
Improving Network Intrusion Detection System Performance

through Quality of Service Configuration and Parallel Technology

Waleed Bul’ajoul
Faculty of Engineering and

Computing
Coventry University

Coventry, UK
bulajouw@coventry.ac.uk

Anne James
Faculty of Engineering and

Computing
Coventry University

Coventry, UK
csx118@coventry.ac.uk

Mandeep Pannu
Department of Computer

Science
Kwantlen Polytechnic University

Surrey,
British Columbia,

Canada

Abstract.

This paper outlines an innovative software development that utilizes Quality of Service (QoS) and parallel technologies in Cisco Catalyst

Switches to increase the analytical performance of a Network Intrusion Detection and Protection System (NIDPS) when deployed in high-

speed networks. We have designed a real network to present experiments that use a Snort NIDPS. Our experiments demonstrate the

weaknesses of NIDPSes, such as inability to process multiple packets and propensity to drop packets in heavy traffic and high-speed

networks without analysing them. We tested Snort’s analysis performance, gauging the number of packets sent, analysed, dropped, filtered,

injected, and outstanding. We suggest using QoS configuration technologies in a Cisco Catalyst 3560 Series Switch and parallel Snorts to

improve NIDPS performance and to reduce the number of dropped packets. Our results show that our novel configuration improves

performance.

Keywords: network security; intrusion detection system; intrusion protection system; parallel processing; switch configuration; Quality of

Service

1. Introduction

In order to provide new developments and highest-quality services, companies implement the latest technologies in their
infrastructure. A company’s network plays a vital role in its business projects. Keeping the computer network up-to-date with the
latest software and security techniques is essential for success and progress. Reliability and safety are the major concerns in enabling
a company to achieve success and boost its progress. However, networks can also be considered a major risk in any business project.
Security issues have increased as technology has advanced. Fuchsberger [1] reported that, according to a survey conducted by the
Federal Bureau of Investigation and Crime Scene of Investigation (FBI/CSI), viruses are behind many attacks on business networks.
Moreover, Denial of Service (DoS) attacks and unauthorized user access (which can be initiated from external or internal LAN
sources) have also increased dramatically. It is also noticeable that nowadays there are powerful intrusion tools available, allowing
hackers to attack networks even if they know little of the software. Attackers can now use several tools simultaneously to achieve an
objective. The 9th Annual Worldwide Infrastructure Security Report and ATLAS 2013 data report [2] said the number of Distributed
Denial of Service (DDoS) attacks has grown significantly, nearly doubling on a year-to-year basis between 2006 and 2010. The size
peak of attacks in 2013 increased by over 200 percent from the previous year, with the largest reported attack at 309 Gbps, and with
multiple respondents reporting attacks larger than 100 Gbps, the previous largest reported attack size. Additionally, in 2013, ATLAS
observed more than 8x the number of attacks over 20 Gbps as compared to 2012. Therefore, security products, such as firewalls,
vulnerability assessment tools, antivirus programs, and Network Intrusion Detection and Prevention Systems (NIDPSs), are utilised
to reduce the risk of attacks. However, even these measures are not 100 percent effective in protecting networks. One problem is
that in heavy traffic, packets can be dropped prior to analysis [3, 4, 5]. It is becoming recognised that advantage could be taken of
multi-core to overcome the problem of network traffic rate superseding the rate at which NIDPSs can process incoming data [6].

Figure 1: Largest DDoS Attack Reported by Arbor Networks [2].

This paper, which builds on our previous work [7], describes research which aims to solve the problem of dropped packets which
can be a prevalent issue for NIDPSs used in heavy and high-speed traffic environments. Our research uses Snort IDS (Intrusion
Detection System), in Network Intrusion Detection System (NIDS) mode. Snort is currently the most popular NIDPS software. Snort
can be installed in any machine and runs on different operating systems such as Windows and Linux. Snort, which was introduced as
a lightweight IDS, has developed significantly in the last 10 years. We conducted experiments to test Snort NIDS analysis
performance under heavy and high-speed traffic. We also demonstrated that Snort NIDS performance can increase the number of
analysed packets and decrease the number of dropped packets using alternative technologies such as a Quality of Service (QoS)
configuration and parallel technology.

The remaining part of this paper is organized as follows: Section 2 gives a background about security mechanisms, stages and
intrusion detection technologies. Section 3 explains our experimental design and implementation. Section 4 presents the results of
the experiments and the evaluation. Then Section 5 gives an overview related work. Finally Section 6 concludes the paper and
suggests recommendations and further work.

2. Background

2.1 Security Mechanisms and Approaches

Security is a major concern in every aspect of our daily life. New methods and equipment are constantly being devised to ensure
protection. Computer networks continue to face many threats. We can consider three stages to achieving security in computer system
networks: prevention, detection and correction. Prevention stops attacks before they enter system. Detection catches the attacks after
they have entered and then Correction rectifies problems, which could be detected attacks or mistakenly prevented non-attacks.
Prevention is the ideal solution, as compared to detection and correction, but it is impossible to prevent 100 percent of attacks [8].
Detection techniques provide results that can be used to prevent further attacks and aid correction. Thus the three stages combined
offer an effective approach to achieving security. Common security mechanisms are firewalls, antivirus programs and intrusion
detection and prevention systems:

Fire wall
In order to secure a corporate network or sub-network, network traffic is usually filtered according to criteria such as origin,
destination, protocol or service, typically through dedicated routers called firewalls. Firewalls are a common security defence and
nowadays are treated as an integral part of every network. A firewall may be software or hardware; its functionality is based on
filtering mechanisms specified by a set of rules, known as a policy, which can protect a system from flooding attacks. The
fundamental function of a firewall is to sort packets according to allow/deny rules, based on header-filed information. The
disadvantage of firewalls is that they cannot fully protect an internal network since they are unable to stop internal attacks. For
example, malicious and unwanted web traffic can go through a firewall to strike and damage a protected computer system. A
firewall is a set of rules such as to allow or deny protocols, ports or an IP address. Today’s Denial of Service (DoS) attacks are too
complex for firewalls because they cannot distinguish good traffic from DoS attack traffic [9]. The firewall provides the benefit of
added security to strengthen a network when used in conjunction with an IDS.

Antivirus programs
Computer viruses are programs which cause computer failure and damage computer data. Especially in a network environment, a
computer virus poses an immeasurable threat and can be very destructive. Antivirus programs are software that can be installed onto
a computer in order to detect, prevent and make decisions regarding whether to quarantine or delete malicious programs such as
malware, worms or viruses. Although antivirus programs monitor the integrity of data files against illegal modifications, they are
unable to block unwanted network traffic intended to damage the network. Antivirus software is installed only at explicit points of
the servers, such as the interface between the network segment to be protected and outside environments [4].

0

100

200

300

400

G
b

p
s

Largest DDoS Attack(Gbps)

Intrusion detection and prevention systems (IDPSes)
IDPS technologies detect and react to unauthorised access to network systems, providing real-time monitoring of network traffic.

IDPSes can be software- or hardware-based, or can be a combination of both. Hardware-based IDPSes are effective for large

organizations and companies, but are very expensive. However, software-based IDPSes running on the same devices or servers can

identify and deal with attacks generated from inside or from outside the network, and can also protect the security policies of that

network and their internal threats. Deploying a firewall with an IDPS is a useful way to provide extra security and thus strengthen

the network [10]. Intrusion detection is one of the most tested and reliable technologies to monitor incoming and outgoing network

traffic and to identify unauthorized usage and mishandling of computer system networks [11]. In addition, intrusion detection

identifies the activity of malicious attackers. It is critical to implement intrusion detection and prevention in computer networks

that have high traffic and high-speed connectivity [12].

A distinction is often made between intrusion detection systems (IDS) and intrusion prevention systems (IPS). This distinction is that
the IDS detects intrusions and just reports them, whereas the IPS detects, reports and prevents them through blocking. Therefore the
IPS can be seen as an extension of the IDS. However nowadays the technologies have converged and most IDS systems cover
prevention as well as detection. The mode of operation between detection and prevention may be selected via a configuration setting.
Furthermore, the difference between a firewall and IPS can be indistinguishable to the user as the separate technologies are often
combined to a single gateway sentry system. The firewall checks headers on packets and blocks depending on header information
such as protocol type, source address, destination address, source port, and/or destination port according to network security policy.
The IPS checks both headers and payload and blocks on recognisable known features according to network security policy. In our
work we use Snort which can act as an IPS and IDS and can therefore be considered to be an IDPS, however more usually Snort is
referred to as an IDS. In this research the mode in which we ran Snort was Network Detection System (NIDS) mode so later when
we describe our experiments we will refer to Snort NIDS.

IDPSes are still unable to control all threats and malicious activities [7, 9, 13]. To overcome the design and implementation
difficulties, novel IDPS solutions are being sought in the context of multiple characteristics of advanced computer networks. These
characteristics include: processing in real time; high speeds and high loads; increasing difficulties for defenders; and decreasing
difficulties for attackers. IDPSes need to be configured properly to achieve the desired output.

Many vendors are now trying to produce security appliances that can protect networks and which combine technologies. For
example, the Cisco ASA 5500 series is a range of essential Cisco products that aims to secure an organisation’s network from end to
end [14]. The product comes in different sizes and has been a popular choice for network designers because of its high performance.
The Cisco ASA 5500 Series integrates multiple full-featured, high-performance security services, including application-aware
firewall, SSL and IPsec VPN, IPS with Global Correlation and guaranteed coverage, antivirus, antispam, antiphishing, and web
filtering services .

2.2. Types of Intrusion Detection and Prevention Systems

Some of the existing types of IDPS are: network-based (NIDPS); host-based (HIDPS); and graph-based IDS (GrIDPS). Hydrid
systems also exist which combine one or more types into a single system [12].

2.2.1 Network-based IDPS

A Network Intrusion Detection System (NIDPS) is a common technique used to analyse traffic at all Open Systems Interconnection
(OPI) layers by detecting the presence of normal traffic or suspicious activities [15].

Router
Firewall Switch

Company Network

Internet

IDS

Figure 2: An Example of Network-Based IDPS

To be effective a NIDPS must see the entire network and must be placed at an appropriate point in the network. In a hub-based
network the NIPS can be placed at the hub and can see all traffic but this is not possible in a switched network where there is no hub.
In a switched network, port mirroring or spanning is used to enable a complete view but this causes overhead. The NIDPS itself is
affected by DoS and DDoS attacks, similar to those made against IP gateways. Encrypted network traffic (packets) cannot be
detected by the NIDPS.

2.2.2 Host-based IDPS

A Host Intrusion Detection System (HIDPS) is a software agent that can be installed in a particular computer in order to monitor and
analyse events on that particular host to detect any suspicious behaviour [16].

Router

Firewall

Switch

Web server-ids

Mail server-ids

DNS Server-ids

Host-ids

Internet

Figure 3: An Example of Host-Based IDPS

HIDPSs are capable of integrating code analysis, monitoring system calls, detecting buffer overflows, privileging misuse, privileging
abuse, file systems, library lists, applications, system configurations, system log analyses, and many others [10]. These things can be
done by HIDPSs because they are designed to operate with a specific host and with respect to applications such as web servers,
database servers, file servers, mail servers, and DNS servers. They are often integrated into server software and can be relatively
easily implemented to communicate with other network components and operating systems. They can inspect encrypted traffic
because they can analyze packets at the application ends. However HIDPSs have some disadvantages. They consume computer
system resources that are needed for services and may conflict with existing security policies (such as firewalls) and operating
systems. It is difficult for HIDPSs to analyse intrusion attempts on multiple computers. HIDPSs can be very difficult to maintain in
large networks with different operating systems and configurations and can be disabled by attackers once a system is compromised.
The use of HIDPSs also requires many hosts to reboot after a complete installation or an update and many essential servers cannot
support this operation.

2.2.2 Graph-based IDPS

Graph-based IDSs (GrIDPSs) are designed to protect computer networks from large-scale malicious attacks, which severely affect
computer networks. Network traffic and computers are linked through GrIDPs. The advantages of GrIDSs are that they can gather
data about computer activity across a network and help to recognize comprehensive automated or coordinated attacks in real time.
They allow network systems to state and implement policies specifying which users are permitted to utilise the particular services of
an individual host or group of hosts. Assumptions made in this kind of system include the existence of related networks within a
single organisation that has an independent infrastructure and sovereign departments. It is difficult to picture how this system would
work to gain insight into the working of the GrIDPS system in a modern and innovative enterprise environment where this kind of
situation does not exist. It also assumes that no single component of the network is actively hostile, and therefore the IDPS must be
designed to operate in non-hostile situations.

2.3 Network Intrusion Detection and Prevention System Methodology

The functional components of an integrated NIDPS are: events management, a data source, an analysis engine, and a response
manager [13, 17]. Events management gathers information on events to and from the monitored system (see Figure 4).The data
source is the event generator, which is classified into the following four categories: application-based monitors; host-based
monitors; target-based monitors; and network-based monitors. The data source stores multiple events recorded by event
management. The analysis engine collects data from the data source in order to analyse and determine whether the data is free of
policy violations or other attacks. This engine can utilize anomaly/statistical detection, misuse/signature-based detection, or both.
The analysis engine processes events and transmits alerts. The response manager neutralizes an attack once it is detected. The
response manager responds to events and stops intrusions.

Figure 4: General Architecture for a NIDPS

Most existing NIDPSes utilize either misuse detection or non-regular detection. The technique of misuse detection is employed to
find known intrusions and/or a pattern of signatures. Due to its reliance on signatures, its detection speed is quite fast and has a low
false positive rate. IDPS methodology is divided into the following four categories:

Misuse / signature-based detection
This type of detection system uses known signatures of malicious codes, which are stored in an IDPS database. Well-known patterns
of attacks result from the use of malicious codes and known software vulnerabilities. This kind of detection system is highly efficient
for use in a small NIDPS. The major drawback of such a system is that its database must be regularly updated, resulting in an ever-
increasing database that must include as many available signatures as possible [13, 17].

Anomaly/statistical detection
Anomaly/statistical detection is a comparison-based method which compares any activity to the profile for all possible learned
actives through statistical data, facts and figures. There are two types of profile, fixed and dynamic. A fixed profile is the most
efficient as compared to other schemes, because it terminates the occurrence of any unusual behaviour and it classifies the behaviour
as anomalous. A dynamic profile cannot be created without an existing fixed profile; once the dynamic profile has been created, it
allows the attacker to observe and alter his or her behaviour in long-term activities [13, 17].

Protocol analysis detection
This NIDPS technique depends on the behaviour of the protocols. It observes the protocol behaviour and then compares it to those
stored in its protocol behaviour database. It detects anomalies in the packet on the head part of the protocol. This technique is quite
effective, but can be easily avoided by attackers working inside the protocol limitations [17].

Hybrid methodologies
This type of system combines two or more intrusion detection systems methodologies in order to analyse, detect and match any
suspicious behaviour and signature malicious code that attempt to attack network. The power of combination means it can detect
more types of intrusion, thereby providing relatively better results as compared to other methods.

3. Experiment Design and Implementation

3.1 Network design

A real network has served as a model for the purpose of analysis and data acquisition. We used several tools, including both software
and hardware, to meet our objectives. Snort 2.9.4.6, which was issued in April 2013, was used as NIDS software; a WinPcap tool to
capture packets on Windows 7 and 8 operating systems; a NetScanPro tool to manage a certain type of traffic in the network; a
Packet Generator tool to generate/send network traffic of different values and speeds per ms; a Cisco Catalyst 3560 Series Switch
[19-18], which supports QoS configuration; and a computer system consisting of four standard machines connected through
VMware Virtual. Figure 5 shows the network design for the experiment.

Figure 5: Experiment Network Design

3.2 Snort component functions

Snort is one of the easy to use and popular IDSs [19, 5, 20, 21,]. It is accessible free of cost and ranked among the top systems with
the best features available nowadays. It was released as an open-source NIDS based on rule-based detection, which stored
information in text files that could be modified by a text editor. Rules are grouped into categories, and the rules belonging to each
category are stored as information in separate files, which are then integrated into the main configuration file named “snort.conf”.
The data is captured in terms of the described rules, which are read at the initialization of the Snort and comprise the internal data
structure [5, 21]. A Snort system consists of the following major components: a packet decoder; pre-processors; a detection engine;
a logging and alerting system; and output modules.

Figure 6: Snort Architecture (source [24])

The basic structure is represented in Figure 6. When a packet arrives at the network, Snort listens and captures packets. In the
beginning, the packet decoder receives packets from multiple network interfaces such as Point-to-Point Protocol (PPP) or Ethernet
and Serial-Line-Internet-Protocol (SLIP), then pre-processes such packets ready for the detection engine [5, 20]. The detection
engine performs three main tasks: sniffing, analysis and detection. It can perform network traffic analysis and content
searching/matching in both real-time and for forensic post-processing [20, 21]. Snort can be configured in three main modes: sniffer,
packet logger, and network intrusion detection. In detection mode, Snort analyses the network traffic against a set of defined rules
in order to detect intrusion threats. In our experiments, we focus on the Snort capability as a network intrusion detection system as
we aim to see how many packets could be analysed by Snort under varying conditions. It has been shown previously that in high
speed and heavy load conditions, packets are dropped [3, 4, 5]. The protection mode was not set. This means that the analyser would
alert if anomalies were found but would not drop packets on the basis of anomalies.

The detection engine is time-critical and the most important part of the Snort. It utilizes different processing times based on the
length of the packet, the specifications of the system, and the number of rules defined in the system. Snort rules are employed to

detect intrusive actions to be presented in the data packet. In the detection mode, Snort rule is capable of reading chains (internal data
structures), which have to be matched against all packets. If a packet does not match any rule, it will be dropped; otherwise
appropriate action is taken [5]. Logging and alerts depend on the nature of what is detected inside the packets. If any suspicious
activity is found inside a packet, the packet usually logs the malicious activity and/or generates an alert. Logs are usually stored in
simple text-based files such as tcp-dump-style. Output modules (plug-ins) are capable of performing multiple operations depending
on the results generated by the logging and alerting system of Snort. In general, output modules control the form of outcome
produced by the logging and alerting system.

3.3 Cisco Catalyst 3560 Series switches

This category belongs to layer 2 and 3 switches. It provides support for IP-based software, for example Rate limiting, Access Control
Lists (ACLs), QoS. IPv6, and advanced routing protocols. Policy and class enterprise features are supported by IP service software.
Despite a packet’s size and content, this switch provides the best effort services for each packet of network traffic. The packets are
sent with no surety of delay bounds, reliability, or throughput [18].

3.4 Quality of Service (QoS) technique

A QoS technique permits the control of traffic over a network and guarantees the throughput of traffic applications in terms of time
scale. QoS concerns the performance of the network traffic over several technologies, including Asynchronous Transfer Mode
(ATM), 802.1 networks, IP-routed networks, Frame relay, and Synchronous Optical Network (SONET) as seen from the user’s
perspective. Furthermore, QoS can use congestion avoidance and management techniques along with configuration of network
traffic, and prioritizes traffic based on its importance [22]. QoS features can be classified into the following functions: classification
and marking; policing; congestion management; and congestion avoidance.The features of QoS provide better and more reliable
network services through the following features: support for dedicated bandwidth; improved loss characteristics; management and
avoidance of network congestion; shaping network traffic; and setting traffic priorities across the network.

3.5 Performance Metrics

Performance metrics are used in the experiments to measure the ability of the NIDS to perform a particular task and to fit within the
performance constraints. These metrics measure and evaluate the parameters that impact NIDS performance. The following aspects
were measured in the experiments.

Packets generators
The performance of TCP, UDP, and ICMP protocols was measured when running over the IPv4 header. The WinPcap and Packets
Generator tool were used to vary the type of traffic in terms of IP header protocol (TCP, UDP and ICMP), speed, the number of
packets and packet size.

Timing statistics
The Snort processor time includes total seconds and packets as well as packets processing rates.

Packets I/O totals
These are the percentages of the total packets processed by Snort. The specific metrics used are shown in Table 1.

Table 1. Snort performance metrics

Performance
metrics

Description

Packets
received

The number of packets received by Snort.

Packets
analysed

The percentage of packets analysed from
the total packets received.

Packets
dropped

The percentage of packets dropped from
the total packets received.

Packets
filtered

Packets are not shown for snort.

Packets
outstanding

The number of the packets buffered
waiting processing /or not processed.

Packets
injected

Injected packets are the result of active
response, which can be configured for
inline or passive modes.

Protocol statistics
 All traffic for all protocols decoded by Snort are summarized in the Snort breakdown section which includes categories such as Eth
(Ethernet interfaces); VLAN; IP4; Frag (Fragmented packages); ICMP; UDP; TCP and others.

Snort-NIDS throughput
This metric defines the level of traffic up to which the NIDS performs without dropping any packets. This metric is affected by the
use of QoS configuration and parallel technology.

4. Experiment results and evaluation

The purpose of the experiments are:

1) To show Snort-NIDS performance under (a) high speed traffic (experiment 1), (b) heavy traffic (experiment 2) and (c)
large data traffic (experiment 3).

2) To show how QoS configuration, which offers queue technology improves performance of Snort NIDS (experiment 4).
3) To show how parallel technology and QoS improve performance of Snort NIDS (experiment 5).

4.1 Experiment 1. Snort-NIDS reactions to high-speed network traffic

We used NetScanPro tools to manage IP traffic in the network and the packet generator tool to send a number of IP packets in
different speeds per ms. We sent 13,000 1kb packets at different time intervals (8ms, 4ms, 1ms). Table 2 and Figures 7, 8 and 9
show the results of our experiments. Figures 7, 8 and 9 show the Snort results.

Figure 7: Snort Reaction to IP Header in 8ms transmission time interval

Figure 8: Snort Reaction to IP Header in 4 ms transmission time interval

Figure 9: Snort Reaction to IP Header in 1 ms transmission time interval

Table 2. Same Number of Packets but Different Speeds

Packets sent
(13,000)

8ms
interval

4ms
interval

1ms
interval

Packets received 100% 100% 100%

Packets analysed 99.992% 62.165% 16.070%

Packets dropped 0.00% 27.449% 45.631%

Packets filtered 0.00% 0.00% 0.00%

Packets outstanding 0.008% 37.835% 83.930%

Packets injected 0.00% 0.00% 0.00%

As demonstrated in the results shown in Figures 7, 8, and 10, all the packets that were sent reached the wire. Snort analysed 99.992
percent of the packets in incoming traffic when packets were transmitted in 8ms intervals (see Figure 7), but when the speed of
transmission was increased to 4ms, Snort started dropping packets, analysing only 62 percent and dropping more than 22 percent of
the total packets received (see Figure 8). When the speed of transmission was increased to 1ms intervals, Snort dropped more than
46 percent of packets (see Figure 9). Our experiment demonstrated that Snort analysis performance was decreased as the speed of
transmission increased.

4.2 Experiment 2. Snort-NIDS reactions to heavy-traffic networks.

Here, the transmission rate of packets was kept to the same speed (1ms intervals) to obtain a fair analysis of different numbers of
packets (each packet carried 1kb). We sent 100, 500 and 1000 packets batches at 1ms intervals. Figures 10, 11 and 12 show the
Snort results.

Figure 10. Snort Reaction to Heavy Traffic (100kb packets)

Figure 11: Snort Reaction Heavy Traffic (500kb packets)

Figure 12: Snort Reaction to Heavy Traffic (1000kb packets)

Table 3. Same Speed Limit and Different Numbers of Packets

Number of Packets
(Transmission interval -1ms)

100 500 1000

Packets received 100% 100% 100%

Packets analysed 100% 50.000% 30.482%

Packets dropped 0.00% 33.333% 41.009%

Packets filtered 0.00% 0.00% 0.00%

Packets outstanding 0.00% 50.000% 69.518%

Packets injected 0.00% 0.00% 0.00%

As demonstrated by the results shown in Figures 10, 11, and 12, all the packets that were sent reached the wire. In Figure 10, when
we sent 100 packets, Snort analysed 100% of the total packets that it received. As the number of packets increased to 500 and 1000,
Snort started dropping packets (see Figures 11 and 12). Our experiment shows that as the number of packets increases, more packets
are dropped.

4.3 Experiment 3. Snort-NIDS reactions to large (length) packets

For this experiment, the number of packets was kept to the same value (13,000) and the same speed (1ms) to obtain a fair analysis of
different sizes (lengths) of packets. We increased the size of each packet sent from 1 byte, to 400 bytes, and to 800 bytes. Figures
13, 14 and 15 show the Snort results.

Figure 13: Snort Reaction to Packet Sizes (1 byte)

Figure 14: Snort Reaction to Packet Sizes (400 byte)

Figure 15: Snort Reaction to Packet Sizes (800 byte)

Table 4. Same Speed and Value but Different Packet Size

Packet Number
(speed 13,000 per 1ms)

1 byte
byte

400
bytes

800
bytes

Packets received 100% 100% 100%

Packets analysed 100% 43.995% 24.437%

Packets dropped 0.00% 35.899% 43.040%

Packets filtered 0.00% 0.00% 0.00%

Packets outstanding 0.00% 56.005% 75.563%

Packets injected 0.00% 0.00% 0.00%

As shown in Figures 13, 14 and 15, when we sent 13,000 1 byte sized packets at 1 ms intervals, Snort analysed 100 percent of the
total packets received (see Figure 13). As the size (length) of the packets was increased to 400 bytes, Snort dropped more than 35
percent of them (see Figure 14), and when the packet size was increased to 800 bytes, Snort accordingly dropped more (See Figure
15). Our experiment demonstrated that more packets will be dropped as packet size increases.

4.4 Experiment 4. Snort-NIDS using QoS configuration technology in high-speed traffic

Critical analyses were done for experiments 1, 2 and 3 (see Figures 16, 17 and 18 respectively). The figures show that Snort
performance analysis throughput is affected by high-speed and heavy traffic, and more packets are dropped as the number and size
of packets and the speed of traffic increases. Snort has a limited time to process and analyse any traffic successfully and if a
network’s traffic speed limit is higher than Snort’s limit, Snort will drop packets.

To solve this problem, we used a Cisco Catalyst 3560 Series switch, which supports QoS configuration, to load the traffic into a
number of interfaces equally and divide traffic into streams in order to analyse each portion of traffic individually to determine
whether it was free of malicious codes. We configured Snort and QoS to reorder and control traffic speed such that it is similar to
processor time and load traffic speed.

Figure 16: Snort Reactions to IP Headers with Increasing Traffic Speeds

Figure 17: Snort Reactions to IP Headers with Increasing Traffic Values

0

2000

4000

6000

8000

10000

12000

14000

8ms 4ms 1ms

N
u

m
b

e
r
 o

f
p

a
c
k

e
ts

 s
e
n

t

13000kbpms

Packets

received

Packets

analysed

Packets

dropped

0

0.2

0.4

0.6

0.8

1

1.2

100 500 1000

1
m

s

Number of packets sent

Packets

received

Packets

analysed

Packets

dropped

Figure 18: Snort Reactions to IP Headers with Increasing Packet Sizes

In the IEEE 802.1 network protocol, the Class of Service (CoS) parameter which resides at layer 2, enables differentiation of the
packet. This value can then be used to provided differentiated services for different types of packet. Other QoS mechanisms
operate at layer 3, for instance DiffServ (Differentiated Services) which allow different types of service to be offered depending on
a code. For instance there could be a policy to give a certain type of package priority. To implement QoS based on the DiffServ
architecture, which specifies that each packet be classified upon entry into the network and adjusted for different traffic speeds, we
changed/classified the switch frame to the default working from layer 2 to layer 3 by mapping the traffic values from CoS to
Differentiated Services Code Point (DSCP) values. Figure 19 illustrates the relative layers at which CoS and DSCP operate. The
CoS values are from 0-7 and the DSCP values are from 0-63. To distinguish between packet classes, a class map and policy map
functions were used to classify traffic inside the switch [22]. Classification is the process of distinguishing one kind of traffic from
another by examining fields in the packet. Classification occurs on the physical interface or on a per-port, per-VLAN basis. Policing
involves creating a policy that specifies the bandwidth limits for the traffic and applies it to the interface. Policing can be applied to a
packet per direction and can occur on the ingress and egress interfaces.

Figure 19:. Layer for CoS and DSCP Values

One of the mechanisms that QoS offers is queue technology, which can give a switch a new logical throughput-traffic-forwarding
plan [22, 23]. QoS offers two input queues (ingress queues) and four output queues (egress queues) at the physical output interfaces
(ports and VLANs) [22, 23]. As shown in Figure 20, we configured the switch to two input queues and four output queues, and each
input queue has a policy (policy map) and marking (class map). We configured the bandwidth, threshold and priority for each input
and output queue to treat traffic in the input and output queues. We also configured the speed limit for each ingress queue and egress
queue using one of two functions inside the switch called Shaped or Share Round Robin (SRR) [22, 23]. The Shaped function is only
available on egress queues, and a queue reserves only a portion of a port’s bandwidth. SRR is available on both ingress and egress
queues. It guarantees a queue a portion of a port’s bandwidth, but does not limit the queue to that guaranteed amount. The main idea
here is to allocate a specific traffic weight and speed limit for each queue, which allows a number of packets to be sent at specific
time imtervals, thereby reducing traffic congestion even if the traffic is high-speed and heavy.

0

2000

4000

6000

8000

10000

12000

14000

0 bytes 400 bytes 800 bytes

N
u

m
b

e
r

o
f

p
ac

ke
ts

 s
e

n
t

13000kbp1ms

Packets

received

Packets

analysed

Packets

dropped

Figure 20: Snort with QoS Architecture

We sent 13000 1kb packets at 1 ms intervals (13,000bkp1ms) to the network, As the results shown in Figure 21 demonstrate, Snort
analysed 100 percent of the traffic that reached the wire with 0 percent dropped. Experiment 1 showed that 45% of packets were
dropped at 13000kbp1ms (see Figure 9) when this QoS configuration was not used. The results show that Snort performance
analyses are significantly improved when using QoS technology.

Figure 21: Snort with QoS Reactions to an IP Header in High-Speed and Heavy Traffic Networks.

4.5 Experiment 5. Parallel Snort-NIDS with QoS technology in high-speed network traffic

When we sent 13,000kb of packets at 1ms intervals and 1 kb packet size in experiment 1, Snort dropped more than 45 percent (see
Figure 9). When we used Snort with QoS in experiment 4, Snort dropped 0 percent (see Figure 21). However, the difference between
experiments 1 and 4 is Snort’s processor times, which were 33s and 101s respectively (see Figure 22).

Figure 22: Snort Processor Time (13000kb/1ms)

33s (19%)

with

46%
dropped

101s (58%)

with

0%
dropped

Snort without QoS

configuration

Snort with QoS

configuration

Figure 23: Architecture for Parallel Snort-NIDS Using QoS and ACLs

As a solution to reduce Snort’s processor time, we suggest using parallel NIDS technology with QoS to increase NIDS performance
analysis and decrease processor time. As we show in Figure 23, we configured and treated traffic using QoS configuration, which
produced four output queues. Then each queue was scanned using an ACL which filters traffic according to classification and
enables different packages to be sent to specific Snorts. Each package was directed to a parallel Snort. Using an ACL and QoS
configuration, you can analyse and classify separate types of traffic and send these to separate queues. In this experiment we
increased the number of packets sent to 40,000. Each packet was 1kb in size and the interval of sending was 1ms.

Figure 24: Snort without QoS.

Figure 25: Snort with QoS.

As the results shown in Figures 24 and 25 demonstrate, when we tested Snort as normal without any traffic treatment, we sent nearly
40,000kb at 1kb per 1 ms, Snort analysed 16 percent of the total packets received in 55s, but when we used a single Snort NIDS with
a QoS configuration and sent the same packets Snort analysed all the packets that reached the wire in 302s without dropping any.
Using parallel NIDS technology (in three queues), Snort analysed 100 percent of the packets in less time (103s), showing an

improvement of around 60% or roughly 3 times speed up. Our experiments prove that Snort performance analysis improves
significantly using QoS and parallel NIDs technology. It has processed more than 40,000kb in 103s with 0 percent dropped (see
Figures 26, 27).

Figure 26. Paralell Snort with QoS

Figure 27: Snort Processor Time for 40,000kb sending in 1ms

A summary of our experiments is to increase the analytical performance of a Snort NIDS to guarantee the Quality of Service (QoS)
by parallel technologies in Cisco Catalyst Switches. These experiments demonstrate the weaknesses of NIDSs, such as inability to
process multiple packets and propensity to drop packets in heavy traffic and high-speed networks by incorporating various designs a
real network to present experiments.

It is important to note that when you test Snort with a QoS configuration under different processors, the QoS configuration will be
different depending on which type of processor is running Snort, specifically its speed (see Figure 28). Here we tested Snort at the
same speed and for the same values, but with different processors: the Intel Pentium® D CPU 2.2GHz (Intel P4), the Intel® corei5
2.27GHz (Core i5) and the Intel® corei7 2.40GHz (Core i7). Snort performance analysis was affected: it performed better with the
Intel® core i7 processor than the others.

Figure 28: Snort Used with Different Processors

55s

with

46%
dropped

302s

with

0%
dropped

103s with

0.00%

dropped

Snort without

QoS

Snort with QoS

Parralell Snort

with QoS

0

10000

20000

30000

40000

50000

60000

Intel P4
Core i5

Core i7

Number

of packets

received

Number

of packets

analysed

Number

of packets

dropped

5. Related work

Due to the fact that numerous computer systems are unable to detect or prevent threats such as DoS/DDoS attacks, the impacts of
these kinds of attacks are immeasurable and irremediable [7]. Such attackers amend, steal and destroy valuable information, and at
worst damage a victim’s computer system. Their main purpose is to stop or slow down the performance of legitimate users’
computer network systems by exploiting vulnerabilities such as mis-configuration and software bugs generated from internal and
external networks. Despite the existence of a variety of security protections, attackers often attempt to render services merely
unavailable to intended legitimate users [24]. Here, it is insufficient to depend only on prevention techniques, especially when an
attacker has successfully obtained vulnerable information from the network.

Some researchers [4, 9, 12, 25] have investigated specific technologies and methodologies to detect network attacks that occur in
real time, using open source IDSs, like Snort, working in high-speed, heavy-traffic networks, while others [26, 27] have used
comparisons between IDS tools to achieve the best throughput results with different IDSs. Our work addresses performance in a
different way. It explores the use of parallel technology and network switch configuration to improve QoS and hence NIDS
performance.

Salah and Qahtan [28] implemented a hybrid scheme in Linux OS to prove that a hybrid scheme can improve the performance of
general-purpose network desktops or servers running network I/O-band applications when such network hosts were exposed to both
light and heavy traffic load conditions. The standard on subscribed configurations of Linux networking subsystems, as revealed by
Salah and Qahtan, failed to meet Snort’s performance level. In order to achieve a high throughput of analysed traffic with Snort, they
tuned the budget parameter of the Linux Network subsystem, which controls the utilization time of the central processing unit cycle.
Our work is similar to this in that it explores configuration but it explores configuration at a multi-layer switch level. Thus it is
network-based rather than the host-based.

Shiri, F. I., Shanmugam, B., and Idris [4] proposed a parallel technique for improving the performance of signature-based network
intrusion detection system. Their idea was to send different types of packets to different parallel Snorts for analysis and they
obtained a 40% improvement in processing time. Schuff [29] proposed a multi-thread Snort called MultiSnort which executes
multiple instances of the original Snort in parallel. Our research is similar to these in that we also send different types of packet to
parallel Snorts. However, while our work confirms the findings of previous research, the main difference is that we have provided
detail on how to achieve the improvement through QoS and parallelisation using industry standard software systems. Another
difference is that we have concentrated on analysis and also provided further experiments and greater experimental parametric detail.
Chen et al [30] presented Para-Snort which revised the structure of the original Snort decoupling the decoding and pre-processing
part so that this is carried out before the parallel queues are formed in a module called Data Source module. The approach also used
load balancing after the Data Source module. Our work differs from this work in that we parallelise the whole of Snort forming the
parallel queues before sending packets to Snort. The problem with central decoding, pre-processing and load balancing modules is
that they could become additional bottle necks in the system.

Vasiliadis, Polychronakis, and Ioannidis [31] proposed a new model for a multi-parallel IDS architecture (MIDeA) for high-

performance processing and stateful analysis of network traffic. Their solution offers parallelism at a subcomponent level, with

NICs, CPUs and GPUs doing specialised tasks to improve scalability and running time. They showed that processing speeds can

reach up to 5.2Gbps with zero packet loss in a multi-processor system. Their solution offers parallelism at a subcomponent level,

with NICs, CPUs and GPUs doing specialised tasks. Jiang et al [6] proposed a parallel design for NIDS on a TILERAGX36 many-

core processor. They explored data and pipeline parallelism and optimized the architecture by exploiting existing features of

TILERAGX36 to break the bottlenecks in the parallel design. They achieved throughput of 11Gbps. Jamshed et al presented

Kargus [32], a system which exploits high processing parallelism by balancing the pattern matching workloads with multi-core

CPUs and heterogeneous GPUs. Kargus adapts its resource usage depending on the input rate, to save power. The research shows

that Kargus handles up to 33 Gbps of normal traffic and achieves 9 to 10 Gbps even when all packets contain attack signatures.

The various approaches described in this paragraph are not directly comparable in terms of throughput as different number of

processors and data is used in each. However the experiments show what can be gained by parallelising NIDPSes in order to

combat problems of higher speeds and increasing traffic. Our work differs from the described in the architecture used. We have

shown how QoS technology and parallelism can have impact in high speed and heavy traffic network using an industry standard

switch and standard desktop processors. We believe, our solution is a more accessible way of receiving good results as it can be

activated at a higher level, namely at the level of configuring the CISCO switch software and replicating Snort on standard

machines. Further improvements could be made if higher performance equipment was used. However we believe that there is

room for various approaches and more exploration of suitability of methods in varying circumstances.

Vendor companies are trying to develop security solutions to protect the enterprise network. Equipment, including NIDPSes, has
been designed to meet connectivity speed and load standards. The improvements in the throughput of NIDS we have shown are
achieved by pairing the ASA Cisco equipment with Snorts 14, 18, 19]. The principles of our work could be applied to other
equipment combinations where similar facilities are offered.

6. Conclusion, recommendations and further research

For many years attacks made on networks have risen dramatically. The major reason for this is the unlimited access to and use of
software (written and uploaded to websites by technical experts) by inadequately trained people. Network disruptions may be caused
intentionally by several types of directed attacks. These attacks are made at various layers in the TCP/IP protocol suite, including the
application layer and IP. Besides the external body, attacks can be made on the network by the internal body as well. However, an
IDS is considered to be one of the best technologies to detect threats and attacks. NIDPSes have attracted the interest of many
organizations and governments, and any Internet user can deploy them. An NIDPS usually features four stages to secure a computer
system network: scanning, analysing, detecting, and correcting. Using Snort NIDS, our paper focused on weaknesses in scanning
and analysing in high-speed network connectivity. We suggest using QoS configuration to improve NIDPS analysis performance
and a parallel technology to reduce processing time. As a result of the advance of our approach, anyone with a basic knowledge of
computer networks can more easily thwart an attack.

There is much yet to be learned about QoS technology. Some features of QoS may boost NIDPS performance with regard to
congestion management and congestion avoidance. Congestion management is queuing (equal queuing), which evaluates the internal
DSCP and determines which of the four egress queues in which to place the packets. There are many items to configure when it
comes to queuing: defining the priority queue, defining a queue set, guaranteeing buffer availability, limiting memory allocation,
specifying buffer allocation, setting drop thresholds, mapping CoS DSCP value to queues, configuring SRR, and limiting bandwidth
on an outbound queue. A lot of things in congestion avoidance may help with NIDPS performance, such as setting output queuing,
configuring WTD parameters to a four-queue set, WTD thresholds for a queue, guaranteed buffer availability for a queue’s
maximum memory and allocation of a queue buffer for all output queues of an interface.

This paper centred on the failure of NIDPS to prevent attacks that occur in high speed network connectively. It described
experiments which presented the weakness of NIDPS and others which improved NIDPS in terms of performance, efficiency and
effectiveness. Multi-core could be used as a solution for high-speed data and network connectively. Multi-core processors provide
enhancement with high capabilities and can secure networks from attacks, but they increase the complexity of the security system.
Advances in the utilisation of multi-processors for intrusion detection have yet to be fully exploited. However, there are two major
areas of concern in computer security: the speed and volume of attacks, and the complexity of multi-stage attacks. By using multi-
core processors appropriately, we can advance NIDPS to cope with such concerns. The current and anticipated future demands for
online security require the revision of existing systems towards the development of improved parallel systems.

References

[1]. A. Fuchsberger, Intrusion detection systems and intrusion prevention systems. Information Security Technical Report. 10 (2005) 134–139. <http://www.
sciencedirect.com.lcproxy.shu.ac.uk/science/article/pii/S1363412705000415> Accessed September 14, 2013

[2]. Arbor Networks, 9th Annual Worldwide Infrastructure Security Report and ATLAS Data, 2013. <http://www.arbornetworks.com/resources/infrastructure-
security-report> Accessed March 25, 2014.

[3]. E. Albin and N. C. Rowe, A realistic experimental comparison of the Suricata and Snort intrusion-detection systems, in: Workshops of the 26th International
Conference on Advanced Information Networking and Applications (WAINA), IEEE, 2012, pp. 122-127.

[4]. F. I. Shiri, B. Shanmugam, N. B. Idris, A parallel technique for improving the performance of signature-based network intrusion detection system, in:
Proceedings of 3rd International Conference Communication Software and Networks (ICCSN), IEEE, 2011, pp. 692–696.

[5]. J. Beale, B. Caswell, T. Kohlenberg, M. Poor, Snort 2.1 Intrusion Detection, second ed., Syngress Publishing, 2004.
[6]. H. Jiang, G. Zhang, G. Xie, K. Salamatian and L. Mathy, Scalable high-performance parallel design for network intrusion detection systems on many-core

processors, in: Proceedings of the ninth ACM/IEEE symposium on Architectures for networking and communications systems, IEEE, pp137-146.
[7]. W. Bul’ajoul, A. James, M. Pannu, Network intrusion detection systems in high-speed traffic in computer networks, in: Proceedings of 10th International

Conference on e-Business Engineering (ICEBE), IEEE, 2013, pp. 168–175.
[8]. G. M. Nazer, A. A. L. Selvakumar, Current intrusion detection techniques in information technology - a detailed analysis. European J. of Scientific Res. 65(2011)

611–624 .
[9]. S. Beg, U. Naru, M. Ashraf, S. Moshin, Feasibility of intrusion detection system with high performance computing: a survey, Int. J. Advances in Computer

Science 1(2010) 26–35.
[10]. K. Scarfone, P. Mell, Guide to Intrusion Detection and Prevention Systems (IDPS): Recommendations of the National Institute of Standards and Technology,

NIST Special Publication 800, 2012, 94.
[11]. A. Patcha, J. Park, An overview of anomaly detection techniques: Existing solutions and latest technological trends, Computer Networks, 51(2007) 3448–3470.
[12]. W. Jiang, H. Song, Y. Dai, Real-time intrusion detection for high-speed networks, Computers and Security, 24(2005) 287–294.
[13]. D. Mudzingwa, R. Agrawal, A study of methodologies used in intrusion detection and prevention system (IDPS), in: Proceedings of IEEE Southeastcon, 2012,

pp. 1–6.
[14]. Cisco Systems, Cisco ASA 5585-X Adaptive Security Appliance, n.d. < http://www.cisco.com/c/en/us/products/collateral/security/asa-5500-series-next-

generation-firewalls/product_data_sheet0900aecd802930c5.html > Accessed July17, 2014.
[15]. T. M. Wu, Intrusion Detection Systems, sixth ed., Intrusion Assurance Technology Analysis Center, Herndon, VA, 2009. <http://iac.dtic.

mil/csiac/download/intrusion_detection.pdf> Accessed September 15, 2013.
[16]. H. Kozushko, Intrusion detection: Host-based and network-based intrusion detection systems. Independent Study, 2003.
[17]. M. S. Hoque, M. A. Mukit, M. A. Bikas, An implementation of intrusion detection system using genetic algorithm, Int. J. of Netw. Security & Its Applications,

IV(2012) 111–112.
[18]. Cisco Systems, Cisco Catalyst 3560 Series Switches, n.d. <http://www.cisco.com/en/US/products/hw/switches/ps5528/> Accessed October 11, 2013
[19]. M. Roesch, M. ,Snort: Lightweight Intrusion Detection for Networks, in: Proceedings of the Conference on Large Installation System Administration

(LISA),Vol. 99, 1999, pp. 229-238.
[20]. R. U. Rahman, Intrusion detection system with snort: Advanced IDS techniques with snort, Apache, PHP, MySQL and ACID, Pearson Education and Prentice

Hall Professional, 2003.
[21]. R. Chi, Intrusion detection system based on Snort, iun: Proceedings of the 9th International Symposium on Linear Drives for Industry Applications, Springer

Heidelberg, Berlin, 3, 2014, pp. 657-664.

http://iac.dtic.mil/csiac/download/intrusion_detection.pdf
http://iac.dtic.mil/csiac/download/intrusion_detection.pdf
http://www.cisco.com/en/US/products/hw/switches/ps5528/

[22]. Cisco Systems. Quality of service design overview,n.d. <http://www.cisco.com/en/US/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND/QoSIntro.html>
Accessed October 20, 2013.

[23]. Cisco Systems, Understanding queuing with hierarchical queuing framework, 2012. <http://www.cisco.com/en/US/prod/collateral/
iosswrel/ps6537/ps6558/sol_ov_c22-708224.html> Accessed November 15, 2012.

[24]. H. J. Kim, A. Pamnami, M. Patel, State-of-the-Art in Intrusion Detection Systems, Department of Electrical and Computer Engineering Stevens Institute of
Technology, Hoboken, 2007.

[25]. M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, K. S. Park, Kargus, A highly-scalable software-based intrusion detection system, in: Proceedings of
the 2012 ACM Conference on Computer and Communications Security, ACM, 2012, pp.317-328.

[26]. K.R. Karthikeyan, A. Indra, Intrusion detection tools and techniques–A survey, International Journal of Computer Theory and Engineering, 2(2010) 901-906.
[27]. P. Mehra, A brief study and comparison of Snort and Bro Open source netwok intrusion detection system, International Journal of Advanced Research in

Computer and Communication Engineering, 1,6 (2012) 383-386.
[28]. K. Salah, A. Qahtan, Implementation and experimental performance evaluation of a hybrid interrupt-handling scheme, Computer Communications, 32.1(2009)

179–188.
[29]. D. L. Schuff, Y. R. Choe, and V. S. Pai. Conservative vs. optimistic parallelization of stateful network intrusion detection, in : Proceedings of the 12th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2007.
[30]. X. Chen, Y. Wu, L. Xu, Y. Xue, and J. Li, Para-snort: A multi-thread snort on multi-core ia platform. Proceedings of Parallel and Distributed Computing and

Systems (PDCS), 2009.
[31]. M. Vasiliadis, S. Polychronakis, S. Ioannidis, MIDeA: A multi-parallel intrusion detection architecture, in: Proceedings of the 18th ACM Conference on

Computer and Communications Security, ACM, 2011, pp. 297–308.
[32]. M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee,Y. Yi, and K. Park. Kargus: a highly-scalablesoftware-based intrusion detection system, In: Proceedings of

the ACM Conference on Computer and Communications Security (CCS), 2012.

http://www.cisco.com/en/US/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND/QoSIntro.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6558/sol_ov_c22-708224.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6558/sol_ov_c22-708224.html

