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Abstract: A comprehensive evaluation of a structure’s performance based on quasi-static 7 
measurements requires consideration of the response due to all applied loads. For the majority of 8 
short- and medium-span bridges, temperature and vehicular loads are the main drivers of structural 9 
deformations. This paper therefore evaluates the following two hypotheses: (i) knowledge of loads 10 
and their positions, and temperature distributions can be used to accurately predict structural 11 
response, and (ii) the difference between predicted and measured response at various sensor 12 
locations can form the basis of anomaly detection techniques. It introduces a measurement 13 
interpretation approach that merges the regression-based thermal response prediction methodology 14 
that was proposed previously by the authors with a novel methodology for predicting traffic-induced 15 
response. The approach first removes both environmentally (temperature) and operationally (traffic) 16 
induced trends from measurement time series of structural response. The resulting time series is then 17 
analysed using anomaly detection techniques. Experimental data collected from a laboratory truss 18 
is used for the evaluation of this approach. Results show that (i) traffic-induced response is 19 
recognized once thermal effects are removed, and (ii) information of the location and weight of a 20 
vehicle can be used to generate regression models that predict traffic-induced response. As a whole, 21 
the approach is shown to be capable of detecting damage by analysing measurements that include 22 
both vehicular and thermal response. 23 
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Abbreviations 26 

 TIC – thermal imaging camera; 27 

 RBTRP – regression-based thermal response prediction; 28 

 TIRP – traffic-induced response prediction; 29 

 PE – prediction error; 30 

 PCA – principal component analysis; 31 

 SVR – support vector regression; 32 

 SSM – signal subtraction method. 33 

1. Introduction 34 

Bridges are important transportation links, and their uninterrupted operation is vital for a 35 

functioning economy and society. Current procedures for their structural management are 36 

based largely on visual inspections that can be unreliable and highly subjective [1,2]. 37 

Furthermore, since detailed visual inspections are expensive requiring significant engineer 38 

time, they are performed sporadically. For example, in the UK, principal inspections that 39 

require engineers to examine each bridge component by getting within touching distance are 40 
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typically performed only once every 6 years [3]. Consequently, concerns affecting bridge 41 

performance are often identified at an advanced stage, thereby requiring expensive structural 42 

interventions that are disruptive to the operation of transport networks. Such reactive 43 

approaches to bridge management also leads to huge maintenance backlogs that greatly 44 

undermines the capacity of the transport infrastructure. In the UK, the maintenance backlog for 45 

works on the 57,000 bridges, which are owned and operated by the local highway authorities 46 

and estimated to be worth £24 billion, was over £2.4 billion or about 10% of their value as per 47 

2007 estimates [4]. In the USA, according to data submitted to Federal Highways 48 

Administration in 2015, 58,791 bridges (9.6% of the bridge stock) were classified as 49 

structurally deficient [5] and the total costs of their rehabilitation were predicted to be $31 50 

billion. There is therefore great interest among the bridge engineering community in deploying 51 

sensing technologies, which can provide reliable, continuous data streams about bridge loading 52 

and response, as a useful complement to visual inspections [6–9].  53 

The main challenge in sensing-based bridge management is in relating collected measurements 54 

to structural performance. Response time histories can be complex to analyse for a variety of 55 

reasons. They contain a certain degree of noise due to sensor characteristics. Outliers arising 56 

from occasional sensor malfunction or data acquisition issues are also often present. However, 57 

more important is the fact that the structural response and hence the measurements are strongly 58 

affected by the various loads on the structure including environmental factors and vehicular 59 

traffic. Previous research has shown that environmental loads, which vary both diurnally and 60 

seasonally, leave a strong signature in the response time histories [10]. Specifically, 61 

temperature effects on bridge response can exceed those of other environmental and 62 

operational loads [11]. Traffic induced-response appear as short spikes superimposed on 63 

thermal response [12]. For example, Figure 1 (left) shows time histories of the horizontal 64 

movement measured at the expansion joint of the River Exe Bridge. Spikes in the horizontal 65 

movement are induced by heavy vehicles crossing the bridge. Figure 1 (right) is a zoomed-in 66 

view of a portion of the displacement time-history that corresponds to the passage of a heavy 67 

truck over the bridge. Consequently, simple approaches for detecting damage that ignore how 68 

the response is affected by the various loads are not useful for real-life structures. For example, 69 

the concept of detecting damage by using threshold bounds on individual measurements 70 

seldom works since the effect of damage on structural response is often much smaller than the 71 

change in response due to diurnal and seasonal temperature variations [13]. 72 

Data-driven techniques that exploit patterns arising from spatial and temporal correlations in 73 

measurements are well-suited to deal with the above-mentioned complexities in measured 74 

response time histories. Since these techniques do not rely on a physics-based model of the 75 

structure, they can be more effective than model-based methods for dealing with the potentially 76 

large volumes of measured data. Data-driven techniques usually require a training data-set 77 

comprising measurements representing baseline conditions of a bridge. The techniques extract 78 

features representative of normal structural behaviour from the training data-set and then 79 

compare these features with those extracted from new measurements to detect changes in 80 

structural behaviour [14].  81 
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Data-driven techniques are adapted typically from quantitative fields such as econometrics [15] 82 

and statistics [16]. However, a few techniques such as mathematical correlation models [17] 83 

and linear approaches to modelling nonlinearities [18] have also been developed specifically 84 

for interpreting bridge monitoring data. The majority of currently available data-driven 85 

techniques are concerned with the interpretation of response time histories and are able to 86 

detect the onset of damage only in simulated measurements created using numerical models of 87 

bridges that model damage as a reduction in stiffness [16]. They fail to demonstrate similar 88 

performance for measurements from real-life structures particularly when damage is located 89 

away from sensors [19] due to the presence of environmental trends that mask damage effects 90 

on response. Laory et al. [20] hence studied the removal of seasonal variations from 91 

measurements through use of a moving average filter and a low-pass filter. However, this had 92 

the negative effect of reducing damage detectability. Laory et al. [21] later combined two data-93 

driven methods, specifically moving principal component analysis with robust regression 94 

analysis, to enhance damage detectability. However, the performance of the resulting approach 95 

has been illustrated only on measurements collected during the construction phase of a bridge.  96 

 97 
Figure 1 The River Exe Bridge: time histories of the horizontal movement of the steel 98 

girder at the expansion joint collected over 7 hours (left) and during the passage of a heavy 99 

vehicle (right). (Courtesy: Dr David Hester and Devon County Council.) 100 

Kromanis and Kripakaran [22] suggested a novel data-driven methodology referred to as 101 

Regression-Based Thermal Response Prediction (RBTRP) methodology for predicting thermal 102 

response, which is the main constituent of the environmental trend in measured response time 103 

histories. They demonstrated that measurements of temperature distributions can be exploited 104 

to predict accurately thermal effects in measured response. They also showed that the time 105 

histories resulting from subtracting the predicted thermal response from the measured response 106 

time histories can be analysed by anomaly detection techniques for damage detection. Other 107 

researchers have also since investigated similar methods that use both temperature and 108 

deformation measurements for damage detection. Yarnold et al [23] showed that distributed 109 

temperature and deformation measurements can enable damage detection albeit through the 110 

use of physics-based (finite element) models. This research aims to combine the authors’ 111 

previous work in predicting thermal response with a novel methodology for predicting 112 

vehicular response in order to create a damage detection approach that is capable of analysing 113 
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response time histories containing both temperature and vehicular effects. There are no data-114 

driven approaches that currently offer this capability. 115 

This study will rely on knowledge of vehicular loads and their positions on the bridge to predict 116 

vehicular response. Technologies for measuring vehicle load and location are now well-117 

developed. For example, coupling data from vision-based systems with data from other sensing 118 

devices can enable identification of the location, number and types of vehicles, hence, 119 

supporting the characterization of their induced response. Such concepts have already been 120 

demonstrated in many studies. Glisic et al. [24] have proposed data management principles for 121 

accessing and visualizing measurements collected with contact sensors and video streaming. 122 

The background subtraction method has been shown to be useful to analyse video-streamed 123 

images to identify location, type and speed of a vehicle for anomaly detection [25]. Axle loads 124 

of a vehicle can be determined using weigh-in-motion sensors [26]. Video streams of traffic 125 

from a bridge have also been combined with displacement measurements to create influence 126 

lines, which then serve as input features into anomaly detection methodologies [25]. Therefore, 127 

this paper examines how to utilise the knowledge of vehicular and environmental loads, which 128 

are increasingly available through measurements from continuous monitoring, to better 129 

understand real-time structural performance.  130 

This paper will first describe the overall approach for measurement interpretation including 131 

how it will combine methodologies for predicting thermal and vehicular response in a 132 

framework for anomaly (damage) detection. This will be followed by a background on the 133 

RBTRP methodology for predicting thermal response, and then a description of the novel 134 

Traffic-Induced Response Prediction (TIRP) methodology to predict vehicular response. It will 135 

later discuss the anomaly detection techniques used to analyse the time histories produced after 136 

subtracting thermal and vehicular response from the measured response time histories. The 137 

overall approach will be illustrated using measurements collected from a truss that has been 138 

built and continuously monitored in the structures laboratory at the University of Exeter. The 139 

paper will finish with a discussion of the results, conclusions and limitations of the work.  140 

2. Measurement interpretation approach  141 

The premise of this study is that information of inputs (loads) into and outputs (response) from 142 

a structural system are available via monitoring. The vision is to develop separate data-driven 143 

methodologies to predict the structural response due to each load and ambient parameter. This 144 

will enable filtering the effects of vehicular and environmental loads from measured response 145 

time histories and then analysing the resulting time histories using anomaly detection methods. 146 

As a first step towards this goal, traffic and temperature effects alone are considered in this 147 

research. All other environmental factors (e.g. wind) are assumed to have no effect on a 148 

bridge’s structural response. The overall measurement interpretation approach is schematically 149 

illustrated in Figure 2. Predictions from two methodologies: (1) the RBTRP methodology and 150 

(2) TIRP methodology are used to filter thermal and vehicular response respectively from 151 

measured response. Both the methodologies for predicting structural response, in order to be 152 

useful for real-time measurement interpretation, have to be computationally inexpensive and 153 
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potentially applicable to a range of structures. Regression-based models that capture the 154 

relationship between structural deformations (e.g. strain, displacement) and loadings (e.g. 155 

temperature, traffic) and their locations are well-suited for this task [22], and therefore form 156 

the basis of the RBTRP and TIRP methodologies. The time histories resulting from subtracting 157 

the predicted thermal and vehicular response from measured response time histories are 158 

effectively response-free signals. Response-free signals would be zero signals if the traffic- and 159 

temperature-induced response are predicted perfectly by the corresponding methodologies, and 160 

if the measurements were free of noise and outliers. These response-free signals are 161 

subsequently analysed for anomalies using signal processing techniques. All the elements of 162 

the overall approach starting with the RBTRP methodology are described in the following 163 

subsections. 164 

 165 

Figure 2 A schematic of the proposed measurement interpretation approach. 166 

2.1. Regression-based thermal response prediction (RBTRP) methodology 167 

The RBTRP methodology is built on a premise that the thermal response of a bridge can be 168 

determined from knowledge of its current temperature distributions and an understanding of 169 

the relationship between temperature distributions and structural response obtained from a set 170 

of reference measurements. The RBTRP methodology consists of the following two phases as 171 

shown in Figure 3. 172 

1) Model generation phase: This phase generates regression models that use information 173 

of temperature distributions as input to predict thermal response. It involves a series of 174 

iterations over the following interlinked steps:  175 

a. Reference set selection: First a reference period is chosen during which the 176 

structure is considered to be behaving normally. Measurements collected during 177 

this period but without traffic on the bridge are split into training and test sets 178 

for the purpose of training regression models and evaluating their performance 179 

respectively. 180 
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b. Data preparation: Measurements are treated for outliers using the interquartile 181 

range technique, which has been shown to effectively remove outliers in 182 

previous studies [16]. The moving averaging filter is then employed to smooth 183 

the measurements to minimize effects of noise. If required, measurements are 184 

then down-sampled to an appropriate frequency in order to ensure model 185 

training is not too computationally demanding due to the size of the data set. 186 

Lastly the dimensionality of the data set of temperature measurements, which 187 

will constitute the input to the regression models, is reduced using principal 188 

component analysis (PCA), which takes advantage of inherent correlations 189 

between variables in the data-set [27]. PCA finds a set of principal component 190 

vectors defining an orthogonal transformation from the original set of variables 191 

which are linearly-correlated to a new set of variables which are uncorrelated. 192 

According to [28], the first one-third of the principal components covers 193 

99.99% of the variability in temperatures. Hence these principal components 194 

alone are sufficient as input to the regression models. This step also accounts 195 

for thermal inertia effects in the measured data. Thermal inertia refers to the 196 

phenomenon of internal material temperatures lagging significantly behind 197 

ambient temperatures. Consequently the time series of response and 198 

temperature measurements may appear to be out of phase. This is particularly 199 

the case in concrete structures due to their voluminous nature, high thermal mass 200 

and low thermal conductivity. Thermal inertia effects are effectively 201 

incorporated within the regression models by providing the principal 202 

components corresponding to temperatures measured at both the current time-203 

step and a previous time-step as input [22,29]. 204 

c. Training and evaluation of regression models: In this step, regression models 205 

are trained using the training data sets. The performance of the trained models 206 

is evaluated subsequently on test data sets. The above-mentioned steps are 207 

performed iteratively for various kinds of regression models such as support 208 

vector regression (SVR) and multiple linear regression. For any chosen 209 

regression algorithm, the models are generated iteratively by varying parameter 210 

settings until improvements in prediction accuracy are observed to be 211 

negligible. However since results from previous studies [22] on thermal 212 

response prediction that have compared various types of regression models 213 

support the effectiveness of SVR for this task, results using SVR models alone 214 

are shown in this paper. 215 

2) Model application phase: In this phase, regression models offering the highest 216 

prediction accuracy are employed to predict real-time thermal response from measured 217 

temperature distributions. First temperature measurements are prepared for input to the 218 

chosen regression model. Measurements are treated for outliers and smoothed, and their 219 

dimensionality is reduced using PCA. The first few principal components are provided 220 

as input to the regression models to predict thermal response.   221 
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 222 

Figure 3  Flowchart showing the strategy for response prediction methodology. 223 

2.2. Traffic-induced response prediction (TIRP) methodology 224 

The TIRP methodology is built on a premise that the traffic-induced response of a bridge can 225 

be determined from knowledge of the traffic loads and their locations, and an understanding of 226 

the relationship between traffic load parameters and structural response obtained from a set of 227 

reference measurements. Theoretically, a single crossing of a vehicle and the respective 228 

measured deformations can provide sufficient information to determine relationships between 229 

load, its location and response. These relationships can form the basis of regression models that 230 

predict displacements induced by similar type of vehicles at any location along the length of 231 

the structure. In real-life, however, displacements may not always resemble previously 232 

measured values even under the same traffic load. For example, bearings may lock temporarily, 233 

creating restraints that change structural behaviour. For these reasons, a broad set of traffic and 234 

response data is needed to generate robust and accurate prediction models. Furthermore, 235 

temperature effects may persist in the response measurements even after subtracting predicted 236 

thermal response using RBTRP methodology as will be shown later in the paper using the case 237 

study. This is expected as material properties and hence the structure’s stiffness can vary with 238 

changes in temperature distributions. For this reason, in addition to information of the 239 

magnitude of the applied load and its location, the first few PCs of temperatures are also 240 

provided as input variables for the TIRP methodology. 241 

The TIRP methodology follows a process similar to that of the RBTRP methodology (Figure 242 

3) for training and applying regression-based models. Figure 4 illustrates the concept employed 243 

to identify the location of a vehicle on a bridge. For the purpose of simplicity, the bridge is 244 

assumed to have a single lane and only one vehicle is assumed to be on the bridge at any time. 245 

The length of the bridge is split into 100 segments. The segments are numbered sequentially 246 

from the left support. The location of a vehicle is defined by the number of the segment in 247 

which the centre of the vehicle is located.  248 

In the model generation phase, as for the RBTRP methodology, data set from a reference period 249 

is chosen for training purposes. This data set, which includes measurements of temperature 250 

distributions and response as well as vehicle loads and locations, is first pre-processed. After 251 

removing outliers and noise, thermal response, as predicted by the RBTRP methodology using 252 

the temperature measurements, is subtracted from the response measurements to identify the 253 

response due to only traffic loads. Using this response data, regression models are trained to 254 
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predict the traffic-induced response using the locations and the weights of the vehicles, and the 255 

first few principal components of temperature measurements as input. The best models for 256 

traffic response prediction are then selected. These models are used in the model application 257 

phase (Figure 3) to predict the traffic-induced response in real-time based on measured 258 

temperatures and vehicle loads and their locations.  259 

 260 

Figure 4  Schematic illustrating input parameters for the TIRP methodology. 261 

After evaluating a number of regression-based techniques for generating models for traffic-262 

induced response prediction, artificial neural networks (ANNs), which are inspired by 263 

biological neural systems, have been selected for this study. ANNs are a powerful way of 264 

representing nonlinear relationships between a number of input and output parameters [10]. An 265 

ANN consists of neurons that are interconnected in various layers. Connections between the 266 

neurons have weights that are calibrated during training to capture the actual relationship 267 

between the input and output parameters. A key step is the selection of an appropriate 268 

architecture of the network that maximizes its efficiency, i.e., use low computational resources 269 

while achieving high prediction accuracy [30].  270 

This study uses a multi-layer feed-forward neural network that implements the back-271 

propagation rule [31]. The input parameters to the ANN are locations and weights of moving 272 

loads and the first few PC vectors computed from distributed temperature measurements. The 273 

output parameters are response values (e.g. strains) at specific locations on the structure. The 274 

ANN has one hidden layer and one output layer. The output layer has a single linear neuron. 275 

The optimal number of neurons for the hidden layer is found through a trial and error approach 276 

that gradually increases the number of neurons while evaluating the performance of the ANN 277 

on both training and test sets. A hidden layer of 5 neurons is observed to produce consistently 278 

good results. This is in broad agreement with previous research in SHM on the application of 279 

ANN for data interpretation that recommend using a hidden layer composed of between 3 and 280 

30 neurons [32,33]. 281 

2.3. Anomaly detection techniques 282 

Time histories that result from subtracting the predicted thermal and traffic response from time 283 

histories of measured response are analysed for anomalies (damage) using signal processing 284 

techniques. The time histories are generated as follows. The differences between measured and 285 

predicted response are referred to as prediction errors (PEs), and are computed as shown below: 286 

Δ𝑦𝑠 = 𝑝𝑠 − 𝑚𝑠  (Eq. 1) 287 
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where Δ𝑦𝑠 is the PE, and 𝑝𝑠 and 𝑚𝑠 are predicted and measured response respectively at sensor 288 

𝑠 . 𝑚𝑠  is computed as the sum of the predicted thermal response and the predicted traffic 289 

response. The PEs computed for each time-step for a sensor are sequenced chronologically to 290 

form a time series, which is referred to as a PE signal.  291 

PE signals are expected to be stationary with a zero mean. Only changes to structural 292 

performance due to factors unrelated to loading such as damage are expected to be left in the 293 

signals. Such changes in signals are hard or impossible to identify without employing signal-294 

processing techniques. PE signals corresponding to various sensor locations can either be 295 

analysed individually or be analysed in groups to detect anomalous structural behaviour. The 296 

latter approach, also termed multivariate analysis, relies on the correlations between response 297 

measured at various locations of a bridge. Damage to a bridge component will modify prior 298 

correlations since bridges are typically well-connected structural systems such that damage 299 

affects load paths within the structure. In previous studies, signal subtraction method (SSM) 300 

[28] and cointegration [15] have been shown to detect anomaly events better than other signal 301 

processing techniques such as moving principal component analysis and moving fast Fourier 302 

transform [34]. Therefore, in this study, SSM and cointegration are employed to analyse PE 303 

signals for anomalies.  304 

SSM is a novel technique proposed in [28]. In SSM two PE signals are linearly combined to 305 

generate a subtracted signal, which is then analysed for anomalies. Mathematically, it is applied 306 

as follows: 307 

𝑇𝑘𝑙 =  (
𝑤𝑘

𝑓𝑘
) 𝛥𝑦𝑘 − (

𝑤𝑙

𝑓𝑙
) 𝛥𝑦𝑙  (Eq. 2) 308 

𝑇𝑘𝑙 is the subtracted signal resulting from the subtraction process. ∆𝑦𝑘 and ∆𝑦𝑙 are values of 309 

the PE signals corresponding to sensors 𝑘 and 𝑙 respectively. 𝑓𝑘 and 𝑓𝑙 are scaling factors for 310 

the two PE signals. These are equal to the range of signal values in the training period, i.e., the 311 

difference between the maximum and minimum values in the training period. 𝑤𝑘 and 𝑤𝑙 are 312 

weights specified according to the accuracies of the respective sensor and its corresponding 313 

model for thermal response prediction. In this study, the hypothesis is that measurements from 314 

all elements are equally important. Therefore weights of all PE signals are set equal to 1. 315 

Cointegration utilizes the statistical properties of cointegrated signals for anomaly detection. 316 

In probability theory, a signal is said to be stationary, if its mean, variance and autocovariance 317 

stay constant over time, and non-stationary if otherwise. A non-stationary signal is said to be 318 

integrated to an order 𝑑 if a process of taking differences over the time series repeated 𝑑 times 319 

leads to a stationary signal. In mathematical notation, the order of integration of a signal is 320 

often denoted by 𝐼(𝑑). A group of signals, where each signal is 𝐼(1), is said to be cointegrated 321 

if there exists a linear combination of the signals that is stationary. These stationary signals are 322 

referred to as cointegrated signals, and the process of finding them referred to as cointegration. 323 

The concept of cointegrated signals, which was  initially proposed and used in the field of 324 

econometrics [35], was first applied to structural health monitoring by Cross et al. [15]. Cross 325 

et al. [15] showed that it is useful for purging quasi-static effects in measurements, and 326 
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demonstrated its performance using measurements from a few benchmark problems including 327 

the National Physical Laboratory Footbridge in the UK [36].  328 

In this paper, cointegration is applied on PE signals, which are typically non-stationary 329 

processes since the predicted structural response does not perfectly match the measured 330 

response. The premise is that the stationarity of a cointegrated signal derived from PE signals 331 

will be affected by an anomaly event. Given n PE signals, 𝑛 − 1 cointegrated signals can be 332 

generated. Cointegrated signals are generated and evaluated within the MATLAB environment 333 

as explained below. The full details of the mathematics behind cointegration can be found in 334 

[15]. 335 

Step 1 Test PE signals for stationarity. Non-stationary signals are then converted to signals 336 

that are integrated to order one. Augmented Dickey-Fuller [37] test is used to 337 

examine the stationarity of a signal. The adftest function provided in the 338 

MATLAB Econometrics Toolbox [38] is used for this test. 339 

Step 2 Select signals which have passed the Augmented Dickey-Fuller stationarity test. 340 

Step 3 Apply the Johansen cointegration procedure [39] to find suitable cointegrating 341 

vectors. In this study, the jcitest function in MATLAB Econometrics Toolbox 342 

[38] is used to find the cointegrating vectors. 343 

Step 4 Project response measurements into the space of cointegrated vectors. These 344 

projected vectors are termed cointegrated residuals and when sequenced 345 

chronologically form cointegrated signals.  346 

Both SSM and cointegration fundamentally require computing and tracking the time-evolution 347 

of a damage sensitive feature. An anomaly is said to be detected when the evaluated damage 348 

sensitive feature, which is a subtracted signal when using SSM and a cointegrated signal when 349 

using cointegration, exceeds a predefined confidence interval. Mean (𝜇) and standard deviation 350 

(𝜎) values during the reference period are computed to derive thresholds for the confidence 351 

interval: 352 

[𝜇 − 𝑛𝜎, 𝜇 + 𝑛𝜎]  (Eq. 3) 353 

where 𝑛 is the number of standard deviations defining the range of the confidence interval. 354 

According to previous studies, 𝑛 = 3 and 𝑛 = 6 are chosen to set confidence intervals for 355 

damage sensitive features in cointegration and SSM, respectively. Both anomaly detection 356 

techniques are briefly described below giving particular attention to the damage sensitive 357 

features used in this study. 358 

3. Case study 359 

The performance of the measurement interpretation approach proposed in the previous section 360 

is evaluated on measurements collected from a laboratory structure: a truss that is subjected to 361 

accelerated temperature variations and periodically applied moving loads.  362 
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3.1. Experimental setup 363 

A sketch of the truss depicting its principal dimensions and the location of sensors is shown in 364 

Figure 5. Further details on the truss are available in authors' previous work [28]. Temperature 365 

variations are simulated with three infrared heating lamps (Figure 5). They are installed 0.5 m 366 

above and 0.2 m behind the truss. The lamps are plugged in to the mains through timer plugs 367 

which turn them on every 1½ hours for ¾ of an hour. This set-up allows simulating 16 368 

temperature cycles in a day. Temperatures in the truss are monitored with 31 thermocouples 369 

and a thermal imaging camera (TIC).  370 

Moving loads are simulated using a mobile platform installed on the bottom chord of the truss 371 

(Figure 5) that is driven by a motor. While the speed of the moving platform can be adjusted 372 

by altering the power supply to the motor that drives it, the maximum speed at which the 373 

platform can be pulled is still much lower than the average speeds of vehicles crossing full-374 

scale bridges. A heating element in the form of a one-watt power resistor is attached to the 375 

moving platform. The location of the moving load is detected by processing thermal images, 376 

and is defined in terms of its distance from the left support of the truss by assuming that the 377 

total length of travel of the platform is 100 units. This concept is shown in Figure 6. 378 

Weights are added onto the platform to simulate traffic loads. This study uses five different 379 

moving load cases – 0 N, 40 N, 100 N, 140 N and 180 N, which are from hereon denoted as 380 

L-0, L-1, L-2, L-3 and L-4 respectively. Each non-zero load case is applied for up to four 381 

simulated diurnal cycles. The weights are altered only when the platform is at the right end of 382 

the truss, and the motor is turned off. For case L-0 that is without traffic loading the platform 383 

is kept stationary at the right end of the truss. The structure’s response is measured at various 384 

locations (see Figure 5) with 9 linear-pattern foil strain gauges. Response measurements are 385 

collected at a rate of six measurements per minute.  386 

 387 

Figure 5  A sketch of the test-bed with its principal dimensions and the location of 388 

strain gauges (S-i, i = 1, 2, …, 9). 389 
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 390 

Figure 6  Thermal image of the experimental set-up with a close-up view of the moving 391 

load and heating element. 392 

Damage scenarios 393 

The truss is monitored in both healthy and damaged states. Three damage scenarios, which are 394 

referred to as DM1, DM2 and DM3, are considered. These scenarios are shown in  Figure 7 395 

and listed below: 396 

DM1 -  Three bolts are removed from the joint connecting two diagonal and one vertical 397 

elements to the bottom chord; 398 

DM2 -  Two additional bolts are removed from the same joint named in DM1; 399 

DM3 -  Three bolts are removed from a joint on the top chord. 400 

Scenarios DM1, DM2 and DM3 last for 47, 46 and 46 simulated diurnal cycles (or 401 

approximately 25,000 measurements in total). At the end of scenario DM3, the truss is repaired 402 

by putting back all the removed bolts; this event is denoted as scenario F.  403 

 404 
Figure 7 Joints affected by simulated damage scenarios. 405 
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3.2. Measurement time histories 406 

Temperatures 407 

Temperature time histories are derived from thermal images collected by the TIC and the 408 

measurements from the thermocouples. Thermal images are processed as follows. The area of 409 

the truss in the thermal images is divided into segments (see Figure 6). The average temperature 410 

is calculated for each segment from each thermal image. In total, 42 segments are created as 411 

follows:  412 

 the top and bottom chords are divided in 8 and 12 segments each, and  413 

 each element between the top and bottom chords is split into two segments leading to 414 

22 segments in total. 415 

Temperature variations computed for the top and bottom chords are shown in Figure 8 (left). 416 

The plots show that the temperature in the laboratory is affected by the outside air temperature. 417 

The temperature variations induced by the infrared heaters are superimposed on the variations 418 

in the ambient temperature. A closer look at the time histories reveals the simulated diurnal 419 

cycles (Figure 8 (right)). The time histories also show disruptions to data collection, outliers 420 

and noise, commonly seen also in measurements from full-scale structures. Disruptions were 421 

due to problems related to storing the thermal images. These disruptions are removed to have 422 

continuous measurement-histories. Outliers were generated occasionally when the field-of-423 

view of the TIC was partially blocked such as during the presence of a human when the weights 424 

on the moving platform are modified.  425 

 426 

Figure 8 Time histories of temperatures calculated from segments of the top and bottom 427 

chord (Figure 6) with those for the entire monitoring period on the left and a closer look at 428 

two simulated diurnal cycles on the right. 429 

Response 430 

Response measurements have been collected with no interruptions. However, in order to keep 431 

them compatible with the temperature signals, measurements corresponding to periods when 432 

thermal images have not been recorded are omitted from response time histories. Figure 9 433 

shows plots of the measurement time histories produced by sensor S-2. The plot on the left 434 

shows the first 36,000 measurements in the time histories. The figure also includes closer views 435 

of response variations during a simulated diurnal cycle. The plots show that variations in 436 
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ambient temperature as well as the radiation from the infra-red lamps affect the structural 437 

response.  438 

The response due to the moving loads are seen superimposed on the response due to simulated 439 

diurnal cycles in the form of a noisy pattern (Figure 9 (middle)). Strains spike when the moving 440 

platform passes by the sensor location S-2 (see Figure 9 (right), between measurements #100 441 

and #150). The complete strain signals produced by sensors S-4, which are located close to the 442 

joint involved in damage scenarios DM1 and DM2, are shown in Figure 10. Strain 443 

measurements closely resemble variations in temperatures (Figure 10). While a gradual drift 444 

of the signal is observed after damage event DM2, at this time the ambient temperature has 445 

also decayed (see Figure 8 around 7/11/2013).  446 

   447 

       448 

Figure 9 Strains measured with sensor S-2 (right) and closer views (middle and left) of 449 

the time histories to understand the effects of moving load. 450 

 451 

Figure 10 Strain signals as measured with S-4; also shown are the time of initiation of 452 

the various damage scenarios. 453 

Figure 11 shows strain signals in relation to the location of the moving load as computed from 454 

the thermal images. The correlations between the strains and locations of the moving load are 455 

such that the location of the moving load can even be defined accurately from the measured 456 

response.  457 
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 458 

Figure 11 Locations of the moving load computed from thermal images plotted 459 

alongside strains. 460 

4. Results 461 

In this section, the proposed measurement interpretation approach is evaluated on 462 

measurements collected from the laboratory truss. The RBTRP methodology and then the TIRP 463 

methodology are employed to generate statistical models for predicting temperature-induced 464 

and traffic-induced response respectively. The PE signals, which are derived after purging the 465 

effects of temperature and traffic loads from measurement time histories, are then processed 466 

using anomaly detection techniques. 467 

4.1. Response predictions 468 

Reference period 469 

Measurements from the first 66 simulated diurnal cycles (see Figure 10) form the reference 470 

period for evaluating the proposed approach. Measurements taken during this period are plotted 471 

in Figure 9 (left). Periods when the moving load is present, are excluded from the reference 472 

data-set for the RBTRP methodology. The four periods when the moving load is present in the 473 

reference period as indicated in Figure 9 (left) form the reference-data set for the TIRP 474 

methodology. Load L-4 has not been deployed during the reference period. This study will 475 

examine if the response due to L-4 can be predicted accurately using regression models that 476 

are generated based solely on the loads present during the reference period. 477 

Thermal response prediction 478 

The RBTRP methodology is employed to derive regression models to predict thermal response. 479 

Regression models are generated using temperatures collected using the TIC. High prediction 480 

accuracies, as evaluated in terms of root mean square error (RMSE), are obtained for strain 481 

predictions when: 482 

 the input temperature measurements are down-sampled to 1.2×10-2 Hz, 483 

 the number of PCs is set to 14, and 484 

 the PCs corresponding to the current time-step and the previous time-step are provided 485 

as input to the regression models for accounting for thermal inertia effects.  486 
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A PE signal computed for sensor location S-2 is plotted in Figure 12. A PE signal for a specific 487 

sensor is denoted as PE sensor name, for example, PE S-2 refers to a PE signal for sensor 488 

location S-2. If noise in thermal response predictions and measurement noise follow a Gaussian 489 

distribution, the PE signals will resemble a stationary signal. A deviation from stationarity such 490 

as in the form of a change to the mean of the signal may indicate the presence of the moving 491 

load. Spikes due to the moving loads are discernible in PE S-2 shown in Figure 12. A closer 492 

examination of PE S-2 during the period when load L-2 is applied reveals that thermal effects 493 

have not been fully removed from response measurements (Figure 12 (right)). PE values at the 494 

sensor location S-2 rise abruptly from 0 to 15×10-6 when the moving load is applied (near 495 

measurement #7510). With respect to damage scenarios, a gradual shift in the mean of PE S-2 496 

can be noticed shortly after scenario DM2. However, other scenarios are not detectable from 497 

the PE signals. 498 

 499 

 500 

Figure 12 The variation of PEs for sensor location S-2 is plotted to show the effect of the 501 

moving load and temperature (left), and a closer view of the signal (right). 502 

Next, regression models are generated using temperature measurements from thermocouples 503 

in order to compare its performance with those generated using measurements from the TIC. 504 

As when using data from the TIC, temperature measurements are down-sampled to 1.2×10-2 505 

Hz. 10 PCs are required to capture 99.99% of the variability in temperature measurements.  506 

Table 1 presents data on the accuracy of the regression models produced for thermal response 507 

prediction using temperature data from thermocouples and the TIC. The accuracy is expressed 508 

using a parameter 𝑒𝑝, which is a measure of error computed in terms of the range of measured 509 

strains for a group of sensors (see Eq. 4). 510 

𝑒𝑝 =
1

𝑛
∑

𝑒𝑠

𝑟𝑠

𝑛
𝑠=1  (Eq. 4) 511 

n is the number of sensors; es is the root mean squared error in predictions and rs is the range 512 

of measured strains at sensor 𝑠 . The sensors on the top and bottom chords are analysed 513 

separately in two groups. The mean range of the measured strains is:  514 

 68×10-6 strains collected with five strain sensors on the bottom chord; 515 

 138×10-6 strains collected with four strain sensors on the top chords; 516 

Results in Table 1 show that regression models generated using temperature measurements 517 

collected by both TIC and thermocouples demonstrate high accuracy.  518 
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Table 1: Accuracy (expressed in terms of ep) of the regression models generated using 519 

temperature measurements from thermocouples (noted as TH in the table) and the TIC. 520 

 Bottom chord (strains) Top chord (strains) 

 TH TIC TH TIC 

ep (%) 4.2% 3.7% 1.8% 1.8% 

Traffic-induced response predictions  521 

The PE signals computed using measurements from the TIC are next treated for effects of the 522 

moving loads. The results presented in Figure 12 (right) show that temperature effects are still 523 

present even after subtracting predicted thermal response from the measured response. This is 524 

evident from the underlying sinusoidal variation in the trend, which corresponds directly to the 525 

simulated diurnal cycle. For this reason, predicting the vehicular response requires information 526 

regarding temperatures. Hence information of the magnitude of the applied load and its location 527 

and the first few PCs of temperatures are selected as input variables for the TIRP methodology. 528 

Combinations of the measurement input frequency and number of PCs are evaluated. The best 529 

results are found when the input traffic measurements are down-sampled to 5×10-2 Hz and the 530 

number of PCs is set to 4.  531 

The predicted and measured traffic-induced response for three periods over the monitored 532 

duration are provided in Figure 13. These periods are described below:  533 

 Period A, which is within the reference period, and comprises measurements #7,000 to 534 

#8,100 during which load L-2 is applied (Figure 13 (left)); 535 

 Period B, which is outside the reference period but before the introduction of damage 536 

scenarios, and comprises measurements #55,200 to #55,600 during which load L-2 is 537 

applied (Figure 13 (middle)), and 538 

 Period C, which is outside the reference period but before the introduction of damage 539 

scenarios, and comprises measurements #81,100 to #81,500 during which load L-4, a 540 

moving load unexperienced during the reference period, is applied (Figure 13 (right)). 541 

Predicted and measured strains are in good agreement for periods A and B. However, the 542 

discrepancy in predictions is comparatively large for the period C (Figure 13 (top)) when L-4 543 

was applied. Response due to L-4 cannot be predicted accurately using regression models that 544 

are generated based solely on the loads present during the reference period. Hence, all types of 545 

loads have to be included in the regression model generation. A plot of PE S-2 is provided in 546 

Figure 14. 547 
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 548 

       549 

Figure 13 Measured and predicted strains during period A (left), period B (middle) and 550 

period C (right). 551 

 552 

Figure 14 PE signals derived after subtracting traffic-induced and thermal response from 553 

measurements collected by sensor S-2. 554 

4.2. Anomaly detection 555 

In this section, anomaly detection techniques are employed to interpret the time histories of 556 

data. First, anomaly detection techniques are used on prediction error signals computed by 557 

subtracting both predicted thermal and traffic response from measured response. Next, to 558 

understand the effectiveness of subtracting traffic response from the measurements, anomaly 559 

detection techniques are used on the error signals computed by subtracting only predicted 560 

thermal response from measured response. Then, anomaly detection techniques are employed 561 

directly on the time histories of response measurements to demonstrate the importance of 562 

having models to predict thermal and traffic-induced response.  563 

Interpretation of prediction error (PE) signals 564 

Cointegration: The PE signals derived in Section 4.1 are first analysed for anomaly events with 565 

the cointegration technique. The first ⅓rd of measurements from the reference period forms the 566 

data-set used to derive the cointegration model. The confidence interval is defined using values 567 

of cointegrated residuals from the reference period. The computed cointegrated signal is plotted 568 

in Figure 15. Spikes and temporary shifts in the signal are indicative of periods when moving 569 

loads are present. The larger spikes before DM1 represent periods when L-4 is applied. Values 570 

of cointegrated residuals are observed to deviate away from the confidence interval as the 571 

damage severity increases. The trend departs gradually from the confidence interval after DM1 572 

and it permanently departs the confidence interval after DM2.  573 
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 574 

Figure 15 Cointegrated residuals of signals computed in Section 4.2. 575 

SSM: Two PE signals are combined to create one SSM signal. For example, subtracted signal 576 

TS1S5 is a combination of PE signals from sensor location S-1 and S-2. For DM1 and DM2, the 577 

joint that lies between sensor locations S-3 and S-4 is damaged. The subtracted signals created 578 

from the signals corresponding to the two sensor locations are expected to reflect anomaly 579 

events. However, all combinations of PE signals from strain sensors located on the bottom 580 

chord show evidence of anomaly events, and especially subtracted signals created from those 581 

signals corresponding to sensors S-1 and S-2. Figure 16 plots three subtracted signals – TS1S5, 582 

TS2S4 and TS2S5, all of which indicate anomaly events. Similar to cointegrated signals, periods 583 

when the moving loads are present can be seen as spikes in values of subtracted residuals. TS1S5 584 

and TS2S5 permanently exceed the confidence interval after DM2. TS2S4 departs from the 585 

confidence interval soon after DM1. TS2S4 deviates further from the upper bound of the 586 

confidence interval with increasing damage severity. When the structure is mended at event F, 587 

the signal tends to return to the confidence interval. The values of subtracted residuals of other 588 

signals hold steady after the truss is repaired during event F. 589 

 590 

Figure 16 SSM residuals TS1S5, TS2S4 and TS2S5 for signals computed in Section 4.1. 591 

Interpretation of signals without thermal response 592 

In order to assess the impact of moving loads on anomaly detection, measurements taken 593 

without having moving loads on the structure are now analysed separately. PE signals derived 594 

from subtraction of the thermal response from these measurements are analysed using anomaly 595 

detection techniques. When the periods of moving loads are excluded from the measurement 596 

interpretation, signal trends become much less noisy. As an example, a cointegrated signal is 597 
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generated and plotted in Figure 17. The cointegrated signal has a few spikes and has no shifts 598 

when compared to the cointegrated signal plotted in Figure 15. Shifts in the signal due to 599 

anomaly events are distinguishable, especially those due to anomaly events DM1, DM3 and F. 600 

Similar results are achieved when interpreting the same data-set with SSM. They are not plotted 601 

here for reasons of brevity. 602 

 603 

Figure 17 Cointegrated residuals generated from PE signals for measurement periods 604 

when no moving load is present.  605 

Interpretation of response measurements 606 

A plot of a cointegrated signal generated using collected strain measurements is provided in 607 

Figure 18. The signal starts to drift gradually from the confidence interval shortly after DM2, 608 

and the signal permanently departs the confidence interval after DM3. Figure 15 and Figure 17 609 

show that anomaly events can be detected sooner by analysing the signals generated after 610 

subtracting traffic-induced and thermal response than by direct analysis of response 611 

measurements. This conclusion of faster and more reliable damage detection using PE signals 612 

has already been confirmed [34]. 613 

 614 

Figure 18 Cointegrated residuals of strain measurements. 615 

4.3. Application of the temperature-based measurement interpretation 616 

approach  617 

This study lastly evaluates the application of the temperature-based measurement interpretation 618 

approach proposed in [28]. The idea here is to evaluate if thermal effects alone can form the 619 

basis of measurement interpretation without giving consideration to the presence or absence of 620 

moving loads on the structure. Comparing results from this approach with those presented in 621 

Sections 4.1 and 4.2 using TIRP methodology will enable us to ascertain if knowledge of traffic 622 

loads helps with measurement interpretation. 623 
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The temperature-based measurement interpretation approach is similar to the measurement 624 

interpretation approach presented in Section 2 but with two key differences.  First, it does not 625 

include the TIRP methodology. Second, training of the regression models in RBTRP 626 

methodology is done using all available data during the reference period including response 627 

data collected when moving loads are present.  628 

Response predictions: The reference period used for the regression model generation of thermal 629 

response prediction is the same as used in Section 4.1, i.e. 66 simulated diurnal cycles. 630 

However the measurement time histories are not separated into two data sets according to 631 

whether they have moving loads or not as described in Section 2. A data-set that comprises all 632 

strain measurements including those that have effects of moving loads during the reference 633 

period is selected as input to the RBTRP methodology. The ep (see Eq. 4) values for predictions 634 

is 3.2%. These are similar to the error values obtained when the RBTRP methodology is 635 

coupled with the TIRP methodology (see Table 1). PE S-2 is plotted in Figure 19, which is 636 

similar to the signal shown in Figure 12PE values spike for periods when moving loads are 637 

present.   638 

 639 

Figure 19 PE S-2 derived from unfiltered strain measurements. 640 

Anomaly detection: PE signals are inspected for anomaly events using the same parameter 641 

settings as used in Section 4.2. Both SSM and cointegration show reasonably good and 642 

comparable results. For reasons of brevity, signals generated using SSM only are discussed. 643 

TS1S5, TS2S4 and TS2S5 (similar to those shown in Figure 16) are plotted in Figure 20. Drifts in 644 

subtracted signals are not as emphasized as in the signals plotted in Figure 16similar. The onset 645 

of damage can be recognized only in TS1S5 (￼Figure 20when the signal permanently departs 646 

the confidence interval. The other signals are weak indicators of anomaly events.. The other 647 

signals are weak indicators of anomaly events. 648 
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 649 

Figure 20 TS1S5, TS2S4 and TS2S5 generated using SSM from PE signals (see Section 0) 650 

4.4. Discussion 651 

This study demonstrates a new contact-free approach of measuring temperatures using a 652 

thermal imaging camera (TIC) in the context of continuous bridge monitoring. Results show 653 

that thermal response can be predicted accurately from the temperature distributions measured 654 

by either a TIC or thermocouples (see Figure 6 and Figure 8). These results are validation of 655 

the performance of the RBTRP methodology, also demonstrated previously by the authors in 656 

[22]. 657 

The selection of reference period is observed to be a key factor in the performance of the TIRP 658 

methodology. The regression models failed to predict the traffic response for load case L-4 659 

when measurements corresponding to this loading scenario were not included in the training 660 

data set (see Figure 13). In real-life, this would imply that the regression models would not 661 

perform suitably for abnormal loading scenarios, which may be absent or appear rarely in the 662 

reference data set. However, for loading scenarios that are present in the training set, the 663 

regression models predict the traffic response with sufficient accuracy.  664 

Results from the application of anomaly detection techniques on prediction error (PE) signals 665 

and other signals computed without removing the traffic response offer interesting insights. 666 

Both SSM and cointegration are capable of detecting some anomaly events from PE signals. 667 

Cointegrated signals and subtracted signals show shifts after damage scenario DM-1 but these 668 

are not significant enough (i.e. do not exceed threshold bounds) to confirm an anomaly event. 669 

However, incremental damage through DM-2 does eventually take the signals outside the 670 

threshold bounds (Figure 15 and Figure 16). If the threshold bounds were calibrated after 671 

DM-2, the cointegrated signal may have also detected DM-3. None of the signals return to their 672 

original position after scenario F when the truss is repaired. This may indicate that the 673 

connection stiffnesses of the joints, where bolts were removed, were permanently altered and 674 

were not taken back to their original states when the same bolts were re-inserted. The anomaly 675 

detection techniques perform better when applied on the portion of the measurements that are 676 

without traffic response (see Figure 17). This indicates that, on bridges where there are periods 677 

with minimal vehicle loading, the proposed approach can be adapted to analyse measurements 678 
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that contain only thermal response. A lot of short- and medium-span bridges in the road 679 

network have significantly less traffic during night times and may fall in this category.  680 

Anomaly detection techniques show better performance when applied on PE signals than when 681 

applied directly on response time series. This indicates that subtracting thermal response and 682 

vehicle response from response measurements improves the chances of anomaly detection. The 683 

particular importance of subtracting vehicle response is confirmed by the last set of results on 684 

the performance of the temperature-based measurement interpretation approach that ignores 685 

the presence or absence of traffic loads while accounting for thermal response. These results 686 

support the idea of devising measurement interpretation techniques that focus on explicitly 687 

accounting for the effect of various loads (e.g. traffic, temporary works) and environmental 688 

parameters (e.g. temperature, wind) to support reliable detection of anomaly events. Lastly, it 689 

must be noted that anomaly detection techniques are meant to support engineers in decision-690 

making. Engineering judgment and knowledge will be required to decide on the course of 691 

action upon notification of an anomaly event. Actions could be in the form of on-site 692 

inspections and augmentation of the monitoring system.  693 

4.5. Limitations 694 

The focus of this study is on the interpretation of measurements rather than measurement 695 

collection, which can itself be a challenging task. For instance, most highway bridges have 696 

continuous traffic flow on multiple lanes and will require sophisticated vision-based 697 

monitoring systems to capture data on the traffic and its loads. The collection of images and 698 

their subsequent processing to produce data on the locations and weights of the vehicles is a 699 

computational challenge that is solvable [40].  700 

The case study used in this study is a laboratory setup of a much smaller scale than a real-life 701 

structure. In a full-scale bridge, strain measurements have dynamic effects that are determined 702 

by the weight and the speed of the vehicle and the profile of the road surface in addition to the 703 

bridge structural characteristics (e.g. natural frequency). Also, only one vehicle was considered 704 

to be on the laboratory structure at any given time, an aspect which is not true in real-life 705 

bridges. A natural next step is therefore to test and evaluate the proposed approach using 706 

measurements from potentially a short-span full-scale bridge.  707 

5. Conclusions 708 

A novel measurement interpretation approach to predict traffic-induced and thermal response 709 

of bridges using measurements of distributed temperature and traffic loads and their locations 710 

is proposed in this paper. This approach is investigated using measurements from a laboratory 711 

structure that is exposed to accelerated temperature variations. Traffic loads are simulated using 712 

a moving platform that travels along the bottom chord of the truss and can hold adjustable 713 

weights. Response measurements are collected with contact sensors (e.g. strain gauges), and 714 

temperature distributions are captured with a thermal imaging camera and thermocouples. The 715 

structure is monitored in health and damaged states. Traffic-induced and thermal response are 716 

predicted and subsequently removed from the measured response time histories. In the process, 717 
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prediction error signals are created. These signals are then interpreted with anomaly detection 718 

techniques.  719 

This experimental study draws the following conclusions: 720 

 Thermal images can be used to measure temperature distributions at accuracies 721 

sufficient for data interpretation. Both regression models generated with temperature 722 

measurements from the thermal imaging camera and from the thermocouples show high 723 

prediction accuracies.  724 

 When moving loads are present, thermal effects are not removed completely from 725 

response measurements by predicted thermal response. For this reason, in addition to 726 

information of the magnitude of the applied load and its location, the first few PCs of 727 

temperatures are also needed as input variables for the TIRP methodology. 728 

 All types of traffic loads have to be included in the reference period to create robust 729 

statistical models for traffic-induced response prediction. If certain load cases are 730 

excluded, then TIRP fails to accurately predict traffic response for those scenarios. 731 

 The proposed TIRP methodology is unable to fully eliminate the effect of moving loads 732 

on measured response. Consequently anomaly detection is observed to be better when 733 

measurements collected during traffic loads are excluded from the data set. 734 

The proposed integrated approach needs further development to integrate a broader range of 735 

traffic scenarios and validation on measurements from real-life structures with high thermal 736 

mass. The TIRP methodology, which aims to predict traffic-induced response, needs further 737 

integration with sensing technologies for applications to full-scale structures. TICs need to be 738 

employed continuously on full-scale bridges to certify their scalability. In the experimental 739 

setup, the laboratory truss was coated with a matt black paint hence reduction surface reflection 740 

which might be an issue when monitoring full-scale bridges. 741 
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