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Abstract

Scale-adjusted metrics (SAMs) are a significant achievement of the urban scaling hypothe-

sis. SAMs remove the inherent biases of per capita measures computed in the absence of

isometric allometries. However, this approach is limited to urban areas, while a large portion

of the world’s population still lives outside cities and rural areas dominate land use worldwide.

Here, we extend the concept of SAMs to population density scale-adjusted metrics (DSAMs)

to reveal relationships among different types of crime and property metrics. Our approach

allows all human environments to be considered, avoids problems in the definition of urban

areas, and accounts for the heterogeneity of population distributions within urban regions. By

combining DSAMs, cross-correlation, and complex network analysis, we find that crime and

property types have intricate and hierarchically organized relationships leading to some strik-

ing conclusions. Drugs and burglary had uncorrelated DSAMs and, to the extent property

transaction values are indicators of affluence, twelve out of fourteen crime metrics showed

no evidence of specifically targeting affluence. Burglary and robbery were the most con-

nected in our network analysis and the modular structures suggest an alternative to “zero-tol-

erance” policies by unveiling the crime and/or property types most likely to affect each other.

Introduction

Crime is a long-standing problem for society and its understanding has challenged scientists

from a wide range of disciplines. From a sociological perspective, crime is treated as a deviant

behavior of individuals and the goal of sociologists is often to find the conditions that lead to

or favor criminal behavior. There is a vast literature on the sociology of crime seeking to find

such conditions. An example is the “broken windows theory” [1] that correlates the incidence

of crime with the existence of degraded urban environments. Despite the popularity and

empirical support for this theory, there is a consensus that other factors than environment dis-

order are likely to affect or even have a greater influence on the incidence of crime. Situational

action theory [2, 3] seeks to understand how an individual’s life history and social conditions

interact with settings encouraging crime. More recently, crime has been considered as a
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complex system [4] where nonlinearities and self-organized principles create complex patterns

that are difficult to understand and even harder to predict and control. This new perspective

for studying crime and other social systems has been fostered by the availability of an unprece-

dented amount of data, making it possible to ask empirical questions that would have been

considered unanswerable a few decades ago.

In the context of city-related metrics, researchers have recently promoted and made

remarkable progress towards establishing the urban scaling hypothesis [5–34]. This theory

states that cities are self-similar regarding their size as measured by population, meaning that

several urban metrics (such as unemployment or a particular crime type) are expected to have

a deterministic component that depends on the population of the city. The resulting scaling

laws arise from only a few general assumptions about the properties of cities and should be

universal across urban systems [14]. A consequence of these scaling laws is that per capita mea-

sures are not appropriate for comparing urban units of different sizes and can exhibit biases

favoring large or small cities depending on whether the relationship with the population is

super or sublinear. In order to remove this bias, Bettencourt et al. [9, 13] proposed the use of a

scale-adjusted metric (SAM) for removing the deterministic component associated with the

population of an urban area. The SAMs are simply defined as the residuals of the fit to a scaling

relationship between indicator and population. Despite their simplicity, SAMs can capture the

exceptionality of a city regardless of its size and have proved useful for unveiling relationships

that are not observed in per capita measures [11, 13, 17, 26].

The urban scaling hypothesis is supported by a wealth of empirical evidence using a wide

range of urban indicators from many countries. However, the hypothesis has also been criti-

cized [35–38] and one main criticism relates to the definition of the “urban unity” or city.

Arcaute et al. [36] and Cottineau et al. [37] have shown that definitions of cities based on pop-

ulation density and commuter flows may lead to different observed scaling exponents. This

challenges the idea that population size alone is responsible for the deterministic component

of urban metrics and opens the possibility for other approaches. In a recent article [27], we

argued that the relationship between an indicator density (e.g. crime per hectare) and popula-

tion density can provide a far superior framework when compared with traditional population

scaling. In particular, this density-based approach is capable of continuously analyzing all

human environments, from the most rural to heavily urban systems and identified that some

metrics display scaling transitions at high population density, which can enhance, inhibit or

even collapse the scaling exponents.

Here we further explore this density-based framework together with the scale-adjusted met-

rics approach to unveil relationships among different crime types and property values. Our

approach extends the ideas of Bettencourt et al. [9, 13] by defining a density scale-adjusted

metric (DSAM). In addition to removing the deterministic component, DSAMs enable the

investigation of crime incidence and its relationships with property transaction values over the

full range of human environments. Furthermore, by combining DSAMs, cross-correlation

analysis, and complex network tools, we find that crime types have intricate and hierarchically

organized relationships among themselves as well as with property values. Our approach

reveals that these relationships are characterized by modular and sub-modular structures in

which some crime types and/or property types are more likely to affect each other.

Methods

Data sets

The data set used in the present study is the same we have employed in Ref. [27], where it is

described in detail and made freely available (it has been also provided with this paper as
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S1 Dataset). Briefly, the data set consists of police-reported crimes, property transaction values,

population size, and area for all 573 Parliamentary Constituencies in England and Wales.

These data were collected on the UKCrimeStats (http://www.ukcrimestats.com/) data platform

from different sources and subsequently reported as a snapshot since the data is regularly

updated. Reported crimes are broken into 14 types while property data are categorized by 8

types (Table 1).

Density scaling laws and scale-adjusted metrics

We start by revisiting the characterization of the density scaling laws previously described in

Ref. [27]. The usual approach for studying urban scaling is by investigating the relationship

between a given urban indicator Y and population N in a system composed of several “urban

units” (such as municipalities). This relationship is often well described by a power-law rela-

tionship defined as

Y ¼ Y0Nb or its linearized version logY ¼ logY0 þ b logN ; ð1Þ

where Y0 is a constant and β is the power-law or allometric exponent. In this context, urban

indicators are categorized into three classes depending on whether the value of β is equal

(isometry), larger (superlinear allometry) or smaller (sublinear allometry) than 1. Metrics

related to individual needs (e.g. household energy and water consumption) usually have iso-

metric relationships with population, while sublinear allometric relationships are observed for

infrastructure metrics (e.g. road surface and petrol stations) and superlinear allometric

Table 1. Constituency data analyzed in this study.

Constituency metrics, Y
Crime Types Anti-Social Behavior (ASB)

Bike Theft

Burglary

Criminal Damage and Arson (CD and A)

Drugs

Order

Other Crime

Other Theft

Robbery

Shoplifting

Theft from the Person

Vehicle Crime

Violence

Weapons

Property Types Detached

Flats

Freehold

Leasehold

New

Old

Semi-detached

Terraced

Constituency population, N
Constituency area, A

https://doi.org/10.1371/journal.pone.0192931.t001
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relationships appear for social, economic and health metrics (e.g. crime, unemployment, and

AIDS cases) [6]. Thus, urban indicators have (in general) a nonlinear deterministic component

associated with population. For a given city, this means that the value of a particular urban

metric is expected to depend on the city’s population in a nonlinear deterministic fashion.

A direct consequence of these nonlinearities is that per capita measures are efficient in cor-

rectly removing the effect of population size in an urban metric only if the metric has an iso-

metric relationship with the population. Otherwise, per capita measures will be biased towards

large populations (for superlinear allometries) or small populations (for sublinear allometries)

[26]. Consequently Bettencourt et al. [9] defined the so-called scale-adjusted metric (SAM).

This metric consists of calculating the logarithmic difference between the actual value of an

urban indicator and the value expected from the allometric relationship with population (Eq

1); mathematically, we have (for the i-th city)

Zi ¼ logYi � ½ logY0 þ b logNi� : ð2Þ

It is worth noting that the scale-adjusted metric, Zi, is the residual following the adjustment of

an observation for the power-law defined by Eq 1. The values of Zi capture the “exceptionality”

of individual cities regarding a particular metric such that a positive/negative SAM indicates

the metric is above/below the expectation for a city of that population.

This approach has been successfully employed in economic and social contexts [13, 17, 26,

39] revealing relationships among metrics in urban systems which cannot be properly identi-

fied only by per capita measures. In spite of its success, SAMs naturally share the same limita-

tions of urban scaling. As previously mentioned, the allometric exponent depends on the

definition of the “urban unit”, and the urban scaling hypothesis is limited to urban areas by

construction. On the one hand, the proportion of the world’s population living in urban areas

has been systematically increasing over the past decades and currently is around 54% [40]. On

the other hand, the urbanization process is not uniform across all countries: there are countries

where almost all the population is urban (such as Belgium and Uruguay where the proportion

of urban population is larger than 95%) while others are predominantly rural (such as India

with 33% of urban population and Trinidad and Tobago with only 9%) [41]. Furthermore, in

countries where most of the population is urban, rural areas may represent the vast majority of

the countries’ land. The United Kingdom is one such country with a population that is 83%

urban but rural areas cover 85% of the land [42]. Thus, it is important to develop a framework

capable of investigating the full range of human environments.

Previously, we proposed an approach for taking these problems into account [27]. Our idea

was to analyze scaling relationships between an indicator density and population density over

all 573 parliamentary constituencies of England and Wales, regions that range in population

density from very rural (0.22 p/ha) to heavily urban (550.3 p/ha). In place of Eq 1, we consid-

ered the following generalization (see also [43])

logy ¼
logy0 þ bL logd for d < d�

logy1 þ bH logd for d � d�
;

(

ð3Þ

where y = Y/A is the indicator density, d = N/A is the population density, d� is a population

density threshold at which the allometric exponent changes from βL to βH, y0 and y1 are con-

stants (log y1 = log y0 + (βL − βH) log d� for holding the continuity of the indicator density y as

a function of the population density d). For crime and property metrics, we found this

approach to be superior to traditional population scaling, significantly refining our under-

standing of scaling laws in human environments. Depending on the metric, we have found

rural-to-urban transitions with thresholds in the range of 10–70 people per hectare. These
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transitions were characterized by enhanced, inhibited, or collapsed scaling at high population

densities. For some metrics, a single continuous relationship was observed from the most rural

to heavily urban environments; that is, Eq 3 is reduced to a single power-law relationship

logy ¼ logy0 þ b logd ; ð4Þ

where β is the allometric exponent of the density scaling law.

Within this framework and by following the ideas of Bettencourt et al. [9], we define the

density scale-adjusted metrics (DSAMs) zi (for the i-th constituency) as a direct generalization

of Eq 2 in the context of the density scaling laws, that is,

zi ¼ logyi � f ðdiÞ ; ð5Þ

where

f ðdÞ ¼
logy0 þ bL logd for d < d�

logy1 þ bH logd for d � d�
;

(

ð6Þ

when the metric has a rural-to-urban transition at the population density threshold d�, and

f ðdÞ ¼ logy0 þ b logd ; ð7Þ

when the metric behaves continuously with the population density.

All best fit parameters for y0, y1, βL, βH, d�, and β are available in Ref. [27] and reproduced

in Table 2. Analogously to SAMs, the values of zi are simply the residuals surrounding the allo-

metric relationships between an indicator density and population density, as illustrated in Fig

1 (upper panels) for burglary and terraced housing using scaling laws from Ref. [27]. The

DSAMs are continuous and for a particular indicator can be placed into quartiles as has been

done for burglary (Fig 1, lower panel—see also S1 File for all indicators). This allows regions

having exceptionally high (e.g. Burnley) or low (e.g. Ceredigion) DSAMs to be identified. It

should be noted that as residuals from a scaling law, these are not absolute metrics of crime

density or property values, but indicate how a particular constituency compares to predicted

behavior based on population density. The absolute values for burglary in constituencies such

as Burnley, the Cotswalds, Scunthorpe, and Greater Grimsby would not appear as exceptional

in the absence of scale adjustment. However, these areas all exhibited exceptionally high bur-

glary density relative to expected values.

Results and discussion

Statistical properties of DSAMs

Having defined DSAMs, it is useful to study their statistical properties. We note that DSAMs

have been defined in a log-log domain and ask whether their values are distributed according

to a Gaussian distribution, a feature that facilitates the use of linear regression in forecast anal-

ysis [19, 26]. To do so, we set w = 15 equally-spaced windows over the logarithm of the popula-

tion density and within each one we calculate the average (μw) and the standard deviation (σw)

of the DSAMs. The normalized DSAMs are defined by subtracting (within each window) the

mean μw from zi and dividing the result by the standard deviation σw. This gives a standardized

score (or z-score) calculated within windows of population density. It worth noting that μw is

very close to zero due to the DSAM definition and thus subtracting μw from zi or not is irrele-

vant for the results we present in this section. Also, our results are very robust for different

number of windows w; in particular, our conclusions are not modified if 8� w� 20. Fig 2A
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shows the normalized DSAM cumulative distributions for all crime and property types in

comparison with the standard Gaussian, where a good correspondence is observed.

A more rigorous analysis of the normality of the DSAMs is obtained by applying the Kol-

mogorov-Smirnov (KS) test [44] to the values of zi. Fig 2B shows the p-values of the test for

each indicator, where we observe that normality cannot be rejected for the majority of the indi-

cators (15 out of 22); however, the normality of four property types (flats, leasehold, new, and

terraced properties) and three crime categories (drugs, vehicle crime, and weapons) could be

rejected with 99% confidence. This indicates that these property and crime types have a more

complex dependence on population density (as also discussed in [38] in the context of the pop-

ulation scaling). One possibility is that some of these indicators have additional unobserved

population density thresholds which our sample size was insufficient to detect. We suspect this

due to comparing the normality of standardized DSAMs from single power-law (Eq 4) and

double power-law models (Eq 3) and finding that the p-values of the KS tests always improved

(when below confidence level—see S1 Fig) when considering the double power-law model. In

particular, when a double power-law model was applied, normality can no longer be rejected

for the indicators criminal damage and arson (CD and A), detached, freehold, and semi

detached (S1 Fig). Despite this possibility, normality is observed for most indicators and in

the exceptions the deviations are not large allowing us to consider, to a first approximation,

DSAMs to be normally distributed. It is worth mentioning that the normality of zi implies that

the fluctuations in crime and property densities are distributed according to a log-normal

shape, as also observed in the usual population scaling [10, 11, 16, 17, 19, 26].

Table 2. Best fitting parameters log y0, βL, β, log y1, log d�, and βH of models described in Eqs 3 and 4 for each crime and property type. Values reproduced from

Ref. [27].

Crime Type log(y0) βL or β log(y1) log(d�) βH

ASB −1.62 ± 0.02 1.13 ± 0.02 −1.30 ± 0.13 1.47 ± 0.13 0.91 ± 0.08

Bike Theft −3.26 ± 0.02 1.27 ± 0.02 −4.62 ± 0.77 1.80 ± 0.12 2.03 ± 0.43

Burglary −2.35 ± 0.01 1.18 ± 0.01 - - -

CD and A −2.21 ± 0.01 1.14 ± 0.01 −1.55 ± 0.11 1.52 ± 0.05 0.71 ± 0.07

Drugs −2.77 ± 0.02 1.08 ± 0.03 −3.13 ± 0.08 1.13 ± 0.10 1.40 ± 0.05

Order −2.91 ± 0.02 1.16 ± 0.03 −3.20 ± 0.07 1.06 ± 0.12 1.43 ± 0.05

Other Crime −3.29 ± 0.01 1.15 ± 0.01 - - -

Other Theft −2.26 ± 0.01 1.11 ± 0.01 −2.57 ± 0.08 1.40 ± 0.09 1.33 ± 0.05

Robbery −3.98 ± 0.02 1.55 ± 0.03 −4.73 ± 0.14 1.32 ± 0.08 2.12 ± 0.10

Shoplifting −2.56 ± 0.02 1.26 ± 0.02 −1.61 ± 0.16 1.50 ± 0.06 0.63 ± 0.10

Theft from the Person −3.68 ± 0.03 1.36 ± 0.03 −4.84 ± 0.18 1.39 ± 0.06 2.20 ± 0.12

Vehicle Crime −2.54 ± 0.01 1.27 ± 0.01 - - -

Violence −2.06 ± 0.01 1.12 ± 0.02 −2.28 ± 0.06 1.17 ± 0.13 1.30 ± 0.04

Weapons −3.78 ± 0.02 1.23 ± 0.02 - - -

Property Type

Detached 3.30 ± 0.03 0.77 ± 0.04 4.47 ± 0.14 1.21 ± 0.06 −0.20 ± 0.10

Flats 2.13 ± 0.05 1.13 ± 0.05 −1.65 ± 0.48 1.55 ± 0.04 3.57 ± 0.30

Freehold 3.55 ± 0.02 0.83 ± 0.02 2.48 ± 0.42 1.70 ± 0.10 1.46 ± 0.25

Leasehold 2.24 ± 0.04 1.26 ± 0.04 −1.83 ± 0.69 1.68 ± 0.04 3.68 ± 0.40

New 2.30 ± 0.03 0.86 ± 0.03 −1.88 ± 1.06 1.80 ± 0.05 3.19 ± 0.58

Old 3.55 ± 0.02 0.89 ± 0.02 0.92 ± 0.42 1.71 ± 0.04 2.43 ± 0.24

Semi Detached 2.90 ± 0.02 1.05 ± 0.03 3.84 ± 0.14 1.41 ± 0.06 0.38 ± 0.09

Terraced 2.83 ± 0.02 1.00 ± 0.02 1.23 ± 0.22 1.55 ± 0.04 2.04 ± 0.14

https://doi.org/10.1371/journal.pone.0192931.t002
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Fig 1. Allometric laws between indicator density and population density, and the definition of density scale-adjusted

metrics (DSAMs). Upper panels illustrate how four DSAMs (Ceredigion, Burnley, Scunthorpe, and Kensington) are

generated using the scaling laws from Ref. [27]. The relationship between indicator density and population density for a

crime (burglary) and property (terraced) type on a log-log scale. For burglary, a simple allometric law with an exponent β =

1.18(1) fits this relationship; whereas for terraced, two power laws (βL = 1.00(2) low population density and βH = 2.04(14) for

high) is a better description. The continuous black lines are the adjusted power laws and the green vertical line indicates the

transition between low and high densities for terraced properties (log d� = 1.55(4)). The density scale-adjusted metric

(DSAM) is defined as the difference (in logarithmic scale) between the value of an indicator density and the value that is

expected based on population density via the power-law fit (single or double). Arrows in these plots illustrate the DSAM for

four Parliamentary Constituencies: Ceredigion, Burnley, Scunthorpe, and Kensington. The bottom panel shows a
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visualization of the DSAMs for burglary for all Parliamentary Constituencies. The constituency names are disposed in

alphabetic order (counterclockwise direction) in a radial plot, in which the distances to central point are proportional to the

Constituencies’ DSAM. Constituencies within the black dashed circle have burglary density lower than the expected by their

population density (negative DSAM, azure shades); whereas those outside this circle have burglary density higher than the

expected (positive DSAM, red shades). The blue and the red dashed circles indicate the lower and upper quartile of the

DSAM distribution (see S1 File for all other indicators).

https://doi.org/10.1371/journal.pone.0192931.g001

Fig 2. Most DSAMs are normally distributed. (a) Cumulative distribution of the normalized DSAM (that is, after subtracting its mean and

dividing by its standard deviation) for each crime and property type (colored circles). We note that all distributions are very close to the

standard Gaussian (zero mean and unitary variance) indicated by the continuous line. (b) The p-values of the Kolmogorov-Smirnov normality

test for each crime and property type. The normality of DSAMs cannot be rejected at 99% confidence level for 15 of the indicators (blue bars),

whereas this hypothesis is rejected for drugs, vehicle crime, weapons, flats, leasehold, new and terraced (red bars, 7 indicators). See S1 Fig for

individual distributions and for a comparison between single and double power-law model for calculating the DSAMs.

https://doi.org/10.1371/journal.pone.0192931.g002
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Another interesting question regarding DSAMs is whether their fluctuations increase with

the population density. This question is related to Taylor’s law [45, 46], which establishes an

empirical power-law relationship between the variance (or standard deviation) and the ensem-

ble average over groups of similar size (this law can also be applied to time averages [46]). In

population scaling this parallel is more direct, since one can consider groups of similar size to

be cities with similar population. Empirical results from population scaling have found no

(strong) evidence that the fluctuations surrounding scaling laws increase with population size

in a logarithmic space [10, 11, 16, 17, 19, 26].

In our case, we consider that constituencies with similar population densities form groups

for studying the dependence of the standard deviation of crime and property DSAMs on the

population density (note: this corresponds to the relationship between log(σw) and log(d)). Fig

3A depicts this analysis for all indicators, where no clear dependence between the DSAM stan-

dard deviation and the logarithm of population density is observed (see also S2 Fig for individ-

ual plots). By using linear regression [44], we find no significant linear trend in 13 out of 22

indicators; furthermore, the growth rates of σw for the indicators showing significant trends

are very small (up to 0.005 units of DSAM per log[p/ha]—S2 and S3 Figs).

Thus, our results are similar to those reported for population scaling, that is, there is limited

evidence supporting the hypothesis that the fluctuations surrounding density scaling laws

increase with the population density in the log-log space. As discussed in Leitão et al. [38], this

constant variance reinforces the conclusion that DSAMs are approximately normally distrib-

uted, subject to the caveat that where normality was rejected it is likely that a better model

could be found. In Leitão et al., they proposed a probabilistic framework for hypothesis testing

that explicitly considers the fluctuations for fitting allometric laws with population. Within

this approach, they concluded that most of their models could be rejected in hypothesis testing,

which also suggests that more complex patterns (such as the double power-law model

employed here) are present in population scaling. Also, this nearly constant behavior allows us

to characterize the deviations from the predictions of the density scaling laws by the average

value of the DSAMs standard deviation over all population densities. The smaller the value of

this quantity, the more predictable the metric is in terms of the population density. Fig 3B

shows a bar plot of this quantity for all indicators in ascending order, where we observe that

crime types usually have smaller fluctuations than property metrics.

DSAM cross-correlations

Having all DSAMs calculated and because this approach efficiently removes the deterministic

effect of population density, we can now ask about inter-relationships between the different

crime and property categories. To do so, we first ask whether DSAMs are cross-correlated in a

linear fashion. For SAMs, researchers have reported that in addition to removing the popula-

tion bias, these metrics have linear correlations among each other [9, 13, 26, 39]. In the

DSAMs case, we tested this hypothesis by estimating the maximal information coefficient

(MIC) [47]. This non-parametric coefficient measures the association between two variables,

even when they are correlated in nonlinear fashions. The MIC also coincides to the square of

the Pearson linear correlation [47] for linear relationships; thus, the difference between MIC

and the square of the Pearson correlation is a natural measure of the degree of nonlinearity

between two variables [47]. Because of that, we estimate the MIC (Mij) and the Pearson corre-

lation coefficient [44] (ρij) for every possible pair of DSAM types (i and j), and calculate the

average value of the difference Mij � r2
ij over all unique DSAM type pairs (i> j). We further

calculate this average when random shuffling of the DSAMs among the constituencies and for

a set of uniform random variables with size equal to number constituencies. S4 Fig shows that
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Fig 3. Fluctuations of the DSAMs are independent of log population density. (a) Standard deviation of DSAM versus population density (on

a log scale) for all crime and property types. These values are evaluated in 15 equally-spaced windows over population density on a logarithmic

scale. The behavior of these curves is well approximated by constant plateaus (see S2 Fig for individual plots). Linear regression found

significant linear increasing trends for 9 indicators; however, the growth rates are very small in all cases (up to 0.005 units of DSAM per log[p/

ha]—see S3 Fig). (b) Average value of the DSAM standard deviation for each crime and property type in ascending order. Error bars represent

99% bootstrap confidence intervals. As the standard deviation decreases, the accuracy increases in the prediction of the indicator based on the

population density.

https://doi.org/10.1371/journal.pone.0192931.g003
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the average of the difference Mij � r2
ij for the original DSAM set is small (0.09 ± 0.06) and not

significantly different from the averages calculated from the shuffled DSAMs and random vari-

ables. We have also tested the linearity of the DSAMs relationships by comparing the AIC

(Akaike information criterion [48]) values of linear models adjusted to these relationships

with those obtained from quadratic and cubic models. To do so, we bootstrap the AIC values

among all possible pairs of DSAMs and test whether the difference is significant by using the

two-sample bootstrap mean test. Results show that quadratic relationships are better descrip-

tions (compared with linear) only in 8% all pairwise relationships; similarly, cubic relation-

ships are better models only in 10% of cases. Therefore, in addition to removing the effect of

population density, the DSAMs from each type of metric also show linearly correlation among

each other.

Fig 4 shows the correlation matrix ρij for every possible pair of DSAM (i and j). In order

to better understand these inter-relationships, we define the ultrametric distance matrix

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � rijÞ

q
for applying the single-linkage clustering algorithm [49], yielding the den-

drograms shown in Fig 4. Several conclusions are clear from inspection of this figure:

• For all property types there is a positive correlation in property transaction value DSAMs

with those of all other property types. Most were very strong with many above 0.7 with val-

ues reaching 0.93 (old vs. freehold). Positive correlations indicate the tendency for high val-

ues of one property type to be associated with high values in all other property types.

• All crime types are positively correlated with all other crime types with some strong correla-

tions (e.g. 0.73 for anti-social behavior vs. criminal damage and arson—ASB vs. CD and A).

In contrast to property types, the correlations among crime metrics were not as strong and

some were very weak with insignificant correlation (e.g. 0.02 for vehicle crime vs. drugs).

• The only anti-correlations seen are between crime and property DSAMs. This gives rise to

the blue regions in the upper right and lower left regions of Fig 4. Anti-correlations indicate

the tendency for a positive property DSAM to be associated with a negative crime DSAM (e.
g. high property value DSAM is associated with low crime). The majority of crime vs. prop-

erty DSAMs are anti-correlated which demonstrates a tendency for crime to be associated

with depressed property transaction values. The three strongest predictors of depressed

property value DSAMs were criminal damage and arson (CD and A), anti-social behavior

(ASB), and weapons with old and freehold properties most affected. This does not prove

crime as the causative agent, but does demonstrate the association over a wide range of

indicators.

• Two crime types (theft from the person and bike theft) exhibited positive crime vs. property

correlations. This is a good example to illustrate that one has to be careful when trying to

associate causal relationships to these correlations. If taken literally, one could absurdly

think that to improve property values, we must encourage bike theft and theft from the per-

son. A more logical explanation is that these two crime types tend to rise in regions of rela-

tive affluence, assuming that property transaction value DSAMs are metrics of relative

affluence. Again, this does not prove causation, however, it does make clear that it is only

these 2 (out of 14) crime types which show any evidence of being attracted to or specifically

targeting affluence.

The hierarchical clustering behavior reinforced many of these conclusions. We note the

emergence of two main clusters setting apart crime and property metrics. In the property data,
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new property appears isolated from the remaining property types. This is a striking result

because, with the exception of old property, every property category examined can include

new properties as the classifications are not exclusive. Within the crime metrics, there is a sub-

cluster consisting of robbery, burglary, and vehicle crime distinct from other crime types. The

Fig 4. Crime and property DSAMs are cross-correlated and form a hierarchical structure. The matrix plot shows the value of the Pearson

correlation coefficient (ρij) evaluated for each combination of crime and property DSAM (i and j). The number inside each cell is the coefficient

value and the color code also refers to ρij (blue indicates negative correlation, while red is used for positive correlations; the darker the shade, the

stronger the correlation). The insets indicated by arrows show examples of relationships among crime and property DSAMs. Upper and right-

side panels are dendrograms constructed via the hierarchical clustering algorithm (based on the distance dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � rijÞ

q
).

https://doi.org/10.1371/journal.pone.0192931.g004
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remaining crime types form a separate group with an important sub-cluster consisting of anti-

social behavior (ASB), criminal damage and arson (CD and A), and violence. Interestingly,

despite considerable discussion of drugs and burglary in the literature [50, 51], drugs and bur-

glary crime reports are uncorrelated in our data. This discrepancy may be due to the design of

many previous studies in which convicted offenders are surveyed. It is likely that drug use con-

tributes to burglars being apprehended and convicted. Hence, the subset of all burglars com-

posed of known offenders may not be representative of burglars in general. In our data, drugs

crime reports are much more strongly associated with reports of order and weapons offenses.

DSAM networks

Another approach for probing patterns in the complex inter-relationships among crime and

property metrics is to create a complex network representation [52, 53]. The hierarchical clas-

sification was able to distinguish the difference between the crime and property metrics clearly

and also identify subcategories. This representation works well for positive correlations, but

failed to identify the important negative correlations between certain types of crime and prop-

erty. In addition, the two dimensional grid structure limits the number of neighbors that can

be placed adjacent to a particular category, and the dendrogram does not account for strength

or significance of the correlations. Furthermore, complex networks (or spaces) already have

shown very to be quiet useful to understand how several socioeconomic phenomena are

related to each other [54–60].

In order to build these complex networks, we bootstrap the Pearson correlation, ρij, for

every pair of metrics (over one thousand realizations), identifying those that are statistically

significant at 99% confidence level. The significant correlations are shown in S6 Fig, where we

can individually visualize the effect of all crime and property categories on a particular one.

Next, we group all pairs of metrics having significant positive correlations to create the

weighted complex network of Fig 5A. In this representation, the vertices are crime and prop-

erty categories, the edges indicate the existence of significant positive correlations, and the

edge weights are the correlation values.

We apply the network cartography of Rimerà and Amaral [61, 62] to extract the network

modules and classify nodes according to their within- (W, in standard score units) and

between-module connectivity (or participation coefficient P, a fraction). This approach yields

the same two main modules observed in the hierarchical clustering, that is, a crime and a prop-

erty module. We find the significance of the this modular structure by comparing the network

modularity M (the fraction of within-module edges minus the fraction expected by random

connections [61–64]) with the average modularity hMrandi of randomized versions of the origi-

nal network [65]. For these modules, we have M = 0.47 and hMrandi = 0.12 ± 0.01, showing that

the modular structure cannot be explained by chance. Fig 5B shows a classification of the crime

and property categories based on the W-P plane (within-module connectivity vs. between-

module connectivity). We note that most metrics have P = 0, that is, these metrics only have

within-module connections (ultraperipheral nodes R1 according to [61, 62]). Weak positive

correlations exist between the crime types: bike theft and theft from the person, and the prop-

erty categories: flats, leasehold, new, and terraced. Within each module, we find violence and

other theft to be the most connected categories in the crime module; while old and freehold are

the most connected types in the property module. These crime and property types are expected

to have the largest positive impact on their modules, meaning that an increase/decrease in their

DSAM values correlates to an increase/decrease in several other types within their modules.

We also ask if these modular structures can be broken into sub-modules. To answer this

question, we apply the network cartography to the two sub-graphs composed by the crime and
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property modules. For the property module, no significant sub-modular structure could be

found (M = 0.12 and hMrandi = 0.12 ± 0.05). For the crime module, the sub-modular structure

shown in Fig 5C is significant (M = 0.14 and hMrandi = 0.06 ± 0.01). We note the existence of

two modules: one (on the left) is dominated by acquisitive types of crime and consists of theft

from the person, other theft, robbery, burglary, and vehicle crime; the other contains all

remaining categories. We also find that these sub-modules cannot be broken into statistically

significant smaller structures. The role discrimination of crime nodes based on the W-P plane

is shown in Fig 5D, where all nodes are classified as peripheral nodes (R2—see [61, 62]), which

reflects the entanglement among crime types. In spite of that, we find burglary and robbery to

be the most interconnected categories (that is, having the largest P); while anti-social behavior

(ASB), drugs and order are the most “local” categories. Naturally, correlation does not imply

Fig 5. Network of DSAMs that are positively correlated. (a) Complex network representation of the positive connections among crime and

property DSAMs. Each node is a crime or property type and the connection between two nodes occurs whenever there is a statistically

significant correlation between their DSAMs (based on bootstrapping the Pearson correlation and 99% confidence). Each connection is

weighted by the Pearson correlation coefficient and the thickness of the edges are proportional to the connection weight. Node sizes are

proportional to their degrees and the color code also refers to node degree. A modular structure composed of two modules (one with all

property metrics and a second with all crime metrics) is identified by maximizing the network modularity (yielding M = 0.47 for the original

network and hMrandi = 0.12 ± 0.01 for a set of randomizations of the original network). Edges highlighted in blue are ones connecting the two

modules. (b) Characterization of nodes based on the within-module connectivity (W) and participation coefficient (P). Each dot in the W-P
plane corresponds to a crime or property type. All nodes are classified as ultraperipheral (R1) or peripheral (R2); in particular, the majority of

nodes has zero participation coefficient (that is, has only within-module links) and only the six nodes in the R2 region have between modules

connections. (c) Modular structure of the sub-graph related to the crime metrics. For this case, two modules (colored in purple and green) are

found by maximizing the network modularity (M = 0.14 and hMrandi = 0.06 ± 0.01). (d) Role discrimination of crime nodes by the W-P plane.

We note that all nodes are in the peripheral region (R2). Drugs, order, and anti-social behavior (ASB) crime types are the most peripheral;

robbery and burglary have the largest P, and criminal damage and arson (CD and A) has the largest W.

https://doi.org/10.1371/journal.pone.0192931.g005
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causation and our analysis must be viewed as a seminal alternative proposal for investigating

the inter-relationships among different crime types. Taking these points into account, our

approach suggests that policies focused on reducing burglary and robbery are more likely to

“spread” over other crime types than those eventually focused on categories such as anti-social

behavior (ASB), drugs and order. This result suggests that actions such as “the zero-tolerance

policies” against minor crimes with lower participation and connectedness are unlikely to

have a strong positive impact on reducing more serious crimes when compared with policies

focused on more entangled crime types.

Analogous to the previous case, we investigated the network of negative correlations. In

this representation, we connect every crime and property type displaying significant negative

(or anti-) correlations and the edge weights are proportional to the absolute value of these cor-

relations. Fig 6A shows that this network has a very distinct structure, where crime types are

never connected to each other and the same occurs among property types. This means that

the increasing/decreasing of DSAM for a particular crime does not correlate to a decreasing/

increasing of DSAM for any other crime category. The same holds for property types. Thus,

an increase/decrease of DSAMs for crime types is only correlated to a decrease/increase of

DSAMs for property categories, illustrating that criminal activities have an important role in

the depreciation process of property values. Interestingly, bike theft and theft from the person

deviate from this behavior and have no significant negative correlations to any other metric.

Fig 6. Network of DSAMs that are negatively correlated. (a) Complex network representation of the negative correlations among crime and

property DSAMs. Each node is a crime or property type and the connection between two nodes occurs whenever there is a statistically

significant anti-correlation between their DSAMs (based on bootstrapping the Pearson correlation and 99% confidence). Node sizes are

proportional to their degrees and the color code also refers to node degree. Each connection is weighted by the absolute value of the Pearson

correlation coefficient and the thickness of the edges are proportional to the connection weight. (b) Modular structure of the negatively

correlated network. Two modules are identified by maximizing the network modularity (M = 0.13 and hMrandi = 0.07 ± 0.02) and are colored in

purple and green. (c) Role discrimination of nodes by the W-P plane (within-module connectivity versus participation coefficient). We note that

all nodes are in the peripheral region (R2). (d) Modular structure of the sub-graphs related to the two modules of (b). One of the modules can be

divided into two sub-modules that has been colored with purple shades (M = 0.15 and hMrandi = 0.06 ± 0.02) and the other yields three sub-

modules that are colored with green shades (M = 0.14 and hMrandi = 0.08 ± 0.02). These sub-modular structures reveal that some property types

have their values more depreciated by specific crime types.

https://doi.org/10.1371/journal.pone.0192931.g006
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We also apply the network cartography to the network of negative correlations, finding that

it can be broken into two significant modules (M = 0.13 and hMrandi = 0.07 ± 0.02—Fig 6B).

One module is composed by detached, freehold, and semi-detached property types as well as

seven crime categories (drugs, order, other crime, other theft, robbery, shoplifting, and vio-

lence). The other module is formed by flats, leasehold, new, old, and terraced properties sur-

rounded by the remaining seven crime categories. Fig 6C shows the role discrimination of

nodes based on the W-P plane. As in the sub-modular structure of crime metrics (Fig 5C and

5D), all nodes in the network of negative correlations are classified as peripheral nodes (R2).

This result reinforces the interconnectedness of this network, indicating that is very hard to

find crime types having a very uneven impact on property values.

In spite of these conditions and remembering that our analysis must be viewed as a first

step toward a better understanding of the inter-relationships among crime and property types,

we observe that detached, old, semi detached and freehold property types have the largest val-

ues of P and W. This result suggests that these properties are the most susceptible to having

their values depreciated by criminal activities. We also note that anti-social behavior (ASB),

criminal damage and arson (CD and A), violence, and weapons have the largest values of P,

suggesting that these crime types exhibit a distinct influence on the property values; criminal

damage and arson (CD and A) also has a large value of W, indicating that this crime category

has both an influence over its module and over the other module. The most “local” crime cate-

gories are order and other theft (smallest values of P), indicating that they have an important

impact only on the property values of their module. Similarly, flats and new properties have

the smallest P among property types, suggesting that these properties are most affected by

crime types belonging to their module.

We tested for additional structure and found the modules could be broken into the sub-

modules shown in Fig 5D. The sub-graph composed by the module on the left of Fig 5B yields

two sub-modules (M = 0.15 and hMrandi = 0.06 ± 0.02), while the module on the right of Fig

5B yields three sub-modules (M = 0.14 and hMrandi = 0.08 ± 0.02). Each of these sub-modules

is composed by one or two property types and from one (the one composed by burglary and

terraced) to four crime categories (the one composed by detached, freehold, drugs, other

crime, robbery, and violence). It is not easy to explain such groups or to claim that these sub-

modular structures are very meaningful since the original network and its modular structure is

very entangled (which is quantified by the small values of the modularity M). However, the sta-

tistical significance of these structures suggests the depreciation process of property values

caused by criminal activities is hierarchically organized.

Conclusion

This study advances our understanding of the inter-relationship between police reported

crime and property transaction values using density scale-adjusted metrics. When the trend

attributable to population density is removed using allometric scaling laws, the resulting

metrics more effectively compare constituencies. This study reaches a number of important

conclusions.

Individual categories of DSAMs may appear to exhibit no trends and be consistent with a

normal distribution, however, when looking at single indicators, important and significant

correlations will remain unobserved. In the current study, DSAMs were observed to exhibit

significant positive and negative correlations with a host of other metrics.

Correlations between DSAMs from different crime indicators revealed universally positive

correlations with every other crime indicator. Similarly, density scale-adjusted metrics for

property transaction values were positively correlated with all other property types. These
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results indicate that at the level of parliamentary constituencies an increase in the DSAM for

one type of crime predicts an increase in all other types of crime. It should be noted, that

DSAMs will account for general rises and falls in crime across all scales. Thus, a decrease in

absolute numbers does not mean the scale-adjusted metric will decrease.

With the exceptions of bike theft and theft from the person, crime and property DSAMs are

negatively correlated. This means that as a general rule, an increase in DSAM of crime is asso-

ciated with a decrease in the value of property transactions. Two crime categories exhibit a par-

ticularly strong effect: anti-social behavior (ASB) and criminal damage and arson (CD and A).

This indicates that in our data twelve out of fourteen crime types show no evidence of crime

targeting affluence. Our network approach also revealed that crime and property DSAMs form

hierarchically-organized structures with statistically significant modular and sub-modular

structures. These structures represent the crime and/or property categories that are more likely

to affect each other. Consequently, such groups may help policy-makers to design more effec-

tive actions for reducing crime incidence, with the advantage of having an approach that

works over the full range of human environments.

Supporting information

S1 Dataset. Data employed in this study. Snapshot of police reported crime captured 10/6/

2015 and property transaction values captured 17/7/2015 for the 12 months of 2014.

(XLSX)

S1 File. Visualization of the DSAMs for all parliamentary constituencies and for each

crime and property type.

(PDF)

S1 Fig. Normality tests for DSAMs. The panels show the cumulative distributions of the nor-

malized DSAMs (that is, after subtracting its mean and dividing by its standard deviation) for

each crime and property type. For DSAMs in which the double power-law model is a better fit,

we show the distributions of the normalized DSAM defined with the single power-law model

(blue lines) and with double power-law model (red lines). The insets in each plot show the p-

values of the Kolmogorov-Smirnov normality test, where the horizontal dashed lines indicate

the 0.01 confidence level threshold. We note that the normality of the DSAMs is achieved for

criminal damage and arson (CD and A), detached, freehold and semi detached only when

defining the DSAM with the double power-law model. We further observe that double power-

law usually produces higher p-values.

(PDF)

S2 Fig. Relationship between DSAM standard deviation and log of population density.

Each panel shows the standard deviation of the DSAM evaluated in 15 equally-spaced win-

dows over population density on a logarithmic scale. The error bars are 99% bootstrap confi-

dence intervals and the horizontal lines are the average values of standard deviations for each

indicator. The plots with blue markers are the ones for which no significant increasing trend is

observed between standard deviation and population density via linear regressions, whereas

the plots with red markers show the indicators for which this relationship has a significant lin-

ear increasing trend. Despite the statistical significance of some linear coefficients (9 out of

22), we observe that the majority of the relationships do not show large deviations from the

horizontal plateau defined by the mean of the standard deviation.

(PDF)
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S3 Fig. Quantifying the relationship between DSAM standard deviation and log of popula-

tion density. Linear coefficients of the linear regressions between DSAM standard deviation

and log of population density that are statistically significant. Despite the significance of the

increasing trends for 9 out of 22 metrics, we note that the growth rates are very small (up to

0.005 units of DSAM per log[p/ha]).

(PDF)

S4 Fig. Quantifying the degree of nonlinearity in the DSAMs cross-corrections with MIC.

The bar plot show the average value of the difference between the maximal information coeffi-

cient (MIC) [47] and square of the Pearson linear correlation over over all unique pairs of

DSAM types (MIC-Pearson2), for the DSAMs values after shuffling their values among constit-

uencies, and for uniform random numbers (sample size is equal to the DSAM case). Error bars

are one standard deviation of the quantity (MIC-Pearson2). We note that the average value for

original DSAMs is small and fully explained by chance. Thus, we can assume that correlations

among the DSAMs are linear.

(PDF)

S5 Fig. Quantifying the degree of nonlinearity in the DSAMs cross-corrections by compar-

ing the linear model with quadratic and cubic models. (A) Each dot corresponds to the p-

value of the two-sample bootstrap test (at 95% confidence)for the equality of mean values of

the Bayesian information criterion (BIC) obtained by adjusting the DSAMs pairwise relation-

ships with a linear and a quadratic model. We have bootstrapped the BIC values over 100 reali-

zations and considered only the pairwise relationships in which the BIC for quadratic model is

smaller than the one obtained for the linear model. Among the 231 possible relationships, the

BIC of the quadratic model is smaller than BIC of the linear in 90 cases. However, the differ-

ence between the BIC values is significant only in 19 cases (indicated in the plot), that is, only

in�8% of all relationships. (B) The same analysis comparing the linear model with the cubic

model. In this case, the BIC of the cubic model is smaller than BIC of the linear in 71 cases, but

in only 23 there is significant difference, only in�10% of all relationships.

(PDF)

S6 Fig. Individual visualization of the node connections in the positive and negative corre-

lated networks. Each gray node (circle) represents a crime or a property type, and the connec-

tions indicate the metrics that are negatively (blue) and positively (red) correlated with the

particular crime or property type. The edge thickness is proportional to the absolute value of

Pearson correlation ρij between the metrics, and the edge label shows the value of ρij. The

edges are arranged so that negative correlations are above the gray nodes, and positive ones

are below; also, the closer the edge is to the vertical position, the more intense is the correla-

tion/anti-correlation between the metrics.

(PDF)
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