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Abstract

Identification of the material from which an object is made is of significant
value for effective robotic grasping and manipulation. Characteristics of the
material can be retrieved using different sensory modalities: vision based,
tactile based or sound based. Compressibility, surface texture and thermal
properties can each be retrieved from physical contact with an object using
tactile sensors. This paper presents a method for collecting data using a
biomimetic fingertip in contact with various materials and then using these
data to classify the materials both individually and into groups of their type.
Following acquisition of data, principal component analysis (PCA) is used to
extract features. These features are used to train seven different classifiers
and hybrid structures of these classifiers for comparison. For all materials, the
artificial systems were evaluated against each other, compared with human
performance and were all found to outperform human participants’ average
performance. These results highlighted the sensitive nature of the BioTAC
sensors and pave the way for research that requires a sensitive and accurate
approach such as vital signs monitoring using robotic systems.

Keywords: Tactile Sensing, Signal Processing, Neural Networks, Artificial
Intelligence, Classification, Material classification

1. Introduction

Humans can quickly gain information about properties of an object or
material simply by viewing them from different angles; for example they can
estimate how it might feel to touch or how heavy it may be. This is due to our
highly sophisticated visual capabilities and ability to adapt prior knowledge
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learned from similarly shaped and known objects. However, there are some
properties which are difficult to detect by vision alone, for example thermal
conductivity, compressibility or a determination from what material an ob-
ject is made. In order to learn these characteristics and remember them for
future interactions, physical manipulation of an object is required. Distin-
guishing between objects and materials of different compressibility, tempera-
ture and texture can be achieved by performing complex manipulation tasks
such as squeezing or rubbing. These complex manipulation tasks can inher-
ently be performed extremely well by humans due to our very sophisticated
tactile perception.

In order to produce the tactual perceptions required to learn about ob-
ject properties, humans perform various types of movements when interacting
with an object. Experimental psychologists have identified six general types
of exploratory movements: pressure to determine hardness, static contact to
determine thermal properties, lateral sliding movements to determine surface
texture, enclosure to determine global shape and volume, lifting to deter-
mine weight, and contour following to determine exact shape (Lederman and
Klatzky, 1987). Humans can complete these exploratory movements very
fast and rapidly evaluate the object leading to a possible identification.

One of the main applications of an artificial tactile sensing system is
expected to be in robotic applications. In order to retrieve the necessary
tactual perceptions, a robot must explore an object in a similar manner to
that of a human. However, in comparison to humans, these exploratory
movements can be slow for a robot and typically involve the evaluation of
a great volume of acquired data, thus being computationally expensive. It
would be a useful skill for a robot if it could complete a preliminary evaluation
of the object by quickly identifying the physical nature of the material (e.g.
metal, wood, plastic etc.) through completing a small number of initial
basic actions, thus removing the need for extensive manipulation. These
initial basic actions could include the retrieval of thermal information upon
initial contact with a material which may provide an indication of its physical
nature, e.g. wood, metal or plastic. Furthermore the texture of a material
can be identified by sliding a robotic hand or finger along the material, i.e.
determining if it is rough or smooth.

We use an artificial fingertip to acquire data relating to the thermal prop-
erties and surface texture of materials, that are first analysed to initially
identify to which group the material belongs (e.g. wood, metal, plastic etc.)
and subsequently to determine the specific individual material (e.g. alu-
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minium, copper, pine etc.). Building on the work presented in (Kerr et al.,
2013, 2014a) and (Kerr et al., 2014b) the contribution of this work is the im-
plementation of six further classifiers, hybrid configurations of the classifiers
and a comparison of the performances of these classifiers. The classifiers
implemented and compared are a one stage ANN (Kerr et al., 2014a), a
two stage ANN (Kerr et al., 2014b), a one stage SVM, a two stage SVM, a
hybrid ANN and SVM approach, GMM, LDA, NB, k -NN and MLP. Utili-
sation of these techniques to classify materials from tactile data resulted in
an increase in classification accuracy and system efficiency in comparison to
previous work (Kerr et al., 2014b) resulting in an approach capable of a fast
initial identification of the material group and/ or individual material. These
classifiers are also evaluated against human performance when identifying the
same test materials as reported in (Kerr et al., 2014b). Therefore, in this
paper we propose an approach for material classification using a combination
of two of the three key characteristics, namely surface texture (represented
through vibration data) and thermal characteristics. Although one weakness
of the approach is that it does not achieve accuracies as high as that of (Xu
et al., 2013), the strengths include the fact that it is computationally efficient
and it demonstrates high classification accuracies across 14 materials, some
of which are very similar, unlike many methods presented in the literature
where the test materials can be very different. A range of common classifiers
together with novel combinations of classifiers are evaluated and proven to
be accurate and efficient algorithms for material classification. Furthermore,
the system is tested with previously unlearned materials in order to assess
its robustness.

The remainder of this paper is organised as follows: Section 2 presents
an overview of related research in tactile sensing-based material classifica-
tion. Section 3 describes the experimental set-up, including an overview of
the equipment used and the learning algorithms used for the robot system.
Section 4 presents an evaluation of the performance of the various artifi-
cial systems developed and compares their performance to that of human
subjects. Section 5 discusses the artificial system and human participants’
performance. Conclusions and plans for future work are given in Section 6.

2. Background and Related Research

Three of the key characteristics that are critical in performing an effi-
cient grasp on an object are texture, compressibility and thermal properties.
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Such characteristics can be obtained from tactile sensing. Materials from dif-
ferent classes may have similar compressibility; for example neither acrylic
or medium density fibreboard (MDF) are very compressible but are from
different classes of materials, i.e. plastic and wood. Drimus et al. (2011), de-
veloped a sensor and presented a technique used to classify between ten rigid
and deformable household objects. The objects were squeezed in a gripper
fitted with force sensors and a k -NN classification algorithm was utilised to
classify the different objects, based on their compressibility. Classification
accuracy of up to 92% was achieved for classification between the ten objects
ranging from a rubber ball to a plastic bottle. The algorithm struggled to
distinguish between similarly compressible objects even though the objects
were very different, for example a “bad orange” and an empty bottle were
found to have similar compressibility and therefore the algorithm failed to
classify these objects correctly. Another approach which uses images de-
rived from collected tactile sensor data is that of Pezzementi et al. (2011),
which utilises computer vision algorithms to allow tactile sensor readings,
representing compressibility, to be viewed as images. The tactile array sen-
sor explores the object images representing contact made on the array are
produced. Six feature descriptors including the well known Scale Invariant
Feature Transform (SIFT) (Lowe, 1999) and MR-8 (Varma and Zisserman,
2005) are used to extract features from these images. The Bag-of-Words
(BoW) approach (Jurie and Triggs, 2005), commonly used in computer vi-
sion methods, is then used to learn and classify the objects based on these
features. Luo et al. (2015), also present an approach which utilises tactile
images and a BoW approach to object recognition. An optimised BoW ap-
proach and dictionary were produced by considering different outputs of the
classic BoW with different dictionary sizes for different views of objects. The
classification performance of this optimised approach was compared against
the performance of the classic BoW model utilising 12 objects. It was found
that the proposed approach outperformed the classic BoW model particularly
for classification of objects with similar features.

Exploiting other characteristics such as the object’s surface texture or
its thermal properties may help to distinguish between very different ma-
terials which have similar compressibility, leading to improved classification
accuracy. Related literature reports methods that are capable of classifying
materials using surface textile and achieving high performance rates, i.e. is
the object rough or smooth? Fishel and Loeb (2012) used the BioTAC sensors
with a Bayesian exploration method for the intelligent identification of tex-
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tures. Classification from a set of 117 textures was achieved. This approach
related the textures to human style descriptions frequently used in psy-
chophysical literature exploring texture discrimination (i.e. sticky/slippery,
rough/smooth). The focus was to find the most useful exploratory motions
on the surface of the material, relating to six general types of exploratory
movements that humans make when tactually exploring objects, as outlined
by experimental psychologists Lederman and Klatzky (1987). Ho et al. (2012)
assessed the ability of their sensors to classify between three different ma-
terials (denim, a photo and tape) based on their surface texture. Classifi-
cation accuracy of 91% was achieved between two very different materials,
i.e. denim and a photo. However, the method struggled to distinguish ac-
curately between two similar materials, namely the photo and tape. Jamali
and Sammut (2010) propose a method which used an artificial silicon tactile
sensor with Polyvinylidene Fluoride (PVDF) films to slide along materials
and collect vibration data. A total of seven materials were tested includ-
ing sponge, carpet, wood, two tiles of different roughness and two pieces of
vinyl of different roughness. A Bayes classifier was trained with the Fourier
coefficients of the sensor output data retrieved from the sliding motion over
each material. It was shown that the authors’ classifier performed well for
classification between dissimilar surface textures, however, their approach
was unable to distinguish between two types of tiles, as the texture of the
surfaces were similar. Jamali and Sammut (2011) extended this work to eval-
uate multiple classifiers and added a majority voting algorithm. In a similar
way to their previous work, data were retrieved from the fingertip making
contact with test materials. The test materials included the same seven as
in their previous work with the addition of a second type of carpet (differ-
ent roughness), making eight material surfaces in total. Whilst the fingertip
was being rubbed over each surface, different textures induced different in-
tensities of vibration in the silicon fingertip. As in their previous work, the
data from the fingertip were pre-processed and the Fourier coefficients of the
sensor outputs were used as inputs to various classifiers that were imple-
mented in the WEKA machine learning toolkit (Hall et al., 2009). It was
found that the best performance of 95%±4% was achieved using the Naive
Bayes tree (NBTree). The system struggled most when trying to classify
between materials of similar roughness. The approach proposed by Chathu-
ranga et al. (2013) is another example of a system which produced promising
results but still struggled to classify between similar material surfaces. The
authors developed a biomimetic fingertip and used it to discriminate between
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seven different materials based on surface texture. Using ANNs as classifiers,
accuracies of up to 85% were achieved.

The thermal characteristics of a material is another modality that can be
assessed and used to identify a material/object. Although one can generally
tell the difference between materials that feel hot and cold, one would struggle
to discriminate between similar materials on the basis of their actual temper-
atures. What human fingers detect thermally is not the absolute temperature
of the material alone, but the effect of thermal conductivity and diffusivity.
This is due to the fact that the human finger is at a consistent temperature,
approximately 34◦ Celsius, and therefore will be different from the ambient
temperature of most objects encountered. The nerves of the finger detect the
flow of heat to/from the source. This suggests that human temperature sens-
ing may be emulated by thermal conduction sensing (Monkman and Taylor,
1993). An approach which analyses the thermal properties of various ma-
terials is described in (Kerr et al., 2013). The materials are classified into
initial groupings and further identified individually via the data gathered
from test materials using the Syntouch R© BioTACTM sensor. PCA was ap-
plied to identify relevant features from the static temperature and thermal
conductivity data that were used to train an ANN. The system was compared
with humans and was found to outperform human performance. A success
rate of 73% was obtained by the system when classifying the material group
(i.e. plastic, wood, metal etc.) and 61% was achieved when identifying the
individual material. When similar experiments were conducted using hu-
mans, results showed classification rates of 61% for group identification and
51% for individual material identification. However, even though the system
achieves better performance than the humans, the classification rates are
poor which is potentially caused by the fact that only thermal conductivity
data are being used. Additionally, the system is computationally expensive
due to the large number of input features necessary to accurately represent
the data and the substantial number of neurons in the hidden layer. Bhat-
tacharjee et al. (2015) present another approach that focusses on material
classification. Their approach uses a tactile sensor that is capable of measur-
ing solely thermal properties and they focus on classification within a short
period of time, for instances where longer term contact is not viable. Three
classification algorithms are considered, SVM+PCA, k -NN+PCA and Hid-
den Markov Models (HMM). It was found that SVM+PCA performed best
with classification rates of 84% and up to 98% with longer contact times
across 11 materials with varying initial conditions and 3-fold cross valida-
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tion. Although the classification rates achieved are impressive, the materials
tested varied widely in thermal conductivity and the purpose of the sensor is
solely to determine thermal properties; it therefore cannot measure material
properties such as texture or compressibility, thus limiting the applications
for which it can be used.

Rather than classifying materials by analysing just one property, a com-
bination of compressibility, texture and/ or thermal properties can be used
to achieve higher rates of classification accuracy. Kerr et al. (2014a), used a
combination of two of these properties, extending their work in (Kerr et al.,
2013) by considering surface texture (vibration) as an additional modality
alongside the thermal properties of a material. Additionally, the authors re-
designed the system to improve efficiency by selecting a reduced number of
principal components, reducing the number of neurons in the hidden layer
and hence training the system faster than previously. The one stage ANN
system in (Kerr et al., 2014a) obtained a classification rate of 83.81% for ma-
terial group classification and 79.05% for individual material identification.
Conversely, the humans achieved classification rates of 73.00% and 60.90%
respectively. A two stage ANN approach to the same material classification
experiment is presented in (Kerr et al., 2014b). The output from the network
in the first stage is used as an input to the second stage, which is a set of
networks, one for each material group. This second stage is used to identify
each individual material, within a specified group. Despite not being as effec-
tive as the one stage ANN method presented in (Kerr et al., 2014a), this two
stage approach obtained a classification rate of 83.81% for material group
identification and 70.48% for individual material identification. Bhattachar-
jee et al. (2016) continued their earlier research and presented a method for
distinguishing between contact with inanimate objects and humans, using a
novel portable handheld device developed by the authors consisting of three
tactile sensing modalities: a force sensor to detect contact, a heat-transfer
sensor that is actively heated, and a small thermally-isolated temperature
sensor (Wade et al., 2015). Data was collected from the arms of 10 human
subjects from 3 different locations on the right arm and 80 objects consisting
of 8 similar objects from 10 different bathrooms (Bhattacharjee et al., 2016).
The effect of varying durations of contact made with the human subjects
and the objects was also evaluated. A SVM was used to learn to classify
between an object and human in the first instance and it achieved an aver-
age classification accuracy of 98.75% when contact was held for 3.65 seconds,
93.13% for 1.0 second of contact and 82.13% for 0.5 seconds of contact. High
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classification accuracies were also achieved when generalising to new contact
locations within the same bathroom with an average of 92.14% for 3.65 sec-
onds of contact, 91.43% for 1.0 second and 84.29% for 0.5 seconds. However,
when generalising to new environments, i.e. similar objects in different bath-
rooms, accuracies were lower achieving 84.00% for 3.65 seconds of contact,
71.00% for 1.0 second and 65.00% for 0.5 seconds. Like many other meth-
ods it struggled to identify similar objects especially when the environment
changes. Hoelscher et al. (2015) use a BioTAC fingertip sensor to collect
several features from a range of 49 objects to develop a system capable of
identifying material and recognising objects. The objects are made of mate-
rials including plastic, metal, stone ceramic, paper etc. They collect data by
making static and lateral contact on each material with the BioTAC sensor.
The authors then compare seven different methods of extracting features from
their processed data, including temporal data, PCA reduced dimensionality
raw data, pressure features, electrode features, physically motivated features,
temperature features and mean features. The authors compare two genera-
tive (NB and Gaussian) and two discriminative (SVM and Random Forests)
classifiers to evaluate identification of the materials and objects from the
collected data. The best performing method consisted of an SVM classifier
with dimensionality-reduced mean values of filtered data, achieving a classi-
fication accuracy of material and object identification of over 97%. Xu et al.
(2013) presented an algorithm which considered three key properties of the
material to enable classification; compliance (compressibility), texture and
thermal conductivity. To collect data for these three key properties a Bio-
TAC fingertip was mounted on a Shadow Robot Hand. Based on a Bayesian
exploration approach in the authors previous work (Fishel and Loeb, 2012)
three exploratory movements were selected and used to explore ten test ma-
terials. A classification accuracy of 99% using 10 materials was achieved with
the only failure being that a damp sponge was classified as a feather. The
approach in (Xu et al., 2013) may have obtained 99% classification, however
this was while assessing 10 substantially different materials, varying from a
brick to a light feather. Therefore, the materials have very different proper-
ties allowing for more straight forward classification. Furthermore, all three
tactile properties were used making the system both slow and computation-
ally expensive.

It may be concluded that using just one material property does not allow
for desirable classification of materials and combining modalities can lead to
high computation cost. The ideal scenario would be to design a system that
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can perform classification with accuracy similar to that of (Xu et al., 2013),
using similar materials, with reduced computational burden and hence run in
real-time (or close to). An overview of the best performing machine learning
methods for the application of material identification using tactile sensing
can been seen in Table 1. It demonstrates that the biggest difficulty in
classification of materials is between similar materials or materials of similar
roughness. Although, this is to be expected, it is still an ongoing challenge
within the field.

3. Methodology

3.1. Experimental set-up

3.1.1. Tactile Sensor

The BioTAC fingertip is a tactile sensor that is shaped like a human fin-
gertip and is filled with an incompressible liquid, giving it similar compliance
to a human fingertip (Lin et al., 2009; Kerr et al., 2013). The sensor is ca-
pable of detecting a full range of information: micro vibrations, forces and
temperature, similar to a human finger. Figure 1 shows a cross section view
of the BioTAC fingertip.

Figure 1: Cross Section View of BioTAC Fingertip Tactile Sensor (Syntouch, 2013)

There are various sensors on the fingertip that enable retrieval of the
aforementioned sensory information. An array of 19 electrodes measures
the force applied on the fingertip by reading the impedance between each
electrode and four common excitation electrodes. As the impedance over the
sensing electrode increases, the measured voltage decreases, demonstrating
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Table 1: Table comparing tactile sensing-based material identification methods

Research
Group

Machine
Learning
Method

Sensor Type
Accuracy
achieved

(%)
Description

Xu et al.
(2013)

Probability
Matrices

Multi-modal
tactile sensor

(BioTAC)
99.00

10 very different materials
were used. Continuous
exploration and three
modalities required

therefore high
computational costs.

Hoelscher
et al. (2015)

SVM
Multi-modal
tactile sensor

(BioTAC)
97.00

Struggled to distinguish
between similar materials.
Required training from all

materials in the group

Drimus et al.
(2011)

KNN
Single Mode
piezoresistive

tactile sensor array
92.0

Classification across just
10 objects. Struggled to
identify between similar

objects.

Chathuranga
et al. (2013)

ANN
Multi-modal
tactile sensor

85.0
Classification across just 7
materials, 6 of which were

fabrics.

Ho et al.
(2012)

ANN
Single Mode

electro-conductive
soft skin sensors

81.0
Reported to be a very

computationally
expensive approach.

Jamali and
Sammut
(2011)

NBTree
Single mode silicon
tactile sensor with

PVDF films
95.0

Struggled to distinguish
between materials of

similar roughness.

Bhattacharjee
et al. (2015)

SVM
Single mode

thermistor-based
tactile sensor

98.0

Longer contact with
materials required for

maximum accuracy and
test materials varied

widely

Bhattacharjee
et al. (2016)

SVM
Multi-modal

Hand-held tactile
sensor

98.8

Classification accuracies
achieved across already
learned data, accuracy
drops to 84.0% when

tested against new data
from the same materials.
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contact in that area of the finger. Having a 19 electrode array allows the
exact point of contact on the fingertip to be derived. Furthermore, it enables
multiple points of contact to be derived at any instance. Inside the core
of the fingertip there is a pressure sensor located in the rigid core. This
sensor reads pressure changes in the conductive fluid located between the
hard core and the elastomeric skin. The vibration sensor generated two
values, a DC pressure signal (PDC) that is obtained using a low pass filter
and an AC pressure signal (PAC) that is obtained using a band pass filter.
The PAC data represent the vibration strength recorded when the BioTAC
finger makes contact with materials or objects. Static temperature (TDC)
and thermal flow (TAC) data can also be collected from using the BioTAC
sensor as there is a thermistor at the tip of the finger. TAC data represent
the rate that heat is transferring from the fingertip to an object. This is
made possible by the thermistor which is located in the tip of the fingertip.

Using the BioTAC fingertip, two actions were performed on test materi-
als to classify them. The first action was a press action where the fingertip
was pressed into the material at a constant force. The second action was a
slide action where the fingertip was dragged across the surface of the ma-
terial at a constant force. Both actions aim to replicate two of the actions
outlined by experimental psychologists Lederman and Klatzky (1987), that
a human completes when first investigating an unknown material, namely
static contact to determine thermal properties and lateral sliding movements
to determine surface texture. The press action enables collection of the TAC
and TDC data whereas the slide action enables the collection of PDC, TDC,
PAC and TAC; these data are used for classification in Section 3.2.

3.1.2. Materials Classified

Consistent with previous work (Kerr et al., 2014a,b), we use 14 mate-
rials with the slide and press actions. We have intentionally selected some
materials to be similar to determine if the approach can readily classify the
material type and then identify the specific material. The 14 materials are
Acrylic (Ac), Rough Acrylic (AcR), Copper (Cr), Aluminium (Al), Rough
Copper (CrR), Rough Aluminium (AlR), Redbrick (R), Glossy Cardboard
(GC), Plain Cardboard (PC), Soft Foam (S), Carpet (Ct), Doormat (D),
MDF (M) and Pine (P). Figure 2 presents pictures of each of the materials
used.

Analogous with (Kerr et al., 2014a,b), the materials used in the experi-
ments were divided into six groups corresponding to the six different material
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Figure 2: Samples of the 14 materials used in the experimental set-up.
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Table 2: Table showing the individual materials and the groups to which they belong.

Material Group
Acrylic (Ac) Plastic (P)
Rough Acrylic (AcR) Plastic (P)
Copper (Cr) Metal (Me)
Aluminium (Al) Metal (Me)
Rough Copper (CrR) Metal (Me)
Rough Aluminium (AlR) Metal (Me)
Redbrick (R) Masonry (Ma)
Glossy Cardboard (GC) Cardboard (C)
Plain Cardboard (PC) Cardboard (C)
Soft Foam (S) Fabrics (F)
Carpet (Ct) Fabrics (F)
Doormat (D) Fabrics (F)
MDF (M) Wood (W)
Pine (P) Wood (W)

types. The individual materials and the groups to which they belong are
shown in Table 2. The artificial system was then evaluated on its ability to
classify each material individually.

3.2. Data Collection

Analogous with work carried out in (Kerr et al., 2013; Xu et al., 2013), the
BioTAC fingertip was powered on and left to rest for 15-20 minutes to allow
it to reach its steady state temperature (approximately 31◦C, 10◦C above
ambient). A rig including a motorised arm and turntable was designed and
built for the experiment. Two stepper motors (one for the arm and one for
the turntable) were connected to an Arduino UnoTM board and a Graphical
User Interface (GUI) was developed using Python to control the motors. An
image of the experimental rig and GUI can be seen in Figure 3(a) and (b)
respectively. The fingertip was placed at the end of the motorised arm so
that it could be moved towards or away from the material. Additionally, the
material was placed on the motorised turntable to allow for the material to
be moved below the finger to replicate a sliding action.

To collect data corresponding to a thermal exploratory movement, the
fingertip is pressed onto a material using a constant force of 2N, measured
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(a)

(b)

Figure 3: a) Image showing the experimental rig; b) Screen shot of the developed GUI.
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by an ATI Nano17 6-axis F/T Sensor. To allow time for the heat flow to
stabilise, it is necessary to collect 20 seconds of data for the press action. For
the slide action, the finger tip was pressed on the material using a constant
force of 1.59N (also measured with the aforementioned force sensor), and
moved along the material surface for approximately 5 cm. The BioTAC
data are recorded at 4400Hz and in a sequence, with the PAC values and
the individual electrode values alternating (i.e. PAC data are recorded at
2200Hz). All other values such as TDC (static temperature), TAC (thermal
flow rate) and PDC (static vibration) are given at the end of each sequence
of values. An example of this sequence can be seen in Figure 4. All values are
sampled with 12-bit resolution. These values are extracted and individual
datasets for PAC, PDC, TAC and TDC data are obtained using MATLAB.

Figure 4: Diagram showing the Sequence of Data from the BioTac Fingertip

3.3. Pre-Processing

To obtain high quality thermal conductivity (TAC and TDC) time series
data, we use only the data collected after the contact force has reached its
maximum, this was found to occur approximately 8 seconds after contact.
The TAC and TDC datasets, collected during the press action, each con-
tain 800 data points. Additionally a set of 220 data points for each of TAC,
TDC, PAC and PDC is obtained during the slide action. In line with other
work presented in the literature, initial evaluation of using three modalities
(i.e. thermal properties, vibration data and impedance values to represent
compressibility) was conducted. It was hypothesised that due to the vast
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quantity of electrode data collected from the BioTAC fingertip, the process-
ing time would increase greatly when identifying materials. Initial visual
analysis of the electrode values (voltage related to impedance) and initial ex-
perimentation was conducted to quantify the additional time it would take
to include analysis of compressibility when classifying the materials in this
experiment. As demonstrated in Figure 5, it is clear that all materials be-
have relatively similar during the press action with the exception of softer
and rougher materials such as the softfoam and doormat. However, these dif-
ferences are also clearly identified when analysing the vibration data (Kerr
et al., 2014a) and therefore it was felt that any additional benefit from in-
cluding compressibility data in this experiment was minimal to none. In fact,
preliminary results indicated a decrease in accuracy when the electrode data
were considered as part of the algorithm. Furthermore, the computation time
to include the compressibility data was analysed. It took approximately 6
times longer to train one fold of a SVM network when the vast compress-
ibility data was included in comparison to when only thermal and vibration
data are considered. Therefore, considering the decrease in accuracy in pre-
liminary investigations with compressibility data being considered, together
with the increase in computation time, we use only thermal and vibration
data in the experiments in this paper.

Initially we trained the classifiers with raw TAC, TDC, PAC and PDC
data collected directly from the BioTAC sensor, however these resulted in
poor classification accuracy such as 68% training accuracy for the ANN with
56% testing accuracy. Hence, to improve the characteristics of the data we
applied Principal Component Analysis (PCA) to reduce the dimensionality of
the inputs. We applied PCA using both Eigen-decomposition of the sample’s
covariance and Singular Value Decomposition (SVD). With the sensor data,
using the Eigen-decomposition based approach generated the best inputs for
the classifiers, evidenced by the training and testing accuracies over multiple
experiments. Hence, the presented approaches and results use PCA with
Eigen-decomposition. In (Kerr et al., 2013), PCA was applied to a combined
set of TAC and TDC data (1600 values), however in this paper we apply
PCA to each individual modality (PAC, PDC, TAC, TDC) first. In this
way, the principal components matrix for each material is formed from dif-
ferent modalities tailored for either the press or slide action experiment. As
described in Section 3.4, the principal components matrices are used to train
the numerous classifiers and hybrid combinations of classifiers evaluated.
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Figure 5: Graph showing Initial Analysis of Compressibility Data from the BioTac Fin-
gertip

3.4. Classifiers

The data collected from the fingertip during the press and slide action ex-
periments were normalised and PCA using Eigen-decomposition was applied
to extract features. The optimal number of principal components (PCs) for
each dataset was determined empirically as three. Hence in total there are
18 inputs to a classifier (six modalities and three PCs per modality, 12-bit
values) for each experiment. To obtain the classification accuracy of each
classifier in each experiment, the classified test data form an output ma-
trix which is compared with a matrix containing the actual material labels
(6 classes for classification of materials into the groups and 14 classes for
classification of the individual materials). Average classification accuracy is
obtained using 5 fold cross validation. The MATLAB package (MATLAB,
2013) and R package (R Core Team, 2013) were used to implement the range
of classifiers. Each approach used for classification is described in more detail
in Section 3.4.1 to Section 3.4.10.

3.4.1. One Stage Support Vector Machine (SVM)

Support Vector Machine is a useful and well established technique used
in machine learning to learn and classify data. The main objective of a
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SVM is to separate a set of inputs by identifying a line, or hyperplane in
n-dimensional space. Each of the input points is known to belong to one of
two classes. If it is possible for the algorithm to find a suitable hyperplane
that will minimise future misclassification, then the data are easily classified
based on what side of the hyperplane they reside. However, it is common
that it is not possible to linearly separate the data. In this instance the SVM
algorithm is required to map the input data to a higher dimensional space
through the use of a kernel function (KF). Although there are many types
of KFs, five are evaluated in this work and their performances compared.
Within each KF there are various parameters that can be changed to optimise
the performance of the classifier. One common parameter is the soft margin
(sometimes known as the box constraint), C. The purpose of the soft margin
is to modify the SVM algorithm to tolerate training errors by intuitively
tolerating a few outliers on the wrong side of the hyperplane. Deciding on
the size of the margin requires parameter tuning and optimisation. The KFs
evaluated for the classification of materials and their respective parameters
that were optimised are:

• Linear KF, Quadratic KF and Multilayer Perceptron (MLP) KF: Soft
margin value (C) is optimised.

• Polynomial KF: Two parameters are optimised in this KF; the soft mar-
gin value (C) and the order of polynomial (p). Various combinations of
values were evaluated in order to find the best performing combination
of parameters.

• Radial Basis Function (RBF) KF: Two parameters are optimised in
this KF; the soft margin value (C) and the gamma parameter for the
Gaussian RBF (γ). The Gamma parameter is a positive number rep-
resenting the scaling factor of the RBF. Various combinations of values
were evaluated in order to find the best performing combination of
parameters.

SVM is more commonly used as a binary classifier. However, binary
classification is not suitable for the material classification task outlined in
this work; the standard SVM algorithm has been adapted to enable multi-
classification for material classification. Two common ways of utilising binary
SVM classification techniques to allow for multi-class classification are by
either having a sequence of numerous one-versus-one binary classifiers or by
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having a multiple one-versus-all classifier. The approach utilised in this work
is a series of one-versus-all classifiers in which the system is trained with each
class classified against the samples of all the other classes, to develop a SVM
multi-class classifier.

Two separate experiments were conducted: one for the classification of the
materials into their six respective groups and one for the classification of the
fourteen individual materials. All KFs were evaluated and their parameters
optimised for both experiments. For each optimised KF implemented and
evaluated, three different methods for calculating the separating hyperplane
were also implemented and evaluated. The three standard methods evalu-
ated were Sequential Minimal Optimization (SMO), Quadratic Programming
(QP) and Least-Squares (LS) method. Table 3 outlines the best performance
achieved from each KF for material group classification, the best performing
method for calculating the separating hyperplane and the respective opti-
mised parameters. It can be seen that the two best performing KFs with a
classification rate of 86.19% are the quadratic KF and the polynomial KF.
Although the two KFs performed equally well in terms of classification, the
polynomial KF was found to be marginally more efficient than the quadratic
KF at achieving the highest classification rate. The quadratic KF took 0.49
seconds to train for one fold of data whereas the polynomial KF took 0.47
seconds. Therefore, the Polynomial KF with a soft-margin value of 0.01 and
a polynomial order of 2 was used in the SVM implemented in this approach.

Table 3: Table comparing the SVM KF classification accuracies.

Kernel
Function

Best
Performing

Method

Optimised
Parameters

Classification
Accuracy

Linear QP C = 1.00 79.524%
Quadratic SMO C = 0.01 86.190%

MLP LS C = 0.01 57.143%

Polynomial SMO
C = 0.01
p = 2.00

86.190%

RBF QP
C = 0.10
γ = 1.00

66.667%
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The SVM system was used for both experiments with the only difference
being the number of groups/ classes (g) that the SVM had to classify. For
the first experiment, i.e. classifying the materials into their six groups, g = 6
and for the second experiment involving 14 individual materials, g = 14 as
described in Section 3.1.2.

3.4.2. Two Stage SVM

In contrast to having two separate experiments for the classification of
the materials into their groups and the classification of individual materials,
as described in Section 3.4.1, this section explains a two stage approach to
material classification. This approach utilises the multi-class SVM classifica-
tion algorithm explained in Section 3.4.1 to firstly classify the materials into
their groups and then uses this information to further classify the materials
individually using a mixture of binary and multi-class SVM classification in
the second stage.

The same SVM design as outlined in Section 3.4.1 is used in the first
stage of this two stage approach. For the second stage, 6 SVM systems are
trained, one for each material group, some of which have different numbers
of outputs/ groups for the individual materials within them, requiring the
need for binary classification in some cases and multi-class classification in
others. These SVM systems are saved and later used for testing the data
input at the second stage. Similar to the development of the SVM in the one
stage approach, five different KFs with a range of parameters and hyperplane
calculation methods were evaluated for the second stage SVM classification
system. The three equally best performing KFs in the second stage were the
Quadratic KF, the Polynomial KF and the RBF KF, with the most efficient
proving to be the Polynomial KF. Therefore, the Polynomial KF was used
in the second stage SVM.

Upon completion of material group classification in the first stage, the
results of the classification are used as the inputs to the second stage. A
model of the two stage SVM approach can be seen in Figure 6.

If a material was correctly classified into a specific group in the first
stage then this activates the second SVM to classify the individual material
within this material group. However, if the material group is incorrectly
classified in the first stage then it is recorded as an incorrect classification in
the final output matrix and is not classified in the second stage to improve
efficiency. Likewise, if the material is classified incorrectly in the second
stage in comparison with ground truth (i.e. it has been correctly classified
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Figure 6: Diagram showing the 2-Stage SVM approach used for material classification
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in its group but incorrectly classified individually), then it is recorded as an
incorrect classification in the output matrix.

3.4.3. One Stage ANN

We use a back propagation ANN as illustrated in Figure 7. During train-
ing, the number of neurons in the hidden layer and the number of training
epochs were varied and evaluated. This determined that the ideal structure
for the ANN contained 75 neurons and required 1500 epochs for training.

The network structure illustrated in Figure 7 was applied in both exper-
iments differing numbers of outputs (n). In the first experiment, n = 6 as
there are six material groups and in the second experiment n = 14 corre-
sponding to fourteen individual test materials, as described in Section 3.1.2.

3.4.4. Two Stage ANN

The two stage approach (Kerr et al., 2014b), used a series of back prop-
agation ANNs, each with one hidden layer, where the output of the first
ANN is the input of the second to allow for group classification first followed
by individual classification. This differs from the one stage ANN approach
outlined Section 3.4.3 as the two networks work in series rather than two
individual networks, one classifying materials into groups and one classify-
ing individual materials. The two stage approach structure can be seen in
Figure 8.

The ANNs used in the two stage approach are similar in structure to
the ANN used in the one stage approach explained in Section 3.4.3. The
first ANN is used to classify the materials into groups and the second stage
of the ANN is comprised of six individual ANNs for each material group
(i.e. plastic, metal, masonry, fabrics, paper and wood). These ANNs were
all trained individually with their respective outputs relating to how many
materials there are in each group, for example plastic has two outputs for
the two plastic materials whereas metal had four outputs for the four metal
materials in that group. After training these networks were saved and then
used for classifying the resulting output from the first ANN. In order to avoid
false positives being identified, a threshold was empirically identified and set
for testing the materials within the group. If the output of the neuron fired
for the material sample being tested is not greater than 0.3, then it was
considered to be a failed classification.
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Figure 7: Diagram showing the ANN used for material classification
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Figure 8: Diagram showing the two stage ANN used for material classification
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3.4.5. SVM and ANN Hybrid System

A hybrid approach of the SVM classifier for material group classification
and separate ANN classifiers for the individual material classification within
each group has been developed. The structure of the hybrid system can be
seen in Figure 9.

Figure 9: Diagram showing the SVM+ANN hybrid approach used for material classifica-
tion

A SVM classifier, as described in Section 3.4.2, is used first to classify the
materials into their material group (i.e. using the polynomial KF with a poly-
nomial order value of 2 and a soft margin value of 0.01). Upon classification
into their groups an output matrix is formed and the values in this matrix
initiates the second stage of the hybrid approach with six ANNs for indi-
vidual material classification within each of the material groups. The ANNs
are constructed as described in Section 3.4.4 (i.e. with one hidden layer of
75 neurons and trained for 1500 epochs). As with the other two stage ap-
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proaches outlined in this section, in order to improve efficiency only materials
correctly classified into their group are classified in the second stage.

3.4.6. Gaussian Mixture Models (GMMs)

GMM based on the Maximum Likelihood (ML) estimation using Expec-
tation Maximisation (EM) was also used for classification. The Gaussian
probability density function (PDF) is a bell shaped curve defined by two pa-
rameters, mean and variance. The Gaussian distribution is commonly used
for approximating a class model shape in a selected feature space. It is as-
sumed that the class model is truly a model of one basic class, however if the
actual PDF is multi-modal it fails. GMM is a mixture of several Gaussian
distributions and is therefore able to represent different subclasses within a
class. The resulting probability density function is defined as a weighted sum
of the Gaussian distributions that make up the GMM. The PDF of the GMM
can be used to calculate the likelihood of any new input data within each class
and identify the class for which the PDF generates the maximum likelihood
and therefore classify the data. The EM algorithm is an iterative method for
calculating the maximum likelihood distribution in GMMs (Dempster et al.,
1977).

GMMs are calculated to represent each material (cluster centres are ini-
tialised randomly and the k -means algorithm is used for calculating conver-
gence). The EM algorithm is then used to calculate the maximum likelihood
and the associated class label is selected. These classified labels are used
to form an output matrix. As the cluster centres are initialised randomly
10 runs of each classification (i.e. material groups and individual materials)
were completed and an average classification accuracy calculated.

3.4.7. Linear Discriminant Analysis (LDA)

LDA finds a linear combination of features that characterises or separates
two or more classes of objects or events by creating the linear combination
which yields the largest mean differences between the classes (Martinez and
Kak, 2001). It is a generalisation of Fisher’s linear discriminant and it is a
widely used method in statistics, pattern recognition and machine learning.
LDA can be used for binary or multi-class classification. In this work it is
used for multi-class classification to identify materials individually and into
their groups.
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3.4.8. Naive Bayes

Naive Bayes is a family of algorithms used for training classifiers capable
of binary or multi-class classification. Rather than the classifier taking all
features of a class into account collectively to describe the class, all naive
Bayes classifiers assume that the value of a particular feature is completely
independent of any other feature in the class meaning they can be trained
very efficiently during a supervised learning task (Rish, 2001). In this work
it is used firstly to classify materials individually and secondly classify them
into their groups.

3.4.9. k-Nearest Neighbour (k-NN)

k -NN is a non-parametric method which can be used for classification or
regression. In this work is it used for multi-class classification of materials.
When used for classification. an object is assigned to the class which is most
common amongst its k nearest neighbours following a majority vote. The
number of neighbours is defined by the user and is normally a small positive
integer, for example if k=1 then the object is assigned to the class of the single
nearest neighbour or if k=3 then the most popular class amongst the three
closest neighbours is the class that the object will be assigned to. A range
of k values was tested to identify the most accurate number of neighbours
to take into account for maximum classification accuracy. The k value that
proved to be most effective for classifying the materials individually and into
their groups was k=5.

3.4.10. Multi-Layer Perceptron (MLP)

Multi-layer Perceptron (MLP) is a feed forward ANN which uses back-
propagation to train the network. A MLP consists of multiple layers of
adaptive weights that are trained to map sets of input data onto a set of
appropriate outputs (Bishop, 1995). A range of numbers of layers and neu-
rons on each layer was evaluated in order to find the optimal structure for
the MLP. The structure of the MLP used in this work to classify the mate-
rials into their groups and individually was a network consisting of 10 layers
containing 19 neurons each.

4. Results

In order to evaluate the artificial system’s performance, analysis com-
paring the algorithms was conducted. In addition, the artificial system was
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evaluated against human performance. In this section, the results of the
human evaluation experiments are presented. The initial analysis of the
extracted data collected from the fingertip during the experiments is also
presented. Furthermore, the performances of the aforementioned classifiers
are presented, evaluated against each other and against human performance.

4.1. Human Evaluation

To evaluate each artificial system, they are compared against human per-
formance in identifying the the same set of 14 materials. The participants
were evaluated on identifying the materials both individually and identify-
ing which group each material belonged to. Initially they were evaluated by
only being allowed to press into the materials with their finger and assess its
thermal properties and secondly they were evaluated using both a press and
slide action (to evaluate the surface texture of the material). The findings
from these experiments can be found in (Kerr et al., 2013) and (Kerr et al.,
2014a) respectively.

4.2. System Evaluation

A comparison of the results obtained for all of the classification systems
presented and the average classification accuracies of the human participants
are shown in Table 4. As specified in Section 3.4, the results for the artificial
system are calculated by computing the average of the classification rates
using 5-fold cross validation.

As shown in Table 4, SVM has outperformed the other approaches for
both the classification of the materials into their groups and for classification
of the individual materials. The two stage SVM has proven to be capable
of maintaining the group classification accuracy for the classification of the
individual materials in its second stage. As the SVM only has to use binary
classification in three out of the six groups and the most materials to classify
between in the other groups is four, then it was possible to achieve such
classification accuracy in the second stage using SVM.

The second best performing algorithm is the SVM and ANN hybrid
approach. The SVM and ANN hybrid approach using the quadratic KF
achieved 81.89% classification. Using the polynomial KF within the hybrid
approach proved to be marginally more accurate, achieving 82.86% accu-
racy. The Gaussian Mixture Models (GMM) approach was also a highly
performing classifier with 86.14% and over 80% for material groups. How-
ever, it can be seen in Table 4 that aside from the fact that they perform
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Table 4: Table comparing the experimental results.

Modalities
Utilised

Run Time (to
train one fold)

Material
Group

Individual
Materials

Human
Participants -

Thermal
Only (Kerr et al.,

2013)

N/A 61.00% 50.90%

Human
Participants -
Thermal and

Vibration

N/A 79.76% 69.64%

One Stage ANN -
Thermal

Only (Kerr et al.,
2013)

4.94secs 73.00% 60.90%

One Stage ANN -
Thermal and

Vibration
5.47secs 83.81% 79.05%

Two Stage ANN -
Thermal and

Vibration
7.66secs 83.81% 70.48%

One Stage SVM -
Thermal and

Vibration
0.48secs 86.19% 72.38%

Two Stage SVM -
Thermal and

Vibration
0.55secs 86.19% 86.19%

Hybrid SVM and
ANN - Thermal
and Vibration

2.66secs 86.19% 82.86%

GMM - Thermal
and Vibration

13.35secs 86.14% 80.24%

LDA - Thermal
and Vibration

1.52secs 78.57% 80.95%

NB - Thermal and
Vibration

1.68secs 71.43% 80.95%

k -NN - Thermal
and Vibration

0.95secs 71.43% 64.29%

MLP - Thermal
and Vibration

5.45secs 71.43% 66.67%
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with slightly less accuracy in comparison with the two stage SVM algorithm,
like the other systems, the GMM system also takes significantly longer to
train (taking 13.35secs to train for one fold of data) than the SVM system
(taking 0.48secs to train for one fold of data). Interestingly the LDA and NB
classifiers both performed better when classifying the materials individually
rather than into their groups. This is contrary to what was expected as there
are 14 outputs when classifying into individual materials compared with only
six outputs for group classification. As a consequence, LDA and NB both
performed marginally better than GMM for classifying the individual ma-
terials with 80.95% accuracy however performed poorer than GMM for the
classification of material groups with 78.57% accuracy for LDA and 71.43%
accuracy for NB. k -NN was found to perform optimally when k = 5 with a
fast training time of 0.95sec for one node, however in comparison with the
other classifiers it is still lacking in accuracy for classifying materials individ-
ually and into their groups. MLP was found to be relatively slow to train and
was out performed by the majority of the other classifiers. The training times
presented are based on training one fold of data for each classifier and the
training was completed in Matlab on a desktop PC with a Intel R© Xeon R©
CPU E5-16070 @ 3.00GHz 4 processor and 16Gb of RAM. It is demon-
strated in Table 4 that the novel two stage SVM and hybrid SVM and ANN
approaches have outperformed all standard approaches such as GMM, LDA
or singular SVM and ANN approaches. These architectures have proven to
be more accurate than “off-the-shelf” architectures with the novel two stage
SVM system being the best performing and most efficient system for the task
of material classification when compared with others.

In order to assess robustness, completely unseen objects and materials
were presented to the system. Seven previously completely unseen objects
in total were presented namely, a plastic bottle, a ceramic cup, a glass cup,
a metal cup, a metal fork, a plastic fork and a paper plate. Three datasets
for each object were tested. There is no “any other material” option in the
system so every material will be classified as one of the 6 materials outlined
in Table 2. Interestingly, materials that the system had not previously been
trained on, i.e. ceramic and glass, were identified as a material with similar
properties. The glass was identified as plastic in the majority of cases and
the ceramic was classed as metal in all cases. In some instances the system
struggled to identify the materials on which the system had been trained.
The paper plate was only correctly identified as paper in 1 out of the 3
instances. However, this may be due to the thin plastic film coating on
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paper plates that makes them water retardant, as shown in Figure 10(a).
This made it difficult to identify the plate as paper and indeed it was also
incorrectly identified as plastic in both other instances. The plastic fork was
also correctly identified as plastic in 1 of the three instances. This may be
due to the fact that this specific metal fork was manufactured to be “metal
like”, i.e. look like a metal fork as shown in Figure 10(b). This means that
there is a fine film on the surface of the fork making it difficult to identify
as plastic, similar to the difficulty faced with identifying the paper plate.
Indeed, in both other cases the fork was identified as being metal.

(a)

(b)

Figure 10: a) Image showing two of the previously unlearned objects; a) the paper plate;
b) the “metal-like” plastic fork

However, the metal cup was identified as the correct material in at least
2 of the 3 instances and both the plastic bottle and metal fork were correctly
identified as their respective material in all 3 instances. This illustrates the
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robustness of the system and with further training for more materials the
system is capable of correctly identifying previously learned materials.

5. Discussion

From the results of the human evaluation carried out in (Kerr et al.,
2014a), it was found that the average accuracy was 79.76% when identifying
the material groups and 69.64% when identifying individual materials. A
detailed analysis of these findings can be seen in the confusion matrices in
Figure 11(b) and 12(b). It can be seen from Table 4 that all of the artificial
systems presented have outperformed the human participants (when perfor-
mance is averaged across all test materials), in some cases by over 6% for
material group classification and by over 16% for individual material classi-
fication. This is due to the fact that is easier for a human to determine what
group a material would belong to (i.e. identify that the material is definitely
metal) than it is for them to identify a specific material within that group
(i.e. is it copper or aluminium). It can be seen from the confusion matrix in
Figure 11(a) and 11(b) that both the artificial system and the human partic-
ipants successfully classified the soft foam in every instance and did not get
it confused with any other material. It can also be seen from Figure 11(a)
that where the artificial system classified the pine material correctly on 60%
of the instances, the highest misclassification was with MDF, another ma-
terial with similar properties and in the same material group. Likewise, for
classifying MDF, the largest misclassification was with pine. This misclas-
sification can also be witnessed as a common misclassification amongst the
human participants, with 50% of the participants correctly classifying MDF
but in almost 42% of the instances the human participants misclassified MDF
as pine as shown in Figure 11(b). It is shown in Figure 11(a) that a common
misclassification of the artificial system was a confusion between acrylic and
glossy cardboard, with glossy cardboard being classified correctly for 40% of
the instances however in just over 33% of the instances it was misclassified as
another material with similar texture and thermal conductivity properties:
acrylic.

Interestingly, the identification of the rough materials was evidently chal-
lenging for the human participants, with only 2 out of 12 being able to
identify all three rough materials. For example, one of the most challenging
materials for humans to identify was the rough copper, and it was commonly
misclassified as redbrick, as shown in Figure 11(b). This is due to the fact
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(a)

(b)

Figure 11: a) Confusion matrix showing the percentage accuracy of the artificial system
(using 1 stage SVM) for classifying all the materials individually; b) Confusion matrix
showing the percentage accuracy of the human participants for classifying all the materials
individually, collated from the findings in (Kerr et al., 2014a).
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that the redbrick is perceived as cold and rough by the human participants,
in a similar manner to how metals are perceived. Therefore, this is one of the
instances where the artificial system outperforms the human participants, as
the system can analyse thermal conductivity much more accurately than the
human participants and therefore not misclassify it as a masonry material.
This is shown in Figure 11(a) where the artificial system classifies the rough
copper in just over 93% of the instances with the only misclassification be-
ing with another rough metal: aluminium. This common misclassification
is also evident when classifying the materials into their groups, as shown in
Figure 12(a) and 12(b). The artificial system outperforms the human par-
ticipants when classifying materials in both metal and masonry groups. The
majority of instances of misclassification for the human participants when
classifying masonry objects is confusing it with a metal object, as both are
perceived as cold.

From the results of the human evaluation reported in (Kerr et al., 2014a),
it was evident that the introduction of texture analysis by sliding their finger
along the material has increased the accuracy of the human participants for
classifying materials, particularly when identifying the material groups. It
should be noted that due to the nature of some materials, humans can in-
tuitively take other characteristics into account, for example compressibility
(i.e. soft foam is much more compressible than the other materials). The
artificial system was trained to analyse only the thermal properties and sur-
face texture of the material and not compressibility. This may have given the
human participants a slight advantage in identifying some materials. This is
evident when comparing the accuracy of the artificial system for classifying
fabrics as a material group (80%) with the accuracy of the human partici-
pants (100%), as shown in Figure 12(a) and 12(b). The human participants
have no misclassification of the fabrics when identifying their material group.
It can be assumed that this is due to the fact that the human participants
could identify the compressibility of the objects like soft foam and carpet
whereas the artificial system was not trained to analysis this modality. How-
ever, even though the artificial system did not consider a key modality for
humans, namely compressibility, overall it still outperformed humans.

6. Conclusion and Future Work

A range of classifiers and combinations of classifiers that were imple-
mented, tuned and evaluated for the classification of materials into their
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(a)

(b)

Figure 12: a) Confusion matrix showing the percentage accuracy of the artificial system
(using 2 stage SVM) for classifying all the materials into groups; b) Confusion matrix
showing the percentage accuracy of the human participants for classifying all the materials
into groups, collated from the findings in (Kerr et al., 2014a).
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respective groups and the classification of individual materials has been pre-
sented. This classification was based on a combination of the thermal and
surface texture properties of the materials. It is proven that a two stage SVM
approach performs best and is the most efficient method in completing the
material classification task. It was found that the artificial system’s average
performance across all test materials exceeded that of human participants’
average performance, with the two stage SVM approach outperforming hu-
mans by over 16%. However, as the system does require training it is still
slower at classification than the human participants due to humans’ inherent
sophisticated tactile sensing.

There are two immediate future directions of this work. Firstly, the pre-
sented tactile based methods for material classification could be used in col-
laboration with vision based methods. If an estimate of the physical size of
an object is determined using image processing, then the volume of the object
can also be calculated. The tactile sensing methods presented in this paper
can identify the material from which the object is made and armed with the
volume of the object, an estimate of the object’s weight can be calculated.
The incorporation of vision would further strengthen the identification of
objects and materials. To train a robotic system on a vast array of objects
and incorporate vision, a significant dataset of tactile data, static image and
video data should be collected for numerous materials, objects, clothing and
human skin. A deep learning structure could then be utilised for the robotic
system to learn the vast dataset of materials and objects. This information
could be used to help determine the effort and grasping method required to
successfully lift previously unlearned objects. This would provide a useful
skill to assistive robots in a home environment when learning the affordances
of objects they have not previously encountered. Secondly, the success of
the challenging task of material identification presented in this paper proved
invaluable in providing familiarity with the use of the BioTAC fingertip and
the analysis of the data it presents. It became apparent that the high sen-
sitivity of the BioTAC sensor means that it may be capable of measuring
biomedical parameters, namely human vital signs such as a human pulse.
Therefore, this also directs the research in this paper towards the automated
collection and analysis of human vital signs based on tactile perceptions.
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