger set.

See for example [3] for a detailed discussion.

We study time dependent boundary element methods to solve (20.2), based on approxima-
tions by piecewise polynomial ansatz and test functions from the space V p,q

h,∆t spanned by

φi(t,x) = Λ̃i(t)Λi(x) . (20.3)

Here, Λi a piecewise polynomial shape function of degree p in space and Λ̃i a corresponding
shape function of degree q in time. For p ≥ 1, resp. q ≥ 1, the shape functions are assumed to
be continuous.

We obtain a numerical scheme for the weak formulation (20.2): Find φh,∆t ∈ V p,q
h,∆t such that

for all ψh,∆t ∈ V p,q
h,∆t

∫ ∞

0

∫

Γ

(
V φh,∆t(t,x)

)
∂tψh,∆t(t,x) dsx dt =

∫ ∞

0

∫

Γ
f(t,x)∂tψh,∆t(t,x) dsx dt . (20.4)

From φh,∆t, the sound pressure uh,∆t is obtained in Ω by evaluating the integral in (20.1)
numerically.
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20.3 Error estimate and adaptive mesh refinements

Computable error indicators are a key ingredient to design adaptive mesh refinements. We recall
from [3]:

Theorem: Let φ, φh,∆t ∈ H1
0 ([0, T ], H−

1
2 (Γ)) be the solutions to (20.2) resp. (20.4). Assume

that R = ḟ − V φ̇h,∆t ∈ H0([0, T ], H1(Γ)). Then

‖φ− φh,∆t‖20,− 1
2
,Γ

. max{∆t, h}(‖∂tR‖L2([0,T ],L2(Γ)) + ‖∇R‖L2([0,T ],L2(Γ)))
2.

The error indicators

η(4) = max{∆t, h}
{∑

i

∫ ti+1

ti

∫

∆
(∂tR)2 +

∑

i

∫ ti+1

ti

∫

∆
(∇R)2

}

lead to

Adaptive Algorithm:
Input: Mesh T = T0, refinement parameter θ ∈ (0, 1), tolerance ε > 0, data f .

1. Solve V ϕ̇h,∆t = ḟ on T .

2. Compute the error indicators η(4) in each triangle 4 ∈ T .

3. Find ηmax = max4η(4).

4. Stop if
∑

i η
2(Mi) < ε2.

5. Mark all 4 ∈ T with η(Mi) > θηmax.

6. Refine each marked triangle into 4 new triangles to obtain a new mesh T

7. Go to 1.

Output: Approximation of ϕ̇.

20.4 Graded meshes

The realistic scattering and diffraction of waves in R3 is crucially affected by geometric sin-
gularities of the scatterer,as solutions of the wave equation exhibit well-known singularities at
non-smooth boundary points of the domain. For such geometric singularities, graded meshes
adapted to the geometry are known to provide optimal convergence rates for time indepen-
dent problems. We have generalised to time-independent theory to the transient setting [4] and
illustrate the improved convergence rates in numerical experiments below.

Our computations are mainly conducted on the square [−1, 1]2. To define β-graded meshes,
due to symmetry, it suffices to consider a β-graded mesh on [−1, 0]. We define yk = xk =
−1 + ( k

Nl
)β for i = 1, . . . , Nl and for a constant β ≥ 0. The nodes of the β-graded mesh are

therefore (xk, yl), k, l = 1, . . . , Nl. We note that for β = 1 we would have a uniform mesh.
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Figure 20.1: β-graded mesh with n = 20 triangles per side and β = 2

20.5 Numerical results

Experiment 1: If Γ is a screen, the density φ exhibits edge and corner singularities. Motivated
by recent work by Müller and Schwab for 2d FEM, in [4] we adapt a classical analysis by von
Petersdorff for time-independent problems and obtain the precise singular behaviour of φ near
∂Γ: φ(t,x) ∼ dist(x, ∂Γ)−1/2 near an edge, φ(t,x) ∼ dist(x, ∂Γ)−0.703 near a right-angled corner.
Time-independent graded meshes provide a quasi- optimal approximation of these singularities.
The numerical experiment depicted in Figure 20.2 compares the convergence in energy norm
on graded and uniform meshes for Γ = [0, 1]2 × {0} and illustrates the theoretically predicted
convergence of order DOF−1, resp. ∼ DOF−1/2 [4]. Graded meshes are relevant in industrial-
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Figure 20.2: Energy convergence for graded vs. uniform meshes.

scale engineering problems. In particular, [4] shows the use of graded meshes to accurately
compute the sound amplification in the singular horn geometry between a vibrating tire and the
road.
Experiment 2: We use provably reliable residual error indicators, as well as heuristic ZZ and
hierarchical indicators to steer adaptive mesh refinements. Figure 20.3 shows that the residual
indicators converge at the same rate as the energy error for an example problem with Γ = S2.
Theoretical results establish the reliability and (weak) efficiency of the residual error indicators
(see [3]) and compare the adaptive methods obtained from the different error indicators.
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Figure 20.3: Uniform vs adaptive for plane wave problem on [0, 0.5]2 screen.

Geometry DOF Energy MOT Error

sphere 320 8.5692 8.5470 .26%
1280 8.6059 8.6059 � 1%

icosahed. 320 20.538 21.480 4.6%
1280 19.879 20.143 1.3%

screen 288 0.4233 0.4497 6.2%
1250 0.4589 0.4716 2.8%

Table 20.1: relative errors in energy: modified MOT vs. GMRES with residual 10−9.

Experiment 3: To obtain provably stable methods and a rigorous error analysis, we require
conforming Galerkin discretisations. In general, the discretised equation (20.4) corresponds to a
lower Hessenberg linear system in space-time, with one band above the diagonal. Motivated by
adaptivity and C∞ temporal basis functions, there has been much recent interest in works by by
Sauter-Veit [6], Merta et al. [8], Schanz and others in efficient solvers. We present an approximate
time-stepping scheme [5], based on extrapolation, which becomes exact for ∆t → 0. It may be
used as either a preconditioner or standalone solver. Table 1 compares one step of this method
to the (essentially exact) solution of the space-time system as obtained from GMRES [5].

20.6 Conclusions

In this paper we have outlined the use of time domain boundary element methods with mesh
refinements for singular geometries. Time-independent graded meshes allow to resolve the edge
and corner singularities in the scattering from polygonal scatterers or screens. Adaptive mesh
refinement procedures based on a posteriori error estimates allow to address more general sin-
gularities in the solution. The numerical solution of the resulting systems is aided by a modified
MOT scheme, which provides an efficient preconditioner (or stand-alone solver) for the space-
time systems.
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Abstract. The use of non-uniform rational B-splines (NURBS) as basis functions to discre-
tise the solution variables as well as the problem geometry in a boundary element formulation
has become known as the isogeometric boundary element method (IGABEM); this is a pop-
ular topic in the field of numerical analysis. IGABEM has been shown to offer improved
convergence properties over the conventional boundary element method (BEM) algorithms
based on piecewise polynomial approximation spaces [1]. Using the IGABEM formulation,
the NURBS information from computer aided design (CAD) can be used directly in boundary
element analysis without geometry clean-up or mesh generation [2]. However this analysis
has been performed only for smooth acoustic solutions while in most real-world engineering
design and analysis acoustic problems, geometric corners and discontinuities in boundary
conditions raise the possibility of weak discontinuities in the solution field.
In the current work we consider such problems. The motivation is to study acoustic prob-

lems at low frequency within the passenger compartment of an automobile, and this problem
is characterised by panels with piecewise continuous impedance boundaries.
We develop a discontinuous IGABEM formulation based on NURBS and compare its per-

formance against conventional BEM scheme. Continuous and discontinuous formulations
are also compared. In this paper, a three dimentional model is presented to illustrate the
potential of the proposed method for integrated engineering design and analysis.

21.1 Introduction

The noise, vibration and harshness (NVH) performance has become one of the most important
quality indicators of a product in vehicle industry. This is mainly due to the more and more strict
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noise emission regulations and increasing demand of comfort from the consumers. Whereas, the
demand of lightweight and low-energy brings many limits for acoustic engineers in their design,
which will inevitably lead to limitations on the improvement of the noise and vibration properties
of the vehicle. In addition, the evaluation of the NVH performance is now mostly conducted
by testing the real car, which is usually done after the design process and will extend the entire
design time. To overcome these problems, a calculation method which can offer more precise
prediction on compartment acoustics is required, especially in the early design stage.

The Boundary Element Method is widely used in solving acoustic problems in the vehicle
industry [3, 4]. The BEM provides a useful technique to analyse problems governed by partial
differential equations [5]. In the BEM, integrals are evaluated only on the boundary instead of
the whole domain, which means volumetric problems are reduced to surface problems. This will
dramatically reduce the complexity of the mesh generation process and the entire analysis time.
However, geometry preparation and mesh generation are still time-consuming if the problem has
a large number of degrees of freedom (DOF). Especially for problems in the machine industry,
mesh generation and refinement can take up to 80% of the total analysis time [2], which slows
down the product development process.

The idea of Isogeometric Analysis (IGA) based on NURBS was first put forward by Hughes
[2]. The concept is using the splines employed in CAD geometry to capture the exact geometry
for analysis. NURBS are the most widely-used geometry representation in CAD and have been
shown to bring advantageous properties in the analysis process. By taking the basis functions
generated from NURBS, IGA can bridge the gap between CAD and CAE, and offer precise
and efficient geometric modelling. Compared to the conventional BEM, the discretisation in
the isogeometric boundary element method (IGABEM) is conducted based on CAD mapping
instead of conventional piecewise polynomials. Analogously, the associated shape functions in
the BEM are also replaced by basis functions in the IGABEM. Research on the IGABEM has
progressed rapidly in recent years [6, 7, 8, 9]. A two dimensional elastostatic problem based on
the IGABEM was presented by Simpson [9]. Then Marussig [10] implemented the IGABEM in
three dimensions with a hierarchical matrix which reduced the calculation time for large prob-
lems. Particularly, in the area of acoustic application, Scott [8] put forward acoustic problems
using the IGABEM with T-splines. Further Peake proposed an extended isogeometric boundary
element method (XIBEM) for two-dimensional Helmholtz problems [6] and then extended it to
three dimensional acoustic problems [11]. It should be noticed that these analyses have been
performed only for smooth acoustic solutions while in real industry acoustic problems, partic-
ularity in the vehicle industry, the boundary conditions are mostly discontinuous, the material
performance of the vehicle body and windows being obviously different.

We present a discontinuous IGABEM formulation based on a three dimensional model in this
work. The model is characterised with piecewise continuous impedance boundaries to capture the
material difference. Performance comparisons are made between the proposed method and the
conventional BEM to show its potential application in industry. Continuous and discontinuous
formulations are compared.

21.2 B-Splines and NURBS

The knot vector is the fundamental description of the basis functions of a B-spline. It is a set
of non-decreasing and independent coordinates, written

Ξ = {ξ1, ξ2, ..., ξn+p+1} , ξi ∈ R (21.1)

where real number ξi is named a knot, i is the knot index, i = 1, 2, ..., n + p + 1, ξi is the ith
knot in the parameter space, p is the polynomial degree, and n is the number of basis functions
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which define the B-spline. The half-open interval [ξi, ξi+1) is called a knot span which can be
zero length since the knots may be duplicated. Based on the knot vector, the B-spline basis
functions can be built by using the Cox-de Boor recurrence formula [12, 13]:

p = 0 : Ni,0 =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
(21.2)

p > 0 : Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (21.3)

B-spline curves [14] are built by using a linear combination of B-spline basis functions. A
pth-degree piecewise polynomial B-spline curve Cb(ξ) is given by

Cb(ξ) =
n∑

i=1

Ni,p(ξ)Ai (21.4)

where Ai are the control points which could be position vectors, and Ni,p(ξ) denotes the ith
basis function on the point ξi. It should be noted that the concepts of control points and basis
functions are similar to nodal coordinates and shape functions in BEM, respectively.

A B-spline surface Sb(ξ, η) is a tensor product surface of two B-splines. Given a net of
control points Ai,j(i = 1, 2, ..., n; j = 1, 2, ...,m), polynomial degrees p and q, two knot vectors
Ξ = [ξ1, ξ2, ..., ξn+p+1] and H = [η1, η2, ..., ηm+q+1], a B-spline surface is defined as

Sb(ξ, η) =
n∑

i=1

m∑

j=1

Ni,p(ξ)Mj,q(η)Ai,j (21.5)

where Ni,p(ξ) and Mj,q(η) represent univariate B-spline basis functions of degree p and q, asso-
ciated with knot vectors Ξ and H, respectively.

NURBS are developed from B-splines but the introduction of weights enables the exact
representation of geometric entities like circular arcs and spheres. Thus, a pth degree NURBS
curve is given by

C(ξ) =
n∑

i=1

Ri,p(ξ)Ai (21.6)

where Ai denotes the control points, and Ri,p(ξ) are the NURBS basis functions derived from
the B-spline basis. The NURBS basis functions Ri,p(ξ) of polynomial degree p are expressed as

Ri,p(ξ) =
Ni,p(ξ)wi
W (ξ)

(21.7)

with

W (ξ) =

n∑

i=1

Ni,p(ξ)wi (21.8)

and W (ξ) denotes the weighting function generated by defining a weight ωi for every control
point. Ri,p(ξ) are piecewise rational functions. If all the weights are equal to 1, then Ri,p(ξ) =
Ni,p(ξ), and the NURBS degenerate into B-splines. The definition of a NURBS surface S(ξ, η)
is then completely analogous to a B-spline surface, given as

S(ξ, η) =

n∑

i=1

m∑

j=1

Rij,pq(ξ, η)Ai,j (21.9)

with

Ri,j,p,q(ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wi,j

(21.10)

It should be noted that these same NURBS basis functions can also be used to represent the
field variables.
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21.3 Boundary integral equation

Given a domain Ω with boundary Γ, the acoustic waves within the domain are governed by the
well-known Helmholtz equation:

∇2φ(x) + k2φ(x) = 0, x ∈ Ω (21.11)

where ∇2 is the Laplacian operator, φ(x) is the acoustic potential at the field point x, λ is the
wavelength, and k = 2π/λ is the wave number.

Using Green’s second identity and the Green’s function, the boundary integral equation
(BIE) for the Helmholtz equation can be written as:

C(s)φ(s) +

∫

Γ

∂G(s,x)

∂n
φ(x)dΓ(x) =

∫

Γ
G(s,x)

∂φ(x)

∂n
dΓ(x) (21.12)

where s is a collocation point, C(s) is the jump term at the collocation point, and ∂φ(x)/∂n is
the acoustic velocity on the boundary. G(s,x) and ∂G(s,x)/∂n are the Green’s function and
corresponding derivative given by

G(s,x) =
eikr

4πr
(21.13)

∂G(s,x)

∂n
=

eikr

4πr2
(ikr − ∂r

∂n
) (21.14)

where
r = |x− s| (21.15)

In the conventional BEM, the boundary Γ is discretised into E non-overlapping boundary
elements on which the geometric, acoustic potential and velocity are appoximated with polyno-
mial, isoparametric elements, thus the boundary can be expressed as:

Γ =

E⋃

e=1

Γe (21.16)

The elements represent the geometry through the mapping:

Γe = F(ξ), ξ ∈ [−1, 1] (21.17)

Then Eq.(21.12) can be written as a discretised form:

C(s)φ(s)+
E∑

e=1

J∑

j=1

∫ 1

−1

∂G(s, ξ)

∂n
Nej(ξ)φej(ξ)Je(ξ)dξ =

E∑

e=1

J∑

j=1

∫ 1

−1
G(s, ξ)

∂φej(ξ)

∂n
Nej(ξ)Je(ξ)dξ

(21.18)
where J is the number of shape functions on the element, Nej are the shape functions for the
element, φej and ∂φej/∂n are the acoustic potential and velocity on the node, respectively. Je(ξ)
is the Jacobian from the mapping in Eq.(21.17).

Taking the collocation point s to lie at each node in turn, a set of equations relating all
potential and velocity coefficient can be obtained:

Hφ = G
∂φ

∂n
(21.19)

where the fully populated matrix H contains all integrals of the left-hand two terms of Eq.(21.12),
and matrix G is assembled by integrals of the right-hand terms of Eq.(21.12). φ and ∂φ/∂n are
vectors containing acoustic potential and normal derivative coefficients, respectively.
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By reordering all the unknowns and related coefficients to the left-hand side and all the
knowns and related coefficients to the right-hand side, we can get a final matrix in this form:

Ax = b (21.20)

where A is an unsymmetric and fully populated square matrix, the vector x contains all unknown
potential and velocity coefficients while the vector b is calculated from all known coefficient and
their associated terms. The complex matrix is a linear system which can be solved directly.

21.4 IGABEM for acoustics

In IGABEM, NURBS basis functions are employed to represent the geometry, φ and ∂φ/∂n. The
boundary is divided into E non-overlapping isogeometric patches Γe, analogously to conventional
BEM in Eq.(21.16). Note that a local coordinate system u = (u, v) is defined on each patch Γe
as follows:

Γe = U(η), η ∈ [0, 1) (21.21)

Thus the total Jacobian is expressed as:

JU =

∣∣∣∣
∂x

∂η

∂η

∂ξ

∣∣∣∣ (21.22)

where the first component is the mapping from global coordinates to the local coordinates on
each patch, and the second term is the mapping from local coordinates to the parametric space.
The reason for this additional local mapping is that the B-splines and NURBS are defined in
the interval [0, 1) while the integration is performed in the mapping defined in Eq.(21.17).

The acoustic potential and velocity can be discretised in terms of a NURBS interpolation,
respectively:

φ(x) =
J∑

j=1

Rj,p(u(x), v(x))φ̃j,p (21.23)

∂φ(x)

∂n
=

J∑

j=1

Rj,p(u(x), v(x))q̃j,p (21.24)

where J is the number of control points, φ̃j,p and q̃j,p are potentials and derivatives associated

with control points. It is important to note that φ̃j,p and q̃j,p are no longer the nodal potentials
and derivatives since the control points may not lie on the geometry. Then the final isogeomet-
ric boundary integral equation can be written by substituting Eq.(21.23) and Eq.(21.24) into
Eq.(21.12):

C(s)φ(s) +
E∑

e=1

J∑

j=1

∫ 1

−1

∂G(s, ξ)

∂n
Rej,p(ξ)φej,p(ξ)JUe(ξ)d(ξ)

=

E∑

e=1

J∑

j=1

∫ 1

−1
G(s, ξ)

∂φej,p(ξ)

∂n
Rej,p(ξ)JUe(ξ)d(ξ)

(21.25)

where ξ = ξ(η).
In general, the control points are no longer able to be taken as the collocation points in

IGABEM, since they may not lie on the geometry boundary (except flat patches). Alternatively,
the Greville abscissae [15, 16] may be used to define the position of collocation points as:

ξ′g =
ξg+1 + ξg+2 + ...+ ξg+p

p
, g = 1, 2, ..., n (21.26)
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where n denotes the number of control points, p is the degree.

After defining the collocation points in the geometry, the integral boundary equations defined
in Eq.(21.25) can be assembled in matrix form analogously to conventional BEM.

21.4.1 Discontinuous isogeometric boundary patch

In order to give a square system, the number of collocation points must equal the number
of unknowns. In a discontinuous model, the control points lying on a discontinuous element
boundary may have two or more degrees of freedom, i.e, one for each patch of which it is a
member. In order to guarantee a suitable number of collocation points, the simplest scheme is
to locate them internally in each patch as shown in Fig.21.1(b). The discontinuous IGABEM
patches can allow the potential fields to become discontinuous at the interfaces between patches.
This is a consideration for vehicle industry applications in which a discontinuity exists between
different materials.

Additionally, since the collocation points lie within the patches, at points where the boundary
is smooth, the jump term C(s) of all points is equal to 1/2.

(a)

Collocation Points
Control Points

(b)

Collocation Points
Control Points

Figure 21.1: Isogeometric patches in 3D: (a) continuous basis functions, and (b) discontinuous
basis functions.

21.5 Numerical example

This section presents a numerical example to verify the accuracy of the proposed discontinuous
IGABEM and evaluate the performance between the IGABEM and BEM, continuous and dis-
continuous approaches. The problem is defined in Figure 21.2. The cubic domain is constructed
by 10 piecewise continuous impedance patches on which different boundary conditions are ap-
plied. Patch 1 is the small square patch on the front surface. Patch 2 is the patch on the back
surface opposite to patch 1. The size of patch 1 and patch 2 are 3×3 and 1×1, respectively. The
wavelength is 5 in this case. Fig. 21.2 also shows the control points (∗) and collocation points
(·) on the front surface of the cube. In this example, the collocation points are equally-spaced
over the boundary.

There are three forms of boundary condition in acoustic problem:

• Dirichlet condition: the acoustic potential is known over the boundary:

φ(x) = φ(x) (21.27)

• Neumann condition: the acoustic velocity is known over the boundary:
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Patch 1
X

Y

Patch 2

Z

Figure 21.2: A 3D cubic model with piecewise continuous impedance boundaries.

∂φ(x)

∂n
= q (21.28)

• Robin condition: the derivative of the potential is presented as a linear function of the
potential:

α
∂φ(x)

∂n
= βφ(x) + γ (21.29)

In this example, a Neumann condition with ∂φ(x)
∂n = 0, ∂φ(x)

∂n = 1 is applied on patch 1 and
patch 2, respectively, and a Robin condition with α = 1, β = −2, γ = 1 + i is applied on the
remaining patches.

The L2(Γ) norm of the potential was calculated over the entire boundary as:

‖ φ ‖L2(Γ)=

√∫

Γ
|φ|2 dΓ (21.30)

We define an error metric evaluated as

Error =
‖ φ− φref ‖L2(Γ)

‖ φref ‖L2(Γ)
(21.31)

where ‖ φref ‖L2(Γ) is the L2(Γ) norm of the reference solution obtained from the converged
result of the conventional BEM analysis using quadratic shape functions.

Fig.21.3 shows the accuracy and convergence comparison between the proposed method and
the discontinuous BEM as well as a comparision between continuous BEM and IGABEM; it
is clear that IGABEM offers a significant advantage over BEM in accuracy per DOF. Also,
the discontinuous IGABEM converges faster than discontinuous BEM. However, discontinuous
IGABEM did not show any improvement compared to continuous IGABEM for this set of
boundary conditions, which may be due to the discontinuity of the boundary conditions not
being sharp enough in this example. Work is in progress to examine other situations.



184 REFERENCES

0 500 1000 1500 2000 2500 3000

DOF

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8
lo

g(
E

rr
or

)
Discontinuous BEM
Continuous BEM
Discontinuous IGABEM
Continuous IGABEM

Figure 21.3: Comparison between BEM and IGABEM (continuous and discontinuous).

21.6 Conclusions

A discontinuous IGABEM for acoustic problems has been introduced for the first time in the
literature. The discontinuous boundary patch has the ability to naturally capture discontin-
uous boundary conditions. The evaluation of discontinuity in IGABEM modelling of three
dimentional acoustic problems has also been presented and compared to the conventional BEM
approach.It has been shown that the IGABEM presents lower errors and converges faster than
the equivalent problem with conventional BEM. However, the continuous IGABEM presents
consistently better results than the discontinuous IGABEM for the example studied. This can
be attributed to the fact that the problem as posed does not present high discontinuities at the
boundaries.

Future works include using increased boundary discontinuities, and also the model of the
interior of an automobile, where the difference between materials provides a real application
for the proposed method. Further, combining this method with a Participation Factor Panel
(PFP) method will find the vehicle panel which contributes most to the sound pressure at a
given location.
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Abstract. The Boundary Element Method is an ideal and natural choice for the isoge-
ometric analysis of solids in 3D. Such analysis has been abbreviated IGABEM. Recently,
Simpson and Liu presented an IGABEM scheme accelerated by a black-box Fast Multipole
Method (bbFMM) for the solution of the Helmholtz equation. Here Chebyshev interpolation
is used to describe the far-field behaviour of any arbitrary kernel removing the reliance on
multipole expansions specific to particular kernels. The largest computational expense in
the bbFMM lies in the computation of the multipole-to-local (M2L) operators. This step
involves computing the far-field contribution at the Chebyshev nodes for all FMM cells in
the interaction list of each cell at each level. In bbFMM works, this stage is accelerated by
a Singular Value Decomposition (SVD) to generate a compressed, low-rank approximation
to the M2L operator. We present an improvement to the process by replacing the SVD
compression by an alternative based on the Proper Generalised Decompostion (PGD). The
final solution accuracy is not significantly affected.

We present numerical aspects of the PGD-accelerated bbFMM IGABEM scheme, including
a discussion of the number of PGD modes required to acheive prescribed accuracy. Analysis
of the computational performance shows the bbFMM to reduce the complexity of IGABEM
from O(n2) to O(n) and the PGD to provide improvements over SVD. For smaller problems,
the use of PGD to compress the M2L operation effectively offsets the overheads involved in
using FMM.

186



22.1. INTRODUCTION 187

22.1 Introduction

Isogeometric analysis, first proposed by Hughes et al. [1], offers a number of advantages over
conventional (i.e. piecewise polynomial) finite element and boundary element formulations.
Key among these are the promise of deeper integration of analysis within Computer Aided
Design (CAD) systems, greatly simplified meshing and remeshing processes, and, perhaps most
important of all, improved convergence properties. The essential idea is to use the basis functions
used in traditional spline-based CAD models as the approximation space for a numerical scheme
to solve a partial differential equation. Most popular are the Non-uniform Rational B-splines
(NURBS) and T-splines. Following the initial paper, the concept has rapidly expanded from
elasticity [1, 2] to various applications such as fluid dynamics [3, 4], electromagnetics [5] and
vibration [6]. Early work on IGA was initially based on NURBS [7], and then extended to
T-splines [8] and PHT-splines [9, 10, 11].

While isogeometric analysis with the Finite Element Method (IGAFEM) has gained this
popularity, it should be noted that the common boundary representation using NURBS in CAD
can only be used directly for IGAFEM analysis of plates and shells. There remains a requirement
to supply such an algorithm with a volumetric NURBS definition in order to analyse a 3D solid
object, and this is not a straightforward process. In order to overcome this difficulty, researchers
have turned to the Boundary Element Method (BEM) and developed an isogeometric form,
IGABEM. Here the boundary-only nature of the model means that the analysis of a solid can
be conducted without a volumetric NURBS representation of the geometry, and this is a major
advantage over IGAFEM for this large and important class of problems.

IGABEM has been explored in various areas including elastostatics [12, 13, 14], shape op-
timisation [15, 16], acoustics [17, 18, 19, 20] and fracture mechanics [21]. However, for large
systems, the dense and nonsymmetric matrix produced by BEM codes remains in IGABEM.
This presents great challenges in computational complexity for 3D problems if they have a large
number of DOF. Matrix compression techniques can reduce the complexity to O(n log n) or, bet-
ter still, O(n). Popular techniques include the Fast Multipole Method (FMM) [22] and Adaptive
Cross Approximation (ACA) [23]. These methods approximate the far-field kernel interactions
through efficient hierarchical data structures, which allow for use of matrix-vector multiplication
with almost linear complexity. There are no detailed comparisons of the two approaches, but
we note that ACA has the benefit of simplicity of implementation, especially in a pre-existing
BEM code.

In this paper we focus on the FMM. In most works on this method, the far-field interactions
are expressed in terms of multipole expansions specific to the kernel for the PDE at hand.
In order to provide a more general, kernel-independent implementation, the black-box FMM
(bbFMM) [24] was developed for the matrix compression with a fast O(n) algorithm. This is
based on approximation using Chebyshev interpolations. In this paper we present such a scheme
applied to IGABEM, and accelerate the most numerically intensive stage of the bbFMM using
a Proper Generalised Decomposition (PGD) [25], which provides a quasi-optimal reduced basis
using an iterative procedure with a low computational effort (O(2mn) for an m× n system).

22.2 Formulation

22.2.1 IGABEM

We start with the classical boundary integral equation for elasticity, i.e.

C(s)u(s) +

∫

Γ
T(s,x)u(x)dΓ(x) =

∫

Γ
U(s,x)t(x)dΓ(x), (22.1)
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to solve the equations of linear elasticity for a problem subject to boundary conditions

ui = ūi on Γui ⊂ Γ, (22.2)

ti = t̄i on Γti ⊂ Γ, (22.3)

where s ∈ Γ denotes the source point and x ∈ Γ the field point, u ∈ R3 the displacement
field, t ∈ R3 the traction field, U(s,x) = [Uij ] the displacement fundamental solutions kernel,
T(s,x) = [Tij ] the traction fundamental solutions kernel, C(s) = [Cij ] the jump term, ūi and
t̄i the prescribed displacements and tractions, i and j the indices running from 1 to 3 in three
dimensions and the integral on the left hand side is taken in the Cauchy Principal Value (CPV)
sense sections.

In the IGABEM formulation we consider the geometry to be defined in terms of NURBS
surfaces,

x(ξ) =

na∑

a=1

Ra,p(ξ)Pa, (22.4)

and the displacements and tractions to be defined in the same space of functions, i.e.

u(ξ) =

na∑

a=1

Ra,p(ξ)ũa, (22.5)

t(ξ) =

na∑

a=1

Ra,p(ξ)t̃a, (22.6)

where Pa is a set of control point coordinates, ũa, t̃a are sets of unknown coefficients, and Ra,p
the NURBS basis functions, for polynomial degree p and in parametric coordinate ξ = (ξ1, ξ2),
which may be found in Piegl & Tiller [7].

22.2.2 Black box Fast Multipole Method

The Fast Multipole Method provides an alternative to the conventional O(n2) problem of find-
ing node-to-node interactions through the kernel functions U(s,x),T(s,x). First the nodes are
subdivided in a hierarchichal, octree structure over multiple levels. The subdivision into pro-
gressively smaller clusters stops when a minimum number of nodes is reached, at which level the
cell is called a ‘leaf’. Nodes in adjacent clusters are deemed too close to allow the approximation
of the kernel, and the corresponding matrix terms are calculated in the conventional manner.
However, nodes in well separated clusters are amenable to the kernel behaviour being approxi-
mated through a set of multipole expansions. Figure 22.1 illustrates the procedure though, for
clarity, considers a 2D case, i.e. a quadtree cell hierarchy rather than the 3D octree hierarchy
considered in the current work.

These multipole expansions, from cells at one level in the hierarchy to their parent cell, and
vice versa, can be approximated using Chebyshev interpolation as illustrated in the Figure. In
this way, an arbitrary kernel function can be considered, removing the need for kernel-specific
multipole expansions. Full details of the approach are not given here, but the bbFMM is
described by Fong & Darve [24].

The most numerically intensive component of the bbFMM execution is the evaluation of the
so-called Moment to Local (or M2L) operators; these are illustrated using the long red arrows
in Figure 22.1. The operators are used to describe the kernel behaviour between Chebyshev
points in all non-adjacent cells at the same level in the octree hierarchy. In order to accelerate
this part of a bbFMM code, researchers have to date approximated the M2L operators using a
reduction method based on the Singular Value Decomposition (SVD) [24, 20]. We proceed now
to present an alternative based on the PGD.
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Figure 22.1: A quadtree based bbFMM scheme.

22.2.3 PGD acceleration

The Proper Generalised Decomposition [25] is based on the representation of a function by a
combination of the information in each direction. That is, an arbitrary d-dimensional function
may be written in the form

u(x1, . . . , xd) =

n∑

i=1

f1
i (x1)f2

i (x2) · · · fdi (xd). (22.7)

Specifically for the acceleration of the M2L process, we seek the low rank approximation K̃(s̄, x̄)
to the kernel matrix K(s̄, x̄) that contains the kernels relating a source point s̄ and field point
x̄ in different cells at the same level. The notation K is used in a generic fashion such that it
might denote either U(s,x) or T(s,x) as required. We use an iterative procedure in which the
kth approximation is written

K̃k(s̄, x̄) = K̃k−1(s̄, x̄) + Sk(s̄) ◦Xk(x̄)

=

k−1∑

i=1

Si(s̄) ◦Xi(x̄) + Sk(s̄) ◦Xk(x̄), (22.8)

where the operator ◦ denotes a Hadamard product, and the functions Sk(s̄) and Xk(x̄) are the
only unknowns. In order to solve this non-linear problem, an alternating direction scheme is
used. An initial guess can always be made to generate the first approximation, K̃1(s̄, x̄), based
on the essential 1/r2 and 1/r behaviour, respectively, of the T and U kernels.

K̃1(s̄, x̄) = S1(s̄) ◦X1(x̄). (22.9)
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Since the T kernel is of order 1/r2 and the U kernel is of order 1/r, a suitable initial approxi-
mation is the following choice:

St1(s̄) =

[
1

||s̄− x̄∗||

]
, (22.10)

Xt
1(x̄) =

[
1

||s̄∗ − x̄||

]
, (22.11)

Su1(s̄) =

[
1√

||s̄− x̄∗||

]
, (22.12)

Xu
1(x̄) =

[
1√

||s̄∗ − x̄||

]
. (22.13)

The iterative sequence used to calculate the kth enrichment is stopped at iteration P , when:

ε̃(P ) >
||SPk (s̄) ◦XP

k (x̄)− SP−1
k (s̄) ◦XP−1

k (x̄)||
||SP−1

k (s̄) ◦XP−1
k (x̄)||

, (22.14)

where || · || denotes the L2-norm and ε̃(P ) is a suitable threshold value. After some enrichment
steps, the PGD process will stop once the following criterion is satisfied (with threshold ε(k)):

ε(k) >
||Sk(s̄) ◦Xk(x̄)||
||S1(s̄) ◦X1(x̄)||

(22.15)

22.3 Results

We start by considering the influence of the number of Chebyshev nodes used in the kernel
interpolation. Accuracy will increase with the number of Chebyshev nodes, but this comes at
some computational cost. The relative error is given as:

Ec =
||Kc −Kd||
||Kd||

× 100%, (22.16)

where Kc denotes the kernel interpolated by Chebyshev nodes and Kd is the kernel evaluated di-
rectly. The relative errors in the traction and displacement kernels, approximated using different
number of Chebyshev nodes, are illustrated in Fig. 22.2. It can be seen that with an increasing
number of nodes, the accuracy is consistently improved; once around 9 nodes are used, con-
vergence is apparent. We next consider the improvement in efficiency gained by adopting the
PGD in place of the SVD compression. A problem of a thick-walled cylinder is chosen, shown in
Fig. 22.3, under an internal pressure of 1MPa. The right, left and bottom surface have prescribed
direction displacement constraints in the direction normal to each surface. The height is 1m,
inner radius 0.4m and outer radius 1m. The control points and geometry are displayed in the
figure. An octree structure with the result of von-Mises stress for a 78 DOF model is presented
in Fig. 22.4. In Figure 22.5 we display a comparison of the CPU time requirements for both ap-
proaches in constructing the M2L operators. Once a problem size of around 100 DOF is reached,
the PGD exhibits O(n2) complexity while the SVD exhibits O(n3) for this stage of the bbFMM
process. This is a significant improvement that improves the overall run-time, as demonstrated
in Figure 22.6. The run-time is shown for increasing model size, these models being generated
using a standard knot insertion algorithm [7]. All runs were executed on a 2.80GHz quadcore
processor with 8 parallel threads, though no parallel coding was implemented. The figure clearly
shows the use of the FMM to give O(n) complexity, in comparison with O(n2) for conventional
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Figure 22.2: Relative error Ec as a function of the number of Chebyshev nodes.

Figure 22.3: Quarter cylinder geometry with NURBS control points.

IGABEM, and also that the PGD acceleration has particular benefits, effectively offsetting the
overheads of using the FMM, for smaller models. In this way the O(n) behaviour applies for
the entire range of problem sizes, though it should be noted that for larger problems there may
be expected to be some departure from this since the M2L operator requires O(n2) operations
and the linear solver will require at least this; however, for the problem sizes tested (up to over
100,000 DOF) this departure has not yet become apparent.

It appears that the use of PGD in preference to the SVD has little benefit for problem sizes
greater than around 104 degrees of freedom. By modifying the PGD approach, further gains can
be made across the entire range of problem sizes. This is the subject for a future publication.

22.4 Conclusions

An IGABEM algorithm has been presented for linear elasticity in 3D. It is accelerated with
the bbFMM using a low-rank approximation to the Moment-to-Local operators produced using
Proper Generalised Decomposition in preference to the Singular Value Decomposition. This
reduces the complexity of the M2L construction from O(n3) to O(n2). The performance of
the scheme is enhanced across the range of model sizes tested, with negligible loss in accuracy,
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Figure 22.4: Octree structure of the quarter cylinder model showing contours of von-Mises stress
(MPa).

Figure 22.5: CPU time for computation of M2L operators.
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Figure 22.6: Comparison of overall run-time - cylinder problem.

so that the method becomes a highly promising approach for the efficient and accurate stress
analysis of solids in an industrial setting.
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