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Abstract

In matching markets the number of blocking pairs is often used as a criterion
to compare matchings. We argue that this criterion is lacking an economic
interpretation: In many circumstances it will neither re�ect the expected
extent of partner changes, nor will it capture the satisfaction of the players
with the matching. As an alternative, we set up two principles which single
out a particularly �disruptive� subcollection of blocking pairs. We propose to
take the cardinality of that subset as a measure to compare matchings. This
cardinality has an economic interpretation: The subset is a justi�ed objection
against the given matching according to a bargaining set characterization of
the set of stable matchings. We prove multiple properties relevant for a
workable measure of comparison.

Keywords: Stable marriage problem, Matching, Blocking pair, Instability,
Matching comparison, Decentralized market, Bargaining set

1. Introduction

While almost all matching theory only distinguishes between stable and
unstable matchings, sometimes it is necessary to compare multiple unstable
matchings.
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For example, an experimental economist who simulates a matching market
in the classroom or in a computer laboratory may �nd that some of the ex-
periments conducted did not result in stable matchings. In order to interpret
the results, a comparison could be made regarding �how close� they are to
stability. This problem was encountered in Niederle and Roth (2007), and
the authors solved it by taking the number of blocking pairs as a criterion to
compare di�erent matchings.
A related problem occured in Roth and Xing (1997), where the matchings
resulting from a simulation were not generally stable, yet had to be com-
pared with each other. In a similar manner, the number of blocking agents,
i.e. those players who are part of at least one blocking pair, was taken as a
criterion of comparison.1,2

Another necessity for the comparison of unstable matchings emerges when
the matchmaker is not trying to achieve stability, but instead pursues a dif-
ferent goal. If the objective does not single out a unique matching, then one
must be selected from those which ful�ll the primary requirement. Typically,
such a situation occurs when the matchmaker primarily wants to maximize
the number of matched pairs, i.e. wants to �nd a maximal matching. This is
a reasonable objective for numerous markets in which the social bene�t or the
matchmaker's pro�t hinges on the number of matched players, while stability
is deemed not so important. Biró et al. (2010) describe many such situations
and mention the related literature. One of their examples is an organ ex-
change market, where the maximality of the matching is the primary goal:
The size of the matching determines the number of transplantations, which
have the potential to be life saving. Moreover, blocking pairs existing in the
�nal matching will not cause further reshu�ing as the agents will usually not
undergo additional operations just to resolve blocking pairs. Yet the satis-

1See in particular pp. 318-320 in their article.
2Roth and Xing (1997) analyze the entry-level labor market for clinical psychologists,

which they do not model as a marriage market, but as a many-to-one matching market. It
is well known that many results derived for marriage markets carry over to many-to-one
matching problems (cf. Roth and Sotomayor (1990), chapter 5). Notably, the problems
associated with counting blocking pairs, which motivate this paper, exist in the same way in
many-to-one models. Therefore the reasoning presented here for marriage markets applies
in the same way to many-to-one models, and the measure of instability advocated here can
be naturally adapted to a many-to-one framework. For the conceptual purposes of this
paper it is unnecessary to cope with the considerably higher complexity of many-to-one
models.
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faction the players obtain from the �nal matching is of utmost importance:
Centralized matching regimes which are not accepted by the agents usually
get undermined.3 The more agents are not satis�ed with the matchmaker's
performance, the higher is the risk that the reputation of the centralized sys-
tem will deteriorate, causing players to search for partners in decentralized
ways.
Other applications mentioned in said article are school placement, assign-
ing students to university projects, a certain bipartite matching problem of
the US Navy, and even the optimal pairing of players in chess tournaments.
For these situations, in which stability is not the most important concern,
Hamada et al. (2009) and Biró et al. (2010) develop algorithms which create
maximal matchings with the least number of blocking pairs.4

Finally, there are situations in which stability cannot be achieved for exoge-
nous reasons, and in the absence of a stable matching the matchmaker has
to rank di�erent unstable outcomes. For example, Khuller et al. (1994) de-
velop an �online� matching algorithm for a situation in which all women are
in the market from the start, while the men enter sequentially. As soon as
a man has entered the market, the algorithm must match him to a woman
immediately. No assignments once made can be undone on later stages. Ob-
viously, no algorithm can guarantee that the outcome is stable. Thus Khuller
et al. (1994) design their algorithm so as to minimize the expected number
of blocking pairs for the resulting matching.5

Indeed, counting blocking pairs and taking their number as a criterion to
compare matchings makes a lot of sense at �rst sight.6 A blocking pair is

3Undermining occurs for example through the phenomenon called �unraveling�
(cf. Niederle and Roth (2003)). Also, the history of the NIMP algorithm provides ev-
idence that acceptance by the participants is essential for the survival of a matching
regime (cf. Roth (1984)). Similar observations were made in entry-level labor markets for
physicians in the U.K. (cf. Roth (1991)).

4The paper by Hamada et al. (2009) builds on Biró et al. (2010). The latter was already
published preliminarily as a conference proceeding and as a working paper in 2008.

5Real-world matching markets in which stability is practically unattainable are preva-
lent. Uncontrolled in�ux and out�ux of market participants, as modeled by Khuller et al.
(1994), can frequently be observed. In other (decentralized) markets, information de�cits
may be the main factor for the absence of stable matchings (cf. Eriksson and Häggström
(2008)).

6Without changing the concept qualitatively, one may also divide the number of block-
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a source of dissatisfaction on the part of its members. Therefore a match-
maker might lose customers and pro�ts if too many players eventually �nd
themselves in blocking pairs. Moreover, one might consider the number of
blocking pairs as a proxy for the amount of partner changes imminent at a
given state of the market. This interpretation also corresponds in a direct
way with the term �measure of instability�, which is used occasionally in the
literature.
Despite the super�cial reasonability of counting blocking pairs, we think that
the concept is problematic. Often there is no connection between the satis-
faction of the players with a certain matching and the number of blocking
pairs. Consider the following example: let µ be a matching and let B(µ) be
the collection of blocking pairs for µ. If B(µ) is no matching, these block-
ing pairs cannot be satis�ed simultaneously.7 In the most extreme case, a
given player m ∈ M (or w ∈ W ) is member of all pairs in B(µ). Of these
blocking pairs, only one can be resolved. It seems questionable whether such
blocking pairs would generate the same level of dissatisfaction as an equal
number of blocking pairs which actually could be satis�ed simultaneously.
In the outlined situation, there may be n di�erent women {w1, . . . , wn} who
form blocking pairs with m, but each of these women knows that m, if he
could decide which of the blocking pairs was to be satis�ed, would marry
w := max�m{w1, . . . , wn}. So if the dissatisfaction with the matching is
based on rational considerations, essentially only one woman and one man
would be discontent with the matching µ, namely w and m.8

ing pairs which exist for a matching by the number of all possible pairs, as advocated by
Eriksson and Häggström (2008). This procedure is only necessary, however, if one wants
to compare matchings from di�erent markets. If the matchings to be compared are within
the same market, as will be assumed throughout this paper, one does not lose anything
by taking the absolute number of blocking pairs.

7In this paper a matching is de�ned as a collection of pairs such that none of them
share a player, see de�nition 2 on page 7. This de�nition was used before (for example in
Blum and Rothblum (2002)) and it is equivalent with the standard function de�nition in
Roth and Sotomayor (1990).

8Our point may be further illustrated by the following example: A single super model
forms blocking pairs with thousands of men in a population. But do these blocking pairs
cause discomfort among rational men? We do not believe so. A rational man knows
that the supermodel will by all likelihood not consider him to be the most attractive
partner among those with whom she forms blocking pairs. The blocking pair in which he
participates is rather fantasy than a real option.
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If the set of blocking pairs whose cardinality is counted was a matching, a
feature of the concept we propose, this problem would entirely disappear.
Then the pairs contained in that set could be satis�ed in parallel, and all of
these blocking pairs would be forgone opportunities to improve the outcomes
of the participating players. These improvements could have materialized by
these players if they would not have participated in the centralized matching
mechanism, causing justi�ed dissatisfaction with the matchmaker.
Yet it is equally problematic to take the number of blocking pairs as a mea-
sure of the �degree of instability� of a matching. Again, n blocking pairs
which have a player in common cannot be satis�ed simultaneously, hence
only one of the n pairs could actually trigger a partner change. For this rea-
son, the instability of matchings which have a high number of �hypothetical�
blocking pairs (blocking pairs which share players with other blocking pairs)
could be overstated by this measure. At the same time, one can construct
examples in which even one single blocking pair may trigger o� a vacancy
chain changing the assignments of all players in the market. The instability
of a matching with few but highly disruptive blocking pairs can be drastically
understated by the traditional measure. The connection between the �degree
of instability� of a matching and its number of blocking pairs is very lose at
best.9

This paper o�ers an alternative measure for comparing matchings. We be-
lieve that certain subsets of the blocking pairs have a particular signi�cance,
both regarding their �disruptive potential� as well as in terms of player sat-
isfaction. We call them permissible sets of blocking pairs for a matching. It
will be shown in proposition 2 on page 12 that all permissible sets of blocking
pairs for a matching have the same cardinality. So their cardinality can be
used as a measure to compare matchings. A matching which has a higher
value according to this measure is expected to show more reshu�ing as well
as higher dissatisfaction among the players.
Moreover, we claim that a permissible set of blocking pairs constitutes not

9In a model with undisclosed preferences which get disclosed upon random encounters
of the players, the total amount of blocking pairs would be an indicator for the expected
readjustments within a certain time span or in a given amount of stages. This would be
an interesting model, but it would go beyond the setting discussed here. Here we keep to
the assumption that the existence of a blocking pair is known to the players who form it,
as it is standard in most of matching theory.
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only a possible transformation of the market, but also a likely transformation
among shortsighted players. If D(µ) is a permissible set of blocking pairs for
a matching µ, then our claim is based on the fact that D(µ) can be inter-
preted as a justi�ed objection against µ according to a bargaining set which
has the appealing property that it coincides with the set of stable matchings.
So if one believes in the empirical relevance of bargaining set concepts and
Gale-Shapley stability, one can conjecture that the blocking pairs which get
satis�ed at an unstable matching µ comprise a permissible set.10

Unfortunately, even if the set D(µ) of blocking pairs to be counted comprises
a justi�ed objection against µ, its size is just an indicator for the �rst-order
dynamics emerging from the given matching. The concept proposed here
says nothing about further market transformations which could take place
after the counted blocking pairs were resolved.11 Therefore the use of the
concept presented here as a �measure of instability� is limited. Yet it im-
proves on the simple counting of blocking pairs, which cannot even predict
the �rst transformation of the market and does not allow for inference on the
nth-order dynamics either. Furthermore, the limitation may not be so severe
if divorces are costly, as it is the case in many practical applications. The
more unattractive partner changes become, the more important becomes the
�rst transformation of the market, while multistage dynamics will be shorter
and less likely to occur. The example of an organ exchange market, in which
people refrain from undergoing further surgeries in order to resolve blocking
pairs, was already mentioned.12

At the core of the approach introduced here is the selection of a matching
to be formed from the set B(µ) of blocking pairs for a matching µ. This
is not trivial, as usually many matchings can be formed from the elements
in B(µ). We o�er a rule for this selection. It will be stated and formalized
in Section 3, and the resulting permissible sets of blocking pairs will be
interpreted economically in Section 4. Furthermore, these sets will be shown

10More on empirical support for bargaining sets can be found in footnote 19 on page 11.
11The issue of nth-order dynamics emerging from a matching is brie�y discussed in

Appendix B on page 26.
12Another example provides Roth (1991): Many entry-level markets for physicians in

the U.K. were so small that most of the players in the market knew each other personally.
As players were expected to accept the matching determined by the centralized matching
algorithm, it could be costly in terms of reputation to resolve blocking pairs.
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to have interesting and useful features in Sections 5, 7, and 8. The most
important of these features is the fact that all permissible sets of blocking
pairs have the same cardinality for a given matching, so that this cardinality
constitutes a well-de�ned measure of comparison. Section 6 shows how to
�nd the permissible sets of blocking pairs for a given matching. Section
9 illuminates a connection between the measure put forward here and the
total number of blocking pairs used previously. The paper is concluded with
Section 10. In the Appendix B we look at nth-order dynamics which can be
derived from the concept of permissible sets.

2. Preliminaries

De�nition 1 (Marriage Market). A marriage market is a triplet
(M,W,���), where M and W are disjoint �nite sets and ��� is a set which
contains for each m ∈M a linear order �m de�ned over the set {m} ∪W .13

In the same way, ��� contains for each w ∈ W a linear order �w de�ned over
the set {w} ∪M .

We refer to ��� as a preference pro�le. The item m, over which the preference
order �m is de�ned, stands for m's option of being single. Likewise the item
w, over which the preference order �w is de�ned, stands for w's option of
being single. For x ∈ M ∪W , the strict14 order �x is derived from �x by
the rule a �x b⇔ a �x b ∧ a 6= b.

As in Blum and Rothblum (2002), we de�ne a matching to be a set of
pairs, which is equivalent to the usual function de�nition of matchings:

De�nition 2 (Matching). A matching in the marriage market (M,W,���)
is a set µ ⊆M ×W such that if (m̂, ŵ), (m̄, w̄) ∈ µ, then ŵ = w̄ if and only
if m̂ = m̄.

If for m ∈ M there exists no w ∈ W with (m,w) ∈ µ, then we say that m
is single under matching µ. Correspondingly, if for w ∈ W there exists no
m ∈M with (m,w) ∈ µ, then we say that w is single under matching µ.

13Linearity of an order means that it ful�lls antisymmetry, transitivity, and totality.
Due to antisymmetry, a linear order does not allow for ties between unequal elements: For
z, y ∈ {m} ∪W with z 6= y either holds z �m y or y �m z, but not both.

14An order is strict if it ful�lls irre�exivity, asymmetry, and transitivity.
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To ease notation, for a pair (m,w) ∈ µ we will write µ(m) to denote m's
partner under µ, i.e. µ(m) := w. In this case, we will also write µ(w) to
denote w's partner under µ, i.e. µ(w) := m. If there is no pair in µ of which
a player x ∈ M ∪ W is a member, then we denote by µ(x) the player x
himself, i.e. µ(x) := x.

De�nition 3 (Blocking pair). Let µ be a matching. A pair (m,w) ∈M×
W with m �w µ(w) and w �m µ(m) is a blocking pair for the matching µ.

The set of blocking pairs which exist for a matching µ is denoted by B(µ).

De�nition 4 (Individual Rationality). A matching µ is individually ra-
tional if for every player x ∈M ∪W holds µ(x) �x x.

De�nition 5 (Stability, Gale and Shapley (1962)). A matching µ is sta-
ble if it is individually rational and no blocking pairs exist for µ.

The following notation will be used throughout the paper: For U ⊆M ×W
we denote by p(U) ⊆ M ∪W the set of those players who are member of a
pair in U , formally

p(U) = {x ∈M ∪W | ∃y ∈M ∪W : (x, y) ∈ U ∨ (y, x) ∈ U}.

3. Permissible collections of blocking pairs

We denote by D(µ) ⊆ B(µ) that set of blocking pairs whose cardinal-
ity we propose to take as a measure of comparison. As mentioned in the
introduction, other authors usually set D(µ) := B(µ). D(µ) can only be a
possible deviation from the matching µ if D(µ) is a matching, i.e. D(µ) is a
collection of such blocking pairs which can get satis�ed simultaneously. This
requirement is stated as:

Principle 1. The set D(µ) is a matching.

Of course there are many subsets of B(µ) which are matchings, so Principle
1 alone does not give an answer which blocking pairs should be counted. Our
proposal for solving this problem makes use of the concept of domination,
brought forward in Klijn and Massó (2003):

De�nition 6. Let (m̂, ŵ), (m,w) ∈M ×W . Then (m̂, ŵ) dominates (m,w)
if one of the following two conditions is ful�lled: 1) m̂ = m and ŵ �m w or
2) ŵ = w and m̂ �w m.
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For (m,w) ∈M×W , denote by dom((m,w)) ⊆M×W the set of pairs which
are dominated by (m,w). Note that the irre�exivity of the relations �m and
�w ensures (m,w) /∈ dom((m,w)), ∀(m,w) ∈M ×W . The following simple
lemma on domination is used later:

Lemma 1. Let (m,w) and (m̂, ŵ) be two di�erent blocking pairs in M ×W .
If m = m̂ or w = ŵ, then exactly one of the following statements is true:

1. (m,w) ∈ dom((m̂, ŵ))

2. (m̂, ŵ) ∈ dom((m,w)).

The proof of this lemma is provided in the appendix (page 24). Using dom-
ination, we state

Principle 2. If (m,w) ∈ B(µ)\D(µ), then (m,w) ∈ dom((m̂, ŵ)) for some
(m̂, ŵ) in D(µ).

Verbally, a blocking pair (m,w) will not be counted only if another blocking
pair (m̂, ŵ) which dominates (m,w) will be counted. From an economic
viewpoint, the formation of (m̂, ŵ) prevails over the formation of (m,w),
because (m̂, ŵ) and (m,w) share a member who prefers his or her partner in
(m̂, ŵ) and thus would refrain from entering (m,w).15

A set of blocking pairs which ful�lls the Principles 1 and 2 is referred to as
permissible. In Section 7 will be shown that a permissible set of blocking
pairs for a matching µ is empty if and only if µ is a stable matching.

4. The economic basis of permissible sets of blocking pairs

In this section, we provide an economic motivation for the permissible sets
of blocking pairs de�ned above. Klijn and Massó (2003) adapt the bargaining
set of Zhou (1994) to marriage markets and prove that it coincides with the
set of weakly stable16 matchings.17 Here we will take a di�erent direction:

15For another economic interpretation of domination, drawing on the farsightedness of
the players, see Klijn and Massó (2003) p. 94.

16 If all blocking pairs for a matching are dominated by other blocking pairs, then a
matching is called weakly stable. Klijn and Massó (2003) show by example that the set
of weakly stable matchings may be a superset of the set of stable matchings, i.e. there are
marriage markets in which a matching µ is not stable, but for any (m,w) ∈ B(µ) exists a
pair (m̄, w̄) ∈ B(µ) with (m,w) ∈ dom((m̄, w̄)).

17The Zhou bargaining set is obtained from the bargaining set of Mas-Colell (1989)
by replacing a weak inequality by a strict inequality in the de�nition of the objection
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We will try to �nd an economically reasonable de�nition of a bargaining set
for marriage markets which coincides with the set of stable matchings. Why
do we need such a bargaining set?
Our goal is to interpret permissible sets as justi�ed objections of the partic-
ipating players against the given matching. Because the cardinality of the
permissible sets is our measure of matching comparison, it should be 0 if a
matching is stable. This is an indispensable condition for the claim that our
measure indicates the �degree of instability� of a matching in some sense. On
the other hand, if there are blocking pairs for a matching, it is unstable, and
thus our measure should not assume the value 0. In this case, there should be
a nonempty permissible set and thus a nonempty justi�ed objection against
that matching. For these reasons we are looking for a bargaining set with
two properties:

1. There should be no justi�ed objection against a matching if and only
if it is stable.

2. The justi�ed objections against a matching should be the permissible
sets.

Obviously, the bargaining set of Zhou (1994) and its adaptation by Klijn and
Massó (2003) does not ful�ll our demands: There can be unstable matchings
which are weakly stable, and which are therefore in the bargaining set of
Klijn and Massó (2003). So according to their concept, there exist no justi-
�ed objections against these unstable matchings. In contrast, the following
de�nition of a bargaining set has the desired features:

De�nition 7 (Objection). An objection against a matching µ is a match-
ing S 6= ∅, S ⊆ B(µ).

De�nition 8 (Counterobjection). A counterobjection against an objec-
tion S is a matching T 6= ∅, T ⊆ B(µ), T * S, such that for any pair
(m,w) ∈ T and any pair (m̂, ŵ) ∈ S holds (m,w) /∈ dom((m̂, ŵ)).

As it is known from other bargaining set concepts, an objection for which no
counterobjection exists is called justi�ed.

and imposing further restrictions on the counterobjection. Both bargaining sets have
interesting mathematical properties, a discussion of whom can be found in Peleg and
Sudhölter (2007).
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In short, an objection S ⊆ B(µ) against a matching µ is a matching formed
from blocking pairs for µ. A counterobjection T ⊆ B(µ) is a matching which
is also formed from blocking pairs for µ and it consists only of pairs which are
not dominated by pairs of the objection. This is economically reasonable: If
a pair (m,w) ∈ T was dominated by a pair in S, then either m or w would
strictly prefer to keep to the objection and the counterobjection could not
form. If, on the other hand, all pairs in T were not dominated by pairs in
S and hence T was a valid counterobjection, then the supporters of S would
have no arguments against the formation of T . They would not �nd a player
participating in T whom they could convince to stay in S � all players par-
ticipating in T would weakly prefer T over S.
In accordance with economic intuition, the condition T * S rules out the
possibility that an objection can be countered by itself or by a subset of
itself, because in such a situation the counterobjection would yield exactly
the same payo� as the objection to all of its participants.18

The proof that there exists no justi�ed objection against a matching µ if
and only if µ is stable is provided in Section 7. The following result validates
the interpretation of a permissible set D(µ) as a justi�ed objection of a group
of players against the matching µ.

Proposition 1. D(µ) is a permissible set of blocking pairs if and only if it
is a justi�ed objection against µ.

The proof, which has no aesthetic value, is given in the appendix on page 25.
In view of the preceding proposition, it becomes clear that our measure is the
cardinality of groups of players who can come together to improve their out-
come independently of the other players. In this way, they form an objection
against a matching. But among such coalitions, only those are considered
which cannot be blocked by counterobjections. If one accepts that in general
bargaining concepts have real world signi�cance, it makes sense to attribute
a strong potential to reshu�e a matching market to those coalitions which
are justi�ed objections.19 Moreover, as this bargaining set coincides with the

18Remind that S and T are collections of pairs, not players. As the utility of a player is
solely determined by the pair of which he or she is a member, no player in T would have
a gain from forming a counterobjection T against S if T ⊆ S.

19Section 11 of Maschler (1992) reviews empirical evidence for and against bargaining set
concepts and discusses its validity. The data on which Maschler bases his analysis was both
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set of stable matchings, the conjecture that its justi�ed objections play a
signi�cant role in real world marriage markets is indirectly supported by the
undoubted empirical relevance of Gale-Shapley stability.
Furthermore, dissatisfaction will particularly prevail among players who �nd
themselves in a justi�ed objection (and not just in a blocking pair). If a
player realizes that he or she is member of a justi�ed objection against a
matching, it does not only mean that an improvement for himself or herself
was left out by the matchmaker. Aggravating would be the fact that without
counterobjections, the improvement would be practically attainable through
decentralized negotiations between the players.
Finally, Ehlers (2007) adapted Von Neumann-Morgenstern stable sets to mar-
riage markets. A set of matchings is a von Neumann-Morgenstern stable set
if it is internally stable and externally stable (for details see Ehlers (2007)).
Without proof, we note that the permissible sets of blocking pairs for a
matching µ comprise an internally stable set of matchings.

5. A workable measure to compare matchings

To evaluate the next result correctly, it is important to remind that by
de�nition, any matching which is a subset of B(µ) is an objection. More-
over, even if for some reason all objections were formed by the same set of
players, from the above de�nition does not follow that the counterobjections
are formed by the same set of players: If a counterobjection T against an
objection S contains a pair which is an element of S, it can be included in
T or left out without changing the fact that T is a counterobjection against
S. Considering these facts, it is somewhat surprising that every justi�ed ob-
jection against a given matching µ is formed by the same set of players, as
will be shown next.

Proposition 2. Let S and T be justi�ed objections against an individually
rational matching µ. Then p(S) = p(T ).20

generated in laboratory experiments (pp. 638-641) and obtained from real world situations
(pp. 641-642). In 1992 the empirical foundation of bargaining sets was controversial but
encouraging. Maschler himself assumes a rather critical standpoint, while authors he cites,
notably Kahan and Rapoport (1984), are very positive about the empirical importance of
bargaining sets.

20For the notation p(U), see page 8.
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Proof. S and T are matchings, so for notational consistency we set µS := S
and µT := T . Without loss of generality, assume there is a player m̄ ∈M with
m̄ ∈ p(S)\p(T ). We will now derive a contradiction from this assumption.
First of all, if µS(m̄) ∈ p(S)\p(T ), then there is no pair in T which shares
a member with (m̄, µS(m̄)). Consequently, there is no pair (m̂, ŵ) ∈ T with
(m̄, µS(m̄)) ∈ dom((m̂, ŵ)) and so (m̄, µS(m̄)) is a counterobjection against
T , contradicting our assumption that T is a justi�ed objection. So it must
hold µS(m̄) ∈ p(T ).
Set K := { x ∈ M ∪W | µS(x) 6= µT (x) }, i.e. K is the set of players who
do not have the same partners under µS and µT . Note that m̄ ∈ K. Now we
employ a graph-theoretic argument. Construct a graph G = (K,E) whose
vertices are the elements in the set K. Let there be an edge in E between
m ∈ K and w ∈ K if (m,w) ∈ µS ∪ µT .21 In this graph, players in K who
are single neither under matching µS nor under matching µT are members of
two di�erent pairs in µS ∪ µT , hence they have a degree of 2. Players in K
who are single under exactly one of both matchings are member of exactly
one pair in µS∪µT , hence they have a degree of 1. (Remind that players who
are singles under both µS and µT and players who have the same partners
under both matchings are not members of K, hence they are not vertices
of the graph G .) Because all vertices in G have degree of either 1 or 2, all
connected components of the graph G must be circuits or simple chains.22

If a component of G is a circuit, all vertices in that component have degree 2.
From m̄ /∈ p(T ) follows that m̄ has a degree of 1, so the connected component
of which m̄ is a node must be a simple chain. The proof will be completed
by showing that this simple chain cannot be a component of the graph G .23

21This kind of graph is popular in matching theoretic proofs: It is similar to the so called
bi-choice graph introduced by Klaus and Klijn (2010). Like the bi-choice (di)graph, which
helps its inventors to prove and reprove a couple of results on roommate problems in Klaus
and Klijn (2010) and Klaus et al. (2009), the graph de�ned here connects a player x ∈ K
with the partners x has under two di�erent matchings (in Klaus et al. (forthcoming) the
bi-choice graph is not used anymore). This feature is also shared by the graph constructed
in �Case 1� of the proof of Theorem 1 in Cechlárová (2002).

22A simple chain in a graph is a sequence of distinct vertices v1, . . . , vn with an edge
between each vi and vi+1 for 1 ≤ i ≤ n− 1. A circuit is a simple chain v1, . . . , vn with an
additional edge between v1 and vn, and all edges which are part of the circuit are distinct
(cf. Roberts and Tesman (2009), p. 135).

23For the proof, one could also use the bi-choice (di-)graph of Klaus and Klijn (2010).
Therefore one would �rst have to show that in the bi-choice digraph of the matchings µS
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By contradiction, assume v1, . . . , vn to be the simple chain of of players start-
ing with m̄ (i.e. v1 = m̄). From (v1, v2) ∈ µS follows inductively:

∀ 1 ≤ j ≤ n− 1 :

j is odd ⇒ (vj, vj+1) ∈ µS,
j is even ⇒ (vj+1, vj) ∈ µT .

(1)

If we walk along the simple chain v1, . . . , vn, we recognize another rule:
24

∀ 1 ≤ j ≤ n :

j is odd ⇒ µS(vj) �vj µT (vj),

j is even ⇒ µT (vj) �vj µS(vj).

(2)

This is shown by induction: Obviously, (2) holds for v1, because m is single
under µT but not under µS. As µS is an individually rational matching, m
prefers his partner under µS over being single under matching µT . By contra-
diction, assume (2) would not be true for all j, and let 1 ≤ j ≤ n be the lowest
integer such that (2) is not ful�lled. Furthermore, assume j to be odd (for
an even j, the argument is symmetrical). Then for vj must hold µS(vj) ≺vj
µT (vj), while according to (2) for vj−1 holds µT (vj−1) �vj−1

µS(vj−1). From
(1) follows (vj, vj−1) ∈ µT ⊆ B(µ), and both vj and vj−1 prefer each other
over their partners under µS. Because in K are only players who have di�er-
ent partners under µS and µT , it is ensured that (vj, vj−1) /∈ µS. Although
(vj, vj−1) ∈ B(µ)\µS, there is no pair in µS which dominates (vj, vj−1), con-
tradicting our assumption that µS was a justi�ed objection against µ. This
proves the correctness of (2).
Now consider player vn: If vn is odd, then by (1) (vn, vn−1) ∈ µT , while he
is single under µS (otherwise he would not be the last element of the simple
chain). So individual rationality of µT implies µT (vn) �vn µS(vn), contra-
dicting (2). In the same way, if vn is even, then by (1) (vn−1, vn) ∈ µS, while
she is single under µT (otherwise she would not be the last element of the
simple chain). So individual rationality of µS implies µS(vn) �vn µT (vn),

and µT , no two players point at each other. This is a requirement needed for Lemma 1 of
Klaus et al. (2009) to hold. Afterwards, from their Lemma 1 follows that there are only
cycles and loops in the bi-choice graph, implying that there is no simple chain.

24In the context of roommate problems, the rules 1 and 2 were also derived in Step 9 of
the proof of Theorem 1 in Diamantoudi et al. (2004) for a similar graph.
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again contradicting (2). If follows that there can be no component of the
graph G which is a simple chain starting with m̄ ∈ p(S)\p(T ), implying that
there exists no player m̄ ∈ p(S)\p(T ). �

Herewith it is proved that for a matching µ, all sets D(µ) have the same
cardinality. So this number is well-de�ned and can be used as a measure of
comparison.

6. Finding all permissible sets of blocking pairs for a given match-
ing µ

Only if at least one permissible set of blocking pairs for a matching µ is
identi�ed, its elements can be counted. For a concept with practical aspira-
tions, it is therefore essential to show how to �nd a permissible set of blocking
pairs for an arbitrary unstable matching µ. Beyond that, further analysis of
the concept may make it necessary not only to identify one permissible set,
but to �nd all of them. Fortunately, there is a simple way to achieve this
goal.
Let µ be an individually rational matching in the market (M,W,���). For
x ∈M ∪W we denote by Bµ(x) ⊆M ∪W the set

Bµ(x) := {y ∈M ∪W | (x, y) ∨ (y, x) ∈ B(µ)},

i.e. the set of all players with whom x forms a blocking pair for µ. Further-
more, for any x ∈M ∪W we consider a preference order �̃x which is de�ned
on the same domain as �x. �̃x has the following properties:25

z, y ∈ Bµ(x) : z �̃x y ⇔ z �x y (3)

and
z /∈ Bµ(x)⇔ x �̃x z. (4)

Those comparisons not determined by the above rules must be chosen arbi-
trarily subject to transitivity and antisymmetry of the resulting order. Given
a market (M,W,���) and an individually rational matching µ in this market, a
preference order �̃x with the above two properties exists for any x ∈M ∪W .
This can be seen as follows: Clearly, the preferences �x for x ∈ M ∪ W

25As before, the relation �̃x is derived from �̃x by the rule a�̃xb⇔ a�̃xb ∧ a 6= b.
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already ful�ll (3). In two steps we can manipulate �x to make it compatible
with (4). At �rst, we rank the single option x directly below the element
min�x Bµ(x) and denote the resulting preference order by �′x. Afterwards,
we assign to any element y /∈ Bµ(x) with y �′x x an arbitrary rank below x
(avoiding ties). The resulting preference order ful�lls (3) and (4). Further-
more, it is transitive, total, and antisymmetric, because in our manipulation
we did not introduce ties into �̃x and so the linearity of �x carries over to
�̃x. We need the following lemma:

Lemma 2. Let µ be a matching in a market (M,W,���) and let (m,w) ∈
M × W be an individually rational pair26 with (m,w) /∈ µ. If there is no
(m̂, ŵ) ∈ µ with (m,w) ∈ dom(m̂, ŵ), then (m,w) is a blocking pair for µ.

The proof is stated in the appendix on page 25.

Now let µ be an unstable but individually rational matching in the market
(M,W,���), and let �̃̃�̃� be a preference pro�le which is constructed according
to the conditions (3) and (4) based on the sets Bµ(x) for all x ∈ M ∪W .
With these de�nitions, we can state:

Proposition 3. A set D ⊆ B(µ) is a permissible set of blocking pairs for
the unstable but individually rational matching µ in the market
(M,W,���) if and only if D is a stable matching in the market (M,W, �̃̃�̃�).

Proof. Form a stable matching µ̃ in the market (M,W, �̃̃�̃�). For x ∈M ∪W ,
the players preferred over the single option according to the preferences �̃x
are those with whom x forms a blocking pair for µ. So from the fact that µ̃
is individually rational under preferences �̃̃�̃� follows µ̃ ⊆ B(µ).27 Moreover,
µ̃ 6= ∅, because B(µ) 6= ∅ and for any pair (m,w) ∈ B(µ) holds m �̃w w
and w �̃m m by condition (4) above. So if µ̃ was the empty matching, then
a pair (m,w) ∈ B(µ) would be a blocking pair for µ̃ under preferences �̃̃�̃�,
con�icting with µ̃'s stability in the market (M,W, �̃̃�̃�). With µ̃ ⊆ B(µ) and
µ̃ 6= ∅ we have established that the matching µ̃ is an objection against µ in
the market (M,W,���). Next will be shown that µ̃ is justi�ed. Assume by

26This means that both w �m m and m �w w are ful�lled. Klaus et al. (2009) would
say that m and w are not matched in an individually irrational way (see the proof of their
Theorem 1).

27As before, the set B(µ) is the set of blocking pairs for µ in the market (M,W,���).
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contradiction there would be a counterobjection T against µ̃. Then because
T * µ̃, there exists a pair (m,w) ∈ T, (m,w) /∈ µ̃, such that for no pair
(m̄, w̄) ∈ µ̃ holds (m,w) ∈ dom((m̄, w̄)). From (m,w) ∈ T ⊆ B(µ) follows
that (m,w) is an individually rational pair in the original market (M,W,���),
thus Lemma 2 ensures that (m,w) is a blocking pair for µ̃ in (M,W,���).
Hence it holds

m �w µ̃(w) and w �m µ̃(m). (5)

But as µ̃ is stable in (M,W, �̃̃�̃�), it must hold that either m ≺̃w µ̃(w) or
w ≺̃m µ̃(m). W.l.o.g. assume

m ≺̃w µ̃(w). (6)

From (m,w) ∈ B(µ) follows m ∈ Bµ(w) and thus m �̃w w by (4). Therefore
(6) implies µ̃(w) 6= w, henceforth (µ̃(w), w) ∈ µ̃. With µ̃ ⊆ B(µ) we conclude
(µ̃(w), w) ∈ B(µ) and thus also µ̃(w) ∈ Bµ(w).
We have shown that m, µ̃(w) ∈ Bµ(w). But if this is true, from condition (3)
and the �rst part of (5) follows

m �̃w µ̃(w). (7)

Clearly, (6) and (7) contradict each other. Herewith it is shown that every
stable matching in the market (M,W, �̃̃�̃�) is a permissible set of blocking pairs
for µ in the market (M,W,���).
In the other direction, let D be a permissible set of blocking pairs for µ in
the market (M,W,���). For notational convenience set µD := D. µD ⊆ B(µ)
and so for any pair (m,w) ∈ µD holds w ∈ Bµ(m) and m ∈ Bµ(w). There-
fore condition (4) ensures w �̃m m and m �̃w w, which means that µD is
an individually rational matching in the market (M,W, �̃̃�̃�). Now assume by
contradiction that there exists a blocking pair (m̄, w̄) for µD in the mar-
ket (M,W, �̃̃�̃�). Then [m̄ �̃w̄ µD(w̄) �̃w̄ w̄ ∧ w̄ �̃m̄ µD(m̄) �̃m̄ m̄], so
by (4) follows [m̄ ∈ Bµ(w̄) ∧ w̄ ∈ Bµ(m̄)]. It follows (m̄, w̄) ∈ B(µ) by
the de�nitions of the sets Bµ(w̄) and Bµ(m̄). As µD is a permissible set
of blocking pairs for µ in the market (M,W,���) and (m̄, w̄) ∈ B(µ), there
must be a pair (m̂, ŵ) ∈ µD with (m̄, w̄) ∈ dom((m̂, ŵ)), and it holds either
[m̄ = m̂ ∧ ŵ �m̄ w̄] or [w̄ = ŵ ∧ m̂ �w̄ m̄]. If [m̄ = m̂ ∧ ŵ �m̄ w̄] is
true, then ŵ ∈ Bµ(m̄) because (m̄, ŵ) ∈ µD ⊆ Bµ. But if w̄, ŵ ∈ Bµ(m̄),
from µD(m̄) = ŵ �m̄ w̄ and (3) follows µD(m̄) = ŵ �̃m̄ w̄ which means that
(m̄, w̄) is no blocking pair for µD in the market (M,W, �̃̃�̃�), contrary to our
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assumption. If [w̄ = ŵ ∧ m̂ �w̄ m̄] is true, the argument is symmetrical. �

As a consequence, in order to �nd all permissible sets of blocking pairs for
a matching µ, we just have to construct a preference pro�le �̃̃�̃� with regard
to µ and then compute the set of stable matchings in the market (M,W, �̃̃�̃�).
Each of these matchings is a permissible set of blocking pairs for µ in the
market (M,W,���).28 An algorithm which can be applied to �nd the set of
stable matchings in the market (M,W, �̃̃�̃�) was devised by McVitie andWilson
(1971). If we are only interested in the cardinality of the permissible sets,
of course it is su�cient to compute just one stable matching in the market
(M,W, �̃̃�̃�) with the algorithm of Gale and Shapley (1962).
We remark that Proposition 2 on page 12 could also be proved by making
use of the well known result stated as Corollary 3 on page 20 together with
Proposition 3 above. If all permissible sets of blocking pairs for a matching µ
in a market (M,W,���) are in fact stable matchings in a manipulated market
(M,W, �̃̃�̃�) (Proposition 3), then the fact that the set of those players who
are not single is the same at every stable matching in a market (Corollary
3) implies that all permissible sets of blocking pairs must be formed from
the same set of players. However, by proving Proposition 2 independently
of Corollary 3, it becomes clear that Proposition 2 directly follows from the
Principles 1 and 2, through which permissible sets are de�ned, and does not
depend on a hidden argument from the set of stable matchings.

7. A permissible set of blocking pairs for a matching µ is empty if
and only if µ is stable

Now we come to the question under which condition nonemptiness of a
permissible set is guaranteed. A permissible set D(µ) ⊆ B(µ) is an empty
set if and only if µ is stable. Hence, according to proposition 1 there is no
justi�ed objection against a matching if and only if µ is stable. In particular,
µ being a weakly stable matching (Klijn and Massó (2003)) is not su�cient
for D(µ) to be empty. This is an important result, as it proves that the

28Our result reveals an isomorphism between the permissible sets of blocking pairs for a
matching µ and the set of stable matchings in another marriage market. Similarly, Ehlers
(2007) makes use of the result of Blair (1984) in order to show that there is an isomorphism
between a Von Neumann-Morgenstern stable set in one marriage market and the set of
stable matchings in another market (see Ehlers (2007), Remark 2, p. 544).
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bargaining set presented in section 4 indeed coincides with the set of stable
matchings.

Corollary 1 (to Proposition 3). There is no justi�ed objection against an
individually rational matching µ if and only if µ is stable.29

Proof. �⇐�: If µ is stable, then there are no blocking pairs and thus there
is no objection. �⇒�: If µ is unstable, then let (M,W, �̃̃�̃�) be a marriage
market where �̃̃�̃� was constructed with regard to µ. In the �rst part of the
proof of Proposition 3 was shown that any stable matching in (M,W, �̃̃�̃�) is
a nonempty permissible set of blocking pairs for µ, i.e. a justi�ed objection
against µ. �

Corollary 2 (to Corollary 1). If there exists an objection against a match-
ing µ, then there exists a justi�ed objection against µ.

Proof. If there exists an objection S against µ, then any pair (m,w) ∈ S is
a blocking pair for µ. Thus µ is unstable. Hence, Corollary 1 ensures that
there exists a justi�ed objection against µ. �

8. Permissible sets of blocking pairs and the set of stable matchings

Proposition 3 showed that for an arbitrary unstable matching µ in a mar-
riage market (M,W,���) we can construct another marriage market (M,W, �̃̃�̃�)
such that the stable matchings in (M,W, �̃̃�̃�) are the permissible sets of block-
ing pairs for µ. Can we reverse the direction of this argument? If we have an
arbitrary market (M,W,���), can we always �nd a matching µ such that the
set of stable matchings of (M,W,���) are the permissible sets of blocking pairs
for µ? In this section that question is answered a�rmatively. Surprisingly,
the stable matchings in an arbitrary market (M,W,���) are the permissible
sets of blocking pairs for the empty matching (the matching in which all
players are single) of (M,W,���):

Proposition 4. Let µ be the empty matching in the market (M,W,���). A
matching µ′ is stable in (M,W,���) if and only if it is a permissible set of
blocking pairs for the matching µ.

29Remind that by de�nition an objection is nonempty. Thus empty justi�ed objections
do not exist.
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Proof. First assume µ′ is a stable matching in (M,W,���). Let (m,w) be a
blocking pair for the empty matching such that (m,w) is not an element of
µ′. To establish that µ′ is a permissible set of blocking pairs for µ, it must be
shown that (m,w) is dominated by a pair in µ′. (m,w) cannot be a blocking
pair for µ′ due to the stability of µ′. So because of the strict preferences,
it must hold µ′(m) �m w or µ′(w) �w m (or both), as otherwise (m,w)
would block µ′. But then (m,w) is dominated either by (m,µ′(m)) ∈ µ′ or
by (µ′(w), w) ∈ µ′. In the other direction, assume D is a permissible set of
blocking pairs for µ. Then D is a matching in (M,W,���) (with all players
who are not part of a pair in D being singles), and D is individually rational
because D ⊆ B(µ).30 It needs to be shown that there exist no blocking pairs
for the matching D. A blocking pair (m,w) for D cannot be dominated by
any pair in D because then either m or w would prefer their partners under
D over the formation of (m,w) and so (m,w) would be no blocking pair. But
if (m,w) is not dominated by any pair in D, then it is a counterobjection
against D. By Proposition 1 D is a justi�ed objection against µ, and thus
there exist no counterobjections against D. This establishes that there are
no blocking pairs for D. �

Using Propositions 4 and 2, a well known result of matching theory can
be proved again:

Corollary 3. Let µ, µ′ be stable matchings in a market (M,W,���). Then a
player x ∈ M ∪W who is not single at the matching µ is also not single at
the matching µ′.

Proof. By Proposition 4 both µ and µ′ are permissible sets of blocking pairs
for the empty matching in the market (M,W,���), and thus justi�ed objec-
tions against that matching. So from Proposition 2 follows p(µ) = p(µ′). �

This result was proved in two di�erent ways for marriage markets in
McVitie and Wilson (1970) (theorem on page 298) and Gale and Sotomayor
(1985) (Proposition 1). It was proved in Roth (1984) (Theorem 9) for the
generalization of many-to-one matching problems.

30Under the empty matching µ, all players are singles. So for the members of any
blocking pair (m,w) for µ holds m �w µ(w) = w and w �m µ(m) = m. Hence from
D ⊆ B(µ) follows the individual rationality of D.
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9. Comparing the cardinalities of the sets D(µ) and B(µ)

The following example demonstrates that the new measure can be re-
versed to the measures of instability frequently used in previous works, namely
the numbers of blocking pairs.

Example: Consider a market with

M = {m1,m2,m3} and W = {w1, w2, w3, w4, w5}

and the following preferences:31

P (w1) = m1 �w1 w1 P (m1) = w1 �m1 w2 �m1 w3 �m1 m1

P (w2) = m1 �w2 w2 P (m2) = w4 �m2 m2

P (w3) = m1 �w3 w3 P (m3) = w5 �m3 m3

P (w4) = m2 �w4 w4

P (w5) = m3 �w5 w5

Compare two matchings µ1, µ2 in this market, de�ned by

µ1 = {(m2, w4), (m3, w5)},
µ2 = {(m1, w1)}.

Then B(µ1) = {(m1, w1), (m1, w2), (m1, w3)} and B(µ2) = {(m2, w4), (m3, w5)}.
As |B(µ1)| = 3 > 2 = |B(µ2)|, the matching µ1 would be considered less
stable than µ2 by the traditional measure. In constrast, we have D(µ1) =
{(m1, w1)} and D(µ2) = {(m2, w4), (m3, w5)}. So |D(µ1)| = 1 < 2 = |D(µ2)|.
By the measure proposed here, matching µ2 would be less stable than µ1.

So the new measure and the number of blocking pairs can be reversed to
each other. But to what extent can they be reversed? It would be at odds
with intuition if one could �nd two matchings µ and µ′ in the same market
with B(µ) ⊆ B(µ′) and |D(µ)| > |D(µ′)|. In that case a manipulation

31The preferences are only stated down to the single option. Partners who are less
preferred than the single option are irrelevant because both matchings in the example are
individually rational.
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of the matching µ which would add blocking pairs to B(µ) could lead to
a reduction of the measure. If such matchings µ and µ′ existed, one could
hardly claim that the cardinality of a permissible set is a reasonable estimate
for the �degree of instability� of a matching. Fortunately, this possibility can
be ruled out:

Proposition 5. Let µ and µ′ be individually rational matchings with B(µ) ⊆
B(µ′). Then |D(µ)| ≤ |D(µ′)|.

Proof. An injective function which mapsD(µ) intoD(µ′) will be constructed.
Such a function only exists if |D(µ)| ≤ |D(µ′)|. For x ∈ D(µ), let y(x) :=
(m,w) be an arbitrary element in D(µ′) with x ∈ dom((m,w)). De�ne a
function f : D(µ) −→ D(µ′) by

f(x) =

{
x if x ∈ D(µ) ∩D(µ′),

y(x) otherwise.

It will be shown that the function f(x) exists and that it is an injection. f(x)
exists because any element x ∈ D(µ) which is not inD(µ′) must be dominated
by an element in D(µ′) (Principle 2). So y(x) exists for each x ∈ D(µ),
x /∈ D(µ′). Furthermore, for any x /∈ D(µ)∩D(µ′) holds y(x) /∈ D(µ)∩D(µ′).
This follows from principle 1: y(x) is a pair which dominates x, which means
that x and y(x) must have a player in common. But as D(µ) is a matching
(principle 1), no two pairs in the set D(µ) share a player.
Hence, the set D(µ)\D(µ′) is mapped into D(µ′)\D(µ). Consequently, f is
an injection on the domain D(µ) ∩D(µ′).
Now assume there would be two pairs x, z ∈ D(µ)\D(µ′) with y(x) = y(z) :=
(m,w). Note that one pair in D(µ′) cannot dominate two pairs in D(µ) via
m, because then m would be a member of both these dominated pairs. But
D(µ) is a matching, and there are no two pairs which share a player. (m
can be replaced by w in this argument.) Therefore x is dominated by (m,w)
via m and z is dominated by (m,w) via w (or vice versa). But if this is
the case, m and w prefer the pair (m,w) over the pairs x and z, whence the
pair (m,w) is a blocking pair in B(µ). So (m,w), which is not member of
D(µ), must be dominated by a pair in D(µ) (Principle 2). But m and w
prefer (m,w) over x and z, implying (m,w) can neither be dominated by x
nor by z. Hence, (m,w) is not dominated by any pair in D(µ), contradicting
Principle 2. This rules out y(x) = y(z). It follows that f is also an injection
on the domain D(µ)\D(µ′). �
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10. Conclusion

A measure to compare matchings is needed in situations in which Gale-
Shapley stability is not a feasible or appropriate objective. Such situations
can emerge in experimental economics, when the matchmaker pursues goals
other than stability, or when particular market circumstances prevent the
matchmaker from generating a stable matching. The number of blocking
pairs or closely related criteria were deployed in previous papers (Khuller
et al. (1994), Roth and Xing (1997), Niederle and Roth (2007), Hamada
et al. (2009), Biró et al. (2010)), and even some general properties on these
measures of instability were derived in Eriksson and Häggström (2008).
Here we argued that instead of counting all blocking pairs which exist for a
matching, one should rather count a set of blocking pairs which comprises
a possible and economically reasonable transformation of the market. This
approach led to two principles for the set of blocking pairs to be counted:
The �rst made sure that this set was really a matching, which means that it
must not contain two or more pairs sharing a common member. The second
principle was based on economic intuition. It stated that any blocking pair
(m,w) for a matching µ was counted, unless one counted another blocking
pair (m̄, w̄) for µ which dominated (m,w). The economic argument behind
this principle is that the sole reason a blocking pair would not get satis�ed
should be the existence of another, dominating blocking pair which does get
satis�ed. Those sets of blocking pairs which ful�lled both principles were
called permissible.
It was then shown that we can characterize the set of stable matchings as a
bargaining set, and that according to this bargaining set the permissible sets
of blocking pairs are justi�ed objections of groups of players against the given
matching. Furthermore, even if multiple di�erent permissible sets of blocking
pairs exist for a matching, they all have the same cardinality. This property
makes the cardinality of permissible sets a practicable measure of matching
comparison. Next, a method was presented to identify all permissible sets of
blocking pairs existing for a matching. Then we established that there is no
unstable matching which has an empty permissible set of blocking pairs, and
no stable matching which has a non-empty permissible set of blocking pairs.
Finally, an example illustrated that for two matchings in the same market,
the measure brought forward in this paper can be conversed to the absolute
and relative numbers of blocking pairs.
In this theoretical work, one important question remained unanswered: Does
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the cardinality of a permissible set of blocking pairs empirically capture the
extent of partner changes inherent in an unstable matching?
In order to substantiate such a claim, one could conduct a laboratory ex-
periment and check whether the �rst blocking pairs which get satis�ed at a
given unstable matching are su�ciently often permissible sets. Yet even if
the relevance of permissible sets could be empirically supported, their cardi-
nality would just predict the extent of the �rst stage of the dynamic.32

Divorce cost may prevent excessive partner changes and cause dynamics to be
short. Therefore we argued that the costlier divorces are, the more adequate
it is to measure the �degree of instability� by the size of permissible sets.
However, in real world matching markets, the average number of players'
partner changes may be easier observable than divorce costs (which are not
necessarily monetary).33 The lower the average number of partner changes is,
the higher tends to be the share of the market readjustment occuring at the
beginning of the dynamic, and the more relevant is the size of the permissible
sets. Consequently, real world markets with low average numbers of partner
changes would be the �rst candidates for applying the measure introduced
in this article.

Appendix A. Proofs left out in the main body

Lemma 1 (of page 9). Let (m,w) and (m̂, ŵ) be two di�erent blocking
pairs in B(µ). If m = m̂ or w = ŵ, then exactly one of the following
statements is true:

1. (m,w) ∈ dom((m̂, ŵ))

2. (m̂, ŵ) ∈ dom((m,w)).

Proof. Only the case m = m̂ is considered, as the case w = ŵ can be
treated analogously. First we prove that at least one of the two cases holds.
Assume (m,w) /∈ dom((m̂, ŵ)). Then m = m̂ implies ŵ �m w, and thus the
strict preferences demand w �m ŵ, which means (m̂, ŵ) ∈ dom((m,w)). By
the same argument, (m̂, ŵ) /∈ dom((m,w)) implies (m,w) ∈ dom((m̂, ŵ)).

32See Appendix B for a rudimentary analysis of the nth-order dynamics.
33For real marriage markets (formed by men and women who want to marry), data about

the number of partner changes, divorce rates, and players' search e�orts were acquired by
sociologists. Frey and Eichenberger (1996) highlight economically interesting facts from
this literature.
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Now we prove that (m,w) ∈ dom((m̂, ŵ)) and (m̂, ŵ) ∈ dom((m,w)) cannot
be true at the same time. Assume (m,w) ∈ dom((m̂, ŵ)). The de�nition of
(m,w) ∈ dom((m̂, ŵ)) requires that either holds 1) [m = m̂ and ŵ �m w]
or 2) [w = ŵ and m̂ �w m]. From m = m̂ follows w 6= ŵ because of
(m,w) 6= (m̂, ŵ), and so not both cases can be ful�lled simultaneously. Thus
only case 1) holds true. m = m̂ and (m̂, ŵ) ∈ dom((m,w)) would imply
w �m ŵ, a contradiction. Hence it follows (m̂, ŵ) /∈ dom((m,w)). �

Proposition 1 (of page 11). D(µ) is a permissible set of blocking pairs
if and only if it is a justi�ed objection against µ.

Proof. Assume that the set D(µ) is a justi�ed objection against µ. Then
de�nition 7 ensures that D(µ) is a matching (i.e. ful�lls Principle 1) and
D(µ) ⊆ B(µ). It needs to be shown that D(µ) also satis�es Principle 2.
By contradiction, if D(µ) would not satisfy Principle 2, there would be a
pair (m,w) ∈ B(µ)\D(µ) for which exists no pair (m̂, ŵ) ∈ D(µ) with
(m,w) ∈ dom((m̂, ŵ)). But if (m,w) /∈ dom((m̂, ŵ)) for any (m̂, ŵ) ∈ D(µ),
the pair (m,w) �ts the de�nition of a counterobjection, generating a con-
tradiction. Hence D(µ) must also ful�ll Principle 2, whence it follows that
D(µ) is a permissible set of blocking pairs. In the other direction, assume
D(µ) is a permissible set of blocking pairs but there is a counterobjection
T ⊆ B(µ) against D(µ). From this we construct a contradiction as fol-
lows: Pick a pair (m,w) ∈ T , (m,w) /∈ D(µ). Such a pair must exist since
T * D(µ) is ensured by the de�nition of a counterobjection. Also by the
de�nition of a counterobjection, no pair (m̂, ŵ) ∈ D(µ) dominates (m,w).
But as (m,w) ∈ B(µ)\D(µ), Principle 2 demands that there is a pair in
D(µ) which dominates (m,w), delivering the contradiction. �

Lemma 2 (of page 16). Let µ be a matching in a market (M,W,���) and let
(m,w) ∈M×W be an individually rational pair34 with (m,w) /∈ µ. If there is
no (m̂, ŵ) ∈ µ with (m,w) ∈ dom(m̂, ŵ), then (m,w) is a blocking pair for µ.

Proof. Assume by contradiction that an individually rational pair (m,w) ∈
M ×W with (m,w) /∈ µ would neither be dominated by any pair in µ, nor
would it be be a blocking pair for µ. As (m,w) is no blocking pair, it must

34This means that both w �m m and m �w w are ful�lled.
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hold µ(m) �m w or µ(w) �w m, implying µ(m) 6= m or µ(w) 6= w because
(m,w) is an individually rational pair. For any x ∈M ∪W and any match-
ing µ holds µ(x) 6= x ⇒ (x, µ(x)) ∈ µ ∨ (µ(x), x) ∈ µ. Hence at least one
of the pairs (m,µ(m)), (µ(w), w) is an element of µ. As a consequence, it
holds (m,w) ∈ dom((m,µ(m))) or (m,w) ∈ dom((µ(w), w)), contradicting
the assumption that (m,w) was not dominated by any pair in µ. �

Appendix B. nth-Order Dynamics

Iteratively identifying permissible sets and satisfying their blocking pairs
leads to a dynamic of matching transformations. It will be shown that the
dynamic does not necessarily converge to a stable matching. Therefore the
size of a permissible set D(µ) cannot be interpreted as a �distance from the
set of stable matchings� in a direct sense, i.e. as the length of a sequence
which transforms µ into a stable matching. Besides this fact, extending the
analysis to multiple stages of matching transformation yields no insights rel-
evant for the measure discussed in the preceding sections. This is the reason
why we refer to this topic in the appendix.
nth-order dynamics will be just touched here without comprehensive analy-
sis. Nevertheless, the example presented in this section gives rise to some
questions which might inspire future research.

Let µ be a matching and D(µ) be a permissible set of blocking pairs for
µ. A new matching σ(µ) can be de�ned by

σ(µ) := D(µ) ∪ {(m,w) ∈ µ | m,w /∈ p(D(µ))}
with p(D(µ)) being set of players who are not singles under the matching
D(µ) (see the de�nition on page 8). Verbally, the matching σ(µ) contains the
permissible set D(µ) and those pairs of µ which do not share a player with
any pair in D(µ). The de�nition of σ(µ) implies that a player x who does
not participate in the permissible set D(µ), but whose partner µ(x) does, is
single under σ(µ).35 Using the transformation σ, one can think about a se-
quence of matchings (µi)i=0,...,∞ such that µi = σ(µi−1) for some permissible

35For satisfying arbitrary single blocking pairs (not permissible sets), this natural way to
transform a matching was formalized in Blum and Rothblum (2002), p. 432. Furthermore,
the matching transformation de�ned here is a special case of the enforceability notion

de�ned by Klaus et al. (forthcoming) for roommate problems, where only coalitions are
considered in which all players improve their outcome.
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set D(µi−1).

By Corollary 1 (page 19), if the sequence (µi)i=1,...,∞ converges, then it
must converge to a stable matching. Unfortunately, it may happen that the
sequence cycles, and even worse, there may not even be a �way out� of the
cycle through choosing a di�erent permissible set of blocking pairs at some
point. This fact is illustrated by the upcoming example. To understand the
example correctly, the following (trivial) result is useful:

Lemma 3. Let µ be a matching. If B(µ) is a matching, then there exists a
unique permissible set of blocking pairs for µ.

Proof. If B(µ) is a matching, then no two pairs in B(µ) share a player,
hence no pair in B(µ) is dominated by any other pair in B(µ). Therefore
by principle 2 all pairs in B(µ) must be in D(µ), i.e. B(µ) ⊆ D(µ). By
de�nition holds D(µ) ⊆ B(µ) (cf. page 8), thus for all permissible sets D(µ)
for µ must hold B(µ) = D(µ), whence D(µ) is a unique set. �

Example: Consider a market with

M = {m1,m2,m3} and W = {w1, w2, w3}

and the following preferences:36

P (w1) = m3 �w1 m1 �w1 w1 P (m1) = w1 �m1 w3 �m1 m1

P (w2) = m2 �w2 m3 �w2 w2 P (m2) = w3 �m2 w2 �m2 m2

P (w3) = m1 �w3 m2 �w3 w3 P (m3) = w2 �m3 w1 �m3 m3

The cycle starts with the matching µ0 in this market, de�ned by

µ0 = {(m1, w1), (m2, w2)}.

Then B(µ0) = {(m3, w1), (m2, w3)} (the set of blocking pairs for µ0). Be-
cause B(µ0) is a matching, lemma 3 ensures D(µ0) = B(µ0) and D(µ0) is
unique. By the transformation σ we obtain

µ1 = {(m3, w1), (m2, w3)}.

36As before, the preferences are only stated down to the single option.
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Again B(µ1) = {(m1, w3), (m3, w2)} is a matching, so by lemma 3 follows
D(µ1) = B(µ1). Hence

µ2 = {(m1, w3), (m3, w2)}.

Again B(µ2) = {(m1, w1), (m2, w2)} is a matching, so B(µ2) = D(µ2).
Therefore

µ3 = {(m1, w1), (m2, w2)}

and µ0 = µ3.

At each step of the transformation, all existing blocking pairs were sat-
is�ed simultaneously. So the example demonstrates that stability cannot
always be reached if one satis�es more than one blocking pair at each match-
ing. This is an interesting fact, given a sequence which leads to stability if
one chooses just one blocking pair at a matching always exists (Roth and
Vande Vate (1990)). How do those matchings which can be reached through
any of the sequences starting at µ0 depend on µ0? If one could prove nice
properties of the sequences de�ned in this section, and empirical support
could be delivered, they might be promising candidates for a genuine model
of matching market microdynamics.
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