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A B S T R A C T

Change detection in satellite images is a key concern of the Earth Observation field for environmental and
climate change monitoring. Satellite images also provide important clues to both the past and present surface
conditions of other planets, which cannot be validated on the ground. With the volume of satellite imagery
continuing to grow, the inadequacy of computerised solutions to manage and process imagery to the required
professional standard is of critical concern. Whilst studies find the crowd sourcing approach suitable for the
counting of impact craters in single images, images of higher resolution contain a much wider range of features,
and the performance of novices in identifying more complex features and detecting change, remains unknown.

This paper presents a first step towards understanding whether novices can identify and annotate changes in
different geomorphological features. A website was developed to enable visitors to flick between two images of
the same location on Mars taken at different times and classify 1) if a surface feature changed and if so, 2) what
feature had changed from a pre-defined list of six. Planetary scientists provided “expert” data against which
classifications made by novices could be compared when the project subsequently went public.

Whilst no significant difference was found in images identified with surface changes by expert and novices,
results exhibited differences in consensus within and between experts and novices when asked to classify the
type of change. Experts demonstrated higher levels of agreement in classification of changes as dust devil tracks,
slope streaks and impact craters than other features, whilst the consensus of novices was consistent across
feature types; furthermore, the level of consensus amongst regardless of feature type. These trends are secondary
to the low levels of consensus found, regardless of feature type or classifier expertise. These findings demand the
attention of researchers who want to use crowd-sourcing for similar scientific purposes, particularly for the
supervised training of computer algorithms, and inform the scope and design of future projects.

1. Introduction

Detection of change in satellite images of Earth and other planetary
bodies is of significant scientific interest in the monitoring of environ-
mental and climate change. Automating the detection of surface fea-
tures over different spatial and temporal scales, however, remains
complex and computationally expensive. Variation in the quality and
coverage of images render them difficult for computers to process, in
addition to the atmospheric and morphological influences on the “vis-
ibility” of features (Kim et al., 2005). Although we anticipate the de-
velopment of increasingly subtle and powerful image processing and
machine learning systems (Sidiropoulos and Muller, 2016), there re-
mains a role for the human analyst particularly when variability is
emphasised and human aptitudes of flexibility and judgement are called

into play (e.g. interpreting rare events or features to make serendipitous
discoveries). However, there is currently a clear, growing and profound
imbalance between the number of expert observers and the sheer vo-
lume of satellite data available to the wider scientific community (See
et al., 2016). One solution to this is to crowdsource analysis of imagery
− a process often discussed within the realm of Citizen Science (Bonney
et al., 2009). However, the viability of this solution rests on the fun-
damental question of whether a collection of suitably equipped ama-
teurs can generate data of comparable quality to that produced by ex-
perts (Salk et al., 2016).

This paper investigates the potential power of novices to address
two challenges that face the future application of a crowd-sourcing
approach for the analysis of satellite imagery: detection of a wider
range of surface features and changes in the appearance of these

http://dx.doi.org/10.1016/j.jag.2017.05.014
Received 31 October 2016; Received in revised form 28 March 2017; Accepted 29 May 2017

⁎ Corresponding author.

Int J Appl  Earth Obs Geoinformation 64 (2018) 354–364

Available online 12 June 2017
0303-2434/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
http://dx.doi.org/10.1016/j.jag.2017.05.014
http://dx.doi.org/10.1016/j.jag.2017.05.014
http://dx.doi.org/10.1016/j.jag.2017.05.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2017.05.014&domain=pdf


features that reflect dynamic changes on the surface. Crowdsourcing
has successfully classified surface features in Earth Observation,
through calibration with ground truth (Zhao et al., 2014; See et al.,
2016). The crowd is commonly used to count craters for estimating the
age of lunar surfaces, a task which implicitly assumes that craters can
be reliably identified, and further relies on measurements of crater
diameter for age calculations (Robbins et al., 2014). In lunar images
factors such as atmospheric distortion and the range of surface features
are reduced so that the effects of human subjectivity can be isolated
(Gault, 1970; Kirchoff et al., 2011). Robbins et al. (2014) investigated
the consistency of expert classifications of craters in relation to terrain
type, size and frequency, across different user interfaces. For all vari-
ables, only annotations of the smallest craters (< 10 pixels in diameter)
were significantly different. They concluded “volunteers are approxi-
mately as good as experts in identifying craters…so long as enough
volunteers examine the image to derive a robust result,” with the caveat
that accuracy for any single crater or cluster of craters is not important
(Robbins et al., 2014; 126). Comparison of automated feature detection
with the subjectivity introduced by humans has found differences be-
tween and within the classifications of individuals, for example on
different days (Tar and Thacker, 2016). Successful cataloguing of geo-
logical landmarks could facilitate the filtering of imagery according to
features of interest but the future utility of any automated process for
this would require a significant human effort to label examples for
training the algorithm (Wagstaff et al., 2012; Wagstaff et al., 2015).
Whilst the work of Robbins suggests that novices can produce com-
parable annotations of impact craters to experts, their ability to identify
other surface features of interest remains untested.

The present study extends previous work to detecting changes in
images of the surface of Mars, in which features change at different
rates, from rapidly moving dust devils, seasonal and inter-annual fluc-
tuations of the polar ice caps and recurring slope lineae (indicating
contemporary water activity), and slowly shifting sand dunes. Scientific
interest in detecting changes in features such as impact craters (Kim
et al., 2005; Bue and Stepinski, 2007; Li et al., 2015), gullies (Stepinski
and Collier, 2004) and sand dunes (Bandeira et al., 2013) on Mars is
high because changes reveal the evolution of the climate and geology of
the planet; repeat image coverage for change detection is increasingly
available and, until surface data can be validated with any certainty,
alternative approaches are needed.

Although beyond the scope of this study, the introduction of human
analysts, even within the context of the crowd-sourcing approach,
brings into play other potential confounds on performance. Visual
search is known to be affected by feature complexity (Lloyd and
Hodgson, 2002) and size (Warner et al., 2015), scene context
(Castelhano and Heaven, 2010), information density and presentation
method (Chang et al., 2012), in addition to the human factors asso-
ciated with performing visual search for a prolonged period of time
(See, 2012). Change detection studies are also relevant in this context
(Rensink, 2002), as well as those concerned with the quality of Vo-
lunteered Geographic Information (Haklay, 2010; Foody et al., 2013).

The ultimate goal of the on-going development of the algorithm is to
achieve fully automated change detection and characterisation. Such a
task is typically tackled with a supervised learning approach using a
ground-truth dataset, but no publicly available ground-truth currently
exists for planetary surfaces. The crowdsourcing this paper presents is

thus intended to produce annotations for developing a fully automatic
change detection algorithm. More information about the co-registration
and the change detection algorithm can be found in Sidiropoulos and
Muller (2016).

Section 2 now sets out the approach used to study these questions.
Section 3 will present the consensus found within and between novices’
and experts’ classifications of change, and feature type that changed.
Section 4 will discuss key findings and their implications for the remote
sensing community, and designers of crowd-sourcing platforms for the
classification of geomorphological features.

2. Method

2.1. Experimental design

To investigate novice performance in detecting 1) more complex
features and 2) changes in features over time, this work presents the
results of a Citizen Science project built with the project builder
‘Panoptes’ on Zooniverse.org and tested with experts and novices to
directly their classifications of dynamic geological changes in Martian
images, with a task designed for participants to compare two images of
the same location but at different times (Bowyer et al., 2015).

The current interest in Martian exploration and the volume of
images that have amassed since the planet was first imaged forty years
ago represent an outstanding opportunity for the investigation pre-
sented. The images under study were processed from genuine images of
the surface of Mars, so that participants would not anticipate what they
would see. Prior to public release, doctoral Planetary Science students
and post-docs classified images within a workshop at University College
London’s (UCL) Mullard Space Science Laboratory. Their exclusive ac-
cess over the two days enabled separation of their “expert” classifica-
tions from those of volunteer “novices” over the following months.

2.2. Apparatus/materials

The study used images extracted from high-resolution image strips
acquired by four orbital cameras described in Table 1.

First, the raw images were projected, or “co-registered”, to a single
coordinate system, to enable comparison. Since no high-resolution
global datum exists for Mars, a mix of High-Resolution Stereo Camera
(HRSC) Orthorectified Images (ORI) and Digital Terrain Models
(DTMs), covering almost 50% of Mars, was selected for use as a baseline
(Sidiropoulos and Muller, 2015). The co-registration technique was
developed to achieve a fast and fully automatic co-registration of large
volumes of data for generating an abundant input for change detection
(Sidiropoulos and Muller, 2016). The subsequent set of co-registered
images comprised of overlapping image pairs, which were then pro-
cessed by an algorithm for detection of “regions-of-interest”
(Sidiropoulos and Muller, 2016). The algorithm selected 868 regions-of-
interest, each 512 × 512 pixels in size, as surface change candidates.

The change detection algorithm used is a “late fusion classification
scheme” (Ye et al., 2012), and defines four types, or “classifiers”, of
change. Each classifier models a distinct type of surface change and
produces a single, independent output in the form of a “confidence
score” (Ye et al., 2012) from 0 to 1 for the probability of a positive
classification, with 1 meaning 100% certainty that a pair of images

Table 1
Description of the cameras that took the images used in this study.

Camera Spacecraft Dates of Operation Resolution Reference

Context Camera (CTX) Mars Reconnaissance Orbiter 2006-present 6m/pixel Bell et al. (2013)
High-Resolution Stereo Camera (HRSC) Mars Express 2004-present 12.5m/pixel Jaumann et al. (2007)
Thermal Emission Imaging System (THEMIS) Mars Odyssey 2002-present 17.5m/pixel Christensen et al. (2004)
Mars Orbiter Camera − Narrow Angle (MOCeNA) Mars Global Surveyor 1997–2006 1.5-12m/pixel Malin et al. (2010)
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includes a change of this type. The results of these classifiers are
combined by means of a secondary “meta-classifier”, which generates a
final score that is compared to a threshold to determine the presence of
change. The flowchart of this scheme can be found in Fig. 1.

Classifiers were defined according to visual characteristics and not
according to scientific context, i.e. classifiers were not defined to di-
rectly map to features on the Martian landscape (Fig. 1). Classifiers
were designed to find four types of change:

• Texture changes, which are identified in images in which the surface
texture has changed (e.g. created by Aeolian activity).

• Binary large object (Blob) changes, attributed to image pairs in which
an approximate homogenous patch only appears in one of the two
images and are used here as proxies for new large-sized features
(e.g. slope streaks).

• Anticorrelation changes, which are identified by negative spikes in
the image pair correlation and are used here as proxies for new
small-sized features that emerge (e.g. a new impact crater).

• Motion-type changes, which are found through the detection of a
local mis-registration between the two images.

To increase certainty, a final classifier estimates and compares the
surface slope in images since they are co-registered and ortho-rectified
to the High Resolution Stereo Camera (HRSC) Digital Terrain Model
(DTM).

This classification scheme is based on supervised learning, which
requires training with both positive and negative annotations. Such
annotations are currently sparse, since large-scale studies of changes in
geomorphological features on Mars are unavailable. Therefore, the
approach we use includes a feedback loop between the automatic
change detection results and the crowdsourcing annotations. More
specifically, this study used a preliminary automatic change detection
algorithm, which used a small set of manually annotated images to
estimate classification parameters. Subsequently, the crowdsourcing
annotations are used to train the automatic change detection scheme,
which then produce a second round of lower false positive rate, while
possibly more repeats will happen in the future.

A project was built on Zooniverse.org to run the test. Zooniverse is a
consortium of researchers from the Adler Planetarium in Chicago, USA
and the Department of Physics at the University of Oxford. It uses
Amazon Web Services to host a plethora of Citizen Science projects,

spanning fields from Astronomy to Zoology. A project builder interface
negates the need for coding and frees researchers to create their own
projects for volunteers to classify or analyse images according to their
needs.

Crucially, the project builder manages the order in which volunteers
classify images. In general it applies rules so that no individual volun-
teer sees the same image pair more than once if they are registered and
logged in; if they are not logged in it will randomly select an unretired
image from across the images that remain.

2.3. Participants

22 Planetary Scientists attended a workshop on 3D data and were
invited to participate in the experiment; the group mostly comprised
PhD students and post-doctoral researchers funded by the Europlanet
2020 Research Infrastructure, a European Commission Horizon 2020
project to integrate and support Planetary Science activities across
Europe. The requirements for participation in the workshop ensured
that participants had the necessary planetary imagery expertise to
provide “expert” (“gold standard”) data in place of ground truth; this
paper will now refer to these participants as “experts” for clarity.

After the workshop, the project was launched informally on social
media and local email networks to collect data from volunteers. When
five different volunteers had independently classified an image pair, the
image pair was removed, or “retired” from any further analysis in a
tradeoff between having enough data to compare with the Planetary
Scientists’ annotations for any one pair of images, and the need to
analyse as much of the planet’s surface as possible. Data collection for
the present study stopped after four months, when enough data had
been volunteered.

2.4. Procedure

Experts signed an information sheet and consent form to ensure that
they understood the task, why they were doing it, and gave their per-
mission to use their classifications for stated purposes; furthermore,
they could leave the study and/or request removal of their data at any
time. The experiment was described and participants registered on
www.zooniverse.org during a half an hour session before a lunch break.
This had two benefits: it gave attendees time to consider their partici-
pation and ask questions about it during the lunch break, but also

Fig. 1. The flowchart of the change detection algo-
rithm. Details of the auto co-registration of image
pairs and creation of the High Resolution Stereo
Camera Digital Terrain Model (HRSC DTM) are
documented in Sidiropoulos and Muller (2016) and
Gwinner et al. (2016) respectively.
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ensure participants were ready to start the task together.
The workflow depicted in Fig. 2 shows that participants began the

task by inspecting two images of the same location on the surface of
Mars at different times and selecting whether or not features had
changed (Fig. 3).

If they were unsure what type of changes to annotate they could
click on a ‘Need some help with this task?’ button for a hint (Fig. 4). The
help information was deliberately designed to provide only a high-level
hint so that participants would understand what changes they should
mark but also use their judgement.

If participants marked a change, a subtask asked them to select
which type of surface feature they had just marked, from a list of six:
impact crater, gully, dune, slope streak or recurring slope lineae, dust
devil track and seasonal fan (Fig. 5). The presentation of multiple

features types at this stage of the task was a deliberate design decision
to make the task less repetitive and to mitigate the detrimental effect of
fatigue (See, 2012).

These features were chosen for their scientific interest, and the
frequency with which they appear on the surface of Mars. A field guide
provided examples of change for each feature type to assist classifica-
tion (Fig. 6).

Expert participants were encouraged to provide feedback on their
experience of the website via a semi-structured online survey after
using the website for one hour; they were also invited to take notes
anonymously on post-it notes during the experiment so that they could
note their thoughts as they occurred. The purpose of this was to provide
context for the data during analysis. In contrast, public participants
were not asked to complete the feedback survey or restricted to one

Fig. 2. Task workflow: Mars in Motion.

Fig. 3. The task for workshop participants (Step 1 in
Fig. 2).
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hour of participation; their participation was discretionary and not
under the controlled conditions of the experts, so they could return to
the website and classify as many image pairs as they liked without
seeing the same image pair twice.

2.5. Data captured

The Zooniverse.org collects classification data automatically each
time the “Done” button is clicked and can be downloaded by the
creators of the project at any time.

For the purposes of this study, three sets of data were of interest:
whether or not a change was seen, the type of feature(s) marked as

changed, and the time taken to make the classification. Analysis did not
directly compare the location of feature annotations on the image, but
instead considered 1) the proportion of people who saw a change be-
tween images, and 2) the type of surface feature participants labelled.
Importantly, analysis was restricted to images seen by more than one
person in order to calculate a consensus for an image pair.

Classification data also includes the start and finish time for each
individual classification to millisecond accuracy. These were used to
calculate task time and explored to determine whether or not the expert
and novice classifiers spent a similar length of time classifying each
image pair and extend comparison of their performance.

Fig. 4. The ‘help’ text provided with the first part of
the task.

Fig. 5. The subtask of feature identification (Step 3
in Fig. 1).
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2.6. Consensus analysis

This data was collected with the objective of calculating a measure
of classification consensus, which the crowdsourcing approach uses to
assess the accuracy and trustworthiness of volunteered data; the higher
the level of agreement, the more confidence with which researchers can
use its analysis.

In the study presented classification consensus was first calculated
to determine if levels of agreement on seeing a change (i.e. Step 1,
Fig. 3) varied between the two groups. Fig. 7 shows this calculation,
which was carried out for each image pair for novice and expert clas-
sifications independently, where two or more people from one of those
groups had classified an image (Fig. 8).

Consensus analysis was then extended to calculate the consensus for
change with each type of landscape feature (e.g. crater, gully, dune) for
every image pair seen by more than one person. For each type of
landscape feature, consensus was defined as the percentage of people
who marked one or more changes on the image pair with the total
number of views of the image pair (Fig. 7). For example, consider an
image pair seen by five people. Three people marked changes in slope
streaks. Regardless of the number of slope streaks they marked, this
image pair would have a consensus of 60% for slope streaks.

With a consensus calculated for each type of change (e.g. crater,
gully, dune) for each image pair, the mean consensus for each type of
change was calculated across all images in which each type of change
had been marked. The mean consensus for each type of change could
then be compared to assess the relative difficulty of spotting a change in
each type of landscape feature.

3. Results

This section reports the analysis of classifications provided by both
experts and novices in three parts. First we consider the experts’ clas-
sifications and summarise them with details of how many image pairs
they analysed, how many of these had changed and calculate the con-
sensus within their classifications for changes in each feature type.

Second, the classifications provided by novices were analysed in the
same way. Finally, this section compares agreement between novices
and experts’ classifications of change for each feature type.

3.1. Consensus regarding ‘is there change?’: experts vs novice

First, the classification consensus amongst expert and novices is
compared for the first part of the task, presented in Fig. 3, for each
image pair. In total, two or more people from within each group clas-
sified 1301 image pairs; two or more novices classified 738 image pairs
and two or more experts classified 563 image pairs. A Mann-Whitney U
test on the consensus for change on these 1301 image pairs revealed no
significant difference in the level of agreement for change between
expert and novice classifiers (U = 197605, p = 0.078).

3.2. Consensus of experts

In total, experts contributed 1877 classifications during the time
allotted in the two-day workshop, of which 1553 (82.7%) were classi-
fications of ‘no change’ and 324 (17.3%) were classifications of surface
changes. Of the full set of 868 image pairs, experts classified 783 unique
images pairs, of which 580 (25.9%) had no changes annotated. In order
to calculate consensus, 220 image pairs that were only seen once were
eliminated from analysis. Of the remaining 563 unique image pairs,
seen by more than one expert, 175 were marked with change, with the
mean% consensus for change 55.9% (standard deviation = 8.3, stan-
dard error = 2.1).

Table 2 describes the data associated with these image pairs ac-
cording to feature type. The first two rows show the percentage of the
whole image set that experts marked with each type of change, fol-
lowed by the number of image pairs marked with each type of change.
The mean consensus is then presented for each type of change amongst
experts.

Fig. 6. Example to demonstrate the type of feature
change that should be marked. If participants did not
feel that any of the listed features matched what they
had marked then they could amend their classifica-
tions, until they clicked “Done”, which logged their
classifications and presented participants with a new
pair of images.

Fig. 7. Consensus Calculation.
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3.3. Novice consensus

In total, volunteers contributed 2919 classifications in the first four
months of the project’s release, of which 2446 (83.8%) were classifi-
cations of ‘no change’; the remaining 473 (16.2%) were annotated with
surface changes. For image pairs seen by more than one person there
were 2834 individual classifications, of which 2385 (84.2%) were en-
tries of ‘no change’ and 449 (15.8%) were annotations of change.

Novices classified 823 unique images pairs from the full set of 868,
of which 531 (64.5%) were not annotated with changes. However, for
calculating consensus, analysis excluded 85 image pairs that were only
seen by one person. Of 738 unique image pairs seen by more than one
person, 445 (60.3%) were identified as having ‘no changes’; for the
remainder (identified by at least one person as an area in which the
surface changed), the mean consensus for change was 41.1%
(± standard deviation 22.1, standard error 1.3). Table 3 presents sta-
tistics for these image pairs and Fig. 8 illustrates the consensus reached
by volunteers with example image pairs..

3.4. Comparing the consensus of experts of novices

These data can be used to compare how the consensus of experts
and novices compares for different features types. The means and
standard errors from Table 2 and Table 3 are plotted in Fig. 9, which
graphically illustrates their differences.

Fig. 9 shows that the most significant differences between the two
groups of classifiers are found in annotations of slope streaks and dust
devil tracks, both of which are linear in their morphology; the third
most significant difference is found in the marking of changes in craters,
which goes against the results of Robbins et al. (2014). There are two
possible conclusions regarding these features that have the least
agreement; either 1) more eyes are better, or 2) the smaller the
agreement, the harder and more subjective changes in the feature are
for untrained users to detect.

3.5. Agreement between experts and novices

The next stage of analysis directly compares expert and novice
classifications of the same image pair. Of the 783 unique image pairs
viewed by more than one expert, a subset of 434 image pairs were also
viewed by more than one novice in the four months that followed. This
subset of images is now used to compare the performance of volunteers
(“novices”) with Planetary Scientists (“experts”). Table 4 describes, for
each feature type, how many of the image pairs experts marked with a

change, and the proportion of those that novices marked with the same
change, to directly compare the consensus of experts and novices for
the same individual image pairs. The first two columns of Table 4 show
the overall rate at which the two distinct groups marked changes in
each type of surface feature; the final two relay the proportion of
images marked by experts with a change, which were marked with the
same type of change by novices.

3.6. Task time: experts vs novices

Raw task time data was copied into SPSS from Microsoft Excel for a
more detailed statistical analysis of the time spent on the task by ex-
perts and novices for the 434 image pairs that had been seen by more
than one expert and more than one novice.

The mean and standard deviation of the task time for these 434
image pairs were tested for a normal distribution, for expert and no-
vices independently, to ascertain whether they should be compared
with a parametric or non-parametric test and results indicated that
neither group was normally distributed (Table 5).

On this basis, the non-parametric Wilcoxon Signed Ranks test was
carried out for differences in task time between novices and experts for
the same image pair. The results (Z =− 0.519 based on negative
ranks, and asymptotic significance 2-tailed p-value = 0.603) indicated
no significant difference.

4. Discussion

Analysis of the results presented in the previous section, and their
implications, cannot be discussed before factors that must be con-
sidered are described.

Second, workshop participants’ feedback, via the online survey,
expressed a particular concern that the quality of many images was not
sufficient to be able to discern that a feature had changed, and the
interface did not allow them to report the poor quality of image pairs. If
participants were unsure whether to mark a change or not, their com-
ments suggested that they erred on the side of caution and tended to
answer that there was no change in the imagery. Such uncertainty could
arise due to artefacts in the images or spotting a feature that did not
match the categories offered and could bias classifications towards no
changes. Live Citizen Science projects, however, cannot practically
control for image quality, since it is subjective and in the case presented
was controlled by keeping the resolution of images constant. Future
projects might trial a button for participants to click when the image is
of poor quality, but the use of such a button must be judicious in case

Table 2
Consensus amongst experts with a change detection task on 563 image pairs seen by more than one.

Feature Crater Gully Dune Slope Streak Dust Devil Seasonal Fans

% Image pairs with no change 95.20 98.22 94.14 91.83 88.28 96.80
% Image pairs with change 4.80 1.78 5.86 8.17 11.72 3.20
No. of image pairs with change 27 10 33 46 66 18
Mean% consensus 38.55 32.50 35.35 55.92 63.81 37.41
Standard Deviation 16.61 9.98 12.36 26.17 26.80 12.26
Standard Error 3.20 3.15 2.15 3.86 3.30 2.89

Table 3
Consensus amongst novices with a change detection task on 738 image pairs seen by more than one.

Feature Crater Gully Dune Slope Streak Dust Devil Seasonal Fans

% Image pairs with no change 92.41 92.68 90.38 89.70 88.48 96.21
% Image pairs with change 7.59 7.32 9.62 10.30 11.52 3.79
No. of image pairs with change 56 54 71 76 85 28
Mean% consensus 29.31 31.07 30.13 32.98 38.00 32.24
Standard Deviation 12.90 10.70 17.08 14.64 21.74 12.00
Standard Error 1.72 1.46 2.03 1.68 2.36 2.27
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participants use it by default. It might be used by too frequently in the
case that participants will use it by default, so that it remains within the
analysis set and prevents other images from being analysed.

Third and finally, implicit to the study is that participants marked
features that had changed. This is important to acknowledge in any
analysis; results do not reflect (expert and novice) participants’ ability
to identify any one individual feature because, in the context of the
study presented, participants were not asked to mark features unless the
feature had changed. Results instead demonstrate the relative success
with which participants identified features that had changed, and dif-
ferences would suggest how easy certain changes are to spot than
others.

The results and their implications are now discussed accordingly,
with respect to the study’s aims and objectives.

4.1. Difference between features

Changes in some types of geological feature appear to be easier than
others to spot; this is most clear in Fig. 9, which shows that dust devil
tracks and slope streaks are easier to identify, since the consensus for
changes in these features is highest. The emergence of differences be-
tween novice and expert classifiers only when asked to identify the
landscape feature that has changed suggests a subtle affect of expertise
on this task. Given the literature concerning visual inspection and

Fig. 8. Examples of a) 100% agreement between
classifiers that a landscape features has changed; b)
50% agreement, and; c) 100% agreement that no
landscape feature has changed.
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change detection, results are likely to have been confounded by factors
beyond the scope of the paper and attributes of the individual image
pairs; however, experts and novices were deliberately shown the same
image set to mitigate these effects having an impact when classifica-
tions are compared.

4.2. Difference between experts and novices

There was an insignificant difference in the identification of change
between novices and experts; differences only began to emerge when
they were asked to classify features. The feature with the highest con-
sensus amongst both experts and novices was dust devils, which might
be due to their comparatively simple morphology. The low level of
agreement within and between experts and novices is surprising; the
highest level of agreement, amongst experts, is 64% for dust devils. This
raises questions over the “expertise” required for this task, and the
genuine difficulty of spotting changes in geological features from sa-
tellite imagery, and perhaps points to the need for a more detailed tu-
torial on the task than was provided for this study.

4.3. Relation to previous work

The results presented add nuance to the conclusions of Robbins
et al. (2014) and suggest that there are subtle limitations in the tasks
Citizen Scientists can perform to the standard of professional scientists.
Whilst the strengths of Citizen Science are widely discussed, compara-
tively little is said about its limitations, which increase with the com-
plexity of the tasks Citizen Scientists undertake. This paper contributes
an appraisal of the Citizen Science approach for the more complex task
of change detection and results especially suggest that the task of
change detection places new demands upon untrained volunteers,

which they do not appear to meet for many geological features.

4.4. Implications for the Earth Observation field

The levels of agreement between experts and novices presented in
Table 4 cast doubt on the range of tasks researchers can reasonably
expect novices to perform to a professional level. Change detection is
ostensibly a task that can be carried out with minimal training, but the
results presented suggest otherwise. We may therefore have to re-
evaluate our expectations of the Citizen Science approach for con-
tributing to change detection studies, and untrained volunteers’ per-
formance with a geological change detection task on remote sensing
imagery.

4.5. Implications for Citizen Science and Volunteered Geographic
Information

The results presented concern Citizen Science researchers because
they raise questions regarding the number of volunteers required for
meaningful results when annotating changes between images. The first

Fig. 9. Bar chart comparing the mean% consensus
for different surface features between experts
(Table 2) and novices (Table 3) with standard error
bars to illustrate the significance of differences.

Table 4
Comparison of change detection performance.

Feature % Images marked by
experts

% Images marked by
novices

% Agreement of novices with experts for images
with change

% Disagreement of novices with experts for images
with change

Impact crater 4.61 6.91 25 75
Gully 1.15 6.68 0 100
Dune 4.38 8.99 21.0 79.0
Slope streak 6.68 9.91 24.1 75.9
Dust Devil Track 11.52 9.91 52 48
Seasonal Fan 2.76 4.15 16.7 83.3

Table 5
Results of test for normal distribution.

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig Statistic df Sig

Experts 0.352 434 0.000 0.320 434 0.000
Novices 0.414 434 0.000 0.174 434 0.000

a Lilliefors Significance Correction.
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question the study set out to answer was whether volunteers can be
given the task of looking for changes on the surface of Mars and pro-
duce results that are comparable to those produced by Planetary
Scientists, on the premise that it is conceptually similar to ‘Spot the
difference’; however, the answer to this is clearly not as simple as might
be assumed, as we found that differences emerged when classifiers were
asked to classify feature type.

The debate over how to handle input data quality surfaced in the
study presented. Whilst researchers using the Citizen Science approach
tend to espouse the use of forced choice in task design, in the interest of
the data collected being useful, the experience of this study points to
tensions between image quality and scientists’ trust and use of vo-
lunteered data analysis, and a trade off between the engagement of the
volunteer and goals of the project. Whilst the project this study focused
on collected data for the training of a change detection algorithm, the
interaction of the discussion of this point will required with a second
iteration of the algorithm.

4.6. Limitations and future work

Future studies should continue to investigate how and why the data
for different feature types varies as this could have implications for the
extension of the crowd sourcing approach from crater counting to other
landscape features. The differences found in the consensus for different
features types − both within and between experts and novices −
suggest that the number of novice volunteers required to produce data
comparable to a group of experts is inconsistent and the reasons for this
remain unclear.

The set of images used in this study was also limited, and further
work is required with more imagery, to examine the interplay between
a change detection algorithm and novice classifications in more detail,
and if and how they can work together effectively and efficiently. Work
on the automatic change detection pipeline presented here is ongoing
and will be published in more detail.

Further work can also investigate differences between novices’ and
experts’ performance with a simplified task concerned only with feature
identification. Such a study would go some way to determine whether
the differences found in the present study can be attributed to the de-
tection of change in a feature or whether they are also partly explained
by the morphology of the features themselves.

5. Conclusion

This paper has explored the potential of novices to detect change in
remotely sensed imagery of geomorphological features to a standard
comparable with a group of expert classifiers, to further understand the
strengths and limitations of the crowdsourcing approach within the
fields of Earth Observation and Planetary Science. To do this, a Citizen
Science project was created and tested on a group of Planetary
Scientists before was made public. The task showed participants two
images of the same location on the surface of Mars at two different
point in time and where they marked change they were asked to select
the feature type they had marked.

In short, the study found similarities in novice and expert identifi-
cation of image pairs that have changed, but differences in the classi-
fication of the type geological features both within and between experts
and novice classifiers, which should inform future work into the suit-
ability of crowd-sourcing for similar scientific aims. It has demonstrated
that consensus on changes in some geological features is much higher,
suggesting that the analysis of these features is much more suited to
crowd sourcing than others. Future work will investigate the underlying
causes of these differences, to determine the effect of factors suggested
by this study, such as the inherent complexity of feature morphology,
prior exposure to imagery and whether a more detailed training in the
task can improve classification consensus.
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