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In numerous signal processing applications, non-stationary signals should be segmented to

piece-wise stationary epochs before being further analyzed. In this article, an enhanced segmen-

tation method based on fractal dimension (FD) and evolutionary algorithms (EAs) for non-sta-

tionary signals, such as electroencephalogram (EEG), magnetoencephalogram (MEG) and

electromyogram (EMG), is proposed. In the proposed approach, discrete wavelet transform

(DWT) decomposes the signal into orthonormal time series with different frequency bands.

Then, the FD of the decomposed signal is calculated within two sliding windows. The accuracy

of the segmentation method depends on these parameters of FD. In this study, four EAs are

used to increase the accuracy of segmentation method and choose acceptable parameters of

the FD. These include particle swarm optimization (PSO), new PSO (NPSO), PSO with muta-

tion, and bee colony optimization (BCO). The suggested methods are compared with other most

popular approaches (improved nonlinear energy operator (INLEO), wavelet generalized likeli-

hood ratio (WGLR), and Varri’s method) using synthetic signals, real EEG data, and the dif-

ference in the received photons of galactic objects. The results demonstrate the absolute

superiority of the suggested approach.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

Generally speaking, signals can be categorized in two main
types, namely, deterministic signals and non-deterministic sig-

nals. A non-deterministic signal is the one with varying statis-
tical properties and can be considered random in analysis.
Most of physiological signals, such as electroencephalogram

(EEG) and electrocardiogram (ECG) signals, are of this type.
Attending at the process, random signals can be divided into
two main classes: stationary and non-stationary signals.

Unlike in non-stationary signals, the statistical properties,
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Fig. 1 Variation in FD when amplitude or frequency changes.
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such as mean and variance, do not change in stationary
signals.

Since processing stationary signals is much easier and less

complicated than non-stationary ones, the signal is often bro-
ken into segments within which the signals can be considered
stationary. In this way, each part can be analyzed or processed

separately [1–3]. This approach is taken in a number of signal
processing applications such as tracking the changes in bright-
ness of galactic objects [1] and EEG signal processing [2].

Generally, there are two types of segmentations for non-
stationary signals. In the first type, the signal is segmented into
equal parts. This process is called fixed-size segmentation.
Although computing fixed-size segmentations is simple, it does

not have sufficient accuracy [4]. In the second technique used
for non-stationary signals, which is called adaptive segmenta-
tion, the signals are automatically segmented into variable

parts of different statistical properties [2].
The generalized likelihood ratio (GLR) method has been

suggested to obtain the boundaries of signal segments by using

two windows that slide along the signal. The signal within each
window of this algorithm is modeled by an auto-regressive
model (AR). In the case where the windows are placed in a seg-

ment, their statistical properties do not differ. In other words,
the AR coefficients remain roughly constant and equal. On the
other hand, if the sliding windows fall in dissimilar segments,
the AR coefficients change and the boundaries are detected

[5]. Lv et al. have suggested using wavelet transform to
decrease the number of false segments and reduce the compu-
tation load [6]. This method has been named wavelet GLR

(WGLR) [6].
Agarval and Gotman proposed the nonlinear energy oper-

ator (NLEO) in order to segment the electroencephalographic

signals using the following equation [7]:

wd½xðnÞ� ¼ x2ðnÞ � xðn� 1Þxðnþ 1Þ ð1Þ

If x(n) is a sinusoidal wave, then, w[x(n)] will be defined as
follows:

QðnÞ ¼ w½A cosðx0nþ hÞ� ¼ A2 sin2 x0 ð2Þ

when x0 is much smaller than the sampling frequency, then
QðnÞ ¼ A2x2

0. In fact, any change in amplitude (A) and/or fre-

quency (x0) can be discovered in Q(n). In the case of a multi-
component signal, Hassanpour and Shahiri [8] demonstrated
that the linear operation creates cross-terms, something that
defeats the purpose of the NLEO method in properly segment-

ing the signal. In order to reduce the effects of cross-terms in
the NLEO method, using the wavelet transform has been pro-
posed [8]. This new method is known as improved nonlinear

energy operator (INLEO).
A novel approach for non-stationary signal segmentation in

general, and real EEG signal in particular, based on standard

deviation, integral operation, discrete wavelet transform
(DWT), and variable threshold has been proposed [9]. In this
paper, it was illustrated that the standard deviation can indi-

cate changes in the amplitude and/or frequency [9]. In order
to take away the impact of shifting and smooth the signal,
the integral operation was utilized as a pre-processing step
although the performance of the method is still relevant on

the noise components.
Several powerful image segmentation methods using hidden

Markov model (HMM) [10], triplet Markov chains (TMC)
[11], and pairwise Markov model (PMM) [11] have been pro-
posed by Lanchantin et al. [11]. These methods have been val-
idated by different experiments, some of which are related to

semi-supervised and unsupervised image segmentation. It
should be mentioned that these approaches can be used and
discussed in non-stationary and stationary signal segmentation

approaches too.
Inasmuch as real time series are usually nonlinear and to

extract important information from the measured signals, it

is significant to utilize a pre-processing step, such as a wavelet
transform (WT), to reduce the effect of noise [12]. DWT repre-
sents the signal variation in frequency with respect to time.

After decomposing the signal, fractal dimension (FD) is

employed as a relevant tool to detect the transients in a signal
[13]. FD can be used as a feature for adaptive signal segmen-
tation because FD can indicate changes not only in amplitude

but also in frequency. Fig. 1 shows when the amplitude and/or
frequency of a signal are changed, the FD changes. The origi-
nal signal consists of four segments. The first and second seg-

ments have the same amplitude. The frequency of the first part
is, however, dissimilar from that of the second part. The ampli-
tude of the third segment is different from that of the second

segment. The fourth segment is different from the third one
in terms of both amplitude and frequency. This signal illus-
trates that if two adjacent epochs in a time series have different
frequencies and/or amplitudes, the FD will change.

Two key parameters for FD-based detection of transients in
the signals are determined experimentally. These are the win-
dow length and the overlapping percentage of successive win-

dows. Small windows might not be fully capable of clarifying
long-term statistics suitably whereas long windows may over-
look small block variations. The overlapping percentage of

the successive windows influences both the correctness of the
segmentation results and the computational load.

To achieve accurate segmentations, here we investigate the

use of particle swarm optimization (PSO), new PSO (NPSO)
and PSO with mutation, and bee colony optimization (BCO)
to estimate the aforementioned parameters. These algorithms
are fast search techniques that can obtain precise or locally

optimal estimations in the desired search space.
The other sections of this paper are organized as follows. In

‘Fractal dimension’ Katz’s method to calculate the FD has

been explained in brief. ‘Evolutionary algorithms’ introduces
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four methods in EAs, including PSO, NPSO, the proposed
PSO with mutation, and BCO. ‘Proposed adaptive signal seg-
mentation’ represents the proposed methods in four steps. The

description of three types of data (synthetic data, real EEG sig-
nals, and real photon emission data) is included in ‘Simulation
data and results’. Subsequently, the performance of the pro-

posed methods is compared with the outputs of some of the
existing methods including, three powerful evolutionary
approaches based on the FD, WGLR, INLEO, and Varri’s

methods. The last section concludes the paper.
The hybrid approach

Fractal dimension

The FD of a signal can be a powerful tool for transient detec-
tion. FD is widely used for image segmentation, analysis of
audio signals, and analysis of biomedical signals such as
EEG and ECG [14,15]. Also, FD is a useful method to indicate

variations in both amplitude and frequency of a signal.
There are several specific algorithms to compute the FD,

such as Katz’s, Higuchi’s, and Petrosian’s. All of these algo-

rithms have advantages and disadvantages, and the most
appropriate one depends on the application [15].

Katz’s algorithm is slightly slower than Petrosian’s. In

Katz’s algorithm, unlike in Petrosian’s, no pre-processing is
required to create a binary sequence. This algorithm can be
implemented directly on the analyzed signal. In this method,

the dimension of FD of a signal can be defined as follows [15]:

FD ¼ logðLÞ
logðdÞ ð3Þ

where L depicts length of the time series or the total distance
between consecutive points and d illustrates the maximum dis-
tance between the first data of time series and the data that

have maximum distance from it. Mathematically, d can be
defined by the following equation:

d ¼ maxðdistanceðx1; xiÞÞ ð4Þ

where xi is the ith data point that has maximum distance from

the first data point of the time sequence at time point l [15].

Evolutionary algorithms

Particle swarm optimization

PSO is a fast, powerful evolutionary algorithm, inspired by
nature, initially proposed by Kennedy and Eberhart in 1995

[16]. The social behavior of animals such as birds and fish at
what time they are together was the inspiration source for this
method [16]. PSO, such as other evolutionary algorithms, ini-

tiates with a random matrix as an initial population. Unlike
genetic algorithms (GAs), standard PSO does not have evolu-
tionary operators such as breeding and mutation. Each mem-
ber of the population is called a particle. In this method, a

certain number of particles formed at random make the pri-
mary values. There are two parameters for each particle: posi-
tion and velocity, which are defined, respectively, by a space

vector and a velocity vector. These particles shape a pattern
in an n-dimensional space and move to the desired value.
The most optimum position of each particle in the past and

the best position among all particles are stored separately.
Based on the experience from the prior moves, the particles
decide how to move in the next step. In each iteration, all par-
ticles in the n-dimensional problem space go to an optimum

point and, in every iteration, the position and velocity of each
particle can be amended as follows

viðtþ1Þ¼wviðtÞþC1r1ðpbestiðtÞ�xiðtÞÞþC2r2ðgbestiðtÞ�xiðtÞÞð5Þ

xiðtþ 1Þ ¼ xiðtÞ þ viðtþ 1Þ ð6Þ

where n stands for the dimension (1 6 n 6 N), C1 and C2 are
positive constants, generally considered 2.0. r1 and r2 are ran-

dom numbers uniformly between 0 and 1; w is an initial weight
that can be defined as a constant number [17].

Eq. (6) indicates that the velocity vector of each particle is

updated (vi(t+ 1)) and the latest and previous values of the
vector position (xi(t)) make the new position vector
(xi(t+ 1)). As a matter of fact, the updated velocity vector
influences both the local and global values. The best global

solution (gbest) and the best solution of the particle (pbest) stand
for the best response of the entire particles and the best answer
of the local positions, respectively.

Since PSO stays in local minima of fitness function, we use
two techniques, namely, NPSO and PSO with mutation. In
each iteration, as was mentioned in PSO, the global best par-

ticle and the local best particle are computed. The NPSO strat-
egy uses the global best particle and local ‘‘worst’’ particle, the
particle with the worst fitness value until current execution

time [17]. It can be defined as follows:

viðtþ 1Þ ¼ wviðtÞþC1r1ðpworstiðtÞ� xiðtÞÞþC2r2ðgbestiðtÞ� xiðtÞÞ
ð7Þ

Mutation is defined as a physiologically-inspired disturbance

to the system. It is frequently employed to branch away from
potential local minima. In this paper, we propose to use muta-
tion in PSO to keep away from local minima. To model this

technique, in the beginning, two constantsm1 andm2 are defined
as thresholds. For each bit of xi(t) a random number between 0
and 1 is generated. Then, if the randomnumber for this bit is lar-

ger than a pre-defined ‘‘m1’’, that bit is flipped. Similarly, after
creating a random number for each bit of vi(t), if the random
number is greater than a pre-defined ‘‘m2’’, that bit is flipped.
Bee colony optimization

The BCO is a novel population-based optimization algorithm
which was proposed in 2005 by Karaboga [18]. Properties such

as searching manner, reminding information, learning new
information, and exchanging information cause the BCO to
be one of the best algorithms in artificial intelligence [19].

Today, BCO and artificial bee colony (ABC) algorithms
have remarkable applications, such as optimizing the traveling
salesman problem (TSP) and the weights of multilayered per-
ceptrons (MLP), controlling chart pattern recognition, design-

ing digital IIR filters, and data clustering [18–20].
BCO is inspired and developed based on inspecting the atti-

tudes of the real bees on discovering nectar and sharing the

food sources information with the other bees in the hive. Gen-
erally, the agents in BCO are divided into the employed bees,
the scout bees and the onlooker bees. The employed bees stay

on a food sources and memorize the vicinity of the sources.
The onlooker bees take the information of food sources from
the employed bees in the hive and select one of the food



Random initialization of the population

Compute the fitness of the population

While (requirements are not met)

Select the elite Bee and the elite sites for neighborhood
Select other sites for the neighborhood search
Recruit bees for the selected sites and compute fitness
Select the fittest Bee from each site
Appoint remaining Bee to search randomly and compute their fitness

End while.

Fig. 2 Pseudo code of the basic BCO.
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sources to gather the nectar. The 3rd type of bees, who are

called scouts, are responsible for finding new food, nectars,
and sources [18–20].
Fig. 3 Real photon emission data; (a) the number of received photon

photons.

Fig. 4 Results of applying the proposed technique with BCO to (a) o

of FD, and (d) G function result. As it can be seen that the boundari
The steps in BCO are inspired by the fact that, first, a col-
ony of scout bees is sent to look for food promising flower
patches. The movement of a scout is completely random from

one patch to another. When scouts return to the hive, they give
the attained information to other bees by going to a place
called the ‘‘dance floor’’ and performing a dance that is known

as the ‘‘waggle dance.’’ This dance declares three kinds of
information including the direction in which the food can be
found, destination distance from the hive (duration of the

dance) and its quality rating (frequency of the dance). This
attained information leads the other bees to find the flower
patches accurately without guides or maps. After the dance,
the scout bee goes back to the flower patch with a number

of bees that were waiting inside the hive. The Pseudocode of
the basic BCO is shown in Fig. 2 [18–20].

The techniques described in ‘Evolutionary algorithms and

Proposed adaptive signal segmentation’ are utilized in develop-
s as a function of time and (b) the difference between the received

riginal signal, (b) decomposed signal by one-level DWT, (c) output

es for all seven segments can be accurately detected.



Fig. 5 Results of applying the existing techniques; (a) original signal, (b) output of WGLR method, (c) output of Varri’s method, and (d)

output of INLEO method.
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ing a new adaptive segmentation algorithm as explained in the
following sections.

Proposed adaptive signal segmentation

In this part the suggested approach is explained comprehen-
sively in three steps as follows:

1. The original signal is firstly decomposed using Daubechies
wavelet [21] of order 8. This decomposition can demon-

strate the gradually changing features of the signal in the
lower frequency bands. In addition, for real signals such
as the EEG, DWT can also be used as a time–frequency fil-

tering approach to remove the undesired artifacts such as
EMG and ECG.
Fig. 6 Comparison between the performances of PSO, NPSO,

and PSO with mutation.
2. We proposed to employ the Higuchi’s FD and DWT for

signal segmentation [21]. Although DWT could diminish
the effect of the noise to a certain extent [17] the proposed
signal segmentation approach was still dependent on the

noise level. As mentioned before [15], the Katz’s FD is
much more robust to the noise and quicker than Higuchi’s
FD. Thus, in this study, we use the Katz’s FD to reveal

amplitude and/or frequency changes. The FDs of the
decomposed signal are computed using the previously
described sliding windows. Variation in the FD is used to
obtain the segment boundaries as follows:

Gt ¼ jFDtþ1 � FDtj t ¼ 1; 2; . . . ;L� 1 ð8Þ
Fig. 7 Comparison between the performances of PSO with

mutation and BCO.
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where t and L stand for the number of analyzed windows and

the total number of analyzed windows, respectively.
As explained before, the two parameters that influence the

accuracy of the delineation of signal boundaries are the length

of the window and percentage of overlapping of the sliding
window. If they are not selected properly, the segment
boundaries may be inexact. GA and imperialist competitive
algorithm (ICA) have been proposed to vary the length and
overlapping percentage upto some acceptable amount. In this

part, in order to increase the performance and speed of the GA
and ICA, we employ four EAs including PSO, PSO with muta-
tion, NPSO and BCO. Note that, generally, among the men-



Fig. 9 Segmentation of real EEG data using the proposed method; (a) original signal, (b) decomposed signal after applying five-level

DWT, (c) output of FD, and (d) G function result. It can be seen that all five segments can be accurately segmented.
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tioned EAs, the best evolutionary algorithm with similar
parameters in terms of minimum fitness value is BCO. Fitness
function of the EAs over k shifts of the successive window is

chosen as:

EG ¼
Pk

t¼0jceilðGt �meanðGtÞÞj2

N
ð9Þ

where N depicts the number of samples in G and ceil stands for
ceiling.

Determining a threshold is one of the most vital problems
in signal segmentation. In numerous pieces of research, the
mean value or sum of the mean value and standard deviation

(or a similar offset value) is suggested as a threshold. In case
the defined threshold is large, some segment boundaries may
not be detected. In contrast, if the threshold is low, some idle
points may be inaccurately detected as boundaries. In this arti-

cle the mean value of G ðGÞ is defined as the threshold. When
the local maximum is bigger than the threshold, the current
time is selected as the segment boundary.
Simulation data and results

The existing and proposed methods were simulated using

MATLAB R2009a from Math Works, Inc. The performance
and efficiency of these methods were evaluated using a set of
synthetic multi-component data, real EEG data and the differ-

ence in the received photons of galactic objects downloaded
from NASA’s website (http://adsabs.harvard.edu/abs/
1998ApJ...504..405S).
Simulated data

In order to create signals similar to actual recordings, we

added Gaussian noise to original signals and after that evalu-
ated the performance of the proposed method. In this paper,
50 synthetic multi-component signals were used. Their equa-

tion is as follows:

yðtÞ ¼ xðtÞ þ nðtÞ ð10Þ

where n(t) expresses white Gaussian noise and x(t) is produced
by concatenating seven multi-component epochs. One of 50

signals contains seven epochs with duration between 5.5 and
8 s as follows:

� Epoch 1: 2.5 cos(2pt) + 1.5 cos(4pt) + 1.5 cos(6pt),
� Epoch 2: 1.5 cos(2pt) + 4 cos(11pt),
� Epoch 3: 1.3 cos(pt) + 4.5 cos(7pt),
� Epoch 4: 1.5 cos(pt) + 4.5 cos(2pt) + 1.8 cos(6pt),
� Epoch 5: 2 cos(2pt) + 1.4 cos(6pt) + 8 cos(10pt),
� Epoch 6: 0.5 cos(3pt) + 4.7 cos(8pt),
� Epoch 7: 0.8 cos(3pt) + cos(5pt) + 3 cos(8pt).

In this paper we used n(t) as Gaussian noise with SNR = 5,
10, and 15 dBs.

Secondly, we used real EEG signals. The registration of
electrical activity of the neurons in the brain is called EEG
and it is an important tool in identifying and treating some

neurological disorders such as epilepsy. In this paper, 40
EEG signals recorded from the scalp of ten patients were used.
The length of signals and the sampling frequency were 30 s and
256 Hz, respectively.

http://adsabs.harvard.edu/abs/1998ApJ...504..405S
http://adsabs.harvard.edu/abs/1998ApJ...504..405S


Fig. 10 Segmentation of real EEG using the existing methods; (a) original signal, (b) output of GLR method, (c) output of WGLR

method, (d) output of INLEO method, and (e) output of Varri’s method.
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The study of galactic objects is a key area of astronomy [1].

For instance, when a moving galactic object is moving in front
of a star, there are changes in the brightness received from the
star. By studying and analyzing this brightness, we can acquire
important data such as the size and the orbit of the galactic

objects. The rate of the photons’ arrival shows some major sta-
tistical changes. This could be because of the creation of a new
source or because of an explosion or a sudden boost in the

brightness of an existing source. Here, it is assumed that the
sampling rate is two micro-seconds.

Fig. 3a depicts a signal giving information about the

received number of photons. Fig. 3a can be mulled as a Pois-
son distribution. By calculating the difference in time of the
signal in Fig. 4a, we could obtain a signal that is a representa-
tion of the number of input photons – in each time instant

(Fig. 3b).

Simulation results

The synthetic signal y(t) with SNR = 15 dB in Fig. 4a is firstly

decomposed using one-level DWT. In this article, we employed
DWT with Daubechies wavelet of order 8. This decomposed
signal is depicted in Fig. 4b. As can be seen, the decomposed

signal is considerably smoother than the original signal.
Fig. 4c and d respectively show the FD of the decomposed sig-
nal and changes in the G function.

Usually, the window length and overlapping percentage of
the sliding windows are the most important parameters for the
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Fig. 12 Segmentation of the difference signal of the real photons arrival rates using the proposed method; (a) original signal, (b)

decomposed signal after applying three-level DWT, (c) output of FD, and (d) G function result. It can be seen that all five segments can be

accurately detected.
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conventional methods. In fact, adjusting these parameters

empirically is the most important problem in those methods.
To overcome this problem, we suggest using the EAs.

Choosing an adequate preliminary population and number
of iterations is very significant in EAs. For lower values of

these parameters, the speed of the proposed approach notice-
ably increases. On the other hand, for larger values of the cho-
sen parameters the speed of the proposed methods drastically

decreased. In all EAs, we must achieve the right balance for the
parameters in the application. In a general manner, this trade-
off is only made by trials and errors. In the proposed method,

the parameters of PSO, NPSO, and PSO with mutation are:
population size = 30; C1 = C2 = 2; Dimension = 2; Itera-
tion = 50; w = 1; m1 = 0.1; m2 = 0.05 (for PSO with muta-

tion). The next algorithm used in this paper is BCO. The
parameters of this algorithm are defined as: population
size = 30; Dimension = 2; Iteration = 50. In addition, length
of the windows and the percentage of overlap for all these EAs
are selected between 2% and 10% of the signal length. When

the preliminary populations and number of iterations were
increased, the efficiency of the suggested method was not sig-
nificantly changed. Hence, for this application of the EAs,
these populations and number of iterations were assumed to

be correctly chosen.
The signal in Fig. 4a is also segmented using three existing

method, namely, WGLR [10], INLEO [8] and Varri’s [22]

methods in Fig. 5. Although the INLEO method could indi-
cate each six boundaries, this method had many false bound-
aries. The WGLR method found just three boundaries out

of the six boundaries. Therefore, this method was unreliable
to segment multi-component signals with noise. Finally,
Varri’s method had several missed boundaries and false

boundaries. In other words, this method had low performance
too.

To compare the convergence speed and accuracy of PSO,
NPSO and PSO with mutation, the convergence characteristics



Fig. 13 Segmentation of the difference signal of the real photons’ arrival rates using the existing methods: (a) original signal, (b) output

of GLR method, (c) output of WGLR method, (d) output of Varri’s method, and (e) output of INLEO method.
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of these algorithms for above-mentioned signal are illustrated
in Fig. 6.

As it can be seen in Fig. 6, PSO with mutation converges to

the global solution faster, while the other algorithms have
trapped in the local optima. Fig. 7 represents the minimum fit-
ness values of BCO particles and PSO with mutation versus

iterations. The comparison results show that BCO reaches
smaller values of G function.
Three different metrics, including true positive (TP) false
negative (FN) and false positive (FP) ratios are used to assess
the performance and efficiency of the proposed and existing

methods. These parameters defined as TP = (Nt/N),
FN = (Nm/N), and FP = (Nf/N).

where Nt, Nm and Nf denote the number of true, missed and

falsely detected boundaries respectively. N represents the
actual number of signal boundaries.
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In Fig. 8 the results of the segmentation for 50 synthetic
data employing the suggested methods are depicted together
with the simulation results of the six existing methods, namely,

three evolutionary approaches proposed in [2,4], INLEO,
WGLR and Varri’s methods. It should be noted that TP,
FN and FP ratios for all these proposed methods with EAs

are considerably better than the three non-evolutionary exist-
ing approaches (WGLR, INLEO and Varri’s methods). The
TP, FN and FP ratios of NPSO are better than those of the

PSO. These performance measures of PSO with mutation are
also better than those of the NPSO, whereas the BCO algo-
rithm has the highest performance. By using BCO, we can
achieve about 93.7% accuracy on a set of 50 synthetic signals

with 15 dB of Gaussian noise. It is worth noticing that in terms
of TP, FN, and FP, the proposed method based on the BCO is
slightly better than the two other evolutionary approaches pro-

posed by Azami et al. [2].
Fig. 9a shows the signal segmentation of a real EEG

recording using the proposed method. Fig. 9b–d illustrates

the signal after decomposing by five-level DWT, the FD of
the decomposed signal and changes in the G function, respec-
tively. It must be mentioned that these parameters are selected

by trial and error.
The signal in Fig. 9a is also segmented using four existing

methods, namely, GLR [10], WGLR [10], INLEO [8], and Var-
ri’s [22] methods in Fig. 10. It can be observed that the sug-

gested method distinguishes the EEG signal segments better
than the above existing methods.

The simulation results of segmentation by using the pro-

posed method with BCO are shown in Fig. 11. They indicate
that the proposed method with BCO, compared with the three
other well-known existent methods, has a better performance

for segmenting the synthetic signals as well as real EEG data.
This figure reveals that BCO has higher accuracy compared to
the three existing methods. Albeit the INLEO method has ade-

quate true positive ratios, its false positive ratios are the high-
est ones. Thus, the INLEO method has low reliability and it
may not be appropriate for segmentation of real EEG signals.
Furthermore, neither WGLR nor Varri’s methods have

acceptable true positive ratios and false positive ratios. Hence,
they are not considered reliable. Moreover, as can be seen in
Fig. 11, in terms of all three parameters (TP, FN, and FP)

by using real EEG signals, the proposed method is slightly bet-
ter than the best approach proposed by Azami et al. [2].

In Fig. 12, the proposed non-stationary signal segmentation

is assessed by the difference of the real photons’ arrival rates.
Fig. 12b–d respectively illustrate the signal after decomposing
by three-level DWT, the FD of the decomposed signal, and
changes in the G function.

To comprehend the performance of the suggested method,
first, Fig. 12a illustrates the difference between the real pho-
tons’ rates, as in Fig. 4b. This signal is segmented using four

existing methods, namely, GLR [10], WGLR [10], INLEO [8]
and Varri’s [22] methods in Fig. 13. It can be observed that
the proposed approach by using BCO distinguishes the real

signal segments better than attained outputs by the existing
methods.

In Fig. 12a, in the first segment signal has a smooth varia-

tion. The amplitude in the first part of the second segment
begins to rises and it is dissimilar in the second segment,
whereas in the 3rd segment the amplitude of the signal
increases. As it can be seen in this figure, the 4th and 5th seg-
ments have different frequencies. When the input signal is col-
lected from person’s body, the above perception can help the

physiologists to distinguish when a disorder or an abnormality
manifests itself.

Conclusions

In this article an adaptive segmentation approach using DWT,
FD and EAs has been proposed. The DWT has been used to

obtain a more informative multiresolution representation of
a signal which is very valuable in detection of abrupt changes
within that signal. The changes in FD refer to the underlying

statistical variations in the signals and time series, such as
the transients and sharp changes, in both the frequency and
amplitude. There are two parameters that influence the bound-

aries and control the accuracy of the signal segmentation. In
order to attain the acceptable values of these parameters, we
have used four EAs, namely, PSO, NPSO, the improved
PSO with mutation and BCO. The results of applying the sug-

gested methods, tested on synthetic signal, real EEG data, and
brightness changes in galactic objects, have indicated the
higher performance of the methods compared with three exist-

ing non-evolutionary methods, namely, WGLR, Varri’s and
INLEO as well as three evolutionary approaches based on
the FD.
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