
Clinical Science (2017) 131 1225–1243
DOI: 10.1042/CS20170102

Received: 2 February 2017
Revised: 9 March 2017
Accepted: 24 March 2017

Accepted Manuscript online:
24 March 2017
Version of Record published:
31 May 2017

Research Article

Vascular endothelial growth factor-A165b ameliorates
outer-retinal barrier and vascular dysfunction in the
diabetic retina
Nikita Ved1,2, Richard P. Hulse1, Samuel M. Bestall1,3, Lucy F. Donaldson3, James W. Bainbridge2 and
David O. Bates1

1Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, U.K.; 2Department of Genetics, UCL Institute of
Ophthalmology, 11-43 Bath Street, London EC1V9EL, U.K.; 3School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K.

Correspondence: David Bates (David.Bates@nottingham.ac.uk)

Diabetic retinopathy (DR) is one of the leading causes of blindness in the developed
world. Characteristic features of DR are retinal neurodegeneration, pathological angiogen-
esis and breakdown of both the inner and outer retinal barriers of the retinal vasculature
and retinal pigmented epithelial (RPE)–choroid respectively. Vascular endothelial growth
factor (VEGF-A), a key regulator of angiogenesis and permeability, is the target of most
pharmacological interventions of DR. VEGF-A can be alternatively spliced at exon 8 to
form two families of isoforms, pro- and anti-angiogenic. VEGF-A165a is the most abund-
ant pro-angiogenic isoform, is pro-inflammatory and a potent inducer of permeability.
VEGF-A165b is anti-angiogenic, anti-inflammatory, cytoprotective and neuroprotective. In
the diabetic eye, pro-angiogenic VEGF-A isoforms are up-regulated such that they over-
power VEGF-A165b. We hypothesized that this imbalance may contribute to increased break-
down of the retinal barriers and by redressing this imbalance, the pathological angiogenesis,
fluid extravasation and retinal neurodegeneration could be ameliorated. VEGF-A165b pre-
vented VEGF-A165a and hyperglycaemia-induced tight junction (TJ) breakdown and sub-
sequent increase in solute flux in RPE cells. In streptozotocin (STZ)-induced diabetes,
there was an increase in Evans Blue extravasation after both 1 and 8 weeks of dia-
betes, which was reduced upon intravitreal and systemic delivery of recombinant hu-
man (rh)VEGF-A165b. Eight-week diabetic rats also showed an increase in retinal vessel
density, which was prevented by VEGF-A165b. These results show rhVEGF-A165b reduces
DR-associated blood–retina barrier (BRB) dysfunction, angiogenesis and neurodegenera-
tion and may be a suitable therapeutic in treating DR.

Introduction
Diabetic retinopathy (DR) affects both Type 1 and Type 2 diabetic patients [1] and is the leading cause of
blindness in the working population of the western world. Proliferative diabetic retinopathy (PDR), like
many other neovascular retinopathies, occurs as a result of an ischaemic retina. Persistent hyperglycaemia
causes structural, functional and haemodynamic changes in the vasculature [2] that can occur early on
in diabetes before noticeable signs of retinopathy, eventually resulting in focal ischaemia [3]. As a con-
sequence of hypoxia, angiogenesis is triggered by increased vascular endothelial growth factor (VEGF-A)
expression [4]. Newly formed vessels rarely recruit pericytes [5], lack vessel integrity and are prone to
rupture, as evidenced by microaneurysms and haemorrhage [6]. Diabetic macular oedema (DME) oc-
curs from blood–retina barrier (BRB) breakdown causing accumulation of fluid and plasma proteins
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from leaky blood vessels [7]. Both DME and PDR worsen with persistent hyperglycaemia and VEGF-A
up-regulation [8].

Treatments for DR can involve surgical and/or pharmacological intervention. Laser photocoagulation for both PDR
and DME aims to increase the amount of oxygen that is available to the retina [9]. Since the discovery of VEGF-A
in the pathogenesis of DR [4], the use of anti-VEGF-A agents such as ranibizumab (Lucentis, Genentech, San Fran-
cisco, U.S.A.), bevacizumab (Avastin, Genentech, San Francisco, U.S.A.) and aflibercept (Eyelea, Regeneron, New
York, U.S.A.) have been widely investigated in their treatment of DR [10]. These anti-VEGF-A treatment strategies
are mainly targeted at the inner BRB. Anti-VEGF-A therapy is effective in treating DR in approximately 50% of pa-
tients [11]. Conversely, anti-VEGF-A therapy in treating wet AMD is much more effective with up to 87% of patients
responding positively [12]. Neutralizing or inhibiting an endogenous cytokine such as VEGF-A could prove to be
deleterious. Within the eye itself, suppression of VEGF-A may lead to widespread geographic atrophy [13].

The BRB is a selectively permeable region formed by tight junctions (TJs) on retinal endothelial cells (RECs) [14]
and retinal pigmented epithelial (RPE) cells [15], which form the inner and outer BRB respectively. The BRB protects
the neural retina from contents of the retinal and choroidal circulations, has a role in homoeostatic maintenance of
the neural retina and controls fluid and molecular flux between cells.

Unlike the retinal vasculature, the choroidal vasculature is fenestrated to allow transport of nutrients from the sys-
temic circulation to the RPE, which in turn transports them to the outer retina [16,17]. This transcellular movement
is also used to transport outer retinal waste products back to the choroidal circulation [16]. Due to its close association
with the choroidal circulation, TJ integrity of the RPE is critical for the maintenance of the outer BRB. Moreover, the
fenestrae of the choroidal plexus may allow macromolecular leakage from the choroid that may otherwise be deleter-
ious in the retina. As well as providing a barrier function and a transporter of nutrients and waste, the RPE layer also
protects against oxidative stress by expressing superoxide dismutase, lipofuscin and melanin [18].

VEGF-A pre-mRNA can be alternatively spliced at exon 8 [19] to generate two families of isoforms. Selection
of either a proximal splice site or a distal splice site results in two different families of isoforms respectively [19].
The VEGF-Axxxb (x = amino acid number) family has a different terminal six amino acid sequence (SLTRKD) to
the pro-angiogenic family, VEGF-Axxxa (CDKPRR) [20]. Of the many isoforms of the VEGF-Axxxb family (x =
amino acid number), VEGF-A165b is the most well characterized and understood, and has properties that differ
from VEGF-A165a, its pro-angiogenic sister isoform. VEGF-A165b binds to VEGFR2, however unlike VEGF-A165a,
it does not fully stablize neuropilin 1 binding, and only weakly phosphorylates VEGFR2 [21]. VEGF-A165a and
VEGF-A165b competitively bind to VEGFR2, so VEGF-A165b prevents pro-angiogenic activity in vivo.

VEGF-Axxxb isoforms are found in the adult human vitreous indicating that both families of isoforms are required
for adequate ocular function [22]. However, in diabetic patients, this balance shifts in favour of VEGF-Axxxa, with the
percentage of VEGF-A in the vitreous that is anti-angiogenic decreasing (12.5 +− 3%) compared with that of normal
eyes (65.3 +− 7.2%) [22]. This indicates that progression of DR may be influenced by a switch in VEGF-A splicing.
Intravitreal administration of VEGF-A165b reduces neovascularization in oxygen-induced retinopathy (OIR) [23]
and in choroidal neovascularization [24], and has been shown to increase RPE cytoprotection [25]. VEGF-A165b is
also neuroprotective and anti-apoptotic [26].

It, therefore, seems possible that VEGF-A165b could ameliorate the vascular aspect of DR, and as it appears to be
cytoprotective to RPE cells, could act on the outer BRB, which would be an advantageous addition to ‘anti-VEGF-A’
therapies. We, therefore, tested the hypothesis that the cytoprotective, anti-angiogenic and anti-permeability proper-
ties of VEGF-A165b enable it to prevent BRB breakdown in vitro and in vivo in an animal model of DR.

Materials and methods
Animal experiments
All animal experiments were undertaken under an U.K. Home Office project licence, and approved by the local ethics
review board.

Streptozotocin-induced diabetes – 8 weeks
A total of 20 female Sprague–Dawley rats (200–300g, Charles River, U.K.) were weighed and fasted overnight, prior
to diabetes induction. Rats were given a single intraperitoneal (i.p.) injection of streptozotocin (STZ, 50 mg/kg,
Sigma–Aldrich, MO, U.S.A.). A total of ten control rats were injected with 300 μl saline i.p. A third of an insulin
capsule (LinShin, ON, Canada) was implanted subcutaneously to maintain body weight over the following 8 weeks
in the diabetic rats. On day 4 post-induction, blood glucose was tested from the tail vein. Rats with blood glucose
of 15 mmol/l and above were deemed diabetic. STZ-injected rats that did not become hyperglycaemic on day 4 were
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re-fasted overnight and then re-injected with STZ the following morning. For the chronic experiment, diabetic rats
were treated with 20 ng/g recombinant human (rh)VEGF-A165b (i.p., R&D Systems, MN, U.S.A.) or saline biweekly
for the experimental period. Control groups remained untreated for the duration of the experiment.

Streptozotocin-induced diabetes – 1 week
A total of ten rats were used for the 1 week induction of diabetes. STZ treatment was as described above on five rats
but without insulin treatment. On day 6 post-induction, rats with blood glucose �15 mmol/l received an intravitreal
injection of vehicle (5 μl of PBS) in one eye and 50 ng of VEGF-A165b in the contralateral eye as described below. Five
control animals had vehicle in one eye and no injection in the contralateral eye.

Intravitreal injections
Rats were anaesthetized with a single 10 mg/ml i.p. injection of Domitor (medetomidine hydrochloride, Pfizer, U.K.)
and Ketaset (ketamine hydrochloride, Zoetis, NJ, U.S.A.). A 1.5 cm 34-gauge hypodermic needle (Hamilton, NV,
U.S.A.) attached to a 5 μl syringe (World Precision Instruments, FL, U.S.A.) was inserted into the posterior chamber
of the eye at a 45◦ angle. Either 5 μl of sterile PBS or 50 ng rhVEGF-A165b was injected into the vitreous. The following
day animals were perfused with Evans Blue dye as described below.

Evans Blue dye perfusion
The Evans Blue dye perfusion technique was used as described [27] but with minor alterations. Evans Blue dye
(Sigma–Aldrich, MO, U.S.A.) was prepared by dissolving in normal saline for a final concentration of 45 mg/ml.
Rats were anaesthetized (i.p.) with 10 mg/ml Vetalar (ketamine hydrochloride, Boehringer Ingelheim, Germany) and
Domitor (medetomidine hydrochloride, Pfizer, U.K.) with additional anaesthesia provided as needed. The left jugu-
lar vein and femoral artery were cannulated with 0.6 mm OD tubing and Evans Blue (45 mg/ml) injected via the left
jugular vein over 10 s. Two minutes post-infusion, 200 μl of blood was removed from the femoral artery to establish
the initial vascular Evans Blue concentration. Fifteen minutes post-infusion, 100 μl of blood was removed, and this
volume was withdrawn every 15 min for 2 h. Eyes were kept moist using Viscotears (Novartis, Switzerland). Two hours
post-infusion, the chest cavity was opened and 200 μl of blood was withdrawn from the left ventricle to determine
the final plasma Evans Blue concentration. Rats were then perfused with 50 ml of saline through the left ventricle at
a physiological pressure of 120 mmHg, and exsanguinated. Both eyes were enucleated and bisected at the equator.
The retinas were dissected and weighed (wet weight) and then dried at 70 ◦C overnight, and weighed again (dry
weight). Formamide (120 μl) was added to each sample and incubated at 70 ◦C overnight. Following dye extraction,
the samples were centrifuged at 12000 rpm at 4 ◦C for 45 min. The supernatant was used to determine the Evans Blue
concentration. The blood samples were centrifuged at 4 ◦C at 12000 rpm for 45 min and diluted 1/100 in formamide
(Sigma–Aldrich, MO, U.S.A.). The absorbance of all samples was then measured at 620 nm, and the concentration of
Evans Blue dye in formamide was calculated using a standard curve of Evans Blue in formamide. Formulae for solute
flux and permeability – surface area product (PA) used are:

(a) Evans Blue (EB) absorbance in wet weight (μg/g):

EB concentration
(μg

ml

) × formamide volume (ml)
Retina wet weight

(
g
)

EB absorbance in dry weight (μg/g): same as (a), substituting wet weight for dry weight

(b) EB accumulation in tissue fluid (μg/ml):

EB concentration
(μg

ml

) × formamide volume (ml)
Retina wet weight

(
g
) − dry weight

(
g
)

(c) EB wet weight solute flux (μg/min per g):

EB wet weight absorbance
(

μg
g

)

Time (min)
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(d) EB dry weight permeability − surface area product (ml/min per g):

EB dry weight solute flux
( μg

min
g

)

Time averaged plasma EB conc
(μg

ml

) × total time (h)

The control permeability and solute flux were different between the 1-week and 8-week group. To compare the
effect of 8-week and 1-week, the values were normalized to their control cohort by subtracting the relevant control
cohort values from the STZ-treated (or STZ + VEGF-A165b-treated) values.

Isolation of human primary retinal pigmented epithelial cells
All RPE isolations were performed as described [28]. Upon reaching 80% confluence, cells were split and either trans-
ferred to a T75 flask (Greiner Bio One, Austria) or used for experimental purposes. RPE cells were used until passage
8 and cultured in DMEM:F12 + GlutaMAX (Invitrogen, CA, U.S.A.) supplemented with 10% FBS (Invitrogen, CA,
U.S.A.) and 1% penicillin/streptomycin (Invitrogen, CA, U.S.A.).

Trans-epithelial electrode resistance
Trans-epithelial electrode resistance (TEER) was measured using electric cell-substrate impedance sensing (ECIS,
Applied Biophysics, NY, U.S.A.) using a 1600R ECIS model. Cells were plated on eight-well plates (8W10E + plates,
Applied Biophysics). Wells were pre-treated with 10 mM l-cysteine (Sigma–Aldrich, MO, U.S.A.) for 30 min at 37 ◦C
to neutralize the electrodes. Wells were then washed with distilled water and stabilized in complete medium. Sixty
thousand cells were plated per well and were deemed confluent when the resistance was greater than 1000 �. Meas-
urements were collected at multiple frequencies (125, 250, 500, 1000, 2000, 4000, 8000 and 16000 Hz) for 1 h to
establish baseline data. Once baseline was established, growth factor treatment was prepared in 50 μl of medium.
Fifty microlitres of medium was carefully aspirated from each well of the plate and replaced with 50 μl of growth
factor treatment, and was allowed to equilibrate for 30 min before recommencing TEER evaluation. Plates were then
assayed for changes in TEER for at least 15 h. Data were analysed at 500 Hz to give an indication of TJ integrity and
paracellular flux.

Immunoblotting
Excised retinae or sub-confluent cells were lysed in RIPA lysis buffer supplemented with protease inhibitor cocktail
(Sigma–Aldrich, MO, U.S.A.). A total of 50 μg of total protein was re-suspended in sample buffer, heated at 95 ◦C
for 5 min and subjected to SDS/PAGE under reducing conditions. Subsequently, proteins were electrotransferred for
2 h at 4 ◦C to polyvinylidene fluoride membranes (PVDF, Bio-Rad, CA, U.S.A.). The membranes were then exposed
to primary antibodies (rabbit anti-ZO1 [Invitrogen], mouse anti-occludin [Invitrogen], rabbit anti-VEGFR2 Ty115
[Cell Signaling Technology], all 1:500 5% BSA and mouse anti-α tubulin [Santa Cruz], 1:1000 5% BSA). PVDF was
washed in Tris-buffered saline/0.3% Tween-20 (Sigma–Aldrich, MO, U.S.A.; TBS-T) and incubated with a secondary
peroxidase-conjugated antibody at a 1:10000 dilution (Thermo Fisher Scientific, MA, U.S.A.). Signals were detected
by enhanced chemiluminescence (ECL) substrate (GE Healthcare, U.K.). Western blots were also detected using a
fluorescent-labelled secondary antibody (donkey anti-mouse IR dye 1:7000, LI-COR Biosciences, NE, U.S.A.), in-
cubated at room temperature for 1 h, followed by detection using LI-COR Odyssey imaging system.

Immunofluorescence and quantification
To stain for TJs, RPE cells grown on 13 mm glass coverslips (Thermo Fisher Scientific, MA, U.S.A.) were treated with
either VEGF-A165a, VEGF-A165b, anti-VEGFxxxb, (clone 56/8) or glucose (Sigma–Aldrich, MO, U.S.A.). Cells were
fixed at room temperature with 4% paraformaldehyde (Sigma–Aldrich, MO, U.S.A.) 24-h post treating, permeabilized
in 0.05% Triton-X (Sigma–Aldrich, MO, U.S.A.) in PBS and then blocked in 5% normal goat serum (Sigma–Aldrich,
MO, U.S.A.) in PBS, all for 30 min at room temperature. All cells were incubated in primary antibody in PBS at 4 ◦C
overnight (mouse anti-occludin and rabbit anti-ZO1 [both Invitrogen at 4 μg/ml]). Cells were then incubated with
Alexa-Fluor 488 conjugated secondary antibody (1:500 Invitrogen, CA, U.S.A.) in PBS, for 45 min at room temper-
ature, followed by incubation with Hoechst (1:5000, Sigma–Aldrich, MO, U.S.A.) for 10 min at room temperature.
Coverslips were mounted on glass slides with Vectashield (both Thermo Fisher Scientific, MA, U.S.A.).

To stain retinal flat mounts, eyes were enucleated from culled rats and fixed in 4% PFA for 1 h. Eyes were then
hemisected and retinae were excised and transferred to blocking solution (5% NGS, 3% Triton-X100 and 1% BSA)
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for 2 h. Retinae were incubated at 4 ◦C overnight in mouse anti-NeuN (Merck Millipore, MA, U.S.A., 2 μg/ml) and
isolectin B4 (biotin conjugated from Bandeiraea simplicifolia, Sigma–Aldrich, MO, U.S.A., 5 μg/ml) prepared in
blocking solution followed by three PBS washes and then incubation with Alexa-Fluor 488 (1:500, diluted in blocking
solution) at room temperature for 2 h. After the last wash, samples were carefully flat-mounted onto a microscope
slide (VWR International, PA, U.S.A.) and mounted with Vectashield containing DAPI (Thermo Fisher Scientific,
MA, U.S.A.).

TJ staining in cells were imaged using an epifluorescence microscope (Nikon Eclipse E400) and analysed using a
custom made macro on Fiji [29]. Flat-mounted retinae were imaged using confocal microscopy (Leica SPE). Tortu-
osity and vascular density was determined using Imaris software (Bitplane, U.K.) and confirmed using Fiji.

Statistical analyses
Unless otherwise stated, all data are shown as mean +− SEM. All data, graphs and statistical analyses were calculated
with Microsoft Excel (Microsoft Office Software), GraphPad Prism v6 (GraphPad Software Inc., CA, U.S.A.), Fiji
and Imaris parametric and non-parametric statistical tests were chosen upon the results of the D’Agostino–Pearson
normality test in GraphPad Prism. Curve fitting was carried out using Prism. All results were considered statistically
significant at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).

Results
VEGF-A165a causes RPE tight junction breakdown
To assess the effect of VEGF-A165a on the outer BRB in vitro, RPE cells were treated with increasing concentra-
tions of rhVEGF-A165a and expression of the TJ marker occludin measured by immunofluorescence. As VEGF-A165a
concentration increased, occludin fluorescence intensity decreased. There was a significant reduction upon 1.0 nM
VEGF-A165a treatment (Figure 1A), 2.5 nM and 5.0 nM when compared with untreated controls (Figure 1B). Immun-
oblotting confirmed that occludin expression dose dependently decreased with VEGF-A165a treatment (Figure 1C
and D). Conversely, VEGFR2 expression increased with increasing VEGF-A165a concentration (Figure 1C and D).
The changes in occludin expression were matched by an increase in trans-epithelial conductance, a measure of
permeability to small solutes, upon increased VEGF-A165a concentration (Figure 1E). Permeability increased in all
groups treated with VEGF-A165a, being significantly different from control at 2.5 and 5nM (Figure 1E). Total solute
flux over a 24-h time period (area under the curve) demonstrated a dose dependent increase in permeability with an
EC50 of 832 pM (Figure 1F).

VEGF-A165b prevents VEGF-A165a -induced changes in tight junctions
To assess whether VEGF-A165b could be used to treat DR, its effect on RPE integrity was investigated by meas-
uring TEER of RPE monolayers. There was no significant increase in paracellular flux upon VEGF-A165b treat-
ment up to the highest concentration tested (5 nM) (Figure 2A). To determine whether VEGF-A165b could abrogate
VEGF-A165a-induced changes in TJ expression and permeability, we treated RPE cells with a single concentration
of VEGF-A165a (1 nM, EC70) and increasing concentrations of VEGF-A165b. When compared with untreated wells
(Figure 2B), VEGF-A165b inhibited the VEGF-A165a-mediated increase in permeability at 0.2 nM and above. Calcu-
lation of the total flux over 24 h indicated that VEGF-A165b inhibited the permeability induced by 1 nM VEGF-A165a
with an IC50 of 0.1 nM, and was completely abolished with equimolar treatment (Figure 2C).

To determine the effect on tight junctional proteins, RPE cells were treated with 2.5 nM VEGF-A165A, 2.5 nM
VEGF-A165b and 2.5 nM VEGF-A165a co-treated with 2.5 nM VEGF-A165b for 24 h. Cells were then fixed and stained
for ZO1, a marker of TJ function (Figure 2D), and membrane fluorescence intensity was measured for each cell per
field of view. Staining intensity was calculated relative to control cells.

Figure 2E shows that VEGF-A165b by itself had no significant effect on ZO1 expression or location (86.3% +− 25.0 of
control). VEGF-A165a significantly reduced ZO1 expression (43.7% +− 5.6), similar to its effect on occludin expression
(Figure 1). Co-treatment of VEGF-A165a and VEGF-A165b (‘both’) showed no significant change in ZO1 expression
(84.3% +− 5.6), compared with untreated, but showed a significant increase relative to VEGF-A165a-treated wells.
This was also seen by immunoblotting (Figure 2F). VEGF-A165b has no detrimental effect on either ZO1 or occludin
expression VEGF-A165a-reduced ZO1 and occludin expression (12.6 +− 9% and 22.7 +− 15% of control respectively).
VEGF-A165a and VEGF-A165b co-treatment showed no significant TJ loss (Figure 2G).
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Figure 1. VEGF-A165a causes RPE tight junction breakdown

RPE cells were treated with increasing doses of rhVEGF-A165a for 24 h (n=3, mean +− SEM). (A) Cells were fixed and stained for TJ marker,

occludin (green) and nuclei co-stained with Hoechst (Blue). (B) Intensity was measured using ImageJ and normalized to untreated. (C) Protein

lysate was extracted and immunoblotted for occludin and VEGFR2 expression (n=2, mean +− SD). Membranes were stripped and re-probed

for α-tubulin expression to confirm equal loading of protein and densitometry (D). (E) RPE cells were plated on ECIS plates (n=3, mean +−
SEM) to assess paracellular flux treated with a range of VEGF-A165a concentrations (0–5 nM). (F) Area under the curve was calculated over

the 25-h period and plotted against concentration. The concentration that gave a 50% increase in permeability was determined by curve

fitting using a four-parameter variable slope log(agonist) versus response curve in GraphPad Prism7; *p < 0.05, **p < 0.01, ***p < 0.001,

Figure A–C: one-way ANOVA with Dunnett’s post-test; Figure E: two-way ANOVA with Bonferroni post-hoc, significance shown at 5-h

intervals.
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Figure 2. VEGF-A165b prevents VEGF-A165a -induced changes in tight junctions

RPE cells were plated on ECIS plates (n=3, mean +− SEM) and treated with increasing concentrations (A) of VEGF-A165b (0–5 nM) or with

different proportions (B) of VEGF-A165b: VEGF-A165a and TEER were measured over 24 h (n=3, mean +− SEM) and impedance was measured

over 24 h; ***p < 0.001, two-way ANOVA with Bonferroni post-hoc. (C) Inhibition of the RPE total solute flux induced by 1 nM VEGF-A165a

calculated from the area under the curve; IC50 = 1 nM. Cells were stained (D) for ZO1 (green) and fluorescence intensity was calculated (E).

Protein lysate was immunoblotted for ZO1 and occludin expression (F). Membranes were stripped and re-probed for α-tubulin expression

and expression was quantified (G); n=3, one-way ANOVA, Tukey’s post-hoc test, *p < 0.05, **p < 0.01.

VEGF-A165b prevents hyperglycaemia-induced changes in TJ integrity
DR is associated with persistent hyperglycaemia. To determine whether outer BRB breakdown was also associated
with hyperglycaemia, RPE were cultured in normal or high glucose and (Figure 3) and assayed for occludin ex-
pression. Cells cultured in low glucose conditions alone showed no difference in occludin expression relative to un-
treated wells (Figure 3A) and the occludin was predominantly associated with cell junctions. When cultured in 35 mM
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Figure 3. VEGF165b prevents hyperglycaemia-induced changes in TJ integrity

(A) RPE cells (n=3, mean +− SEM) were cultured in 5 mM glucose, 5 mM glucose + 2.5 nM VEGF-A165a, 5 mM glucose + 1 μM 56/8,

35 mM glucose and 35 mM glucose + 2.5 nM VEGF-A165b for 24 h and stained for occludin (green) and nuclei were stained for Hoechst

(blue). (B) Protein lysate was also extracted under these conditions (n=2, mean +− SD) and immunoblotted against occludin. Blots were

then stripped and re-probed for β-actin and quantified (C). (D) TEER was assayed and area under the curve (E) was quantified (A–D and F,

one-way ANOVA with Tukey’s post-hoc test, **P < 0.0). (E) Two-way ANOVA with Tukey’s post-hoc, **P < 0.01, ***P < 0.001.
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glucose, occludin expression was not clearly delineated at the cell borders, and Western blotting showed that there
was less occludin expression overall at 35 mM glucose (Figure 3B and C). This was not an osmotic effect, as treatment
with 35 mM mannitol did not affect occludin expression. When co-treated with 2.5 nM VEGF-A165b, the occludin
expression was restored and was present at the junctions (Figure 3A and B) in the presence of 35 mM glucose.

To determine whether this effect was functional, we measured TEER under the same conditions. Hyperglycaemia
significantly increased permeability relative to normoglycaemic cells. In contrast with the effect on occludin expres-
sion, this increase was also seen with co-treatment with 2.5 nM VEGF-A165b (Figure 3D). Measurement of total solute
flux indicated that VEGF-A165b co-treatment did partially reduce permeability, but did not restore it to the level of
normoglycaemic cells.

VEGF-A165b prevents diabetes-induced increase in retinal vascular
density
To determine whether the effects of VEGF-A165b seen in vitro were also seen in animal models of DR, we investigated
the effect of long-term systemic treatment of diabetic rats with VEGF-A165b. Treatment of two groups of five rats with
STZ resulted in hyperglycaemia after 1 week, which was maintained for 8 weeks (Figure 4A). Half of the diabetic anim-
als were given biweekly injection (i.p.) of VEGF-A165b (20 ng/g). The half-life of VEGF-A165b is 4.2 h when given i.p.
[30] and this dose and timing have previously been shown to exert anti-nociceptive [31] and anti-nephropathic [32]
effects in rats and mice. A control group did not receive STZ. After 8 weeks, the retinae were excised, flat mounted and
stained for blood vessels with isolectin B4 (IB4) (Figure 4B). Interestingly, there was a significantly increased vascular
area in the diabetic retinae (Figure 4C) when compared with control retinae (1.15 +− 0.08 mm2 and 0.85 +− 0.007 mm2

respectively, p < 0.01 one-way ANOVA). VEGF-A165b-treated diabetic retinae showed a reduction in vascular area
compared with both control retinae and diabetic + vehicle-treated retinae. To confirm this, we calculated the volume
occupied by vasculature. Diabetic + vehicle-treated retinae expressed a greater vascular volume (Figure 4D) relative
to control retinae (5.6 × 106 μm3 +− 4.8 × 105 and 3.8 × 106 μm3 +− 3.8 × 105 respectively). VEGF-A165b treatment
prevented diabetes-induced vascular remodelling (2.3 × 106 μm3 +− 2.9 × 105), but also showed a significant reduc-
tion in volume relative to control retinae. Calculation of integrated density also demonstrated an increase in IB4
staining in the diabetic animals, which was reduced by VEGF-A165b treatment (Figure 4E). Vessel tortuosity is an
another pathological feature of PDR [7] where vessels dilate in response to ischaemia and become more tortuous.
This aspect is thought to precede neovascularization [33] and is often used as an indicator of severity of disease in
other ocular diseases as well as DR. Tortuosity was defined as ‘change in straightness’ and analysis showed there was
a trend in diabetic + vehicle animals where individual rats showed an increase in tortuosity (Figure 4F) relative
to control rats and diabetic + VEGF-A165b-treated rats. Systemic VEGF-A165b intervention showed a statistically
significant reduction in average vessel tortuosity (0.074 +− 0.004). There was no difference between untreated and
VEGF-A165b-treated groups.

Systemic VEGF-A165b prevents diabetes-induced increase in solute flux
In an additional cohort of five animals per group, Evans Blue was used to assay retinal permeability in diabetic
and control rats. Again, STZ-treated rats became hyperglycaemic within 1 week and maintained hyperglycaemia
for 8 weeks (Figure 5A). Excised STZ + vehicle-treated retinae were noticeably more blue (Figure 5B) than both
control- and STZ + VEGF-A165b-treated retinae. When the amount of Evans Blue per g of tissue that had leaked
during the 2 h of the experiment (solute flux) was calculated (Figure 5C), it was significantly increased in dia-
betic retinae (0.148 +− 0.047 μg/min per g) relative to control retinae (0.012 +− 0.028 μg/min per g, n=10 retinae).
VEGF-A165b-treated retinae had a significantly reduced EB solute flux (0.0002 +− 0.021 μg/min per g) relative to
diabetic + vehicle retinae. There was no statistically significant difference between control- and diabetic +
VEGF-A165b-treated retinae. Solute flux was used to calculate the permeability surface area product (PA) based on the
concentration of plasma Evans Blue during the experiment (Figure 5D). There was a significantly increased EB PA in
diabetic retinae (0.007 +− 0.002 μl/g per h) relative to control retinae (1.12 × 10 − 5 +− 4.08 × 10 − 4 μl/g per h). There
was a significant decrease in EB PA in VEGF-A165b-treated groups (6.63 × 10 − 5 +− 8.96 × 10 − 4 μl/g per h), relative
to diabetic + vehicle-treated groups. There was no significant difference between control- and VEGF-A165b-treated
groups.

Intravitreal VEGF-A165b prevents diabetes-induced increase in solute flux
Most treatments for DR and AMD are administered locally, either intravitreally (IVT) or subretinally, as most
drugs are hypothesized to not cross the BRB effectively. VEGF-A165b was given IVT to see if local administration
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Figure 4. VEGF-A165b prevents diabetes-induced increase in retinal vascular density

(A) STZ (50 mg/kg, i.p.) was used to induce diabetes in Sprague–Dawley rats (n=10). Saline was injected in vehicle controls (i.p., n=4).

Diabetic rats were either treated with VEGF-A165b (20 ng/g, biweekly i.p., n=5) or saline (biweekly i.p., n=5). All groups were weighed

weekly and rats with a blood glucose �15 mmol/l were deemed diabetic. (B) Rats were killed at 8 weeks and retinae were stained for blood

vessels using IB4 and DAPI. Vascular density was calculated from three parts of the retina in each animal (denoted by shading) using Imaris

software, measured as both area (C) and volume (D) occupied by vasculature in a 2D and 3D plane respectively. This was corroborated by

measuring integrated density on Fiji software (E). Retinae were also assessed for vessel straightness using Imaris software as a marker for

vessel tortuosity (F); one-way ANOVA, Tukey’s post-hoc test, *p < 0.05, **p < 0.01 and ***p < 0.001).
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Figure 5. Systemic VEGF-A165b prevents diabetes-induced increase in solute flux

(A) Sprague–Dawley female rats were induced with diabetes using STZ (50 mg/kg i.p., n=10) and control rats (n=5) were injected with saline

(i.p.) on day 0. After 4 days, blood glucose was tested and blood glucose � 15mmol/l were deemed diabetic. (B) Diabetic rats were treated

with either vehicle (saline, biweekly i.p., n=5) or VEGF-A165b (20 ng/g, biweekly i.p., n=5). At 8 weeks post-STZ induction, Evans Blue (EB,

45 mg/kg) was injected i.v. into terminally anaesthetized rats. Plasma was collected every 15 minutes for 2 h, after which, animals were killed

and retinae were excised. (C) Retinae were weighed and EB was extracted using formamide, allowing EB solute flux (C) and permeability

surface area product (D) to be calculated; Kruskal–Wallis test with Dunn’s post-hoc test, **p < 0.01, ***p < 0.001.

could prevent diabetes-mediated TJ dysfunction. However, given the short half-life of VEGF-A165b [30], the
8-week STZ model would be unsuitable as the rat would require several intraocular injections a week. We,
therefore, investigated the effect of intraocular injection of VEGF-A165b 24 h before assessment of Evans Blue
extravasation in diabetes after 1-week based on a 7-day protocol as established in Xu et al [27]. Again, upon
excision, diabetic + vehicle-treated retinae were considerably more blue than contralateral, VEGF-A165b-injected
eyes (Figure 6A). EB solute flux (Figure 6B) increased in diabetic retinae (0.244 +− 0.05 μg/min per g) relative to
control + vehicle-injected retinae (0.089 +− 0.024 μg/min per g). VEGF-A165b treatment induced no change in
EB solute flux (0.131 +− 0.038μg/min per g) compared with control, but was lower, but not significantly so, than
diabetic animals. There was no significant difference between vehicle-injected control retinae and untreated retinae
(0.067 +− 0.016 μg/min per g) indicating that the IVT injection did not exert a significant, inflammatory effect. When
measuring PA (Figure 6C), diabetes alone caused a significant increase in EB extravasation (0.012 +− 0.004 μl/g
per h) relative to vehicle-treated and untreated controls (0.002 +− 0.008 μl/g per h and 0.002 +− 4.0 × 10 − 4 μl/g per
h respectively). VEGF-A165b treatment significantly reduced EB extravasation (0.005 +− 0.001 μl/g per h) relative
to contralateral diabetic retinae. There was no significant difference between STZ + VEGF-A165b-treated, control
+ vehicle and untreated groups. When these data were compared with data obtained at 8 weeks (Figure 5), relative
solute flux (Figure 6D) increased robustly between 1 and 8 weeks in diabetic animals (by 0.18 +− 0.05 μg/min per g
and 0.16 +− 0.047 μg/min per g respectively), whereas relative solute flux in VEGF-A165b-injected animals remained
relatively unchanged between 1 and 8 weeks of treatment (0.064 +− − 0.038 μg/min per g and 0.012 +− 0.022 μg/min
per g greater than their respective controls). The difference between STZ + vehicle-treated solute flux and STZ
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Figure 6. Intravitreal VEGF-A165b prevents diabetes-induced increase in solute flux

(A) Sprague–Dawley rats were induced with diabetes using STZ (50 mg/kg). After 6 days, 5 μl of saline was injected into one eye of each

diabetic rat, and 5 μl of 10 ng/μl rhVEGF-A165b injected into the contralateral eye (n=5). Control rats had no injection in one eye, and

5 μl of saline in the contralateral eye (n=5). (B) On day 7, Evans Blue (EB, 45 mg/kg) was injected into anaesthetized rats (i.v.). Plasma

was collected every 15 min for 2 h, after which, animals were killed and retinae excised. (C) Evans Blue solute flux was calculated from

total EB absorbance after 2 h and (D). Permeability surface area product (PA) was calculated using solute flux as a measure of plasma EB

absorbance. The increase in solute flux (D) and permeability (E) after 1 week and 8 weeks in STZ + vehicle-treated retinae compared with

their respective controls was compared that with VEGF-A165b treatment; B and C = one-way ANOVA with Bonferroni post-hoc test, E =
two-way ANOVA with Tukey’s post-hoc test, *p < 0.05, **p < 0.01.

+ VEGF-A165b-treated solute flux at 1 and 8 weeks was different at both time points (p = 0.056 and p < 0.01 for
1 and 8 weeks respectively). This trend was similar for PA (Figure 6E). PA was raised above control at both 1 and
8 weeks in diabetic + vehicle retinae (11.2 +− 4.42 × 10 − 3 μl/g per h and 5.94 +− 2.2 × 10 − 3 μl/g per h greater
than their respective controls). In VEGF-A165b-treated retinae, while there was less of an increase in PA at 1 week
(4.0 +− 1.0 μl/g per h above control) compared with STZ-treated animals (p < 0.01) at 8 weeks, the increase in PA
was completely abolished ( − 0.8 +− 0.89 μl/g per h compared with control, Figure 6E).

VEGF-A165b prevents retinal ganglion cell shrinkage
Retinae from three animals were stained with NeuN to assess retinal ganglion cells (RGC) number (Figure 7A). Whilst
there was no change in number of RGCs (Figure 7B) expressed in diabetic + vehicle retinae (67 +− 15.8) relative
to control retinae (94 +− 9.07), there was a slight non-significant increase in RGC number in VEGF-A165b-treated
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Figure 7. VEGF-A165b prevents retinal ganglion cell shrinkage

(A) Sprague–Dawley rats induced with diabetes were treated with vehicle (saline i.p., n=4) or VEGF-A165b (20 ng/g i.p., n=4) biweekly for

8 weeks. Animals were then killed and retinae excised and (A) stained for RGC marker NeuN. RGC NeuN + staining was counted (B) and

areas measured (C). (D) The frequency of NeuN + areas (50 μm bins) was plotted against area, and Lorentzian curve fitted, and curve fit

compared with an F-test; P < 0.01.

diabetic retinae (76.9 +− 2.97). When assessing NeuN positive area (Figure 7C), a similar trend was observed. The dis-
tribution of cells was further analysed by measuring the area of each NeuN positive cell within each single high-power
field (40× magnification). Cells were then binned according to size, into bins of 40 μm2, and displayed as the average
number of cells per high-power field in each bin from 40 to 320 μm2. The data were fitted with a Gaussian curve
(Figure 7D). Both the control- and VEGF-A165b-treated groups demonstrated a normal distribution of areas of cells
with NeuN positive staining (Figure 7D, grey and black filled curves), whereas the STZ group had a significant left
skew to the distribution (Figure 7D, red filled curve, p < 0.01 F-test for comparison of distribution). This indicates that
diabetic NeuN positive stained foci in diabetic rats were smaller than control, with most RGC staining being 0–39 and
80–19 μm2 respectively. Diabetic rats treated with VEGF-A165b also had peak expression within 80–119 μm2. Inter-
estingly, at 0–30 μm2, there was significantly more RGC staining within that range in diabetic retinae (4.19 +− 0.908)
relative to both control (0.583 +− 0.583) and diabetic + VEGF-A165b (0.021 +− 0.917).
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Discussion
VEGF-A165b prevents VEGF-A165a-mediated changes in barrier properties
Studies looking at the inner BRB, specifically RECs, have shown that increasing levels of VEGF-A both in vitro and
in vivo induce ‘rapid phosphorylation’ of occludin and ZO1 resulting in increased barrier permeability [34]. We
show here that VEGF-A165a dose-dependently reduced occludin expression (Figure 1A and C) in RPE cells, which
form the outer BRB. This decrease in occludin expression coincided with an increase in paracellular conductance
(Figure 1E), confirming that occludin expression is tightly linked with paracellular flux. As VEGF-A165a concentra-
tion increased from 0 to 5 nM, VEGFR2 expression increased in RPE cells. An increase in VEGFR2 stimulation results
in increased VEGFR2 phosphorylation and increased activity of PKC [35]. Increased PKC activity is hypothesized to
induce changes in the actin cytoskeleton, which would in turn induce changes in the ZO1–occludin complex, resulting
in TJ degradation/internalization and subsequent increase in permeability. VEGF-A165b, whilst it binds to VEGFR2
with equal affinity as VEGF-A165a [20], does not activate the receptor completely. When it binds, it only partially
phosphorylates VEGFR2, and therefore elicits a different downstream effect of reducing permeability, promoting cell
survival and reducing angiogenesis [36].

It has previously been acknowledged that there is a switch in isoform splicing in the diabetic eye in favour of
pro-angiogenic isoforms such that VEGF-A165a levels overwhelm VEGF-A165b levels [22]. This means that compet-
itive binding of both isoforms to VEGFR2 will also be in favour of VEGF-A165a, resulting in increased angiogenesis
and increased permeability. VEGF-A165b alone does not elicit an increased paracellular flux in RPE (Figure 2A) when
treated at the same concentrations. Figure 2D and F show that 2.5 nM VEGF-A165b treatment alone has no significant
effect on location of ZO1 or on ZO1 and occludin expression.

By co-treating VEGF-A165a with VEGF-A165b, there was a restoration in TJ expression and a reduction in permeab-
ility of the RPE to baseline (Figure 2). Similar but less robust effects have also been shown using typical and atypical
PKC inhibitors in endothelial cells, where VEGF-A-induced increased TEER and occludin phosphorylation were re-
duced [35,37]. As mentioned earlier, VEGF-A165b binding to VEGFR2 results in incomplete auto-phosphorylation of
the receptor in endothelial cells. As a result, downstream signalling events such as activation of PKC is reduced [36]
thereby reducing TJ phosphorylation.

VEGF-A165b prevents diabetes-induced retinal vascular remodelling
The use of STZ-induced hyperglycaemia is a widely used and accepted model of Type 1 diabetes due to its rapid,
reliable and robust phenotypic onset. STZ combined with the addition of long-term insulin enables a more accurate
model of Type 1 diabetes. It has been hypothesized that PDR is the predominant ‘sight-threatening lesion’ in Type 1
diabetic patients [38]; however, comorbidities associated with diabetes typically take many years of poor glycaemic
control to develop. To compensate for this, the experimental protocol duration was set at 7–8 weeks in rats. This
time frame has been shown to produce reproducible features of diabetic neuropathy [31], and as diabetic neuro-
pathy and retinopathy occur over a similar time frame, we hypothesized that this would also be a suitable model of
PDR.

It was evident that there was indeed an increase in retinal vascular density in diabetic retinae compared with
untreated animals, after 8 weeks of diabetes. Increased area and volume occupied by vasculature both increased in
vehicle-treated diabetic retinae (Figure 4C and D). This is the first report of an increase/change in the retinal vascu-
lature in STZ diabetes. This model of insulin-supplemented chronic diabetes in rats could lead to vascular remodel-
ling, and would thus be a valuable new model of PDR. It would be useful to understand whether this is associated with
increased endothelial cell division earlier in the model, and whether true angiogenesis is happening. The increased
vessel tortuosity seen in diabetic retinae suggests a model that is more representative of human DR.

Vessel tortuosity typically precedes angiogenesis and is indicative of a hypoxic environment. Instances where there
are changes in NO expression in the retina, will also result in changes in vasodilatation both longitudinally and ra-
dially, both occurring at different rates and therefore resulting in a meandering structure [33], as observed in the
diabetic + vehicle-treated rat retinae (Figure 4F). Interestingly, in VEGF-A165b-treated groups there was less vessel
tortuosity. This may indicate that VEGF-A165b, when applied systemically, can cross the BRB and potentially in-
terferes with eNOS signalling by preventing HIF transcription or by interfering with NO production. This would
prevent the need for the vessels to constantly dilate and reperfuse, as the vasculature may not be occluded at all. This
demonstrates the importance in maintaining the correct balance between both VEGF-A isoforms. The increased
vascular density observed in Figure 4 is likely to be mediated by delta-like ligand 4 (DLL4). In hypoxic microenvir-
onments where there is increased VEGF-A expression and VEGFR2 activation, endothelial cells in these regions may
express more DLL4. DLL4–Notch-mediated tip and stalk cell formation respectively result in tubule formation and,
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eventually, widespread angiogenesis [39,40]. In models of CNV and choroidal hypoxia, angiogenesis has been linked
with increased VEGF-A-induced DLL4 expression [41]. This has been consistently shown to be the key aspect of ret-
inal angiogenesis [40]. Interestingly, in a model of in vitro haemangioma, VEGF-A165b treatment prevented DLL4
expression by VEGF-A165a in haemangioma endothelial cells [42]. Thus, in the diabetic + VEGF-A165b-treated
retinae competitive binding of both isoforms to VEGFR2 could be preventing excessive VEGF-A165a-induced
VEGFR2 activation resulting in more VEGF-A165b binding to VEGFR2 and a resultant weakened activation of
the receptor.

STZ-induced diabetes as a model of DME and the effect of rhVEGF-A165b
on diabetic hyperpermeability
There was an increase in extravasation of Evans Blue dye in the retina after both 1 and 8 weeks of diabetes (Figure 6E
and 6F), the former similar to that previously shown by Qaum et al. [43] to be VEGF-A dependent. Development
of increased retinal permeability at 8 weeks has not previously been described in STZ diabetes, but it appears that
8 weeks of diabetes provides a more robust phenotype, relative to 1-week diabetes as there is an increase in both EB
solute flux and PA in the 8-week model relative to the 1-week model.

There are many pathways by which extravasation could occur in this model, but it is perhaps most likely to be TJ
phosphorylation. This relies on the assumption that the increased solute flux is due to increased vascular permeabil-
ity, and not due to other changes in vasoactivity. Similar models using the EB technique are in agreement that diabetes
increases EB leakage and is likely mediated by PKC [35,37,44]. PKC has been linked directly to occludin phosphoryla-
tion in vitro and in vivo predominantly at the serine and threonine residues, and potentially these residues on ZO1
[35,37], resulting in their internalization to an intracellular pool. Inhibition of atypical PKC isoforms, such as PKCζ ,
have shown promising results with regard to VEGF-induced but not diabetes-induced permeability in vivo [37].

Activation of DAG and PKC results in an up-regulation of VEGF-A165a (or the mouse equivalent, VEGF-A164a) and
NF-κB, both of which are pro-inflammatory and up-regulate expression of intracellular adhesion molecule (ICAM-1)
and TNF-α, which result in increased retinal permeability [45,46–48]. VEGF-A165b has been shown to reduce TNF-α
mediated ICAM activation in RPE cells, and therefore is potentially anti-inflammatory [49]. VEGF-A165b compet-
itively binds to VEGFR2, in line with the partial activation of VEGFR2 by VEGF-A165b, this ligand only partially
activates DAG and therefore partially activates typical PKC isoforms; therefore, there is little or no phosphorylation
of TJs. VEGF-A165b also reduces TNF-α expression in the outer BRB, perhaps by blocking atypical PKC activation in
the RPE, also preventing TJ phosphorylation and subsequent hyperpermeability.

However, it is possible that the increase in extravasation is due to an increase in blood flow to the retina, which
would result in increased delivery of Evans Blue to the tissue [50] .While this cannot be ruled out it is unlikely as
blood flow is generally reduced in DR [2].

VEGF-A165b protects against the reduction in NeuN staining induced by
diabetes
RGC loss is a prominent feature of the neurodegenerative aspect of DR and is significantly part of vision loss. We did
not see any significant reduction in NeuN cell number, consistent with previous work that shows SD rats develop a
non-significant reduction in RGCs after 4 months of insulin-supplemented diabetes [51]. However, it was evident that
diabetic + vehicle-treated rats showed a change in the distribution of the size of NeuN staining. NeuN is an antibody
that stains Fox3, an RNA-binding protein that is normally found in the nucleus. A reduction in the size of the NeuN
staining area could therefore be due to a reduction in expression of Fox3, or a small number of RGC undergoing
apoptosis resulting in nuclear condensation (pyknosis) or fragmentation (karyorrhexis). However, we were unable to
confirm this due to the nature of the NeuN staining and the lack of nuclear marker in those retinas. Further work
could be undertaken to investigate whether this 8-week model of insulin supplementation in diabetes does lead to
RGC undergoing cell death.

VEGF-A is up-regulated in the diabetic retina, particularly in insulin-treated diabetes in SD rats [52] and both
the VEGF-A165a and VEGF-A165b isoforms have neuroprotective functions in the retina [26,53,54]. Furthermore,
insulin has been hypothesized to prevent RGC apoptosis in rat models of DR [55], conflicting with what is observed
in patients where insulin therapy causes a transient worsening of retinopathy [56,57]. VEGF-A and insulin may be
protecting the RGC layer from the vascular dysfunction in the earlier stages of DR. It is possible that over time,
once the vascular dysfunction develops and there is an increase pro-inflammatory markers, RGCs are no longer
sufficiently protected by VEGF-A and insulin. If we extend this model to a significantly longer time point, there may
be RGC dysfunction. An additional caveat to this experiment is that some NeuN antibodies have been known to
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also stain cholinergic amacrine cells that have been displaced to the GCL. However, this is usually only 15–20% of
cells stained by NeuN, and it is therefore likely that the majority of these results are from RGCs [58]. Nevertheless,
VEGF-A165b does appear to protect against RGC nuclear shrinkage and perhaps amacrine cell nuclear shrinkage,
both cell types associated with visual dysfunction in DR.

Summary
VEGF-A165b, systemic or locally provided, was able to reduce signs of DR, particularly increased vascular permeab-
ility, vessel remodelling and neuronal dysfunction in the diabetic eye. This appears to be one of, if not the, only
endogenous agent able to reduce all three cardinal signs of retinopathy in an animal model of diabetes. VEGF-A165b
is generated by alternative splicing of the VEGF-A gene at the last exon. The mechanisms underlying this splice site
control have recently been elucidated, and it is clear that the activation of the protein kinase SRPK1 is one mechanism
through which VEGF-A165a is up-regulated and VEGF-A165b is down-regulated [59]. Inhibitors of SRPK1 have been
shown to be anti-angiogenic in animal models of choroidal neovascularization [28], prostate [60] and colorectal can-
cer [61] and malignant melanoma [62]. These inhibitors are being developed as a new class of anti-angiogenic agents
for age-related macular degeneration [63], and if they can up-regulate VEGF-A165b in DR, then the results shown here
indicate that they could be potential novel therapeutics, having the advantage over existing anti-angiogenic therapies
of being neuroprotective for RGC cells and protective for RPE cells, at the same time as reducing extravasation and
preventing new vessel growth.

Clinical perspectives
• Diabetes results in leakage of fluid into the retina through the BRB. This permeability increase is mod-

ulated by VEGF-A. VEGF-A165b is a splice form of VEGF-A, which is anti-angiogenic. We, therefore,
tested to see whether it could also be anti-permeability.

• VEGF-A165b inhibited permeability of the outer BRB in vitro and retinal permeability in vivo.

• This suggests that increasing VEGF-A165b expression could prevent increased permeability in DR.
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