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BACKGROUND Cardiomyocytes are organized in microstructures termed sheetlets that reorientate during left

ventricular thickening. Diffusion tensor cardiac magnetic resonance (DT-CMR) may enable noninvasive interrogation of

in vivo cardiac microstructural dynamics. Dilated cardiomyopathy (DCM) is a condition of abnormal myocardium

with unknown sheetlet function.

OBJECTIVES This study sought to validate in vivo DT-CMR measures of cardiac microstructure against histology,

characterize microstructural dynamics during left ventricular wall thickening, and apply the technique in hypertrophic

cardiomyopathy (HCM) and DCM.

METHODS In vivo DT-CMR was acquired throughout the cardiac cycle in healthy swine, followed by in situ

and ex vivo DT-CMR, then validated against histology. In vivo DT-CMR was performed in 19 control subjects, 19 DCM, and

13 HCM patients.

RESULTS In swine, a DT-CMR index of sheetlet reorientation (E2A) changed substantially (E2A mobilityw46�). E2A changes

correlated with wall thickness changes (in vivo r2 ¼ 0.75; in situ r2¼ 0.89), were consistently observed under all experimental

conditions, and accorded closely with histological analyses in both relaxed and contracted states. The potential contribution of

cyclical strain effects to in vivo E2A was w17%. In healthy human control subjects, E2A increased from diastole (18�) to

systole (65�; p < 0.001; E2A mobility ¼ 45�). HCM patients showed significantly greater E2A in diastole than control subjects

did (48�; p < 0.001) with impaired E2A mobility (23�; p < 0.001). In DCM, E2A was similar to control subjects in diastole,

but systolic values were markedly lower (40�; p < 0.001) with impaired E2A mobility (20�; p < 0.001).

CONCLUSIONS Myocardial microstructure dynamics can be characterized by in vivo DT-CMR. Sheetlet function was

abnormal in DCM with altered systolic conformation and reduced mobility, contrasting with HCM, which showed

reduced mobility with altered diastolic conformation. These novel insights significantly improve understanding of

contractile dysfunction at a level of noninvasive interrogation not previously available in humans. (J Am Coll Cardiol

2017;69:661–76) Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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HAR = helix angle range
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T he microstructure of left ventricular
(LV) compact myocardium in
humans and other mammals con-

sists of a continuously branching syncytium
of cardiomyocytes embedded in a predomi-
nantly collagen matrix. The primary helical
arrangement of cardiomyocytes through the
depth of the LV wall (1,2) (Figures 1A and 1B)
can be quantified by the helix angle (HA)
(3,4). LV contraction entails both longitudi-
nal and circumferential shortening of the
ventricle (w10% to 25%, depending on direc-
tion and depth) accompanied by radial wall
thickening (>35%), together with twisting
of the apex relative to the base (5). Cardio-
myocytes, the heart’s fundamental contrac-
tile element, individually shorten by only
w15% and thicken by only w8% during sys-
tole (5). Such conformational changes in car-
diomyocytes in a helical arrangement alone
are insufficient to explain the observed
magnitude of systolic wall thickening (5). The second-
ary organization of cardiomyocytes consists of
laminar microstructures, 5 to 10 cardiomyocytes
thick, termed sheetlets (3,6). Reorientation of these
sheetlets (7,8), quantified by changes in sheetlet
angle (SA), has been proposed as the predominant
mechanism associated with macroscopic LV wall
thickening in vivo (9–12) (Figures 1C to 1J, Online
Video 1).
SEE PAGE 677
Cardiomyopathies affect both myocardial struc-
ture and function in the absence of coronary artery
disease or abnormal loading conditions (13,14). In
hypertrophic cardiomyopathy (HCM), there is an
annual incidence of cardiovascular death of 1% to 2%
due to heart failure and sudden cardiac death from
arrhythmias (15). In dilated cardiomyopathy (DCM),
5-year mortality is up to 20% with a 14% risk of
sudden or aborted cardiac death (16,17). Conse-
quently, efforts are underway to better characterize
these patient populations and direct appropriate
therapies to those at risk. Cardiac magnetic reso-
nance (CMR) is important to this process through
improved phenotyping (18,19) and tissue
ns Medical Solutions (HL-CR-05-004); and has a research agree
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characterization, particularly the detection and
quantification of fibrosis through late gadolinium
enhancement imaging (20,21).

Diffusion tensor (DT)-CMR potentially provides a
novel approach for phenotyping through noninvasive
interrogation of the 3-dimensional heart micro-
architecture (22,23). In DT-CMR, the primary eigen-
vector (E1) corresponds to the local cardiomyocyte
long-axis orientation, whereas the secondary eigen-
vector (E2) reportedly corresponds to the local
within-sheetlet cross-cardiomyocyte orientation
(6,24–34). The angle of E1 relative to the local wall
tangent plane (E1A) is an index of mean intravoxel
HA, and the angle of E2 (E2A) is an index of mean
intravoxel SA (6,28) (Online Appendix). DT-CMR has
been used to demonstrate the HA architecture in the
normal beating heart (25,27) and in different patho-
logical conditions (28,29), supported by studies vali-
dating ex vivo DT-CMR against histology (31–33).
DT-CMR data supporting reorientation of laminar
microstructures at different phases of the cardiac
cycle have been reported in healthy rodent hearts
imaged ex vivo in either contracted or relaxed states,
with paired histology (6,34), as well as in vivo in
healthy volunteers (30,35,36). Abnormal sheetlet dy-
namics have been demonstrated in dyssynchronous
canine hearts (37,38) and in dystrophic rodent hearts
(39) imaged ex vivo with paired histology.

In previous work, we implemented robust quanti-
tative in vivo DT-CMR and confirmed its reproduc-
ibility in healthy subjects (40) and in HCM (41). We
reported E2A changes from systole to diastole, which
we hypothesized represented dynamic rearrange-
ment of sheetlets in healthy subjects, as well as E2A
changes in HCM, consistent with systolic hyper-
contraction and attenuated diastolic relaxation (28).
However, the in vivo DT-CMR technique used enco-
ded myocardial diffusion over an entire cardiac cycle,
and so the influence of tissue deformation on the
diffusion measurements has remained unclear
(5,28,30,42).

To help understand the relationship of these
in vivo findings to the actual underlying tissue
microstructure, our study objectives included
comprehensive validation of in vivo DT-CMR mea-
sures of cardiac microstructure against histology,
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FIGURE 1 LV Myocardial Helical and Sheetlet Microstructures
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(A) Multi-slice tractogram obtained from ex vivo diffusion tensor cardiac magnetic resonance depicts the primary diffusion eigenvector (E1)

direction color-coded according to the helix angle (HA). (B) Schematic diagram of the helical structure of cardiomyocytes with zoom. Sheetlet

angle (SA) rotation during cardiac contraction is depicted during diastole (C to F) and systole (G to J) with myocardial sheetlet microstructures

shown in relaxed (F) and contracted (J) states. In mid-myocardial zooms of histology sections cut perpendicular to the local cardiomyocytes

acquired from relaxed (C) and contracted (G) ex vivo heart samples, a yellow ellipse surrounds a single sheetlet composed of closely packed

cardiomyocytes bounded by the pale cracks of shear layers. Additionally, the sheetlet angle is defined as the angle between the sheetlet and

the local epicardial left ventricular (LV) wall. Here, SA varied from a low value (SA w15�) in diastole (D) to a high value (SA w60�) in systole

(H). See Online Video 1. Blue ¼ left-handed epicardial helixes; yellow ¼ mid-myocardium circumferential alignments; red ¼ right-handed

endocardial helixes; gray ¼ intervening cracks or shear layers. DT-CMR ¼ diffusion tensor cardiac magnetic resonance.
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FIGURE 2 E2A Changes Throughout the Cardiac Cycle
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characterization of microstructural dynamics associ-
ated with myocardial wall thickening in the loaded
beating heart in vivo, and characterization of altered
microstructural dynamics in HCM and DCM.

METHODS

Detailed methods are available in the Online
Appendix and the study protocol is summarized in
Online Figure 1. The main DT-CMR protocol param-
eters were as follow: b0 ¼ 50 s/mm2; b ¼ 500 s/mm2

in 6 diffusion encoding directions; repetition time
TR ¼ 2 RR intervals ¼ 1,400 ms (assuming a heart
rate of 86 beats/min); acquisition time per 2 aver-
ages Tacq ¼ 34 RR intervals z 24 s, 20 averages.
Animal procedures were approved by the National
Heart, Lung, and Blood Institute Animal Care and
Use Committee. In brief, in vivo DT-CMR was per-
formed in Yorkshire pigs (n ¼ 16) at 2 mid-
ventricular short-axis slices with 6 to 9 time points
per cardiac cycle. Subsequently, a single mid-
ventricular short-axis slice was continuously
imaged with DT-CMR (temporal resolution ¼ 24 s) in
the intact animal in situ during the first hour after
induction of cardiac arrest by intravenous potassium
chloride (KCl) (n ¼ 6) or barium chloride (BaCl2)
(n ¼ 6) (34). KCl-arrested hearts approximated a
diastolic configuration for >1 h after arrest. The
BaCl2-arrested hearts initially approximated a dia-
stolic configuration, but w20 to 40 min after injec-
tion, they underwent a single final contraction over
an additional 5 to 10 min (Online Figure 2) and
remained contracted. This effectively slowed cardiac
contraction by 3 orders of magnitude (from w300 ms
in vivo to w5 min), allowing interrogation of
contraction by DT-CMR in the absence of cyclical
strain effects. The hearts were then excised and
imaged by ex vivo DT-CMR (n ¼ 16), after which
tissue samples were obtained for paired histology
(n ¼ 16) (Online Figure 3). DCM and HCM were
diagnosed in accordance with guidelines (21). The
National Research Ethics Committee approved this
study. In vivo DT-CMR was performed both at late
diastole and end systole as previously described
(40,43) (Online Appendix, Online Figures 4 and 5).
FIGURE 2 Continued

(A) In vivo secondary diffusion tensor eigenvector angle (E2A) maps are

throughout the entire cardiac cycle for all in vivo experiments. As the m

changes from blue to red. (B) In situ and (C) ex vivo E2A maps depict rel

chloride (BaCl2). (D) Long-axis histological cuts with mesocardial layer d

corresponding angular histograms, demonstrating the sheetlet and cleav

magnetic resonance.
The CMR protocol also included whole heart stacks
of 2-dimensional cines for volumetric analysis, cine
strain acquisitions, and late gadolinium enhance-
ment (Online Appendix).

RESULTS

Under all experimental conditions, we observed that
the major change associated with myocardial wall
thickening was an increase in E2A (Figure 2; Table 1).
E2A values are presented as median (interquartile
range [IQR]), because E2A was not normally distrib-
uted over the LV. In vivo imaging demonstrated a
gradual transition of E2A from a median of 13� (IQR:
11� to 15�) in diastole to 59� (IQR: 52� to 63�) in systole
(n ¼ 16; p < 0.0001) (Figure 2A). Following BaCl2,
changes in E2A akin to those observed during in vivo
systolic contraction were also seen (median: relaxed:
18� [IQR: 13� to 19�]; contracted: 59� [IQR: 57� to 65�];
p < 0.0001; n ¼ 6) (Figure 2B, Online Video 2). By
contrast, after KCl, E2A and LV wall thickness
remained unchanged with median values comparable
to those observed in vivo during diastole (E2A ¼ 17�

[IQR: 16� to 20�]; 15� [IQR: 16� to 22�]; p ¼ 0.05; n ¼ 6)
(Figure 2B, Online Video 2). In situ median E2A values
w50 min after arrest increased substantially between
KCl relaxed (15� [IQR: 16� to 22�]) and BaCl2 contracted
(59� [IQR: 57� to 65�]; p ¼ 0.0034; n ¼ 6) hearts.
Ex vivo imaging demonstrated significantly increased
median E2A between KCl-relaxed (18� [IQR: 14�

to 20�]; n ¼ 8) and BaCl2-contracted (62� [IQR: 60�

to 66�]; n ¼ 8; p ¼ 0.0008) states (Figure 2C). Quan-
titative histological analysis of SA ranged from a
median 30� (IQR: 20� to 35�) in KCl-relaxed hearts
(n ¼ 8) to 75� (IQR: 70� to 80�) in BaCl2-contracted
hearts (n ¼ 8; p ¼ 0.0008) (Figure 2D), and correlated
well with ex vivo E2A (r ¼ 0.89; p < 0.0001). These
data confirmed in vivo E2A as a metric of mean
intravoxel sheetlet orientation, suggesting that tilting
of laminar sheetlet orientation is the predominant
mediator of myocardial systolic thickening.

To address the potential influence of cyclical
strain on in vivo E2A measures, the relationship be-
tween E2A changes (DE2A) and LV wall thickness
changes (DWT) in vivo and with BaCl2 in situ was
depicted at multiple points of the cardiac cycle, together with a plot of E2A

easured planes swivel from diastole to systole, E2A increases and their color

axed and contracted hearts after injection of potassium chloride (KCl) and barium

etails show sheetlets in relaxed and contracted heart tissue samples, with their

age plane reorientation. See Online Video 2. DT-CMR ¼ diffusion tensor cardiac
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analyzed. DE2A strongly correlated with DWT in both
settings (in vivo r2 ¼ 0.75; in situ r2 ¼ 0.89) (Table 1,
Figure 3). Whereas DE2A was similar for in vivo and
BaCl2 in situ, DWT of hearts contracted by BaCl2 was
greater than corresponding DWT measured in vivo.
Direct comparison between BaCl2 in vivo and in situ
E2A versus WT correlations (Figure 3) led to a 17%
difference. These data suggested that measured
changes in E2A during myocardial thickening are
principally accounted for by sheetlet reorientation
with a lesser contribution from cyclical strain effects.

The magnitude of change of the transmural distri-
bution of E1A was substantially lower than observed
for E2A under all experimental conditions (Figure 4,
Table 1). In vivo E1A range (E1AR) (44) changed from a
median 90� (IQR: 86� to 94�) in diastole (n ¼ 8) to 96�

(IQR: 89� to 101�) in systole (n ¼ 8; p ¼ 0.037)
(Figure 4A). In situ E1AR changed from a median 75�

(IQR: 60� to 81�) in the KCl-relaxed hearts (n ¼ 6) to
118� (IQR: 117� to 119�) in the BaCl2-contracted hearts
(n ¼ 6; p ¼ 0.004) (Figure 4B, Online Video 2). Ex vivo
DT-CMR images (Figure 4C) showed similar E1AR
values (median: 89� [IQR: 85� to 92�] in relaxed
hearts; 109� [IQR: 107� to 113�] in contracted hearts;
n ¼ 8; p ¼ 0.0008). Histology confirmed the expected
transition of HA from epicardium to endocardium (HA
range [HAR], median: 72� [IQR: 50� to 75�] in the
relaxed state, which was not significantly different
from 73� [IQR: 60�, 84�] in the contracted state; n ¼ 8;
p ¼ 0.3) (Figure 4D, Online Videos 3 and 4). Ex vivo
E1AR correlated well with HAR derived from histol-
ogy (r ¼ 0.92; p < 0.0001; n ¼ 32). These data
confirmed that in vivo E1A is a measurement of mean
intravoxel HA.

CLINICAL STUDY. DT-CMR was performed on 19 DCM
patients, 13 HCM patients, and 19 control subjects
(2 DCM, 1 HCM, and 4 control subjects were excluded
for arrhythmia, difficulty breath-holding, and inci-
dental findings). Table 2 contains baseline features of
these groups. The mean ejection fraction (EF) in DCM
was 45 � 11%, in HCM 74 � 6%, and in control subjects
65 � 5%. Significant differences in cardiac parameters
between groups accorded with known pathologies.

In control subjects, low E2A values predominated
in diastole (median: 18� [IQR: 15� to 28�]) with high
E2A values in systole (median: 65� [IQR: 63� to 68�]),
yielding a median E2A mobility of 45� (IQR: 39� to 50�)
(Figure 5A). However, in HCM, E2A was raised in
diastole (median: 48� [IQR: 41� to 58�]; p < 0.001), but
similar to control subjects in systole (median: 74�

[IQR: 70� to 76�]), yielding reduced E2A mobility
compared with that of control subjects (median: 23�

[IQR: 16� to 30�]; p < 0.001) (Figure 5A). And in the

http://jaccjacc.acc.org/video/2016/3598_VID2.mp4
http://jaccjacc.acc.org/video/2016/3598_VID3.mp4
http://jaccjacc.acc.org/video/2016/3598_VID4.mp4


FIGURE 3 E2A Increase and Wall Thickening
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Color-coded plots of E2A change (DE2A) versus wall thickness changes (DWT) are shown for both in vivo (A) and in situ (B) with BaCl2 arrest

acquisitions. The strong correlation between DE2A and DWT supported the thesis that the reorientation of the sheetlets contributes

significantly to systolic wall thickening. Abbreviations as in Figures 1 and 2.
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DCM cohort, diastolic E2A was normal (median: 23�

[IQR: 17� to 26�]), but reduced in systole (median: 40�

[IQR: 32� to 48�]) compared with that of control sub-
jects, again yielding reduced mobility versus control
subjects (median: 20� [IQR: 10� to 26�]; p < 0.001).
There was no significant difference in E2A mobility
between the 2 cardiomyopathies.

The E2A mobility of all groups was plotted against
EF (Figure 5B). There was clear clustering, with con-
trol subjects distinguished by their normal EF and



FIGURE 4 E1A Distribution Through Depth of LV Wall
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TABLE 2 Baseline Characteristics

DCM Patients
(n ¼ 19)

HCM Patients
(n ¼ 13)

Healthy Control Subjects
(n ¼ 19) p Value*

Age, yrs 51 � 14 57 � 13 48 � 12 0.17

Male 11 (58) 8 (62) 11 (58) 0.974

Body surface area, m2 1.98 � 0.25 1.92 � 0.23 1.89 � 0.21 0.46

Systolic BP, mm Hg 130 � 23 125 � 10 118 � 28 0.63

Diastolic BP, mm Hg 71 � 14 74 � 9 73 � 8 0.82

Heart rate, beats/min 62 � 10 60 � 8 57 � 6 0.24

QRS width, ms 119 � 29 101 � 16 97 � 18 <0.001†

Indexed LV EDV, ml/m2 132 � 34 78 � 13 77 � 10 <0.001†

Indexed LV ESV, ml/m2 76 � 35 20 � 6 27 � 6 <0.001†

Ejection fraction, % 45 � 11 74 � 6 65 � 5 <0.001‡

Maximum wall thickness, mm 9 � 2 20 � 2 9 � 2 <0.001§

Indexed LV mass, g/m2 78 � 18 119 � 37 63 � 11 <0.001§

E2A, �

Diastole 23 (17 to 26) 48 (41 to 58) 18 (15 to 28) <0.001

Systole 40 (48 to 32) 74 (70 to 76) 65 (63 to 68) <0.001

Mobility 20 (10 to 26) 23 (16 to 30) 45 (39 to 50) <0.001

Peak radial strain 0.24 (0.18 to 0.3) 0.24 (0.19 to 0.51) 0.64 (0.49 to 0.74) <0.001

Peak circumferential strain �0.12 (�0.14 to 0.01) �0.14 (�0.14 to �0.11) �0.17 (�0.18 to �0.15) <0.001

Presence of late gadolinium enhancement
in whole heart

14/18 (78) 13/13 (100) —

Percent fibrosis in slice of interest 6.8 (0.3 to 16.2) 7.7 (1.8 to 21.0) —

Values are mean � SD, n (%), median (interquartile range), or n/N (%). *Analysis of variance/Pearson chi-square test. †DCM patients have elevated values compared with
healthy control subjects and HCM patients. ‡All ejection fractions are significantly different. §HCM patients’ wall thickness and LV mass are elevated compared with those of
healthy control subjects and DCM patients.

BP ¼ blood pressure; DCM ¼ dilated cardiomyopathy; E2A ¼ secondary diffusion tensor eigenvector angle; EDV ¼ end-diastolic volume; ESV ¼ end-systolic volume; HCM ¼
hypertrophic cardiomyopathy; LV ¼ left ventricular.
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high E2A mobility, HCM patients with elevated EF
but low E2A mobility, and DCM patients with reduced
EF and low E2A mobility. These differing E2A
parameters are pictorially displayed in E2A maps
and 3-dimensional glyphs (Figure 6). A control
subject showed the normal change from diastole
(wall-parallel with low E2A in blue) to systole
(wall-perpendicular with high E2A in red). Corre-
spondingly, Figure 6 shows similarities in HCM and
control systolic E2A maps (red; wall perpendicular
sheetlets), with more heterogeneous diastolic E2A
maps (mix of red and blue; wall parallel and wall
perpendicular sheetlets). By contrast, DCM and con-
trol diastolic E2A maps were alike (blue; wall parallel
sheetlets), with more heterogeneous systolic E2A
maps (mix of red and blue; wall parallel and wall
FIGURE 4 Continued

(A) Typical in vivo primary diffusion eigenvector angle (E1A) maps derive

depth plots at systole and diastole for all in vivo experiments; inset illus

DT-CMR after arrest by injection of KCl and BaCl2. See Online Video 2. (C

plots in relaxed and contracted hearts. (D) Typical mid-layer wall-parall

appear approximately horizontal on the images and expanded views, an

against wall depth derived from multiple wall parallel sections of all rel

epi ¼ epicardium; meso ¼ mesocardium; other abbreviations as in Figur
perpendicular sheetlets). Figure 7 shows histograms
displaying the distribution of helical and E2A in both
diastole and systole. In DCM, the histogram of E2A
indicated a predominance of low E2A values in dias-
tole similar to control subjects, with a flat distribution
of E2A values in systole. In HCM, the histogram of
E2A indicated a flat distribution of E2A values in
diastole, with a predominance of high E2A values in
systole similar to control subjects.

An analysis of E2A values through the depth of the
LV wall showed higher E2A mobility in the endocar-
dium and mesocardium, and lowest E2A mobility in
the epicardium (Online Figure 6).

Strain data were of sufficient quality for analysis in
13 of 19 DCM, 7 of 13 HCM, and 16 of 19 control sub-
jects. Peak circumferential and radial strain values are
d from DT-CMR at 6 time points in the cardiac cycle, and mean E1A against wall

trates E1 and E1A changes with LV wall depth. (B) Typical in situ E1A maps from

) Typical ex vivo E1A maps at 3 mid-ventricular slices and E1A against wall depth

el histology sections showing circumferentially aligned cardiomyocytes that

d their respective radial histograms measuring HA w0�, with line plots of HA

axed and contracted hearts. See Online Videos 3 and 4. endo ¼ endocardium;

es 1 and 2.

http://dx.doi.org/10.1016/j.jacc.2016.11.051
http://jaccjacc.acc.org/video/2016/3598_VID2.mp4
http://jaccjacc.acc.org/video/2016/3598_VID3.mp4
http://jaccjacc.acc.org/video/2016/3598_VID4.mp4


FIGURE 5 Plots of Median E2A
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shown in Table 2. The median radial strain in control
subjects of 0.64 (IQR: 0.49 to 0.75) was significantly
greater than for HCM and DCM (0.24 [IQR: 0.19 to 0.51]
and 0.24 [IQR: 0.18 to 0.32], respectively; p < 0.001). A
similar pattern was found for circumferential strain,
with the greatest value for control subjects of �0.17
6 Continued on next page

maps show similar E1A distributions in all populations and contractile states

e. E2A changes are from blue in diastole to red in systole in healthy control

rpendicular sheetlets) but an incomplete diastolic conformation (mix of wall

y diastolic conformation (wall parallel sheetlets) but an incomplete systolic co

ations as in Figures 2, 4, and 5.
(IQR: �0.18 to �0.15) versus HCM and DCM (�0.14
[IQR: �0.14 to �0.11] and �0.12 [IQR: �0.14 to �0.01]
respectively; p<0.001). The reduction in strain in DCM
and HCM concurred with reduced E2Amobility in both
groups comparedwith control subjects, but contrasted
with their low and high EF. Because both groups
showed LV contractile impairment, the difference
in EF was explained by the small LV cavity size
and increased wall thickness in HCM (p < 0.001)
(Table 2) (45).

DISCUSSION

This preclinical study results supported the hypoth-
esis that both helical and sheetlet microstructural
dynamics can be effectively interrogated in vivo in
the beating heart with DT-CMR, as previously postu-
lated (28). The current results also showed limited
changes in helical microstructure, measured as E1A
and HA by DT-CMR and histology, between different
contractile states. By contrast, E2A increased sub-
stantially over the cardiac cycle. Changes in E2A with
contraction were consistently observed under all
experimental conditions and closely agreed with SA
changes measured histologically (Central Illustration).
These data confirmed in vivo E1A as an HA index and
E2A as an SA index, supporting the hypothesis that
reorientations of secondary laminar microstructures
mediate myocardial thickening (28) and can be
measured by DT-CMR. The change of SA from a low
value in diastole to a high value in systole, which
could be likened to the zig-zag linkage of a helically
twisted lazy tong (Online Figure 7), represented the
microstructural dynamic basis of the longitudinal and
circumferential wall shortening that together deliver
proportional WT far greater than that of any single
cardiomyocyte.

We showed, for the first time, a unique pattern of
sheetlet behavior in DCM patients who exhibit normal
diastolic conformation (wall-parallel sheetlets) but a
mixture of wall-parallel and wall-perpendicular
sheetlets during systole. The opposite pattern was
observed in HCM, where a predominantly wall-
perpendicular sheetlet orientation was observed in
systole (as in control subjects) with a mix of wall-
parallel and wall-perpendicular sheetlets during
whereas E2A maps are color coded according to absolute

subjects. The HCM example takes a healthy systolic conformation

parallel and wall perpendicular sheetlets). The DCM example takes

nformation (mix of wall parallel and wall perpendicular sheetlets).

http://dx.doi.org/10.1016/j.jacc.2016.11.051


FIGURE 6 E1A and E2A Maps
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FIGURE 7 E1A and E2A Histograms at Diastole and Systole
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Whereas E1A histograms overlap for all groups in both diastole and systole, with a slightly broader E1A distribution in systole, E2A distribution

in diastole is predominantly low in control subjects, swine (preclinical), and DCM, with a relatively wide even distribution in HCM. In systole,

E2A is predominantly high in control subjects, swine, and HCM, with a relatively wide even distribution in DCM. Abbreviations as in Figures 2,

4, and 5.
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diastole. These observations provided new insight
into aberrant dynamics of laminar microstructures in
cardiomyopathies and identified distinct mechanisms
associated with reduced strain development. Both
DCM (low LVEF) and HCM (high LVEF) displayed
similarly impaired strain compared with that of
healthy control subjects (normal LVEF). In DCM, a
failure to adequately rotate sheetlets to a contracted
conformation in systole occurs, whereas in HCM a
failure to adequately rotate sheetlets to a relaxed
conformation in diastole predominates. In vivo DT-
CMR may provide new mechanistic insights into
altered ventricular mechanics, adverse remodeling,
and the substrate for arrhythmogenesis in various
clinical conditions including post-myocardial infarc-
tion, valvular heart disease, and inherited and
congenital cardiac diseases. Other applications
include identifying the potential for LV contractile
recovery and reverse remodeling, and as a new
monitoring marker for interventions to improve
contractile function. These data could prove to be
useful for modeling the microstructural dynamics of
cardiac contraction.

Pioneering work proposed corrections for cyclical
strain effects on in vivo DT-CMR measures assuming
a simple homogeneous elastic material (30,42,46).
However, with the growing appreciation that
myocardial thickening entails the reorientations of
laminar microstructures, we need to reconsider the
relationship between myocardial strain and in vivo
DT-CMR measures (5,28). Given the microscopic dis-
tances over which water diffusion occurs, the com-
plex microstructural barriers, including sarcomere
deformation and the fluid in intervening shear layers,
need to be considered. The more complex model
required to appropriately account for these is beyond



CENTRAL ILLUSTRATION Assessment of Myocardial Microstructural Dynamics by In Vivo Diffusion Tensor
Cardiac Magnetic Resonance
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Myocardial microstructure dynamics can be characterized by in vivo diffusion tensor cardiac magnetic resonance (DT-CMR). E2 angle (E2A) is a DT-CMR index of

myocardial sheetlet rotation; increase in E2A from diastole to systole was consistently observed in healthy swine in vivo, in situ, and ex vivo, and correlated well with

histology. E2A changes in healthy volunteers match closely those in healthy swine. Varying E2A patterns emerged in patients with hypertrophic cardiomyopathy (HCM)

and dilated cardiomyopathy (DCM). E2A mobility was highest for control subjects and reduced for HCM and DCM. Sheetlet function was abnormal in DCM with altered

systolic conformation and reduced mobility, contrasting with HCM, which showed reduced mobility with altered diastolic conformation. These novel insights

significantly improve understanding of contractile dysfunction at a level of noninvasive interrogation not previously available in humans. SA ¼ sheetlet angle.
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the scope of this work. We compared in vivo, in situ,
and ex vivo data to assess the influence of strain on
in vivo DT-CMR data. The correspondence between
in vivo, in situ, and ex vivo E2A changes indicated
that the in vivo E2A observations originate predomi-
nantly from phasic changes of microstructural orien-
tation. This was further supported by our model of
slowed myocardial thickening induced by BaCl2
administration (47,48), which occurred in the absence
of cyclical strain effects, and yet demonstrated
remarkably similar behavior of E1A and E2A to that
observed during in vivo experiments. Comparisons of
the relationships between DE2A and DWT in vivo and
with BaCl2 in situ provided an estimate of the
maximum potential influence of cyclical strain to
in vivo E2A of w17%. This might be an overestimate,
because the different loading conditions between
in vivo and BaCl2 in situ experiments might also ac-
count for some of the differences observed experi-
mentally. The changes in E2A shown in DCM and
HCM greatly exceeded this potential confounder.
Furthermore, the differences in the diastolic and
systolic conformations of E2A in HCM and DCM,
respectively, occurred in the context of similarly
impaired strains, further supporting E2A mobility as a
robust and clinically relevant measure.

STUDY LIMITATIONS. Approximately one-half the
DCM group had only mildly impaired LVEF. Inclu-
sion of cases with more impaired LVEF might have
produced even lower E2A mobilities. However, this
patient population already showed significant dif-
ferences compared with those of healthy control
subjects. Histological sectioning with 2-dimensional



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE:

Myocardial sheetlet function is the predominant

microstructural mechanism responsible for contractile

WT. In vivo DT-CMR can characterize the architectural

arrangement of cardiomyocytes throughout the car-

diac cycle. Designation of a specific vector of diffusion

relative to the tangential wall plane identifies specific

patterns of deranged sheetlet orientation and

mobility in patients with various forms of

cardiomyopathy.

TRANSLATIONAL OUTLOOK: Clinical studies

could apply DT-CMR as a tool to understanding the

pathogenesis, natural history, and response to thera-

peutic interventions in patients with cardiomyopathy.
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analysis was of only 1 transmural tissue block per
heart; 3-dimensional isotropic whole heart histology
(3) would be ideal, but to our knowledge has not
been reported due to limitations of histological
sectioning and image processing. Trimming of tis-
sue blocks during histological preparation resulted
in discarding w26% of the epicardium, creating loss
of the steepest epicardial HA values and reduced
HAR.

The preponderance of circumferential E1A sug-
gested by the histograms was at odds with the plots of
E1A against wall depth (Online Figure 8), which
showed a relatively smooth transition from epicar-
dium to endocardium. This mismatch is inherent to
these 2 different measures of E1A distribution within
the LV. Histograms displayed the frequency distri-
bution of E1A over the whole LV but contained no
information about its transmural arrangement.
Therefore, histograms were less sensitive to the
spatial resolution of the underlying DT-CMR data,
though they might still be affected by the exclusion of
the outermost epicardial and innermost endocardial
layers, leading to a slight reduction of the frequency
of the highest and lowest E1A values. Plots of E1A
against wall depth displayed the transmural distri-
bution of E1A but contained no information about the
frequency of each E1A value. Therefore, they were
highly sensitive to the spatial resolution of the un-
derlying DT-CMR data. Furthermore, the averaging of
several transmural line profiles might lead to
smoother lines and reduced plateau at E1Aw0. DT-CMR
has limited spatial resolution with thousands of car-
diomyocytes arranged in hundreds of sheetlets in
each voxel (28). Therefore, E1A and E2A averaged all
helical and sheetlet directions in the voxel and might
not detect changes at a histological scale. Sheetlets
can occur in countersloping alignments (7,31,49).
However, our histological analyses supported the
predominance of a single sheetlet population orien-
tation in most sections. Limitations in spatial reso-
lution, together with the fact that DT-CMR can only
resolve the predominant sheetlet population in any
given voxel, precluded an accurate analysis of the
transmural distribution of E2A. Higher spatial reso-
lution acquisitions combined with higher angular
diffusion resolution techniques such as diffusion
spectrum imaging (24) may provide further insights,
although current acquisition times are clinically
prohibitive.

CONCLUSIONS

We showed that myocardial sheetlet reorientation
in the loaded and beating heart in vivo was the
predominant mechanism underlying systolic LV
wall thickening, and that primary and secondary
microstructures in the myocardium and their dy-
namic reorientations during cardiac contraction can
be studied noninvasively by in vivo DT-CMR. In
DCM, DT-CMR showed reduced sheetlet mobility
and a diastolic conformation, contrasting with the
reduced mobility and systolic conformation seen in
HCM, despite similarly reduced systolic myocardial
strain. In general terms, at the microstructural level,
this indicated a failure of systolic sheetlet rotation
to a contracted conformation in DCM and a failure
of rotation of sheetlets to a relaxed conformation in
diastole in HCM. These results provide the rationale
for further study of the microstructural dynamics
of cardiac contraction and myocardial dysfunction
using in vivo DT-CMR to provide new diagnostic
and prognostic information in human cardiac
disease.
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