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Regulatory feedback response mechanisms to phosphate
starvation in rice
Ishan Ajmera 1,2, Jing Shi3,4, Jitender Giri5, Ping Wu3, Dov J. Stekel 1, Chungui Lu1,6 and T. Charlie Hodgman 1,2

Phosphorus is a growth-limiting nutrient for plants. The growing scarcity of phosphate stocks threatens global food security.
Phosphate-uptake regulation is so complex and incompletely known that attempts to improve phosphorus use efficiency have had
extremely limited success. This study improves our understanding of the molecular mechanisms underlying phosphate uptake by
investigating the transcriptional dynamics of two regulators: the Ubiquitin ligase PHO2 and the long non-coding RNA IPS1.
Temporal measurements of RNA levels have been integrated into mechanistic mathematical models using advanced statistical
techniques. Models based solely on current knowledge could not adequately explain the temporal expression profiles. Further
modeling and bioinformatics analysis have led to the prediction of three regulatory features: the PHO2 protein mediates the
degradation of its own transcriptional activator to maintain constant PHO2 mRNA levels; the binding affinity of the transcriptional
activator of PHO2 is impaired by a phosphate-sensitive transcriptional repressor/inhibitor; and the extremely high levels of IPS1 and
its rapid disappearance upon Pi re-supply are best explained by Pi-sensitive RNA protection. This work offers both new
opportunities for plant phosphate research that will be essential for informing the development of phosphate efficient crop
varieties, and a foundation for the development of models integrating phosphate with other stress responses.
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INTRODUCTION
Ensuring a secure and sustainable food supply for the growing
human population is a global priority. Current agricultural
production is unsustainable because of the increasing scarcity of
fresh water, limited availability of land, global climate change,
degradation of soil and the depletion of fertilizer stocks.
Phosphate availability is often the limiting factor in crop growth,
and its interactions with other nutrients are complex.1–3 The use of
phosphate fertilizer is both economically and ecologically
unsustainable, because phosphate stocks are a non-renewable
mineral resource,4 and the run-off of surplus fertilizer damages the
environment.5 An alternative to the high use of phosphate
fertilizer is to develop crops with increased phosphorus use
efficiency,6,7 though success on this front has been hampered by
the complexity of phosphate chemistry and plant responses to the
low availability of soil phosphate.8 It is essential to better
understand the mechanisms involved in regulating phosphate
uptake and homeostasis in plants.
Inorganic phosphate (Pi) starvation triggers a broad range of

adaptive responses at the biochemical, genetic, physiological,
morphological, anatomical and rhizospheric scales. These include
derepression of high-affinity phosphate transporters on the outer
cell membranes, a metabolic shift to use of sulfate, reduced
photosynthesis, reduced shoot growth, altered root architecture
(including lateral root formation and long root hairs), formation of
aerenchyma, and secretion of exudates into the surrounding soil
to solubilize phosphate, stimulate soil bacteria and attract

filamentous fungi to receive Pi from long distances. Pi-starvation
responses (PSRs) are themselves complex, but regulated by
mechanisms largely conserved between Arabidopsis and rice.9

The key transcriptional activator (TA) in Pi starvation signaling is
phosphate starvation response 1 in Arabidopsis, and its ortholog
OsPHR2 in rice (Oryza sativa), see Supplementary Fig. 1. The gene
for the latter is constitutively expressed, but the protein does not
become active until it is both free to migrate to the nucleus (which
occurs with the proteolysis of SPX4 under low cytosolic Pi
conditions),10 and be sumoylated (which is a general feature of
plant abiotic stress).11 The active form results in the expression of
numerous Pi-starvation-induced genes, including some to make
better use of the current cellular phosphate and a microRNA,
miR399, which is the systemic integrator defining Pi demand
across the whole plant. Mostly miR399 is expressed in shoots and
translocated to the root via the phloem, causing degradation of
PHO2 mRNA through target mimicry. The PHO2 gene encodes a
ubiquitin-conjugating E2 enzyme (UBC24) that indirectly inhibits
high-affinity Pi transporters (PHTs) and phosphate 1 (PHO1), the
transporter which puts Pi into the xylem for systemic distribu-
tion.12–16 The PHO2 mRNA-miRNA399 interaction is also modu-
lated by a long non-coding RNA, At4 in Arabidopsis and induced
by phosphate starvation 1 (IPS1) in rice.17,18 OsIPS1 is induced by
Pi starvation and has a region partially complementary to
miR399,19 which enables it to sequester miR399, reducing the
availability of free miR399 for degradation and inhibiting complete
silencing of PHO2 mRNA.
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This work integrates mathematical modeling, informatics and
laboratory techniques to analyze the molecular regulation of
phosphate acquisition during deficiency, with particular emphasis
on PHO2 and IPS1 transcript dynamics. Three new regulatory
features are predicted: first, that factors other than miR399 are
responsible for the early decline in PHO2 transcript levels; second,
that PHO2 appears to negatively regulate its own expression; and
third, that the high levels of IPS1 and its rapid drop upon Pi re-
supply are best explained by Pi-sensitive RNA protection (RP). The
resulting mathematical model also provides a base for studying
other aspects of the phosphate-starvation response, including its
combined effect with other stresses.

RESULTS
Delayed expression of miR399 compared with PHO2 mRNA loss
A time-course expression data for miR399, alongside data for IPS1
and PHO2 transcripts to test reproducibility against previously
published data, were obtained for plants under Pi stress, using
quantitative RT-PCR. The level of PHO2 mRNA shows a progressive
drop, most steeply at earliest times, to about half the original level
over 11 days of Pi stress (Fig. 1a); IPS1 appears to increase
exponentially to extremely high levels over the same timescale
(Fig. 1b). In contrast, there is a delay of at least 24 h before miR399
levels begin to increase in a roughly sigmoid manner (Fig. 1c).
From these data, it seems unlikely that early decline in PHO2
mRNA levels can be directly attributed to the effects of miR399.

A new mathematical model of the molecular regulation of
phosphate uptake
The published20,21 and the presented (Fig. 1) experimental data
pose two questions about the regulation of the PHO2 and IPS1.
First, what causes the drop in PHO2 mRNA at early times upon Pi
stress, given that corresponding levels of miR399 are quite low?
Second, what causes the extreme elevation of IPS1 in response to
Pi starvation, and its steep and sudden decline following Pi re-
supply? To address these questions, a new mathematical model
for the regulation of phosphate uptake in plants has been
developed by adopting the molecular network presented as Fig.
2a. The model includes key regulators, both from upstream and
downstream of miR399, PHO2 and IPS1: SIZ1, PHR2, PHTs and
PHO1. This is primarily to explore the impact of miR399, PHO2 and
IPS1 on phosphate uptake and allow the model to integrate other
aspects of Pi homeostasis and other stress conditions.22–24

This base model, called the Pi Original Model (PiOM), is a system
of ten coupled non-linear ordinary differential equations and

defined in Supplementary Methods (Equation 1–10). The values of
some parameters were identified from the literature, rationally
assumed or calculated (see Supplementary Table 2), while some
were inferred by fitting the model to the experimental data as
described in the Supplementary Table 3. The available experi-
mental data points include: fold changes in the miR399, PHO2
mRNA and IPS1 levels in response to Pi starvation presented in Fig.
2; and published mRNA-SEQ data, particularly for PHO2.20,21 Later,
the base model was modified to test five competing hypotheses
to explain unknown mechanisms regulating PHO2 transcription
and two potential hypotheses for IPS1 dynamics (see below).

PiOM fits IPS1 and miR399 data but poorly predicts PHO2
dynamics
The PiOM fit to the experimental (fold change) data for IPS1 and
miR399 is good (Fig. 3b, c), including the induction of miR399 and
IPS1 and their minimal steady state expression under both Pi-
deficient and sufficient conditions. The level of PHO2 mRNA starts
to decline as early as 6 h following Pi stress but does not disappear
completely.20 Figure 3a shows that the model reflects the latter,
presumably because IPS1 reversibly sequesters the bulk of the
miR399 available in the roots. However, the model does not
correspond with the early drop in PHO2 mRNA level. This is
because the level of miR399 increases in roots after 24 h of Pi
stress and indicates that something else is affecting PHO2
transcript levels, particularly at early times.

Potential hypotheses and mechanistic models for early PHO2 loss
Five hypotheses are considered as potential mechanistic explana-
tions for the observed PHO2 transcript dynamics. These are
diagrammatically presented in Fig. 2b–f and mathematically
encoded as modified versions of the PiOM base model given in
Supplementary Methods (Equations 11–17). The first four hypoth-
eses assume some unknown regulator Z acting as (i) a Pi-
dependent TA of PHO2 (PdTA), (ii) a Pi-dependent protector of
PHO2 mRNA (PdRP), (iii) a Pi-sensitive binder of PHO2 mRNA
causing mutual degradation (PsMD), or (iv) a Pi-sensitive
transcriptional repressor of PHO2 (PsTR). The fifth hypothesis
assumes a Pi-sensitive RNase promoting degradation of PHO2
mRNA in the absence of CytoPi (PsRA). Each hypothesis was tested
as an individual model with an attempt to fit the complete data
set while using the previously estimated parameters from the
PiOM base model as initial values.

Fig. 1 Expression profiles of a PHO2, b IPS1 and c miR399 in Pi-starved rice seedling (cv. Nippobare) roots. The expression levels are relative to
the +P condition at time zero. Relative expression levels were normalized to that of the internal control, Os-ACTIN
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PsTR model best explains the early regulation of PHO2 in Pi-
deficient condition
All five models show a good fit to the PHO2 (Fig. 4), IPS1 and
miR399 data set in Pi-deficient conditions (see Supplementary
Figs. 2 and 3) with -2 log-likelihood values lower than the original

model. Using the inferred Akaike Information Criterion (AIC), the
values from statistical analysis indicate that the hypothesis models
offer significantly better fits to the data than the original model,
see Table 1. Among the five hypotheses, PdRP gives the lowest
AIC value and, statistically, it is the best hypothesis for PHO2

Fig. 2 Schematic representation of the molecular regulation of Pi uptake. a A simplified depiction of the molecular network regulating Pi
acquisition. b–f five hypotheses to explain the observed PHO2 transcript dynamics under Pi-deficient conditions. Panels b–f depict individual
hypotheses (models) in a single root cell (thick black box). Red lines and letters denote the assumed reactions and species, respectively. Each
hypothesis assumed the presence of an unknown regulator Z b–e or R (F) acting in different manners. Protein, ligand, mRNA, complexes and
Pi ions are denoted by rectangles (pink), red ellipse, parallelogram (green), squares (transparent) and blue ellipse, respectively. Pointed solid
arrows denote direct interactions and fluxes, barred arrows denote inhibition or repression, and dashed lines represent indirect interactions. ø
denotes endogenous production and degradation of the molecules
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transcript dynamics. However, there is a qualitative difference
between the models in predicting the drop in PHO2 level at 6-h
time point following Pi starvation. This feature of PHO2 is only
captured by PsMD and PsTR models. Altogether, this exhibits a
need to distinguish between qualitatively correct and statistically
sound models, which can be achieved by experimentally
determining when PHO2 mRNA levels start to decrease upon Pi
stress.
PHO2 mRNA levels from rice roots after 0, 3, 6 and 12 h of Pi

starvation were measured using qRT-PCR (Supplementary Fig. 4).
The Pi-sufficient conditions showed no evidence of being

regulated by the circadian clock and, if anything, increased
slightly over 12 h. In contrast, almost 80% of PHO2 mRNA was lost
by 3 h of Pi stress but recovered slightly at 6 and 12 h. This result
again favors the PsMD and PsTR models. It is difficult to envisage
biological examples of PsMD. Biochemically, a PsMD would require
a Pi-binding RNA or Pi-binding proteins that are mutually
degraded with a target RNA. The first of these is highly unlikely
due to mutual electrostatic repulsion, while no evidence has been
found for the latter. However, PsTR is more biologically credible as
proteins could contain allosteric Pi-binding pockets, making this
the most probable model to explain the early PHO2 transcript

Fig. 3 Model fitting to time-course data. Circle represents the qRT-PCR data. Square and triangles denotes fold change mRNA-seq data
adopted from,20, 21 respectively for a PHO2, b IPS1 and cmiR399. Prediction intervals of 80, 85, 90, 95 and 100% are shown as red dashed lines.
Only three data points for PHO2 fall within the certainty limits of prediction interval of the model, unlike IPS1 and miR399 which almost all lie
within the 80% interval

Fig. 4 Fitting of different hypothesis models to PHO2 data. Panel a represents the fits of PiOM model. Panels b–f depicts the fit offered by
individual hypothesis, labeled in the respective panel. Red dashed lines represent the 80% prediction interval of the respective hypothesis
model. These simulations have been carried out by sampling parameter values from normal (Gaussian) distributions with means and standard
deviations given from the parameter fitting in Monolix. Circle represents the qRT-PCR data. Square and triangles denotes fold change mRNA-
seq data adopted from,20, 21 respectively
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dynamics. Certainly, further experimental validation is needed to
confirm this. The early-time qPCR profile also implies the presence
of a feedback mechanism that attempts to maintain PHO2
transcript levels. For example, PHO2 might ubiquitinate and
hence degrade its own activator, analogous to the maintenance of
plant hormone-associated TF levels.25 Such a mechanism could
also explain why PHO2 mRNA does not completely disappear.

Anomalies in the predicted profiles of PHO2 and IPS1 upon Pi re-
supply
PHO2 and IPS1 transcript levels are observed to undergo a sudden
drop within 24 h following Pi re-supply,20 see Fig. 5. A sudden loss
of IPS1 would release the bound miR399, causing the observed
rapid loss of PHO2 mRNA. Both the PiOM and PsTR models
incorrectly predict the observed drastic drop in mRNA levels of
PHO2 and IPS1 (Fig. 5a, c) and the plausible rise in miR399 level in
response to Pi repletion (Supplementary Fig. 5a, b). This suggests
some extra level of regulation concerning PHO2 and IPS1, not
represented in the current models. The fold change of PHO2
between 200–500 h in RNAseq data is larger than those predicted
by the model, Fig. 5a, b.

Potential hypotheses for elevation of IPS1
The IPS1 level is observed to rise more than 1000 fold within
21 days of Pi stress in roots. At present, the models account for
elevation of IPS1 in response to Pi deficiency by having an
extremely high rate of maximal synthesis (m8 = 696) and a larger
Hill co-efficient (r = 4) than is normally used to model transcrip-
tional regulation;26 though the latter could represent an
amplification mechanism. However, both models poorly predict
the repletion dynamics IPS1 (Fig. 5c), showing that something is
not correct. Potentially, the high IPS1 levels could arise from either
a Pi-sensitive “super-transcriptional complex” causing very high
rates of synthesis or a Pi-sensitive protector that impedes IPS1
degradation. These shall be considered in turn.

Table 1. List of AIC, −2 log-likelihood and P-value for the hypothesis
models

Model AICa −2LLa Tb △AICc kd P-valuee

PiOM 238.7 142.7 48 – – –

PdRP 192.2 88.2 52 46.5 4 4.14E-11

PdTA 206.58 106.58 50 32.12 2 1.43E-08

PsRA 211.51 111.5 50 27.19 2 1.69E-07

PsMD 218.86 106.86 56 19.84 8 1.88E-05

PsTR 234.31 122.31 56 4.39 8 8.96E-03

a The AIC and log-likelihood (−2LL) values were generated for each model
while estimating parameters using MONOLIX
b total number of parameters from both structural and statistical models
c AIC – AIC(of PiOM)
d T – T(of PiOM)
e Probability (χ2 k4ΔAIC + 2k).42 P-values were calculated using the χ2

distribution (CHIDIST) function in Microsoft Excel

Fig. 5 Observed and predicted profiles of PHO2 and IPS1 transcripts under Pi-depletion and repletion conditions. Panels a and b correspond
to PHO2, and c and d to IPS1. Panels a and c show predicted profiles of PiOM and PsTR models, while panels b and d depict models
incorporating RNA-protection. The blue dashed lines show the fold change in RNA-SEQ values from.20 The red and black lines denote PsTR
and PiOM models, respectively. The gray zones denote the period of Pi-resupply
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Poor evidence for a super-promoter upstream of IPS1
Recent work on auxin-response elements27 show how multiple
transcription factor binding sites appear to act cooperatively
rather than additively to cause higher levels of induction, with
seven binding sites causing the maximum stimulation of almost
30 fold over constitutive expression levels. In the case of IPS1,
transcription is ~1000 times higher than constitutive levels.
Around the IPS1 promoter (see Supplementary Fig. 6), there are
three copies of the P1BS motif—the binding sites for PHR2S.28

One of the P1BS sites is in the transcribed region, where RNA
polymerase would at least temporarily separate the DNA strands,
resulting in loss of PHR2S binding at that position. Furthermore,
BLASTN searches with this upstream sequence revealed the
presence of an unannotated tRNA-gly gene on the anti-sense
strand. This makes the potential regulatory region of IPS1 shorter
(~1200 bp), and data from20 indicate that the tRNA gene is also
expressed in response to Pi stress, see Supplementary Fig. 7.
Hence, this sequence analysis does not rule out the possibility of
an initiator complex that allows extremely high rates of synthesis
but it seems most unlikely.

Evidence for the protection of IPS1 RNA in Pi-deficient conditions
RNA protection has not been reported in plants but there are two
lines of evidence to support this hypothesis in the case of IPS1.
First, RNA stability is known to be altered by protein binding. IPS1
is predicted to have two Pumilio binding sites near its 3ʹ-end, see
Supplementary Fig. 6. The role of Pumilio-RNA-binding proteins is
well understood in animal systems.29,30 Published transcriptomic
data20 show that the genes in this family are expressed at
substantial levels and some may be elevated by Pi stress, see
Supplementary Fig. 8. Another predicted protein-binding site near
3ʹ-end is for ELAV-like protein 1 (HuR). The nearest similar genes in
plants are annotated as RNA-recognition and Poly-adenylate
binding proteins, making these candidate IPS1-protectors as well.
The second line of evidence is from RNA structure prediction.

Querying 3ʹ-end subsequence of IPS1 RNA with different sizes of
the poly-A tract in BLASTN searches against NCBI-Sequence Read
Archive (SRX336041) showed that the IPS1 polyA tail was up to
~18 bases (see Supplementary Fig. 13). Predicted structures of
IPS1, with and without an 18-base polyA tail are shown in
Supplementary Fig. 9. These indicate that the poly-A tail
considerably stabilises its structure through greatly increasing
double-stranded (ds) RNA formation, which would make it more
resistant to attack by ribonucleases. One can envisage a protein
that binds to the polyA tail (or to the polyA—polyU dsRNA region)
in the absence of Pi. Upon repletion, this protein would no longer
bind and IPS1 would revert to its original sensitivity to RNase
degradation.
The 3ʹ-end of IPS1 also has several stretches of complementary

sequences, which could potentially form a pseudoknot, see
Supplementary Fig. 10. Given that an 11 base-paired RNA
sequence forms a complete cycle of a double helix, the 3ʹ-end
of IPS1 can form a stem-loop consisting of two hydrogen bonding
regions—6 and 11 base pairs long. The terminal loop contains
AATAAAG that could form the pseudoknot, which could be
stablised by the polyA tail hydrogen bonding to the 5ʹ sequence
to form a 12 and, potentially, 4 base-paired polyA-polyT duplexes.
Much smaller pseudo-knots are known to inhibit degradation by
3ʹexonucleases in plant RNA viruses.31,32 Potentially, it could play a
role here. Considering everything, RNA protection is a more
credible hypothesis and is worth investigating further.

Models incorporating IPS1 RP
Using the PiOM and PsTR models, the IPS1 protection hypothesis
was tested by altering the degradation rates of IPS1 and IMC as
functions of CytoPi and examining Pi repletion conditions after a

period of Pi stress. Thus, the magnitude of the IPS1 degradation
rate d07

� �
in the RP version of the models is altered and defined as

the ratio of the original degradation rate of IPS1 (d7) and the
steady-state initial CytoPi concentration under typical Pi condition
(CytoPi, at time zero), as described in Supplementary Methods (Eqs
18–21). In these RP models, the degradation rates of IPS1 and IMC
decreases in response to low Pi, allowing IPS1 to accumulate and
its reversible interaction with miR399 to form more IMC complexes.
However, the degradation rates of IPS1 and IMC rapidly return to
normal upon Pi re-supply. The sudden degradation of IMC will
thereby cause a rapid increase in the pool of miR399 and a
consequent short-term decline in the PHO2 mRNA levels. PiOM-RP
and PsTR-RP model were fitted to the Pi-stress data set, re-
estimating the model parameters, see Supplementary Table 6.

Models substantiate the idea of IPS1 RP in Pi-deficient conditions
Both PiOM-RP and PsTR-RP models fit the observed profiles of IPS1
and PHO2 under Pi depletion and repletion condition (Fig. 5d, b).
While manually exploring the parameter space for the binding
constant for IPS1-miR399 (k7), the value in the range of 10−5 s-1

gave the best fit and thus was adjusted accordingly to 1.9e-05,
which is well still within the range of weak binding constants (i.e.,
10−5 s-1) for an RNA-microRNA interaction.33 Notably, the re-
estimated parameters for IPS1 synthesis are significantly lower,
particularly the Hill coefficient “r” dropping to 2, but are in keeping
with values often seen in models of gene regulation.25,26 These
results endorse the idea of IPS1 RP under low Pi conditions and
thus laboratory validation is the obvious next step. PsTR-RP is
available from the BioModels database.34 Sensitivity and robustness
analysis of all the models, with and without RP, were performed, as
described in Supplementary Methods, and emphasize the very low
robustness of IPS1, which presumably explains why its variable was
not particularly sensitive to its Hill coefficient “r”.

DISCUSSION AND CONCLUSION
This work has investigated the interface between local and
systemic signals in rice roots experiencing phosphate starvation,
in particular the mechanisms underlying the induced early loss of
PHO2 mRNA, and the extreme elevation and steep decline of IPS1
RNA, upon Pi starvation and re-supply, respectively. Reproducing
the known temporal dynamics of PHO2 and IPS1 transcripts, qRT-
PCR show delay in the appearance of miR399 compared to the
early PHO2 mRNA loss in response to Pi starvation. This suggests
the presence of an extra Pi-stress mechanism, causing an early loss
in PHO2 mRNA levels.
A new mathematical model for the regulation of phosphate

uptake in plants has been developed to test plausible hypotheses,
concerning the regulation of PHO2 and IPS1 transcripts under
different Pi conditions. Owing to the sparsity of the data, a non-
linear mixed-effect modeling approach35 was employed for
parameter estimation of the original model (PiOM). The model
correctly predicts the observed temporal dynamics of miR399 and
IPS1 under Pi-sufficient and deficient condition. But, the prediction
for PHO2 mRNA dynamics was poor with a 24-h delay in the early
drop upon Pi starvation. This can be attributed to the slow
appearance of miR399, which is known and modeled as the only
degrader of PHO2 mRNA. To investigate the early loss of PHO2
mRNA under Pi stress, five hypothetical mechanisms were
modeled. Among these, a PsTR is the most credible hypothesis
on the basis of the improved overall fit to the data, fit to the
observed 6-h time point value and the prior general under-
standing of allosteric regulation.
To aid resolution of the hypothetical mechanisms, qRT-PCR data

were generated for four time points over initial 12 h following Pi
starvation. Around 80% of PHO2 mRNA is lost by 3 h, at a rate
close to the normal degradation rate for RNA, and is partially
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restored by 6 h upon Pi stress. This is indicative of PHO2 regulating
its own level of transcription, as the plant protein DELLA is known
to regulate its own expression in a similar time scale.25 This leads
to a hypothesis for regulation of PHO2 expression as shown in
Supplementary Fig. 11.
Sequence analysis of the upstream region 500 bp of OsPHO2

gene predicts various potential transcription factor binding sites.
This largely includes signatures for MYB, WRKY, bHLH, bZIP, MAD-
box and DOF transcription factor families (see Supplementary
Table 7). The expression profiles of the members from the
corresponding transcription factor family under deficient Pi
conditions are presented in Supplementary Fig. 12. The members
in all the predicted transcription factor families show both similar
and contrasting expression patterns to that of PHO2 mRNA in
response to Pi starvation. However, experimental analyses are
required to identity the TA of PHO2 and subsequent, character-
ization of its transcriptional inhibitor (TI).
In response to Pi re-supply, both PiOM and PsTR models

incorrectly predict the observed steep drop in the levels of PHO2
and IPS1 RNAs, thus pointing to yet some other regulatory
interaction not represented in these models. IPS1 RNA is known to
sequester miR399 and accumulates to extremely high levels in
plant roots during phosphate stress. Potentially, the sudden loss of
IPS1 in response to Pi re-supply would release the bound miR399
causing the observed rapid loss of PHO2 mRNA. The observed
IPS1 profiles can be explained by either the gene having a Pi-
hypersensitive “super-promoter” synthesizing extremely high IPS1
RNA under low Pi conditions or the RNA being protected from
degradation, ideally by Pi-sensitive RNA-binding proteins. Revised
models incorporating RP favor the latter. Informatics analyses
point to PUMILIO proteins and/or RNA secondary structure playing
the role in IPS1 protection. However, exhaustive experimental
investigation is required to explore this aspect of IPS1 dynamics. If
confirmed, this would be the first case of regulation by RP in plant
systems.
It is obviously desirable to extend systems approaches to other

aspects of the phosphate-starvation response, including metabolic
reprogramming. Evidence from Arabidopsis indicates that its PHR2
homolog is the key metabolic regulator,36,37 so the same is likely
to be the case for rice. Furthermore, in rice PHR2 is known to
promote the synthesis and secretion of enzymes and organic acids
that promote mobilization of internal and external Pi.38,39

Although it would be comparatively easy to extend the model
to include PHR2 regulation of metabolism and re-cycling, it
extremely difficult to estimate the corresponding model para-
meters. At present, the only available integrated transcriptomic
and metabolomics rice study considers only one time point,40 and
hence is of little value for parameter estimation. Indeed, this
aspect of plant phosphate regulation deserves more research
attention.
Sensitivity analysis shows that cytosolic Pi levels are most

sensitive to the internal utilization rate (U) and hence is another
important aspect to study. However, this parameter covers a range
of phenomena that require careful consideration, including
vacuolar uptake, and incorporation into lipids and nucleic acids.
The above metabolic reprogramming might be expected to
reduce this utilization rate, and some vacuolar phosphate may be
released back into cytosol. Furthermore, the above-mentioned
exudates normally result in some extra Pi becoming available,
allowing a higher rate of utilization. Inter-compartmental Pi
dynamics would be fascinating to model but almost impossible
to study in vivo, especially in intact plants. However, root mass
continues to increase during Pi starvation.9 For all these reasons,
this first modeling study has maintained a fixed utilization rate in
order to gain a better understanding of the interactions in the
local and systemic components of the starvation response.
In summary, this work has led to three hypotheses concerning

the regulation of Pi uptake in rice: (1) PHO2 protein mediates the

degradation of its own TA to maintain constant PHO2 mRNA
levels; (2) The binding affinity of the TA of PHO2 is impaired by a
phosphate-sensitive transcriptional repressor/inhibitor (TI); and (3)
IPS1 RNA is protected from degradation by phosphate-sensitive
RNA binding proteins. It is anticipated that this work will enable
further studies and development in plant phosphate research,
ultimately informing the development of crop varieties with
improved Phosphorus Use Efficiencies.

MATERIALS AND METHODS
Plant materials and growth conditions
Rice (Oryza sativa cv. Nipponbare) was used across all the experiments.
Seeds were first pre-germinated in a wet paper towel in tap water at 28 °C
for 5 days before being transferred into +Pi solution. Seeds For both the
initial and later experiments, the 15-days old rice seedlings were
transferred into the –Pi solution for 11 days and 24 h, respectively.
Hydroponic experiments were performed under controlled conditions
(day/night temperature of 26/22 °C and a 12−h photoperiod, 200 µmol
photons m−2 s−1) using a randomized experimental design, allowing 0.5 L
of hydroponic solution per plant. The rice culture solution previously
described in20 was used in the hydroponic growing system. For Pi-
sufficient (+Pi) condition, 320 µM NaH2PO4 was used. While, NaH2PO4 was
replaced by 320 µM NaCl for Pi-deficient (−Pi) solution. The pH of the
solution was adjusted to 5.5, and renewed every 3 days. All experiment
procedures such as media replacement and sample collection were
performed at a similar time of the day to minimize possible circadian
effects.

RNA isolation and qRT-PCR analysis
Total RNA from frozen root samples, pooled from five plants, was isolated
using TRIzol reagent (Life Technologies) followed by treatment with DNase
I (Qiagen) and column clean-up using the RNeasy mini kit (QIAGEN) to
eliminate genomic DNA contamination. cDNA was synthesized using 5 μL
of total RNA (500 ng) using SuperScript III First-Strand Synthesis kit
(Invitrogen, Catalog No. 18080–400). The synthesized cDNA is cleaned
using an enzyme mix included in the kit (E. coli RNase H). qRT-PCR was
performed using PerfeCTa qPCR SuperMix on a LightCycler 480 Real-Time
PCR system (Roche) according to the manufacturer’s instructions. Relative
expression levels were normalized to that of an internal control, Os-ACTIN.
qRT-PCR for quantification of mature miR399 was performed following a
published protocol41 and the corresponding primers are published in.10

PHO2, IPS1 and Actin primers used for qRT-PCR are listed in Supplementary
Table 8. For Fig. 1, the experiments conducted with n (biological
replicates) = 2 for IPS1 and miR399 at 0, 24, and 72 h; n = 4 for IPS1 and
miR399 at 168 and 264 h, and n = 3 for PHO2. For all other qRT-PCR
experiments three biological replicates were used.

Parameter estimation
The unknown model parameters were inferred by non-linear mixed-effects
models implemented in the software named MONOLIX (MOdèles
NOnLInéaires à effects miXtes), version 4.33 s35 freely available at (http://
www.lixoft.eu/). This software consists of algorithms that combine the
stochastic approximation of expectation maximization algorithm with a
Markov chain Monte Carlo procedure to estimate the maximum likelihood
of the model parameters without any linearisation techniques. In
MONOLIX, the statistical models are evaluated by using analytical model
selection tools, which includes information criteria such as AIC and
Bayesian information criterion, and statistical tests such as Likelihood Ratio
test and Wald Test. Such evaluation tools allow the building of improved
statistical models, enhancing the precision of the estimates for the
parameters. More details on model fitting using MONOLIX are given in
Supplementary Methods.

Centroid secondary structure prediction of IPS1 mRNA
RNA structures were generated using RNAfold (rna.tbi.univie.ac.at) with
default settings. Centroid, rather than minimum free-energy, structures
were generated as these show the most probable base-pairing regions in
the ensemble of secondary structures likely to be found near the most
thermodynamically stable conformation.
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Data availability
The data and figures generated during this study are available in FigShare
(https://figshare.com/projects/Regulatory_feedback_response_mechanism
s_to_phosphate_starvation_in_rice/26098). The mathematical model is
available at Biomodels with ID MODEL1702210000 (http://www.ebi.ac.uk/
biomodels/).
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