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Discovery and application of immune biomarkers for 
haematological malignancies 

 
 
ABSTRACT 
 
Introduction: Haematological malignancies originate and progress in primary and secondary 

lymphoid organs, where they establish a uniquely immune-suppressive tumour 

microenvironment. Although high-throughput transcriptomic and proteomic approaches are 

being employed to interrogate immune surveillance and escape mechanisms in patients with 

solid tumours, and to identify actionable targets for immunotherapy, our knowledge of the 

immunological landscape of haematological malignancies, as well as our understanding of the 

molecular circuits that underpin the establishment of immune tolerance, is not comprehensive. 

Areas covered: This article will discuss how multiplexed immunohistochemistry, flow 

cytometry/mass cytometry, proteomic and genomic techniques can be used to dynamically 

capture the complexity of tumour-immune interactions. Moreover, the analysis of multi-

dimensional, clinically annotated data sets obtained from public repositories such as Array 

Express, TCGA and GEO is crucial to identify immune biomarkers, to inform the rational 

design of immune therapies and to predict clinical benefit in individual patients. We will also 

highlight how artificial neural network models and alternative methodologies integrating other 

algorithms can support the identification of key molecular drivers of immune dysfunction. 

Expert comment: High-dimensional technologies have the potential to enhance our 

understanding of immune-cancer interactions and will support clinical decision making and the 

prediction of therapeutic benefit from immune-based interventions. 
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1. Introduction 

Tumours are organised tissues that are infiltrated with immune cell populations of both the 

lymphoid and myeloid lineage [1] and possess both tumour-promoting and tumour-inhibiting 

properties. Compelling evidence indicates that pre-existing immunological features contribute 

to the ability of patients with solid tumours to respond to immunotherapy with 

immunomodulatory agents such as checkpoint inhibitors [2]. The Immune Biomarkers Task 

Force of the Society for Immunotherapy of Cancer (SITC) recently published 

recommendations on the discovery of immune-related biomarkers, in which it highlighted the 

complexity of the tumour microenvironment (TME) and discussed novel tools to analyse the 

diversity of immune genes, proteins, cells and pathways [3]. A broader understanding of 

baseline immunity, both in the periphery and in the TME, and of immune escape mechanisms 

is likely to expedite the identification of biomarkers that are predictive of clinical outcome and 

elucidate why cancer patients might fail to respond to immunotherapy [4,5]. Powerful 

technologies such as genome-wide association studies (GWAS), multiplexed 

immunohistochemistry, high-dimensional blood profiling of immune cells by flow cytometry 

and mass cytometry are increasingly being integrated in this nascent, but rapidly evolving 

field. The aim of these approaches is to assess immune competence and the likelihood of 

patients with solid tumours to respond to immunotherapy. In general, tumour infiltration by 

leukocyte subsets such as CD8+ T cells and CD45RO+ memory T cells with specific gene 

signatures and increased B-cell receptor (BCR) diversity is associated with an improved 

overall survival (OS), as has been demonstrated by mRNA sequencing data from The Cancer 

Genome Atlas (TCGA) in 11 solid tumour types encompassing breast, lung, melanoma and 

lung adenocarcinoma and representing 3,485 patients [6]. In contrast, macrophage signatures 

predicted poorer survival in most tumour types. The presence of T-cell infiltration contributes 

to a higher “immunoscore” in patients with colorectal cancer (CRC), which correlates with 

improved patient prognosis [7]. 

Whereas the role of anti-tumour immunity in shaping clinical responses to therapy has been 

thoroughly investigated in melanoma and CRC, our understanding of the role played by 

individual immune cell types in the control of haematological malignancies remains limited. In 

principle, haematological malignancies are amenable to immune-mediated therapeutic 

effects, as suggested by the curative potential of allogeneic haematopoietic stem cell 

transplantation (HSCT). Although immune checkpoint blockade has only been pursued 

recently in patients with Hodgkin and non-Hodgkin lymphoma [8,9], the field is expected to 

advance exponentially, as has already occurred in solid tumour oncology. This will entail a 

paradigm shift in our current treatment modalities. An imperative for the correct design of 

clinical trials would be to dissect the determinants of response and resistance to checkpoint 
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blockade and to decipher the architecture and composition of the TME, as well as the 

functional orientation of peripheral blood immune cells in patients with leukaemia, lymphoma 

and multiple myeloma (MM). Challenges to identifying biomarkers have recently been 

reviewed [10]. Despite the reciprocal relationship between tumours and the patient’s immune 

system, it is presently unknown whether measurements in blood may correlate with findings 

from tumour sites, including lymph nodes and bone marrow (BM) [3,11]. In this respect, 

peripheral blood markers reflecting immune function at baseline (“peripheral immunoscore”) 

have successfully predicted progression-free survival (PFS) in patients receiving vaccines for 

metastatic breast cancer and prostate cancer [12]. 

This review will focus on current strategies to interrogate the immunological TME in patients 

with haematological malignancies, with the objective to subvert cancer-induced immune 

suppression and identify targets for treatment. 

 

2. Structure and function of the tumour microenvironment (TME) 

Neoplastic cells activate gene expression programmes in the TME that are supportive of 

tumour growth and inherently immune suppressive [4]. The TME is increasingly viewed as an 

attractive candidate for the discovery of predictive and prognostic immune biomarkers [11,13]. 

For instance, intra-tumoural levels of IL-15 strongly correlate with immune cell proliferation 

and disease recurrence in patients with CRC [14]. An ‘immunome’ compendium of mRNA 

transcripts specific for innate and adaptive immune cell populations has characterised the 

immune composition of the TME in CRC [15]. The patterns of gene expression were 

remarkably different in patients with significantly prolonged disease-free survival (DFS) and in 

those with unfavourable outcome. The former showed an over-representation of T-cell-related 

genes, including  T cells and cytotoxic T cells, macrophages and mast cells. Follicular helper 

T cells (Tfh) and B cells also exerted a favourable effect on patient outcome. In contrast, 

patients with poor outcomes showed an over-representation of genes specific for eosinophils, 

Th2 cells, Th17 cells, Treg cells and NK cells. Interestingly, the in situ immune reaction 

evolved with tumour progression from stages T1 to T4, with most of the T-cell markers 

decreasing with tumour stage. 

Programmed Death Ligand (PDL)-L1 is expressed by cells in the TME, engages PD1 on T 

cells and triggers inhibitory signalling which prevents T-cell effector function and cytotoxicity 

[16]. PD-L1 expression in response to cytokine stimuli, most importantly IFN-, has been 

termed ‘adaptive immune resistance’ [17]. Co-localisation of inflammatory responses with CD8 

and PD-L1 expression has been correlated with improved clinical outcome in patients with 

metastatic, but not localised, melanoma, implying that ‘inflamed’ tumours expressing PD-L1 

might be more amenable to respond to immunotherapy [17]. A pragmatic classification of solid 
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tumours based on their PD-L1 status and presence or absence of tumour-infiltrating 

lymphocytes (TILs) has been recently proposed [18]. Type I (PD-L1-expressing with TILs) and 

type II TMEs (PD-L1 negative with no pre-existing TILs) account for approximately 80% of 

human melanomas, with type I tumours having the best prognosis [17]. Other tumour types 

may exhibit a type III TME, in which constitutive PD-L1 expression is driven by oncogenic 

events rather than adaptive immune resistance, as shown in gliomas with loss of PTEN 

function [19] and in T-cell lymphomas [20]. Finally, although type IV tumours contain TILs, 

these show no expression of PD-L1, thereby suggesting a potential role for other immune 

suppressive circuits in driving immune dysfunction [18]. 

Intriguingly, three immune profiles have been revealed by clinical studies indicating that 

patients with ‘inflamed’ melanomas were more likely to respond to immunotherapy with 

checkpoint blocking agents [21,22]. The immune-inflamed phenotype is characterised by the 

presence of both CD4+ and CD8+ T cells, often accompanied by myeloid and monocytic cells, 

and by staining for PD-L1 on TILs and, in some cases, on tumour cells. The immune-excluded 

phenotype is characterised by tumours in which immune cells are retained in the stroma and 

fail to migrate and penetrate the tumour itself, and is unlikely to respond to immunotherapy. 

The third profile, the immune-desert phenotype, is characterised by a paucity of T cells, which 

is indicative of the absence of pre-existing anti-tumour immune responses, and by the 

presence of myeloid-derived suppressor cells (MDSCs), M2 macrophages and regulatory T 

(Treg) cells, which mediate immune suppression or tolerance. The importance of pre-existing, 

clonally restricted CD8 T-cell responses and of physical proximity between PD1+ and PD-L1+ 

cells in the TME for tumour regression after immunotherapy with PD1 blocking agents has 

again been demonstrated in patients with metastatic melanoma [23]. 

In haematological malignancies, the BM represents not only the site of disease initiation and 

progression, but also a distinctive immunologic microenvironment that contains most 

developing and mature immune cell types, including long-lived CD4+ and CD8+ T cells [24]. A 

recent study identified landmark populations of BM-resident immune cells in mice [25]. Similar 

cells were grouped into clusters according to their expression of the measured proteins. The 

scaffold maps allowed the unsupervised visualisation of the immune composition and 

complexity of murine BMs. In comparison, maps for secondary lymphoid organs exhibited an 

immune landscape dominated by mature T and B lymphocytes, as well as by myeloid cell 

clusters mapping closely to the macrophage and dendritic cell (DC) zones. The integration of 

human mass cytometry data from four healthy donors into the reference map revealed a 

similar overlay pattern between the two species [25]. 

In light of their origin from primary and secondary lymphoid tissues, haematological 

malignancies might be characterised by distinctive mechanisms of immune evasion compared 

with solid tumours [26]. In principle, haematological malignancies are poorly immunogenic and 
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highly immune suppressive. For instance, acute leukaemias disseminate rapidly and constrain 

protective anti-tumour immune responses through a plethora of immune subversive 

mechanisms, including the down-regulation of MHC class I and class II expression, the 

consumption of essential amino acids through arginase-2 (ARG2) [27] and indoleamine 2,3-

dioxygenase-1 (IDO1) [28], the induction of DC dysfunction, the expansion of Treg cells [29] 

and the up-regulation of PD-L1 and other negative checkpoint molecules, such as Cytotoxic 

T-Lymphocyte-associated Antigen-4 (CTLA-4) and Lymphocyte Activation Gene 3 (LAG-3). 

PD-L1 expression might represent a general strategy of immune evasion among aggressive 

B-cell lymphomas [30]. The analysis of formalin-fixed, paraffin-embedded (FFPE) tissue 

biopsies from 237 primary lymphomas has detected PD-L1 protein expression in most nodular 

sclerosis and mixed cellularity classical Hodgkin’s lymphomas (HL), primary mediastinal large 

B-cell lymphomas, Epstein-Barr Virus (EBV)-positive and EBV-negative post-transplantation 

lymphoproliferative disorders and EBV-associated diffuse large B-cell lymphomas (DLBCL). 

This group of neoplasms should then be considered for PD-1/PD-L1-directed therapies, as 

further discussed below. 

Insights into the molecular mechanisms sustaining PD-L1 expression in lymphoma tissues 

have recently been provided [31]. Conditioned media from T-cell and B-cell lymphoma cell 

lines were shown to induce PD-L1/PD-L2 expression on macrophages in a Signal Transducer 

and Activator of Transcription (STAT)-3-dependent manner. In vitro studies pointed to a 

potential role of lymphoma-derived IL-27B in PD-L1/PD-L2 over-expression, suggesting that 

an IL-27/STAT-3 axis might be a target for immunotherapy in patients with NHL. 

 

3. Immune gene signatures 

Innate and adaptive immune responses within the TME can be assessed by gene expression 

profiling [32]. Immune gene signatures, especially those induced by IFN-, are likely to be 

powerful biomarkers of response to checkpoint blockade. A considerable body of scientific 

evidence suggests that tumours responsive to immunotherapies display an inflammatory 

status which is associated with the concomitant counter-activation of immune suppressive 

circuits, thereby reflecting immune escape mechanisms. The implication of these observations 

is that pre-existing immune responses are a pre-requisite for the efficacy of immune 

checkpoint blockade. For instance,  a 10-gene IFN- score, including genes encoding IDO1, 

LAG3, PRF1, GZM and other immune-related genes, showed a significant correlation with 

best overall response (OR) and PFS in patients with advanced melanoma, as well as a non-

significant association with overall survival (OS) [33]. 

Importantly, immune-related gene signatures, and not tumour-related gene expression 

patterns, have been identified as being the main parameters associated with dissemination of 



Expert Review of Molecular Diagnostics 

 7 

CRC to distant metastases [34]. Specifically, patients without synchronous metastasis had a 

significantly increased expression of Th1-related genes, immune cytotoxicity-related genes 

and MHC class II-related genes compared with patients having metastasis at the time of 

diagnosis. This study highlights the concept that immune phenotypes, as measured on the 

basis of multiple parameters, might be a crucial determinant for preventing the metastatic 

dissemination of tumours to distant sites. 

Although immune and genomic landscapes in pre-treatment tumour biopsies correlate with 

response in patients with melanoma and other solid cancers, robust biomarkers that do not 

overlap between responders and non-responders have not yet been identified. An interesting 

study in 53 patients with metastatic melanoma initially treated with CTLA-4 blockade followed 

by programmed death-1 (PD-1) blockade at the time of progression analysed immune gene 

signatures in longitudinal biopsies collected at multiple time points during therapy, using a 12-

marker immunohistochemistry panel and targeted gene expression profiling on a nanoString 

platform [35]. Adaptive immune gene signatures in tumour samples obtained early during 

treatment, including the up-regulation of cytolytic markers, HLA molecules, IFN- pathway 

effector genes and chemokines, were highly predictive of response to immune checkpoint 

blockade. Importantly, unique gene expression profiles observed in the TME of patients 

receiving monotherapy with anti-CTLA-4 or anti-PD-1 antibodies provided insights into the 

mechanisms of response to distinct forms of immune checkpoint blockade, as well as a 

compelling rational for the design of combination immunotherapies. 

The genomic landscape of tumours has been linked with tumour immunity, with neo-antigens 

that are predicted by tumour genome meta-analyses being implicated in driving T-cell 

responses and somatic mutations associated with immunological infiltrates being identified 

[36,37]. A recent analysis of The Cancer Genome Atlas (TCGA) data sets has allowed the 

identification of correlates of immune cytolytic activity in thousands of TCGA solid tumours 

[37]. On the basis of transcript levels of two tightly co-expressed cytolytic effector molecules, 

granzyme A and perforin, differences in cytolytic activities across tumour types were identified, 

with the highest levels being detected in kidney clear cell carcinoma and cervical cancers. 

Interestingly, cytolytic activities and expression of IFN-stimulated chemokines (CXCL9, 

CXCL10 and CXCL11) were associated with the counter-regulatory increase of immune 

suppressive molecules, including IDO1, IDO2, PDL2 and the C1Q complex, and with a 

modest, but significant, pan-cancer survival benefit [37]. 

Finally, immune gene co-expression patterns have been used to identify a subset of high-

confidence marker genes in 9,986 solid tumour samples from TCGA [38]. Immune cell scores 

derived from gene measurements were compared with flow cytometry and IHC data. Cell type 

scores calculated from a list of 60 marker genes measuring 14 immune cell populations were 

concordant with flow cytometry and IHC readings, and allowed comparisons of immune cell 
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abundance across different tumour types. Further analyses in an immunotherapy data set 

(derived from patients receiving anti-CTLA-4 antibodies) showed that cell type gene 

signatures separated responders from non-responders. Importantly, immune cell scores 

represent a convenient technique for extracting critical information on the immune contexture 

of a given tumour in those patients from whom sufficient material for flow cytometry studies is 

not available [38]. 

 

4. Immune biomarkers in haematological malignancies 

The discovery and validation of immune biomarkers is an area of intense investigation. This 

section of the article provides examples of individual immune suppressive molecules that 

could be targeted to improve treatment outcome in patients with leukaemia, lymphoma and 

MM. We will highlight how on-line tools could expand our predictive capabilities [39] and 

support the identification of TME immune gene signatures and key molecular drivers 

implicated in the progression of haematological malignancies, and allow the in-silico validation 

of experimental findings across multiple data sets (Table 1 and Figure 1) [40-42]. 

A pan-cancer resource (PREdiction of Clinical Outcomes from Genomic profiles, PRECOG; 

http://precog.stanford.edu) has recently been developed to identify commonalities in 

prognostic genes from approximately 18,000 human tumours from 166 publicly available 

cancer data sets with survival outcomes across 39 cancer types, including different types of 

haematological malignancies [43]. The statistical associations between genes and clinical 

outcomes were assessed by z-scores, which are directly related to p values and represent the 

number of standard deviations from the mean of a normal distribution. Survival-associated z-

scores for individual studies were combined to yield meta-z-scores for the prognostic 

significance of each gene in each cancer type. One of the two clusters identified was 

associated with inferior clinical outcomes and was functionally linked to cell proliferation [43]. 

However, proliferation genes were not adversely prognostic in AML. The other large tumour 

cluster was associated with favourable survival and was enriched in immunological processes 

and immune-response genes. A new machine-learning tool, known as CIBERSORT [41], was 

subsequently applied to PRECOG data to comprehensively map compositional differences in 

tumour-infiltrating leukocytes in relation to patient outcome. Expression profiles for 22 distinct 

leukocyte subsets were used as input. 

CIBERSORT revealed remarkable differences in relative leukocyte composition between 

haematopoietic and solid tumours. As shown in Figure 2, CIBERSORT inferred high 

frequencies of plasma cells in MM specimens and the predominance of B-cell signatures in 

B-cell malignancies, thereby underpinning its utility for identifying the cell of origin (COO) in 

diverse tumour types [43]. Pooling cancer types allowed the identification of global leukocyte 
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prognostic patterns. Higher frequencies of estimated T-cells, especially intra-tumour  T-

cells, correlated with superior survival. In contrast, infiltration with polymorphonuclear cell 

fractions was the most significant adverse prognostic factor. Finally, signatures of polarised 

M2 macrophages predicted worse clinical outcome than pro-inflammatory M1 macrophages. 

 

Acute myeloid leukaemia. Immune responses are defective in patients with AML due to the 

presence of powerful immune suppressive circuits that are activated by soluble factors and 

immune checkpoint molecules, including PD-L1, TIM-3 and IDO1 [28,44]. Serum kynurenine 

and tryptophan levels at diagnosis, a measure of systemic IDO1 activity, correlate with patient 

outcome [45]. Testing of checkpoint blockade is currently being pursued in patients with AML 

(www.clinicaltrials.gov, NCT02892318; NCT02508870; NCT02532231; NCT02771197; 

NCT03065400; and NCT03066648). Although the mutational burden and immunogenicity of 

AML are inherently low, immunotherapies boosting T-cell functions might be effective, 

especially in the setting of minimal residual disease, and particularly when combined with 

checkpoint inhibition or other strategies to overcome leukaemia-induced immune dysfunction. 

Importantly, genetic mutations such as t(8;21) and inv(16) directly affect the expression of 

CD200 (a suppressor of macrophage and NK cell function) and CD48 (the ligand for the 

activating NK receptor CD244), respectively. 

Chronic lymphocytic leukaemia. Chronic lymphocytic leukemia (CLL) is characterized by 

profound immune defects that are already present in the early stages of the disease and these 

lead to a heightened vulnerability to severe infections. The frequency of PD-L1-expressing 

monocytic MDSCs might be significantly increased in untreated CLL patients compared with 

healthy controls [46]. MDSCs from patients with CLL have been shown to modulate T-cell 

function in vitro and to induce Treg cell differentiation, partly through their expression of IDO1. 

Plasmacytoid DCs, which play an undisputed role in anti-viral immunity as well as anti-

leukaemia responses, are reduced in number and function in patients with CLL as a result of 

decreased expression of FMS-like tyrosine kinase 3 receptor (Flt3) and Toll-like receptor 9 

(TLR9) [47]. These represent molecular targets for restoring immune competency. Functional 

screening assays have identified multiple inhibitory ligands in CLL which impair actin synapse 

formation in T cells, including CD200, CD270, CD274, and CD276 [48]. Importantly, 

lenalidomide, an immune-modulatory drug, can down-regulate tumour cell inhibitory molecule 

expression, thus preventing the induction of T-cell defects. Blockade of the PD1 pathway with 

pembrolizumab has been successfully pursued in patients with CLL and Richter 

transformation into DLBCL [49]. Objective responses were documented in four out of nine 

patients with Richter transformation and in 0 out of 16 patients with relapsed CLL. Analyses 

of pre-treatment tumour specimens showed increased expression of PD-L1 and a trend 
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towards increased expression of PD1 in the TME of patients with confirmed clinical responses. 

All responding patients with Richter transformation had received prior therapy with ibrutinib, a 

Bruton’s tyrosine kinase inhibitor. 

Chronic myeloid leukaemia. Targeted treatment with tyrosine kinase inhibitors (TKIs) has 

revolutionised the fate of patients with chronic myeloid leukaemia (CML). Intriguingly, TKIs 

exert a variety of off-target immunological effects (comprehensively reviewed in ref. [50]), 

suggesting that novel combinations of molecularly targeted agents and immunotherapies may 

further improve clinical success rates for CML. Mass cytometry has enabled the identification 

of prognostic immune biomarkers in longitudinally collected samples from patients with CML 

receiving tyrosine-kinase inhibitors (TKIs) [51]. An increase of circulating CD8+ cytotoxic T 

cells occurred after 7 days of TKI therapy and, importantly, changes in single-cell transduction 

events, including down-regulation of phosphorylated CREB S133 and up-regulation of 

phosphorylated STAT3, reflected molecular response at 3 and 6 months. 

Hodgkin’s lymphoma (HL). Classical HL is characterized by a paucity of malignant 

Hodgkin and Reed-Sternberg (HRS) cells in lymphoid tissues, accompanied by a massive 

infiltrate of reactive cells, including leukocytes and stromal cell types. Modulators of innate 

and adaptive immune responses such as galectin-1 (Gal-1), a member of a highly conserved 

family of carbohydrate-binding proteins, are over-expressed by Reed-Sternberg cells, thereby 

leading to depletion of Th1, Th17 and cytotoxic T cells, with an expansion of Treg cells in the 

TME [52]. Gal-1 levels are elevated in patient serum in association with clinical parameters 

such as Ann Arbor stage, areas of nodal involvement and International Prognostic Score. In 

classical HL, tumour-associated macrophage (TAM) and monocyte signatures in diagnostic 

FFPE lymph node specimens have been associated with high risk of primary treatment failure 

and with decreased PFS and OS [53,54]. Among the 27 individual genes with a discriminative 

power for outcome prediction exceeding that of the best clinical variable (patient age), matrix 

metallopeptidase-1 (MMP1) was over-expressed in patients with treatment failure.  

Non-Hodgkin’s lymphoma (NHL). NHLs are typically associated with chronic inflammatory and 

autoimmune conditions, with severe immune dysregulation being an established risk factor 

and a hallmark of the disease. For instance, high pre-treatment plasma levels of CXCL13, IL-

6 and IL-10 predict worse PFS and OS in patients with AIDS-related NHL (AIDS-NHL) 

receiving intensive multi-agent chemotherapy and immunotherapy with rituximab [55]. 

Longitudinal monitoring of cytokine levels 1 to 5 years preceding NHL diagnosis has identified 

cytokines and other molecules associated with chronic immune activation, such as IL-6, IL-10 

and TNF-, as predictors of the development of systemic AIDS-NHL [56,57]. Similarly, 

circulating levels of B-cell attracting chemokine 1 (BCA-1), soluble TNF receptor 2 and soluble 

vascular endothelial growth factor (VEGF) 2 have been correlated with the risk of NHL in 
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advance of diagnosis [58]. Similarly, genetic variants of toll-like receptor (TLR)-9 which lead 

to increased transcriptional activity in mononuclear cells might increase NHL susceptibility 

[59]. Finally, three independent population-based case-control studies have revealed a 

correlation between NHL risk and single-nucleotide polymorphisms within 12 innate immunity 

genes, including IL-1 receptor antagonist and IgG Fc receptor 2A [60].  

Follicular lymphoma (FL). FL is the second most common type of NHL, accounting for 

approximately 20% of all cases. The malignant B cells in FL are of germinal-centre origin. FL 

is clinically heterogeneous, with some patients experiencing an indolent clinical course and 

others having rapidly progressive disease. A multivariate model of survival was constructed 

using whole-genome microarray data from lymph node tissues from 191 patients with 

untreated FL [61]. This study identified two distinct immune response gene signatures, 

immune-response 1 and immune-response 2, which reflected the biological characteristics of 

the non-malignant immune cells within the biopsy specimens and were molecular predictors 

of the length of survival in patients with FL. The immune-response 1 signature included genes 

associated with T cells and genes which were highly expressed in macrophages. Genes in 

the immune-response 2 signature were preferentially expressed in macrophages and DCs. 

Importantly, the gene expression-based model predicted patient survival independently of 

clinical variables such as the International Prognostic Index (IPI) and the presence or absence 

of B symptoms [61]. 

Other immune cell types, such as tumour-associated mast cells and tumour-associated 

macrophages, have prognostic importance in FL. Mast cell infiltration was detected using 

immunohistochemistry and was shown to negatively affect progression-free survival in 

patients with FL receiving a combination of immunotherapy (rituximab) and chemotherapy 

(CHOP) [62]. The prognostic impact of mast cell infiltration was again independent of the FL 

IPI. The mechanisms by which mast cells reduce the efficacy of antibody-based therapies in 

FL remain to be determined and might include the negative regulation of macrophage activity 

and antibody-dependent cellular cytotoxicity through the expression of Fc receptors which 

can engage rituximab [62]. 

Diffuse large B-cell lymphoma (DLBCL). DLBCL is the most common subtype of NHL, 

representing more than 30% of all adult NHL cases diagnosed in Western countries, and is 

characterised by an aggressive clinical course. In spite of improved response and survival 

rates after the addition of rituximab to the therapeutic armamentarium, up to 40% of patients 

with DLBCL experience relapse and have a poor prognosis. 

Gene expression profiling and next-generation sequencing have been instrumental to the 

identification of molecular subtypes of DLBCL, which are not obviously related to histological 

subtypes of DLBCL and are associated with a remarkable divergence in clinical behaviour. 
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Patients with activated B-cell-like (ABC) gene signatures have a shorter survival compared 

with patients with the other two molecular subtypes, i.e., germinal centre B-cell (GCB) and 

primary mediastinal B-cell lymphoma signatures [63]. Non-GCB type DLBCLs are enriched 

with PD-L1-expressing tumours and might benefit from targeted immunotherapies [64].  

DLBCLs have a heterogeneous immune infiltrate, which includes macrophages, DCs, NK 

cells, T-cell subsets and B cells. Interestingly, pre-treatment gene expression of CD68 as well 

as immunohistochemically-defined CD68+ macrophages might correlate with better outcome 

in patients with DLBCL receiving chemo-immunotherapy, independently of IPI scores or 

molecular subgroups [65]. In contrast, macrophage infiltration was negatively correlated with 

OS in patients treated without rituximab, leading to the hypothesis that rituximab 

administration might switch macrophage profile towards a tumour-promoting phenotype. 

Tissue microarray immunohistochemistry with automated scoring of FoxP3, CD68 and micro-

vessel (CD34) density (MVD) has been shown to stratify patients with DLBCL into risk groups 

and to predict prognosis [66]. Patients in the high-risk group had significantly worse EFS and 

PFS, suggesting that TME components should be considered as an important tool to predict 

patient survival. The NanoString digital hybridization approach for RNA quantification has 

been employed to detect immune effector and checkpoint genes in FFPE biopsies from 

patients with DLBCL [67]. The product of the immune effectors (CD4×CD8) in a ratio with the 

product of checkpoints (PD-L1×M2 macrophages) was used to identify low-immune and high-

immune groupings of patients with significant differences in 4-year survival. Patients with a 

GCB or an ABC molecular subtype of DLBCL and a high immune ratio had a significantly 

extended survival compared with GCB and ABC patients with a low immune ratio, suggesting 

that the balance of anti-tumoural immunity, i.e., the ratio of immune effector cells to negative 

checkpoint molecules, might have an important prognostic value in DLBCL. 

 

Primary mediastinal large B-cell lymphoma (PMLBCL). PMLBCL, a distinct and uncommon 

subtype of DLBCL, is more frequent in young females and originates in the mediastinum, 

presenting with features of local invasion [68]. Aberrations consisting of structural genomic 

rearrangements, missense, nonsense, and frame-shift mutations involving the major 

histocompatibility complex (MHC) class II trans-activator CIITA have been detected in 

approximately 50% of patients with PMLBCL [69]. Genomic lesions in CIITA resulted in 

decreased protein expression and reduction of MHC class II surface expression, favouring the 

establishment of an immune-privileged microenvironment in PMLBCL. 

PMLBCL has a unique transcriptomic signature which is close to classical HL and is 

characterised by constitutive expression of PD-L1 and PD-L2. Amplification and/or 

translocations involving chromosome 9p24.1, a region that includes PDCD1LG2-encoding 

PD-L2, are a common event in PMLBCL but not in DLBCL [70]. This observation entails that 
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PMLBCLs might be susceptible to PD1 blockade. A recent clinical trial run as part of the 

KEYNOTE-013 multi-centre phase 1b study has shown decreases in target lesion in 

approximately 80% of patients evaluable by imaging [71]. Overall, median survival was not 

reached for treated patients. Drug-related adverse effects were observed in 60% of the 

patients and were manageable. Other immune suppressive circuits in patients with PMLBCL 

include the down-regulation of HLA-DR expression and the decrease of cytotoxic CD8+TIA1+ 

T cells, features which correlate with shorter progression-free survival [72]. 

 

Multiple myeloma (MM). Patients with MM suffer from severe and complex defects of humoral 

and cellular immunity, including an increased production of immune suppressive cytokines 

[73] and an expansion of immune regulatory cell types [74]. IL-17, IL-21, IL-22 and IL-23, and 

Th17 cells are increased in patients with MM compared with healthy donors [75]. In particular, 

IL-17 might promote MM growth, colony formation and development in a murine xenograft 

model. 

PD1 and its ligands are broadly expressed in the TME of MM, in which they may mediate 

immune evasion mechanisms [76]. Similarly, PD-L1 expression, as well as IDO1 function, are 

increased in patients with MM compared with healthy controls [77,78]. Of interest, PD-1/PD-

L1 blockade may abrogate bone marrow stromal cell (BMSC)-induced MM growth, an effect 

which is further potentiated by lenalidomide and correlates with the induction of intracellular 

expression of IFN- and granzyme B in effector cells. BMSCs from patients with MM also 

inhibit the lysis of MM cells in a cell contact-dependent fashion by inducing the expression or 

surviving, a caspase-3 inhibitor, and down-regulating CD95 expression [79].  

A thorough characterisation of T-cell, DC and NK cell phenotypes has demonstrated a 

decreased expression of T-cell activation markers, Th1 cells and proliferation markers in 

patients with high-risk ‘smouldering’ MM compared with healthy controls [80]. The fact that 

treatment with the immune modulating drug lenalidomide translated into an increase of 

functionally active T-cells, even when combined with low-dose dexamethasone, suggests that 

immune modulatory drugs might delay the progression of smouldering MM to overt MM.  

Finally, MM can avoid immune surveillance via the transfer of membrane proteins in a process 

known as trogocytosis [81]. For instance, CD86 and HLA-G from malignant plasma cells can 

be acquired by T-cells residing in the BM compartment. HLA-G-expressing T-cells exhibited 

a regulatory potency similar to that of natural Treg cells. Interestingly, the association of CD86 

or HLA-G expression with a poor prognosis suggests the induction of in vivo immune 

suppression. 

 

5. Future immunotherapy approaches for haematological malignancies 
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T-cell engineering with synthetic chimeric antigen receptors (CAR) is revolutionising current 

treatment paradigms for patients with B-cell malignancies. Durable clinical responses up to 24 

months were induced by CD19-directed CAR T cells in 90% of children and adults with 

relapsed or refractory B-cell acute lymphoblastic leukaemia (ALL) [82]. Remissions caused by 

CD19-specific CAR T cells were correlated with high serum levels of IL-15 in patients with 

lymphoma [83]. CD30-specific CAR T cells have been safely and successfully administered 

to patients with HL [84]. Clinical responses to CAR T cells could be improved by targeting 

tumour-induced immune suppression with pembrolizumab [85] or by antagonising IDO1 

activity with lymphodepleting drugs such as fludarabine and cyclophosphamide [86]. 

Innovative approaches are currently being developed to target T-cell malignancies with CD7-

specific CAR T cells [87] and to eradicate antigen-loss relapses of myeloid malignancies with 

dual CD19-CD123-redirected CAR T cells [88]. Anti-myeloma activity of CAR T cells specific 

for B-cell maturation antigen (BCMA) has recently been shown in one patient with 

chemotherapy-resistant disease [89]. Intriguingly, clinical responses have been achieved 

using CD19-specific CAR T cells in one patient with MM despite the absence of CD19 

expression on malignant plasma cells [90]. Finally, a phase I clinical trial in 16 patients with 

relapsed or refractory B-cell malignancies (MM, NHL and CLL) has shown complete clinical 

responses after the infusion of CAR T cells specific for malignancy-associated  light chains 

[91]. 

Bi-specific antibody construct are also being implemented in patients with advanced acute 

leukaemia and with NHLs. Treatment with blinatumomab, a CD3-CD19 bi-specific T-cell 

engager antibody, has resulted in significantly longer median OS than chemotherapy (7.7 

months versus 4.0 months) in a randomised clinical trial in adults with relapsed or refractory 

ALL [92]. Blinatumomab induces the expansion of both naïve and memory CD4+ and CD8+ T 

cells in patients and might skew T-cell receptor repertoires [93]. Immune biomarkers which 

predict clinical responses to blinatumomab have not been identified yet. Interestingly, PD-L1 

expression levels may be higher in children with ALL refractory to blinatumomab [94]. 

Evidence from clinical trials in patients with solid tumours suggests that combination strategies 

that synergise with immune checkpoint blockade might be more effective than single-agent 

immunotherapy, as reviewed elsewhere [95]. It is anticipated that the rational development of 

personalised combination immunotherapy approaches for patients with haematological 

malignancies will be informed by the discovery and validation of immune biomarkers. 

 

6. Multiplexed tissue biomarker imaging 

The direct assessment of immune phenotypes and their spatial relationship by multiplexed 

techniques provides essential information which is highly complementary to gene expression 
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profiling and may allow the discovery of composite predictive biomarkers [32]. 

Multiplexed immunofluorescence allows the detection of up to 30 proteins in regions of interest 

within the TME. Multiple fluorophores can be applied on a single tissue section and are 

interrogated using a multi-spectral microscope [11,96]. This technology enables a 

comprehensive characterization of the topography and spatial relationship between tumour 

cells and microenvironmental cell types, including immune cells. Of relevance, the density of 

CD8+ T-cell infiltrates in the invasive margins of melanoma lesions has been associated with 

expression of the PD1/PD-L1 immune inhibitory axis and with clinical responses to anti-PD-1 

immunotherapy [23]. Quantitative image analysis could also be valuable in dissecting the 

spatial distribution of DCs at different maturation stages within the tumour-draining lymph 

nodes, thus providing insights into actionable circuits of immune dysfunction [97].  

NanoString Technologies (Seattle, USA) has recently developed a multiplexed immune 

profiling approach to measure the expression of up to 800 targets at protein and RNA level on 

a single FFPE tissue slide [98]. This Digital Spatial Profiling platform allows the analysis of 

tumour geography and the delivery of digital counts of biomarker expression with single-cell 

resolution. It is expected that multiplexed technologies can be applied to the investigation of 

immune cell distribution in tissue biopsies from patients with haematological malignancies. 

However, the extensive data that are generated with the use of the above technologies will 

need to be integrated and ‘converted’ into useful information using novel bioinformatics 

approaches. 

 

7. Machine learning 

Advances in bioinformatics have led to a vast amount of data being generated at an 

accelerated pace. Next generation RNA and DNA sequencing methods is providing access to 

incredibly detailed information on entire genomes and allowing us to interrogate more potential 

biomarkers with an increased level of accuracy. This massive volume of data creates a 

problem of complexity which makes it impossible to use traditional methodologies.  

Machine learning is an interdisciplinary field of bioinformatics which employs a data-driven 

class of algorithms to find solutions to a given problem by studying, for example, gene 

expression patterns across many cases / patients. Although widely and successfully used in 

biology and biomarker discovery studies, the use of these approaches in haematological 

malignancy studies has, to date, been extremely limited.  

Many approaches have been developed, each of which will be explained in terms of their utility 

here. These approaches can be broadly characterised in two distinct groups; supervised and 

unsupervised machine learning.  
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6.1 Supervised learning.  

Supervised learning approaches are widely applied and use source features to predict a target 

class  [99]. The supervised approach allows the algorithm to train itself by detecting patterns 

in large datasets that are predictive of the target class, for example, how does IFNG behave 

in acute myeloid leukaemia compared to acute lymphoblastic leukaemia? We can make use 

of previous studies and adjust the algorithm parameters so that it accounts for this information. 

One major advantage is that such approaches are tolerant of the highly complex, non-linear 

and noisy data that are often found in biological systems. 

 

Artificial Neural Networks. Artificial Neural Networks (ANN) are statistical models emulating 

the function of a network of human neurones for the purposes of encapsulating information in 

order to analyse large, complex datasets. The learning process is based on the mathematical 

interconnections between the processing elements that constitute the network architecture 

[100]. This allows them to classify cases based on data by assigning a numerical weight value 

to each input and adjusting them as they sample the data, effectively learning the optimal 

solution. The main advantages of ANNs include their high fault and failure tolerance, scalability 

and consistent generalisation ability, all of which allow them to effectively predict or classify 

new, fuzzy and unlearned data [100,101]. Additionally, they have been recently used to create 

panels of biomarkers that, when used in conjunction with each other, predict breast cancer 

[102]. 

The original ANN architecture, as proposed by Rosenblatt in 1958, was based on the concept 

of a single artificial processing neuron with an activation threshold, adjustable weights and 

bias. However, this could only be used for the classification of linearly separable patterns, as 

it only learns when an error occurs during testing. This is rarely the case with complex 

problems such as cancer, as patients do not typically fall into a standard distribution and 

variance in the data is often significant. Typically, ANNs make use of a Multi-Layer Perceptron 

(MLP) which is made up of multiple perceptrons arranged in layers of three or more, consisting 

of input, hidden and output layers. These consider the predictor variables, perform feature 

detection through an activation function and output the results of the algorithm respectively. 

ANNs have been successfully used to predict and classify data in different contexts, such as 

early detection [103], prediction of long-term survival [104] and biomarker discovery in breast 

cancer [102,105], classification of colorectal cancer tissues [106] and discrimination between 

benign and malignant endothelial lesions [107]. One of the major disadvantages of ANNs is 

their liability to overfit when the parameters have not been optimised. Moreover, they often 

receive criticism for their “black box” approach which allows for little to no interpretation of the 

results and process.   
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Support Vector Machines. Support Vector Machines (SVM) are supervised classification and 

regression algorithms that are primarily designed to solve binary problems. They are focussed 

on finding a hyperplane which separates two classes [108] and have been successfully used 

in pattern recognition and classification. The popularity of SVMs is a result of the availability 

of a large variety of kernels (functions that separate data) which can be broadly split into linear, 

polynomial, sigmoid and radial basis function categories. The greatest advantage of SVMs 

when compared to similar machine learning methods, is that selecting the correct kernel 

function enables the analysis of non-linear data, and overcomes the curse of dimensionality.  

However, the introduction of more features increases the complexity, and therefore the 

computing power required. Notwithstanding the practical issues, SVMs have been used for 

analysing high density data, such as RNA, miRNA and proteomics, and they remain one of 

the most popular classification methods, especially for cancer prediction and prognosis [109-

112]. 

As indicated above, disadvantages of SVMs include the computational processing power and 

the time, although much like ANNs, these problems are quickly being addressed. A more 

crucial issue facing the application of SVMs is choosing the appropriate parameters and kernel 

that will allow for sufficient generalization because of the high algorithmic complexity which is 

required for ‘real’ data. As a result, the use of SVMs is less supported in settings which require 

interpretation and decision-making [108]. 

 

Decision Trees and Random Forests. Tree based methods involve stratifying a dataset into 

multiple categories (similar to hierarchical clustering) that can then be used to predict possible 

outcomes based on the values of the input variables. These methods can be used for both 

classification and regression problems. Decision tree classification algorithms pose a series 

of questions based of the features of the dataset and train to split those features into separate 

categories, thereby resulting in a dendrogram. 

Although the advantages of these methods are that they are computationally efficient, have 

good predictive values and their results are easy to interpret, their predictive accuracy tends 

to be lower than their counterparts. To mitigate this issue, methods such as random forests, 

bagging and boosting are used to construct multiple trees in parallel. These can then be 

combined to provide a significant boost to their prediction accuracy at the cost of some of their 

interpretability. 

Bayesian Networks. Bayes theory states that the conditional probability of A given B is the 

conditional probability of B given A scaled by the relative probability of A compared to B. Using 

Bayesian networks, the association between a set of variables or nodes can be determined 

through joint conditional probability distributions [113]. 
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Although such approaches have been used for multiple biological applications such as 

inferring cellular networks, modelling protein signalling pathways, data integration, genetic 

data analysis and classification [114-116], they are limited by the fact that they need larger 

than average datasets to obtain sufficient prior probabilities to produce an accurate outcome. 

This in turn makes them extremely computationally expensive. Moreover, they tend to perform 

poorly on high dimensional data and their output tends to be complex and as such, can be 

hard to interpret for non-specialists. Finally, it should be noted that Bayesian networks are not 

truly Bayesian in nature. They simply adhere to the basic rules of Bayesian statistics on 

probabilistic inference. It would be more accurate to say that Bayesian networks are directed 

graphical models with Bayesian elements. 

 

6.2 Unsupervised Learning. Unsupervised machine learning approaches are used when the 

desirable or predefined output is not available. The goal of unsupervised learning problems is 

to discover the structure of the data and define groups of similar examples, commonly called 

clustering. Clustering is one of the main unsupervised approaches and it functions by 

assigning data points to natural categorical classes or groups, based on similarity or difference 

of patterns without prior training [117]. 

Unsupervised learning approaches are best used when the subject is a very large dataset with 

few known variables. This allows the user to find natural patterns in the data and discover 

novel groups that have not been previously established and using which training can be 

undertaken. They have been most commonly used to distinguish patterns in microarray data 

by clustering genes based on their expression levels [118-120]. 

 

Hierarchical Clustering. Hierarchical clustering, the most common unsupervised learning 

technique, has been widely used for the analysis of microarray data. It is based on measuring 

distances between data points and defining the first instance of each point as a single cluster, 

followed by merging the clusters according to distance, with smaller distances between 

clusters indicating greater similarity. The process continues in an iterative manner until all 

samples have been used to produce a phylogenetic tree-like structure of the clusters 

(dendrogram), with individual samples at the bottom, and a cluster containing every element 

in the dataset at the top [117]. Some of the most popular methods to determine cluster 

hierarchy include Single-linkage, Complete-linkage, Average-linkage and Centroid distance. 

The major limitation of the hierarchical clustering approach is that as the clusters grow, they 

might not be representative of the objects within, and it is hard to rectify mistakes that occur 

early in the clustering process. 
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K-means Clustering. Much like hierarchical clustering, K-means clustering is a partition 

algorithm which works by arbitrarily grouping objects into a predetermined number of clusters 

in an iterative manner. The centroid-average expression of each cluster is assigned randomly, 

based on the Euclidean distance between each object and the closest cluster average. The 

algorithm then recalculates the average centroid expression, based on the mean of all objects 

assigned to it, and repeats the process until convergence is reached, where the average 

expression of each cluster does not change significantly [117]. Unlike hierarchical clustering, 

this method has the advantage of being able to deal with large datasets and as a result has 

been applied to more complex problems. However, the major drawback of this method is that 

repeating the test can produce significantly different results, as the final assignment of clusters 

is dependent on the initial random assignment of objects [121]. 

 

Principle Component Analysis. Reduction in dimensionality is often necessary for a visual 

inspection of high-dimensional data, as the number of variables being investigated often 

exceed the number of samples. This leads to data points being scarcely distributed in a high 

dimensional feature space [122]. The aim of Principle Component Analysis (PCA) is to map 

the original data into its principle components by linearly transforming the data to reduce 

dimensionality. These principle components are orthogonally arranged, mutually uncorrelated 

linear combinations of the original variables and are often ranked by the amount of variance 

they can explain in the data. The highest ranked components contain most of the relevant 

information, whereas low ranked principle components can be removed if they are not 

required. This approach is often used as a visualisation tool and pre-processing step for 

classification and clustering [117]. 

 

6.3 Novel Approaches. Two bioinformatics approaches developed recently have managed to 

provide novel solutions to common problems related to big data analysis. 

CIBERSORT. CIBERSORT is a platform for characterising the cell composition of tissues 

based on their gene expression profiles [41]. Traditionally, immunohistochemistry and flow 

cytometry have been used to answer such questions and, although highly successful, they 

are limited by their reliance on known markers as well as the fact that these techniques are 

harmful to cells, likely altering the results. CIBERSORT manages to achieve similar results to 

these techniques using the RNA mixtures of the desired tissue. It is an SVM regression 

algorithm which allows the user to differentiate cell types in large datasets. CIBERSORT has 

been proven to have superior performance and be substantially more accurate over traditional 

Machine Leaning methods when the samples studied were unknown, noisy or closely related. 

However, limitations include its reliance on a reference database, the fidelity and size of which 
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are considerable factors in the algorithm’s ability to classify the cell samples, the lack of a p 

values for detection limits and a systematic over- and under-estimation of certain cell types. 

Much like all major machine learning approaches, these problems are being mitigated as more 

computing power becomes available and the size and fidelity of databases increases. 

 

Hive Plots. One of the key challenges in the field of bioinformatics is the issue of visualisation. 

Although the approaches discussed previously have expanded the field of biomarker 

discovery by allowing researchers to consider new possibilities, their use in diagnostics is 

limited by the fact that the results often require expert specialists to interpret. If these 

approaches are to achieve widespread use by clinicians for prognosis, it is paramount to have 

a clear and easily understandable output. Developed by Krzywinski et al. [123], hive plots offer 

an alternative network visualisation method to traditional maps. These maps, usually produced 

by software such as Cytoscape, Gephi, Netminer and more recently, programming languages 

such as R, have a tendency to include an overwhelming amount of information, leading to 

networks that need to be analysed with sorting algorithms to be readable and hard to interpret. 

Moreover, complexity increases exponentially as more information is included. Hive plots offer 

a rational visualisation technique which groups nodes based on specific properties determined 

by the user. The properties can be inherent network statistics, or information such as features 

of clinical data. 

 

8. Expert commentary 

A patient’s immunological profile should be considered a highly dynamic framework, which is 

affected by variations in tumour genetics, epigenetics and micro-RNA expression, age, 

microbiome composition, pharmacological agents and environmental factors including 

infections and exposure to sunlight [21]. There is an emerging need to identify immune 

biomarkers of cancer response to immunotherapies [39]. High-dimensional technologies will 

also enhance our understanding of TME-cancer interactions and will support the prediction of 

therapeutic benefit from immune-based interventions (Figure 3). Immune assays for 

biomarker discovery, as well as sample collection and handling, must be harmonised and 

standardised for investigators to be able to compare and share results [3]. 

Although the role of immune gene signatures in stratifying patients with haematological 

malignancies and in supporting clinical decision making remains to investigated, efforts are 

being devoted to the discovery of prognostic signatures (to predict outcome independent of 

therapy), predictive signatures (to assist in treatment selection according to therapeutic 

effectiveness) and mechanistic immune signatures in patients with solid tumours [124,125]. 

Prognostic signatures help predict outcome independent of therapy, whereas predictive 
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biomarkers and signatures (before treatment) might assist in treatment selection according to 

therapeutic effectiveness. Mechanistic signatures should capture the maximal intensity of 

immune responses which occur in tumour lesions that are about to regress after 

immunotherapy administration [124]. Importantly, comprehensive analyses have indicated 

that prognostic, predictive and mechanistic immune signatures across different 

immunotherapeutic strategies might overlap qualitatively and converge into a common 

pathway [124]. It is becoming evident that solid tumours which are responsive to treatment 

generally have an inflammatory status, indicative of pre-existing immune responses, as well 

as expression of cytolytic markers with concomitant counter-activation of immune suppressive 

and immune escape circuits, which should be targeted with rational combinatorial approaches 

(for instance, PD-L1 blockade coupled with small-molecule IDO1 inhibitors [126]). 

Because of inherent limitations of gene expression profiles, other approaches, such as flow 

cytometry, quantitative immunohistochemistry and next-generation sequencing for T-cell 

antigen receptors or similar technologies (multi-N-plex quantitative PCR, spectratyping and 

immune phenotyping) are recommended to thoroughly characterise the immunological 

landscape of the TME and to establish predictive models [23], as recently reviewed by the 

Immune Biomarkers Task Force of the Society for Immunotherapy of Cancer [11]. 

Conceivably, the analysis of multi-dimensional data sets will be instrumental to mapping the 

immunological landscape of haematological malignancies, to revealing potential immune 

biomarkers and informing the rational design of immune therapies. A combination of 

personalised transcriptomic and proteomic measurements will likely be required to develop 

accurate immune gene signatures in individual patients (Figure 4). The collection of 

comprehensive immunological profiles or ‘cancer-immune set points’ will inform personalised 

clinical trials and support the prediction of anti-cancer responses to immunotherapy [21]. 

 

9. Five-year view 

Immune profiling of patients with haematological malignancies is expected to underpin the 

discovery and validation of new biomarkers, and to foster the clinical implementation of a more 

refined and personalised approach to immune-based interventions. Immune parameters could 

be used to build dynamic frameworks and to support treatment allocation to cancer patients, 

such as the recently proposed ‘cancer immunogram’ [2], the aim of which would be to visualise 

the state of cancer-immune interactions in individual patients with cancer and to discuss 

treatment options in a personalised manner. The information required to build a cancer 

immunogram should include tumour foreignness, patients’ immunological status, evidence for 

tumour infiltration with T cells, expression of checkpoints and other molecules inhibiting T-cell 

function, and tumour cell sensitivity to immune effectors, including the inactivation of antigen 
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processing machinery components [2]. The above parameters should be collected from the 

blood and/or tumour tissues using transcriptomic approaches, high-resolution immune 

phenotyping, spatially-resolved immunohistochemistry and standard immunological assays 

[11].  

Strategies that combine different methods of capturing the immunological status of the TME 

may particularly support the development of composite predictive biomarkers for immune 

checkpoint inhibition in the Haematology clinic, an area that is expected to flourish during the 

next few years [32]. For example, gene expression profiling approaches, such as nanoString 

Technologies’ digital platform [98], coupled with multiplexed immunohistochemistry 

techniques, will allow investigators to quantify mRNA species and multiple proteins expressed 

in cell populations within morphologically defined regions of interest in the TME, thus providing 

crucial information about the topography and spatial localisation of immune cells at different 

tumour stages or after treatment with immunotherapies. 

Finally, new bioinformatics approaches are being developed to unravel the complexity and 

multi-dimensionality of datasets obtained through transcriptomic, sequencing and proteomic 

techniques, to identify responders and non-responders and to stratify and select patients 

based on immune gene signatures in the TME [127]. In the foreseeable future, immune 

biomarkers might guide the development and personalisation of combination immunotherapy 

approaches [10]. As machine learning is becoming an integral part of biomarker discovery, it 

presents its own set of challenges with the first one being the constant need for higher 

computational power. As the size of the available datasets and the complexity of the platform 

technologies (e.g. the move to 1million SNIP probes on a chip, or the advent of RNA deep-

Seq. studies) increases, computational requirements will increase exponentially. While current 

advances in GPU-accelerated parallel computing, solid-state drives and the availability of 

highly parallel cloud computing solutions have allowed for a significant increase in processing 

power, it is proving insufficient to handle some of the more complex questions. There is also 

a trend occurring where the processing power increases so the analyses that are conducted 

become deeper and more detailed. 

The quality and size of the datasets is a key factor in ensuring high quality results. Not only 

have the standards for size been raised, with datasets like METABRIC and databases like 

TCGA, TARGET, ADNI and others providing access to data from thousands of cases, but the 

quality desired in such data is going to keep increasing as well. This is compounded by the 

fact that as more data becomes publically available it can be used to validate tests results with 

ever-increasing accuracy. If comparative analysis is conducted across multiple cancers of 

different tissue origin (so called pan cancer studies) or between the ever-increasing number 

of molecular subtypes of given cancers a greater need for processing will be required. 

Finally, further research is required in the more recent areas of machine learning, primary 
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among them being network inference studies and the so called deep learning and deep mining 

strategies. Understanding how questions of interest interact and affect each other, such as 

how genes regulate each other in a given disease, and use machine learning to model more 

possibilities than could be reasonably studied manually [75] will further increase the potential 

venues of research.  

 

Key issues 

 Identification of predictive/prognostic immune biomarkers in the blood and TME of 

patients with haematological malignancies 

 Development of prognostic and mechanistic immune gene signatures in patients with 

haematological malignancies receiving immunotherapies, including checkpoint 

blockade 

 Handling and analysis of multi-dimensional data sets using artificial neural network 

models 

 Prospective validation and incorporation of immunological parameters into 

personalised routine clinical practice (patient stratification, treatment allocation) 
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Figure and Table Legends. 

 

Figure 1: Identification of potential immune biomarkers using publicly-available on-line tools.  

Blood-Spot (http://servers.binf.ku.dk/bloodspot/) provides plots of gene expression in normal 

and malignant haematopoietic cells at different maturation stages based on curated 

microarray data [128].  We selected MX1 (Myxovirus [Influenza] Resistance 1), an interferon 

(IFN)-inducible gene, as an example of use of Blood-Spot to interrogate human AML data 

sets. Panel A: mRNA expression levels are depicted across a broad range of normal 

haematopoietic differentiation stages (first 11 columns on the left; data derived from Gene 

Expression Omnibus Series GSE42519) and in patients with different cytogenetic subgroups 

of AML (data derived from Gene Expression Omnibus Series 

GSE13159, GSE15434, GSE61804, GSE14468, and from The Cancer Genome Atlas 

[TCGA]). HSC = haematopoietic stem cell; MPP = multi-potential progenitor; CMP = common 

myeloid progenitor; GMP = granulocyte-monocyte progenitor; MEP = megakaryocyte-

erythroid progenitor; PM = promyelocyte; BC = band cell; MM = metamyelocyte; MY = 

myelocyte; MDS = myelodysplastic syndrome; NAN = not available. 

Panel B shows an interactive hierarchical tree summarising the relationship between the 

samples displayed. Expression level are visualized by size and colour of the nodes, as 

intuitively indicated by the colour legend. The full name of cell type abbreviations can be 

obtained by moving the mouse over the individual nodes. Moreover, nodes can be clicked to 

collapse a branch of the tree.  

Panel C shows a survival plot (Kaplan Meier analysis) based on a high-quality AML dataset 

from TCGA. MX1 expression levels were dichotomized (above or below median). Other 

built-in tools allow the removal of cell populations from the graphs, the export of plots as a 

PDF file and the comparison of paired populations in the default expression plots using the 

Student’s t test. 

 

Figure 2: Immune PRECOG; correlation between immune gene expression levels and 

survival in haematological malignancies (https://precog.stanford.edu/about.php). Details 

about available data sets, patient numbers and disease type are provided in panel A. AML = 

acute myeloid leukaemia; B-ALL; B-cell precursor acute lymphoblastic leukaemia; CLL = 

chronic lymphocytic leukaemia; BL = Burkitt lymphoma; DLBCL = diffuse large B-cell 

lymphoma; FL = follicular lymphoma; MM = multiple myeloma. 

Panel B summarises the correlation between publicly available immune gene expression 

levels and overall survival (z-scores). Grey boxes in the heat map denote missing values. The 

22 immune cell populations shown here were identified by Newman and co-workers based on 

the expression of “signature genes” [41,43]. Tfh = follicular helper T cells; Treg = regulatory T 
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cells; DCs = dendritic cells; NK = natural killer. 

Panel C shows two-sided p values that were calculated from z-scores. Green denotes 

correlation with better clinical outcome and red indicates correlation with worse clinical 

outcome. The abundance of immune cell populations was inferred from transcriptomic data 

sets using a recently developed analytical tool (CIBERSORT; (Cell type Identification By 

Estimating Relative Subsets Of known RNA Transcripts). DCs = dendritic cells; NS = not 

significant. 

 

Figure 3: Approaches to immune biomarker discovery in patients with haematological 

malignancies. Blood, bone marrow and lymph node samples should be interrogated using 

genomics and proteomics approaches, immunohistochemistry and flow cytometry to collect 

comprehensive and personalised profiles on neo-antigen expression, topography and 

functional orientation of immune cells, tumour specificity of T cells and prognostic immune 

gene signatures. Lymphoid tissue-resident T cells hold promise as immune effector cells for 

immunotherapy clinical trials, analogous to the tumour-infiltrating T cells from patients with 

melanoma [129], in light of recent evidence that ex vivo-expanded marrow-infiltrating 

lymphocytes (MILs) can be safely administered to patients with high-risk myeloma early after 

autologous CD34-selected haematopoietic stem cell transplantation [130]. Patients on 

immunotherapy clinical trials should be sampled sequentially in order to discover and validate 

mechanistic immune gene signatures associated with response to treatment and/or failure to 

respond. The gut microbiome could be manipulated to optimise immunotherapeutic responses 

to checkpoint blockade, as reviewed elsewhere [131]. 

FFPE = formalin-fixed paraffin-embedded; PBMCs = peripheral blood mononuclear cells; 

MDSCs = myeloid-derived suppressor cells; TAMs = tumour-associated macrophages; DCs 

= dendritic cells; MILs = marrow-infiltrating lymphocytes; IHC = immunohistochemistry; B-reg 

= regulatory B cells; TCRs = T-cell receptors; Th1 = T-helper type 1; IDO1 = indoleamine 2,3-

dioxygenase-1; ARG2 = arginase 2. 

 

Table 1: On-line resources for the meta-analysis of the prognostic value of immune genes in 

patients with haematological malignancies. Several platforms are now available for evaluating 

potential biomarkers (including immune biomarkers) and identifying therapeutic targets in 

patients with haematological malignancies, including PRECOG [43], PrognoScan [40], 

BloodSpot [128] and PROGgeneV2  [42]. The above on-line tools and interfaces allow the 

user to generate Kaplan Meier survival curves and to download gene expression and survival 

data to be subsequently employed for Cox proportional hazard regression analyses and for 

robust validation of the biomarker(s) of interest. Most available data sets encompass 

expression data generated on gene arrays, where individual genes might be represented by 
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multiple probe IDs with potentially different specificity for a given RNA sequence. RNA 

sequencing data do not suffer from this inherent limitation and can be accessed through the 

TCGA data portal [132]. AML = acute myeloid leukaemia; DLBCL = diffuse large B-cell 

lymphoma; FL = follicular lymphoma; RAEB = refractory anaemia with excess of blasts; CLL 

= chronic lymphocytic leukaemia. 
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