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Average Drift Analysis and Population Scalability
Jun He and Xin Yao

Abstract—This paper aims to study how the population size
affects the computation time of evolutionary algorithms in a
rigorous way. The computation time of evolutionary algorithms
can be measured by either the number of generations (hitting
time) or the number of fitness evaluations (running time) to
find an optimal solution. Population scalability is the ratio
of the expected hitting time between a benchmark algorithm
and an algorithm using a larger population size. Average drift
analysis is introduced to compare the expected hitting time of
two algorithms and to estimate lower and upper bounds on
the population scalability. Several intuitive beliefs are rigorously
analysed. It is proven that (1) using a population sometimes
increases rather than decreases the expected hitting time; (2)
using a population cannot shorten the expected running time of
any elitist evolutionary algorithm on any unimodal function on
the time-fitness landscape, however this statement is not true
in terms of the distance-based fitness landscape; (3) using a
population cannot always reduce the expected running time on
deceptive functions, which depends on whether the benchmark
algorithm uses elitist selection or random selection.

Index Terms—evolutionary algorithm, computation time, pop-
ulation size, fitness landscape, drift analysis.

I. INTRODUCTION

Population is one of the most important features of evo-
lutionary algorithms (EAs). A wide range of approaches is
available to design population-based EAs. Using a population
delivers many benefits [1]. The study of the relationship
between the performance of an EA and its population size
can be traced back to early 1990s. For example, Goldberg et
al. [2] presented a population sizing equation to show how a
large population size helps an EA to distinguish between good
and bad building blocks on some test problems. Mühlenbein
and Schlierkamp-Voosen [3] studied the critical (minimal)
population size that can guarantee the convergence to the
optimum. Arabas et al. [4] proposed an adaptive scheme for
controlling the population size, and the effectiveness of the
proposed scheme was validated by an empirical study. Eiben et
al. [5] reviewed various techniques of parameter controlling for
EAs, where the adjustment of population size was considered
as an important research issue. Harik et al. [6] linked the
population size to the quality of solution by the analogy
between one-dimensional random walks and EAs.

The theoretical analysis of the impact of the population size
on the computation time of EAs starts in early 2000s [7].
There has been an increasing interest in rigorously analysing
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the relationship between the computation time of an EA and
its population size. The computation time of an EA can be
measured by either the expected hitting time or the expected
running time. The theoretical studies on this topic can be
classified into two directions.

One direction aims to estimate a bound on the computation
time of EAs as a function of the population size. This direction
belongs to the time complexity analysis of EAs. Drift analysis
and tail inequalities are often used for estimating the time
bound. This direction may be called a bound-based study. A
lot of work has done along this direction. The earliest one was
conducted by Jansen et al. [8] who first obtained the cut-off
point for a (1 + λ) EA on three pseudo-Boolean functions,
Leading-Ones, One-Max and Suf-Samp. Jägersküpper and
Witt [9] analysed how the running time of a (µ+1) EA on the
Sphere function scales up with respect to µ. Witt [10] proved
theoretically that the running time of a (µ+1) EA on a specific
pseudo-Boolean function is polynomial with an overwhelming
probability, when µ is large enough. Storch [11] presented
a rigorous runtime analysis of the choice of the population
size with respect to a (µ+ 1) EA on several pseudo-Boolean
functions. Yu and Zhou [12] investigated the expected hitting
time of (λ + λ) EAs when λ = 1 and λ = n (where n
is the problem input size) on the trap problem. Oliveto et
al. [13] presented a runtime analysis of both (1 + λ) and
(µ+1) EAs on some instances of the vertex covering problem.
Friedrich et al. [14] analysed the running time of a (µ + 1)
EA with diversity-preserving mechanisms on the Two-Max
problem. Chen et al. [15] obtained an upper bound on the
hitting time of (λ + λ) EAs on Leading-Ones and One-Max
problems. Lässig and Sudholt [16] presented a running time
analysis of a (1 + λ) EA with an adaptive offspring size λ
on several pseudo-Boolean functions. Rowe and Sudholt [17]
discussed the running time of (1 + λ) EAs in terms of the
offspring population size on unimodal functions. Doerr and
Künnemann [18] analysed the time bound of (1 + λ) EAs
for optimizing linear pseudo-Boolean functions. Doerr and
Künnemann [19] showed that (1+λ) EAs with even very large
offspring populations does not reduce the runtime significantly
on the Royal Road function. Oliveto and Witt [20] presented
a rigorous running time analysis of the well-known Simple
Genetic Algorithm for One-Max. Gießen and Witt [21] studied
the relation between the population size and mutation strength
for a (1 + λ) EA on One-Max.

Another direction aims to calculate a ratio, named popula-
tion scalability, which is described as follows:

expected hitting time of a benchmark EA
expected hitting time of an EA using a population

. (1)

This direction may be called a ratio-based study. As one of
the earliest analyses, He and Yao [7] investigated how the
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population scalability of EAs varies as the population size
changes on two simple functions (One-Max and Deceptive).
In that paper, EAs are assumed to be run on a hypothetical
parallel computer, that is, to assign each individual on one
processor. If the communication cost is ignored, the population
scalability is equivalent to the speedup in parallel computation.
The link between population scalability and parallelism was
further discussed in [22]. However, since calculating the pop-
ulation scalability is not an easy job, no further development
has been made since then.

This paper belongs to the ratio-based study. It is significantly
different from the bound-based study. The bound-based study
focuses on an asymptotic time bound as a function of the
population size. It does not calculate the population scalability
and will not answer whether a (2+2) EA is faster than a (1+1)
EA. The ratio-based study aims to calculate the population
scalability and will answer whether a (2 + 2) EA is faster
than a (1 + 1) EA. But it is not necessary to estimate an
asymptotic time bound.

Compared with previous work on the analysis of population-
based EAs, the current paper has two novelties.

1) Average drift analysis is presented as a tool of comparing
the expected hitting time of two EAs and studying
population scalability. The approach used in [7] is based
on the fundamental matrix of absorbing Markov chains.
It is hard to calculate the expected hitting time through
the fundamental matrix. But using average drift analysis,
it is possible to estimate population scalability without
calculating the expected hitting time. This is an impor-
tant improvement in the analysis tool.

2) The scalability threshold replaces the cut-off point. The
population threshold is the minimal population size
at which the running time of an EA using a larger
population size is greater than that of the benchmark EA.
The cut-off point [8] is the maximize population size at
which the running time of the EA is in the same order as
that of the benchmark EA. Let’s show the advantage of
population scalability by an example: (1+λ) EAs (using
bitwise mutation and elitist selection) for solving the
One-Max problem. According to [8], the cut-off point is
Θ
(

(lnn)(ln lnn)
ln ln lnn

)
. This means when the population size

λ is smaller than the cut-off point, the running time of
the (1+λ) EA is in the same order as that of the (1+1)
EA but different by a constant factor. The constant could
be = 1, > 1 or < 1. Therefore the cut-off point does not
answer the question whether the expected running time
of a (1 + λ) EA (where 2 ≤ λ = O

(
(lnn)(ln lnn)

ln ln lnn

)
) is

smaller or larger than that of the (1 + 1) EA. However,
according to Proposition 4 and its discussion in this
paper, the scalability threshold is 2. This means that the
running time of the (1+λ) EA (for any λ ≥ 2) is larger
than that of the (1 + 1) EA. Therefore the scalability
threshold is more accurate than the cut-off point.

With the help of average drift analysis, this paper analyses
the following intuitive beliefs in a rigorously way.

1) Using a population “always” reduces the expected hit-
ting time (not running time) of an EA to find an optimal

point.
2) Using a population cannot shorten the expected running

time of an elitist EA on “unimodal” functions.
3) Using a population can reduce the expected running time

of an EA on “deceptive” functions.
The paper is organised as follows: Section II defines

population scalability. Section III presents drift analysis for
population scalability. Section IV analyses scenario 1: using a
population does not reduce the hitting time. Section V analyses
scenario 2: using a population reduces the hitting time, but not
the running time. Section VI investigates scenario 3: using a
population reduces the running time. Section VIII concludes
the paper.

II. POPULATION SCALABILITY

A. Evolutionary algorithms

Consider the problem of maximizing a function f(x) where
x ∈ S and S is a finite set. A point in S is called a
solution or an individual. A population consists of one or more
individuals. A (µ + λ) EA is described in Algorithm 1. The
stopping criterion is that the EA halts once an optimal solution
is found. The criterion is used for the sake of analysis because
our interest is the first hitting time (when the EA finds an
optimal solution for the first time). If Φt includes an optimal
solution, assign Φt = Φt+1 = Φt+2 = · · · for ever.

Algorithm 1 A (µ+ λ) EA where µ, λ ≥ 1

1: initialise a population Φ0 consisting of µ individuals
(solutions) and t← 0;

2: evaluate the fitness of individuals in Φ0;
3: while Φt does not include an optimal solution do
4: mutate (or crossover) individuals in Φt and generate a

children population Ψt consisting of λ individuals;
5: evaluate the fitness of individuals in Ψt;
6: probabilistically select µ individuals from Φt ∪ Ψt as

Φt+1;
7: t← t+ 1;
8: end while

The sequence {Φt; t = 0, 1, · · · } can be modelled by a
Markov chain [23]. Each generation of the EA consists of two
steps: to generate new individuals by mutation or crossover
and to select individuals for next generation,

Φt
mutation (or crossover)−→ Ψt ∪ Φt

selection−→ Φt+1.

Let P denote the set of all populations, Popt the set of
populations including an optimal solution and Pnon the set of
populations without an optimal solution. The transition from
Φt to Ψt can be represented using mutation (or crossover)
probabilities:

Pm(X,Y )
def
= P (Ψt = Y | Φt = X), X, Y ∈ P, (2)

where Φt,Ψt are random variables representing the tth gen-
eration population and its children population. X,Y are their
values taken from P .
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The transition from Φt and Ψt to Φt+1 can be represented
using selection probabilities:

Ps(X,Y, Z)
def
=P (Φt+1 = Z | Φt = X,Ψt = Y ). (3)

The transition from Φt from Φt+1 can be represented using
transition probabilities:

P (X,Y )
def
= Pr(Φt+1 = Y | Φt = X). (4)

The hitting time is the number of generations of an EA to
find an optimal solution for the first time.

Definition 1: Given Φ0 = X , the expected hitting time of
an EA is defined by

g(X)
def
=

+∞∑
t=0

Pr(Φt ∈ Pnon). (5)

If the initial population Φ0 is chosen according to a probability
distribution over P , the expected hitting time is given by

g(Φ0)
def
=
∑
X∈P

g(X) Pr(Φ0 = X).

The expected running time of a (µ + λ) EA is the expected
number of fitness evaluations, which equals to µ + λg(Φ0).
For the sake of simplicity, we always omit the first term µ,
which is the number of fitness evaluations in initialization.

If genetic operators don’t change in time, the sequence
{Φt; t = 0, 1, · · · } can be modelled by a homogeneous
Markov chain. According to the fundamental matrix theo-
rem [24, Theorem 11.5], the expected hitting time of an EA
can be calculated from transition probabilities.

Theorem 1: If the population sequence {Φt, t = 0, 1, · · · } is
a homogeneous Markov chain and converges to Popt, that is,
limt→+∞ Pr(Φt ∈ Popt) = 1, then the expected hitting time
g(X) satisfies a linear equation system:{

g(X) = 0, if X∈Popt,∑
Y ∈P P (X,Y ) (g(X)− g(Y )) = 1, if X/∈Pnon.

(6)

The fundamental matrix theorem is useful in analysing
elitist EAs [7], [23], [25]. However, its disadvantage is the
difficulty of solving the above linear equation system.

B. Population scalability

The population scalability is defined as the ratio of the
expected hitting time between a benchmark EA and an EA
with a larger population size. In this paper, the benchmark is a
(1+1) EA using mutation and selection operators. Other types
of EAs may play the role of a benchmark too. For example,
a (2 + 2) EA could be chosen as a benchmark when studying
EAs with crossover. But we will not discuss them here.

Definition 2: Given a (1 + 1) EA and a (µ + λ) EA that
exploit an identical mutation operator to optimise the same
fitness function, let Φ

(1+1)
0 and Φ

(µ+λ)
0 denote their corre-

sponding initial populations, then the population scalability is
defined by

PS(µ+ λ | Φ(1+1)
0 ,Φ

(µ+λ)
0 )

def
=

g(1+1)(Φ
(1+1)
0 )

g(µ+λ)(Φ
(µ+λ)
0 )

, (7)

where the superscripts (1+1) and (µ+λ) are used to distinguish
the (1 + 1) EA and (µ+ λ) EA.

An essential part of the definition above is that both EAs
must adopt identical mutation operators. This ensures that
the comparison is meaningful. Nonetheless, it is impossible
for the selection operators to be identical. Indeed even if the
selection operators are of the same type, for example roulette
wheel selection, the conditional probabilities determining the
actual selection operators are never identical under distinct
population sizes.

Obviously the value of population scalability relies on
initial populations. Due to the use of a population, Φ

(µ+λ)
0

may contain several individuals some of which are different
from Φ

(1+1)
0 . For the sake of comparison, we restrict our

discussion to identical initialization, that is, for the (1+1) EA,
Φ

(1+1)
0 = x and for the (µ + λ) EA, Φ

(µ+λ)
0 = (x, · · · , x).

In this case, PS(µ + λ | Φ
(1+1)
0 ,Φ

(µ+λ)
0 ) is denoted by

PS(µ+λ | x) in short. There exist other types of initialization
but we will not discussed them here.

The notion of population scalability is similar to that of
the speedup widely used in analyzing parallel algorithms.
The speedup of parallel EAs have been studied through
experiments [26], [27], [28]. If each individual is assigned
to a processor, then EAs turn into parallel EAs. Under this
circumstance, population scalability is equivalent to speedup if
ignoring the communication cost. Hence population scalability
is called speedup on a hypothetical parallel computer in [7].

The following questions are essential when studying popu-
lation scalability.

1) Given a λ ≥ 2 or µ ≥ 2, is the population scalability
PS(µ+ λ | x) > 1?
If it is, we may assign each individual to a processor in
a parallel computing system and then the CPU compu-
tation time of the (µ + λ) EA is less than that of the
(1 + 1) EA (if ignoring the communication cost).

2) Given a λ ≥ 2 or µ ≥ 2, is the population scalability
PS(µ+ λ | x) > λ?
If it is, then the CPU computation time of the (µ + λ)
EA on a computer is less than that of the (1 + 1) EA.

3) Where are the smallest population sizes (µ, λ) such that
the expected running time of the (µ + λ) EA is larger
than that of the (1 + 1) EA?
We call this point the scalability threshold, which satis-
fies {

min{µ : PS(µ+ λ | x) > λ},
min{λ : PS(µ+ λ | x) > λ}. (8)

In general, the scalability threshold is not a single point
but a Pareto front due to minimizing both population
sizes µ and λ simultaneously. However, in a (1 + λ) or
(λ+ λ) EA, the scalability threshold is a single point.

III. AVERAGE DRIFT ANALYSIS AND TIME-FITNESS
LANDSCAPE

A. Average drift analysis

Average drift analysis is a variant of drift analysis for
estimating the expected hitting time of EAs. The idea of
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average drift was first used by Jägersküpper who considered
the average drift of a (1 + 1) EA on linear functions and
provided a delicate analysis of the running time of the (1 + 1)
EA [29]. Nevertheless his work was restricted to the (1 + 1)
EA and linear functions. Even the term of average drift did
not appear in [29] but was first adopted by Doerr [30] for
introducing Jägersküpper’s work [29]. In this section, the
average drift is formally defined and then general average drift
theorems are presented.

In drift analysis, a distance function d(X) is used to measure
how far a population X is away from the optimal set Popt.
It is a non-negative function such that 0 < d(X) < +∞ for
any X ∈ Pnon and d(X) = 0 for X ∈ Popt. Drift is used to
measure the progress rate of a population moving towards the
optimal set per generation.

Definition 3: Given a population X , the pointwise drift at
X is

∆(X)
def
=
∑
Y ∈P

(d(X)− d(Y )) Pr(Φt+1 = Y | Φt = X). (9)

Given a generation t, the average drift at t is

∆̄t
def
=

{
0, if Pr(Φt∈Pnon)=0,∑
X∈Pnon

∆(X) Pr(Φt=X)

Pr(Φt∈Pnon)
, otherwise.

(10)

The following theorem provides an approach to estimating
a lower bound on the expected hitting time. It is a variation
of [31, Theorem 4].

Theorem 2: Provided that the population sequence {Φt, t =
0, 1, · · · } converges to Popt where Φ0 satisfies Pr(Φ0 ∈
Pnon) > 0. Given a distance function d(X), if for any t and
any Φt such that Pr(Φt ∈ Pnon) > 0, the average drift ∆̄t ≤ c
where c > 0, then the expected hitting time g(Φ0) ≥ d(Φ0)/c,
where

d(Φ0)
def
=
∑
X∈P

d(X) Pr(Φ0 = X).

Furthermore if for at least one t, the average drift ∆̄t < c,
then g(Φ0) > d(Φ0)/c.

Proof: Without loss of generality, let c = 1. From the
condition ∆̄t ≤ 1 for any t and any Φt such that Pr(Φt ∈
Pnon) > 0, we have

Pr(Φt ∈ Pnon)

≥
∑

X∈Pnon

∆(X) Pr(Φt = X)

≥∑
X∈Pnon

d(X) Pr(Φt=X)−
∑
Y∈Pnon

d(Y ) Pr(Φt+1=Y ). (11)

Summing the term Pr(Φt ∈ Pnon) from t = 0 to k, we get
k∑
t=0

Pr(Φt ∈ Pnon)

≥∑k
t=0(

∑
X∈Pnon

d(X) Pr(Φt=X)−
∑
Y∈Pnon

d(Y ) Pr(Φt+1=Y ))

=
∑
X∈Pnon

d(X) Pr(Φ0=X)−
∑
Y∈Pnon

d(Y ) Pr(Φk+1=Y ). (12)

Notice that∑
Y ∈Pnon

d(Y ) Pr(Φk+1 = Y )

≤maxX∈P d(X)
∑
Y ∈Pnon

Pr(Φk+1 = Y )

= maxX∈P d(X) Pr(Φk+1 ∈ Pnon). (13)

Since the EA is convergent: limk→+∞ Pr(Φk+1 ∈ Pnon) = 0,
then from Inequality (13) we have

lim
k→+∞

∑
Y ∈Pnon

d(Y ) Pr(Φk+1 = Y ) = 0. (14)

Applying the above result to Inequality (12) (let k → +∞),
we get

g(Φ0) =

+∞∑
t=0

Pr(Φt ∈ Pnon)

≥
∑

X∈Pnon

d(X) Pr(Φ0 = X) = d(Φ0), (15)

which gives the desired result. If for some t, the average drift
∆̄t < 1, then Inequality (12) is strict for any k ≥ t and
Inequality (15) is strict too.

Similarly, the theorem below provides an approach to esti-
mating an upper bound on the expected hitting time. It is a
variation of [31, Theorem 1]. Its proof is similar to that of the
above theorem.

Theorem 3: Provided that population sequence {Φt, t =
0, 1, · · · } converges to Popt where Φ0 satisfies Pr(Φ0 ∈
Pnon) > 0. Given a distance function d(X), if for any t and
any Φt such that Pr(Φt ∈ Pnon) > 0, the average drift ∆̄t ≥ c
where c > 0, then the expected hitting time g(Φ0) ≤ d(Φ0)/c.
Furthermore if for at least one t, the average drift ∆̄t > c, then
g(Φ0) < d(Φ0)/c.

Pointwise drift theorems are corollaries of average drift
theorems, because it requires a stronger condition on the
pointwise drift: ∆(X) ≥ c (or ≤ c) for any X ∈ Pnon. It
implies the average drift ∆̄t ≥ c (or ≤ c) for any Φ0 ∈ Pnon.

Theorem 4: [23, Theorem 2] Provided that population se-
quence {Φt, t = 0, 1, · · · } converges to Popt. Given a distance
function d(X), if for any X ∈ Pnon, the pointwise drift
∆(X) ≤ c (where c > 0), then for any initial population
X0 ∈ Pnon, the expected hitting time g(X0) ≥ d(X0)/c.

Theorem 5: [23, Theorems 3] Provided that population
sequence {Φt, t = 0, 1, · · · } converges to Popt. Given a
distance function d(X), if for any X ∈ Pnon, the pointwise
drift ∆(X) ≥ c where c > 0, then for any initial population
X0 ∈ Pnon, the expected hitting time g(X0) ≤ d(X0)/c.

The average drift analysis provides a useful tool for compar-
ing the expected hitting time of two EAs. Its idea is simple.
One EA is taken as the benchmark and its expected hitting
time is used to define a distance function for the other EA.
Then the average drift of the other EA is estimated and then its
expected hitting time is bounded using average drift analysis.

Theorem 6: Given two EAs A and B to optimise the
same fitness function, let {Xt, t = 0, 1 · · · } and {Yt, t =
0, 1, · · · } denote their population sequences respectively. For
algorithm B, define a distance function dB(X) such that
dB(Y0) = gA(X0), where gA(X0) is the expected hitting time
of algorithm A starting at X0. If for any t and any Yt such
that Pr(Yt ∈ Pnon) > 0, average drift ∆̄B

t ≤ c where c > 0,
then the expected hitting time of algorithm B satisfies that
gB(Y0) ≥ gA(X0)/c. Furthermore if for at least one t ≥ 0,
∆̄B
t < c, then gB(Y0) > gA(X0)/c.

Proof: It is a direct corollary of Theorem 2.
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Theorem 7: Given two EAs A and B to optimise the same
fitness function, let {Xt, t = 0, 1 · · · } and {Yt, t = 0, 1, · · · }
be their population sequences respectively. For algorithm B,
define a distance function dB(X) such that dB(Y0) = gA(X0),
where gA(X0) is the expected hitting time of algorithm A
starting at X0. If for any t and any Yt such that Pr(Yt ∈
Pnon) > 0, average drift ∆̄B

t ≥ c where c > 0, then gB(Y0) ≤
gA(X0)/c. Furthermore if for some t ≥ 0, ∆̄B

t > c, then
gB(Y0) < gA(X0)/c.

Proof: It is a direct corollary of Theorem 3.

B. Average drift analysis for population scalability

Average drift analysis for estimating the population scal-
ability is based on an simple idea. Given a benchmark EA
and another EA using a larger population size, we assume
that both EAs start at the same point with an equal distance
to the optimal set. If at each generation, the average drift of
the other EA is 10 times that of the benchmark EA, then the
expected hitting time of the other EA will be 1/10 of that of
the benchmark EA. Thus the population scalability is 10. This
simple idea can be formalised as follows.

Consider a (1+1) EA and a (µ+λ) EA (where λ ≥ 2) that
exploit an identical mutation operator to optimise the same
fitness function. Provided that Φ

(1+1)
0 = x0 and Φ

(µ+λ)
0 =

(x0, · · · , x0) for some x0 ∈ Pnon, for the (µ+ λ) EA, define
a distance function d(X) such that d(µ+λ)(x0, · · · , x0) =
g(1+1)(x0).

The first theorem establishes a sufficient condition for
estimating the upper bound on population scalability. Thanks
to average drift analysis, there is no requirement that the
population sequence is a Markov chain.

Theorem 8: If for all t ≥ 0 and any Φ
(µ+λ)
t such that

Pr(Φ
(µ+λ)
t ∈ Pnon) > 0, average drift ∆̄

(µ+λ)
t ≤ c where

c > 0, then PS(µ + λ | x0) ≤ c. Furthermore if for at least
one t ≥ 0, average drift ∆̄

(µ+λ)
t < c, then PS(µ+λ | x0) < c.

Proof: According to Theorem 6, the expected hitting time
satisfies: g(µ+λ)(x0) ≥ g(1+1)(x0)/c. Then we have PS(µ+

λ | x0) ≤ c. If for at least one t ≥ 0, average drift ∆̄
(µ+λ)
t < c,

then according to Theorem 6, g(µ+λ)(x0) ≥ g(1+1)(x0)/c and
then PS(µ+ λ | x0) < c.

Similarly, the second theorem establishes a sufficient condi-
tion for estimating the lower bound on population scalability.
Its proof is the almost the same as the that of the above
theorem except using Theorem 7.

Theorem 9: If for all t ≥ 0 and any Φ
(µ+λ)
t such that

Pr(Φ
(µ+λ)
t ∈ Pnon) > 0, average drift ∆̄

(µ+λ)
t ≥ c where

c > 0, then PS(µ + λ | x0) ≥ c. Furthermore if for at least
one t ≥ 0, average drift ∆̄

(µ+λ)
t > c, then PS(µ+λ | x0) > c.

C. Time-fitness landscape

In this paper, unimodal and multi-modal functions are estab-
lished upon the time-fitness landscape, a concept introduced
in [32]. It aims at describing the fitness landscape related to
a general search space, which is a finite set.

Definition 4: Given a (1 + 1) elitist EA for maximizing
a function f(x), its time-fitness landscape is the set of pairs

(g(x), f(x)), where g(x) is the expected hitting time of the
(1 + 1) EA starting at x. The neighbour of x includes two
points: the point y1 such that g(y1) is the closest to g(x) from
the direction g(y) < g(x), and the point y2 such that g(y2) is
the closest to g(x) from the direction g(y) > g(x).

The time-fitness landscape is completely different from
traditional ones based on a distance. The former is related
to a (1 + 1) EA, but the latter usually not. Let’s show
the difference by unimodal functions. A function is called
unimodal if every non-optimal point has a neighbour with a
strictly better fitness [17]. Traditionally the definition of the
neighbour relies on a distance. For example, if the search space
is the set of binary strings, the neighbour of a point x includes
all points y with Hamming distance 1 from x [17]. But such
a definition is applicable to a finite set because the distance
is unknown or not defined. Therefore for a general finite set,
unimodal functions are defined on the time-fitness landscape
instead [32].

Definition 5: Let S = {s0, s1, · · · , sK} and f a fitness
function such that f(s0) > f(s1) > · · · > f(sK). Given
a (1 + 1) elitist EA to maximise a function f , f is called
unimodal to the (1+1) EA if g(1+1)(s1) < · · · < g(1+1)(sK).
A unimodal time-fitness landscape is visualised in Fig. 1.

s0 s1

sK−1

sK

g(1+1)(x)

f
(x

)

Fig. 1. A unimodal time-fitness landscape. The x axis is the expected hitting
time of the (1 + 1) EA. The y axis is the fitness function.

According to [32], unimodal functions to a (1 + 1) elitist
EA are the easiest among all fitness functions with the same
optimum at s0. Furthermore, according to [32], for any fitness
function f(x), we can construct a (1 + 1) elitist EA to which
f is the easiest (unimodal). Therefore any fitness function can
be unimodal to a (1 + 1) elitist EA.

Here are two instances of unimodal functions. The TwoMax
function [32] below is unimodal under Hamming distance.

f(x) = max{|x|, n− |x|}, x ∈ {0, 1}n, (16)

where |x| denotes the number of 1-valued bits. It is unimodal
to the following (1 + 1) elitist EA with p = 1

n [32].
• Bitwise Mutation p. Flip each bit independently with

flipping probability p.
• Elitist Selection. Select the best individual from Φt∪Ψt.
The Two Needles in the Haystack function [32] below is

also unimodal to the above (1 + 1) elitist EA with p = 1
2 ,

although it is regarded as a plateau function under Hamming
distance.

f(x) =

{
1, if |x| = 0 or |x| = n;
0, otherwise. (17)
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IV. SCENARIO 1: USING A POPULATION CANNOT REDUCE
HITTING TIME

A. Case study 1: two-paths-I functions

It is an intuitive belief that using a population will reduce
the number of generations to find an optimal solution. The
following case study shows this belief is not always true.

Before the case study, the concept of path [33] is revisited.
Given a (1 + 1) EA for maximizing f(x), a path is a
sequence of points {x0 → x1 → · · · → xk} such that
P (xi−1, xi) > 0 for i = 1, · · · , k. The path is denoted by
Path(x0, x1, · · · , xk). The case study is about two-paths-I
functions which are defined as below.

Definition 6: Let S = {s0, s1, · · · , sK+L, sK+L+1} where
L > K and f a fitness function such that

f(s0) > f(sK+1) > f(sK+2) > · · · > f(sK+L)

>f(s1) > f(s2) > · · · > f(sK) > f(sK+L+1). (18)

Given a (1 + 1) elitist EA to maximise a function f , f is
called a two-paths-I function to the (1 + 1) EA if there exist
two paths to the optimum: Path1(sK+L+1, sK , · · · , s1, s0) and
Path2(sK+L+1, sK+L, · · · , sK+1, s0) such that
• for k = 1, · · · ,K and k = K + 2, · · · ,K + L, mutation

probabilities Pm(sk, sk−1) = 1;
• for k = K + 1, mutation probability Pm(sk, s0) = 1;
• for k = K+L+1, mutation probabilities P (sk, sK) = p

and Pm(sk, sK+L) = 1− p where 0 < p < 1;
• for any other i, j, Pm(si, sj) = 0.

Fig. 2 visualises a two-paths-I time-fitness landscape.

s0

s1

sK
sK+L+1

s0
sK+1

sK+L

sK+L+1

g(1+1)(x)

f
(x

)

Fig. 2. A two-paths-I time-fitness landscape. The x axis represents the
expected hitting time of the (1 + 1) EA. The y axis is the fitness function.

Consider a (1 + λ) EA (where λ ≥ 2) for maximizing a
two-paths-I function function.
• Mutation. Mutation probabilities are identical to those in

the (1 + 1) EA. Generate λ children.
• Elitist Selection. Select the best individual from Φt∪Ψt.
The theorem below shows that using a population will

increase the expected hitting time if the EA starts at sK+L+1.
Proposition 1: Given the (1 + 1) elitist EA and a (1 + λ)

EA (where λ ≥ 2) for maximizing a two-paths-I function, let
Φ

(1+1)
0 = Φ

(1+λ)
0 = sK+L+1, then PS(1 + λ | sK+L+1) < 1.

The scalability threshold is 2.
Proof: For the (1 + λ) EA, let its distance function

d(1+λ)(x) = g(1+1)(x).
Consider the pointwise drift at sK+L+1. There are two

potential events at SK+1+1.

1) The (1 + λ) EA moves from sK+L+1 to sK . This
event happens if and only if all children are sK . The
probability for the event happening is pλ.

2) The (1 + λ) EA moves from sK+L+1 to sK+L. This
event happens if and only if at least one child is sK+L.
The probability for the event happening is 1− pλ.

We calculate the pointwise drift at sK+L+1 as follows:

∆(1+λ)(sK+L+1)

=(1− pλ)(g(1+1)(sK+L+1)− g(1+1)(sK+L))

+ pλ(g(1+1)(sK+L+1)− g(1+1)(sK))

=(1− pλ)[1 + pK + (1− p)L− L]

+ pλ[1 + pK + (1− p)L−K]

=1 + (p− pλ)(K − L) < 1. (19)
(since L > K, p ∈ (0, 1) and λ ≥ 2)

For any other non-optimal s ∈ {s1, · · · , sK+L}, we calcu-
late the pointwise drift ∆(1+λ)(Sk) = 1 from P (sk, sk−1) = 1
(except k = K + 1) and P (sK+1,0) = 1.

Since Φ
(1+λ)
0 = sK+L+1, average drift ∆̄

(1+λ)
0 < 1. For any

t ≥ 1, Φ
(1+λ)
t has left the point sK+L+1, then average drift

∆̄
(1+λ)
t = 1. According to Theorem 8, we get that PS(1+λ |

sK+L+1) < 1.
It is easy to understand the proposition. There are two paths

towards the optimum: short and long. If using a population,
the long path is more likely to be chosen than the short path.
Then the expected hitting time is increased.

Example 1: Consider an instance of two-paths-I functions.
Let x ∈ {0, 1}n and |x| denote its number of 1-valued bits.

f(x) =

 n, if |x| = 0 or |x| = n,
−|x|, if |x| ≤ θ where θ = 2,
|x|, otherwise.

(20)

There are two optima: |x| = 0, n. Let x0 be a string such that
|x0| = 2. It takes the minimum value of the fitness. A (1 +λ)
EA uses adaptive mutation and elitist selection for solving the
above problem.
• Adaptive mutation.

1) When t = 0, flip one of 1-valued bits with the
probability 0.5, otherwise flip one of 0-valued bits.
In this way, generate λ children as Ψ0.

2) When t ≥ 1, if f(Φt) > f(Φt−1) and Φt is
generated by flipping a 0-valued bit (or 1-valued)
in Φt−1, flip a 0-valued bit (or 1-value bit). Then
generate λ children as Ψt.

3) When t ≥ 1, if f(Φt) = f(Φt−1), either flip one
of 1-valued bits with probability 0.5 or flip one of
0-valued bits. Then generate λ children as Ψt.

• Elitist Selection. Select the best individual from Φt∪Ψt

as Φt+1.
f is a unimodal function under Hamming distance but a two-

paths-I function (multi-modal) to the (1 + 1) EA on the time-
fitness landscape. When the (1+1) EA starts at |x| = 2, there
are two paths towards the optima |x| = 0, n. The short path is
|x| = 2→ 1→ 0. The long path is |x| = 2→ 3→ · · · → n.
Table I shows that using a population increases the expected
hitting time.
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TABLE I
EXPERIMENTAL RESULTS FOR EXAMPLE 1 AVERAGED OVER 1000 RUNS.

n = 1000. THE EA STARTS AT x0 WITH |x0| = 2.

population size 1 3 5 7 9

hitting time 491 872 961 990 997

running time 491 2616 4805 6930 8973

B. Case study 2: unimodal functions

This subsection presents another case study to show that
using a population can not reduce the expected hitting time.
The case study discusses a (µ + 1) elitist EA (where µ ≥ 1)
with global mutation for maximizing any unimodal function.

• Global Mutation. Choose one individual from Φt at
random and generate a child by mutation. Mutation
probability Pm(si, sj) > 0 for any i and j.

• Elitist Selection. If the child’s fitness is better than that
of one or more parents, then the child will replace one
of these parents at random.

The proposition below asserts that using a population in-
creases the expected hitting time of the (µ+ 1) EA.

Proposition 2: Given the (1 + 1) EA and a (µ + 1) EA
(where µ ≥ 2) for maximizing a unimodal function, for any
x ∈ {s2, · · · , sK}, let Φ

(1+1)
0 = x and Φ

(µ+1)
0 = (x, · · · , x),

then PS(µ+ 1 | x) < 1. The scalability threshold is 2.
Proof: For the (1 + 1) EA, choose g(1+1)(x) to be its

distance function. According to Theorem 1, the pointwise drift
satisfies ∆(1+1)(sk) = 1 for any sk ∈ {s1, · · · , sK}. Since
selection is elitist and the function is unimodal, we have

∆(1+1)(sk) =
∑k−1
l=0 Pm(sk,sl)(g(1+1)(sk)−g(1+1)(sl))=1. (21)

For the (µ+1) EA, define its distance function d(µ+1)(X) =
min{g(1+1)(x) : x ∈ X}.

Let X be a parent population: X = (s1(X), · · · , sµ(X)) ∈
Pnon in which the best parent is sk. Let their child be sl. Since
the (µ+ 1) EA adopts elitist selection and the fitness function
is unimodal, the pointwise drift satisfies

∆(µ+1)(X) =
∑k−1
l=0 Pm(X,sl)(g(1+1)(sk)−g(1+1)(sl)). (22)

The probability of mutating a parent si(X) to the child sl
(where l < k) is Pm(si(X), sl). Since each parent is chosen
for mutation at random, we have

Pm(X, sl) =
1

µ

µ∑
i=1

Pm(si(X), sl).

Then we get

Pm(X, sl)
(
g(1+1)(sk)− g(1+1)(sl)

)
= 1
µ

∑µ
i=1 Pm(si(X), sl)(g

(1+1)(sk)− g(1+1)(sl)).

Since l < k ≤ i(X), according to the definition of unimodal
functions, we have

g(1+1)(sl) < g(1+1)(sk) ≤ g(1+1)(si(X)),

and then

Pm(X, sl)
(
g(1+1)(sk)− g(1+1)(sl)

)
≤ 1
µ

∑µ
i=1 Pm(si(X), sl)(g

(1+1)(si(X))− g(1+1)(sl))

The pointwise drift satisfies

∆(µ+1)(X)

= 1
µ

∑µ
i=1

∑k−1
l=0 Pm(si(X),sl)(g

(1+1)(sk)−g(1+1)(sl))

≤ 1
µ

∑µ
i=1

∑k−1
l=0 Pm(si(X),sl)(g

(1+1)(si(X))−g(1+1)(sl)). (23)

1) Case 1: for all parents in X , si(X) = sk.
According to Equality (21), we have∑k−1

l=0 Pm(sk, sl)(g
(1+1)(sk)− g(1+1)(sl)) = 1.

Then the pointwise drift satisfies

∆(µ+1)(X) =
1

µ

µ∑
i=1

1 = 1. (24)

2) Case 2: for at least one parent in X , si(X) 6= sk.
Since sk is the best parent in X , the indexes sat-
isfy i(X) > k. Thanks to global mutation, we have
Pm(si(X), sl) > 0 for any i(X), and then∑k−1

l=0 Pm(si(X),sl)(g
(1+1)(si(X))−g(1+1)(sl))

<
∑i(X)−1
l=0 Pm(si(X),sl)(g

(1+1)(si(X))−g(1+1)(sl))

=∆(1+1)(si(X)) = 1. (25)

The last equality “= 1” comes from Equality (21). Then
the pointwise drift satisfies

∆(µ+1)(X) <
1

µ

µ∑
i=1

1 = 1. (26)

Since Φ0 = (sk, · · · , sk) where k ≥ 2, the average drift
∆̄

(µ+1)
0 = 1. When t = 1, the probability of Φ1 ∈ Pnon

including two different non-optimal points is always greater
than 0 due to global mutation. Thus the average drift ∆̄

(µ+1)
1 <

1. When t ≥ 2, the average drift ∆̄
(µ+1)
t ≤ 1. According to

Theorem 8, we get PS(µ+ 1 | sk) < 1.
Here is an explanation of this proposition. For unimodal

functions, the higher the fitness of a point is, the closer to the
optimal set the point is (Fig. 1). Given a parent population in
the (µ+1) EA, a good strategy is to mutate the best parent in
the population. Unfortunately, a population may include some
parent which is worse than the best. If a worse parent is chosen
to mutate, it will increase he expected hitting time.

Example 2: Consider the TwoMax function [32]. Let x ∈
{0, 1}n and |x| denote the number of 1-valued bits.

f(x) = max{|x|, n− |x|}. (27)

There are two optima: |x| = 0, n. A (µ+ 1) elitist EA is used
for solving the maximization problem.
• Bitwise Mutation. Choose one individual from µ parents

at random. Flip each bit with a probability 1/n.
• Elitist Selection. If the child’s fitness is better than that

of one or more parents, then the child will replace one
of these parents at random.

f is unimodal to the (1 + 1) EA [32]. Table II shows that
using a population increases the expected hitting time.
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TABLE II
EXPERIMENTAL RESULTS FOR EXAMPLE 2 AVERAGED OVER 1000 RUNS.

n = 200. THE EA STARTS AT x0 WITH |x0| = 100.

population size 1 3 5 7 9

hitting time 2523 2650 3014 3477 3855

running time 2523 2650 3014 3477 3855

V. SCENARIO 2: USING A POPULATION CAN REDUCE
HITTING TIME BUT NOT RUNNING TIME

A. Case study 3: unimodal functions

Let’s reinvestigate the intuitive belief that using a popula-
tion can reduce the expected hitting time of elitist EAs for
maximizing unimodal functions. Although this belief is not
true for the (µ+1) EA, it is still true for the (λ+λ) EA with
global mutation and elitist selection.

Consider a (λ + λ) EA (λ ≥ 1) using elitist selection and
global mutation for maximising a unimodal function.
• Global Mutation. Mutation probability Pm(si, sj) > 0

for any i, j. Each individual in Φt generates a child.
• Elitist Selection. Probabilistically select λ individuals

from Φt∪Ψt, while the best individual is always selected.
First we prove an inequality which will be used later.
Lemma 1: Given ai > 0, bi > 0, ci > 0 where i =

0, 1, · · · , k such that
∑j
i=0 ai >

∑j
i=0 bi, j = 0, · · · , k and

c0 > c1 > · · · > ck, it holds
∑k
i=0 aici >

∑k
i=0 bici.

Proof: From the conditions a0 + · · ·+ aj > b0 + · · ·+ bj
and c0 > c1 > · · · > ck, we have∑k

i=0(ai − bi)ci
= (a0 − b0)c0 +

∑k
i=1(ai − bi)ci

> (a0 − b0)c1 +
∑k
i=1(ai − bi)ci

= (a0 − b0 + a1 − b0)c1 +
∑k
i=2(ai − bi)ci

> (a0 − b0 + a1 − b1)c2 +
∑k
i=2(ai − bi)ci

= (a0 − b0 + a1 − b0 + a2 − b2)c2 +
∑k
i=3(ai − bi)ci.

By induction, we can prove that∑k
i=0(ai − bi)ci

> (a0 − b0 + a1 − b1 + · · ·+ ak − bk)ck > 0.

This gives the desired result.
Proposition 3: Given the (1 + 1) elitist EA and a (λ + λ)

EA (where λ ≥ 2) using global mutation and elitist selection
for maximizing any unimodal function, let Φ

(1+1)
0 = x and

Φ
(λ+λ)
0 = (x, · · · , x) where x ∈ Pnon, then PS(λ+ λ | x) >

1.
Proof: For the (1 + 1) EA, choose g(1+1)(x) to be its

distance function. According to Theorem 1, the pointwise drift
satisfies ∆(1+1)(sk) = 1 for any sk ∈ Pnon. Since selection
is elitist and the function is unimodal, we have

∆(1+1)(x) =
∑k−1
l=0 Pm(sk,sl)(g

(1+1)(sk)−g(1+1)(sl))=1. (28)

For a (λ+λ) EA, define its distance function d(λ+λ)(X) =
min{g(1+1)(x) : x ∈ X}.

Let Pk denote the set of populations whose best individual is
sk (where k = 1 · · · ,K). Provided that the parent population

is X ∈ Pk (where k > 0), the children population is Y and
the next generation population is Z ∈ Pl.

Since the (µ+λ) EA adopts elitist selection and the fitness
function is unimodal, the pointwise drift satisfies

∆(µ+λ)(X)=
∑k−1
l=0

∑
Z∈Pl

P (X,Z)(g(1+1)(sk)−g(1+1)(sl)). (29)

Given any m < k, the children population Y and next
generation population enter in the union P0 ∪ P1 ∪ · · · ∪ Pm
if and only if one or more parents in X is mutated into
an child in the set {s0, · · · , sm}. Thanks to global mutation
and population size λ ≥ 2, this probability is strictly larger
than that of only one parent sk being mutated into the set
{s0, · · · , sm}:

m∑
l=0

∑
Z∈Pl

P (X,Z) >

m∑
l=0

P (sk, sl).

Since the fitness function is unimodal, we have

g(1+1)(sk)− g(1+1)(s0) > g(1+1)(sk)− g(1+1)(s1)

> · · · > g(1+1)(sk)− g(1+1)(sk−1).

Using Lemma 1 (let al =
∑
Z∈Pl P (X,Z), bl = P (sk, sl)

and cl = g(1+1)(sk)− g(1+1)(sl)), we get

∆(λ+λ)(X) =

k−1∑
l=0

∑
Z∈Pl

P (X,Z)(g(1+1)(sk)− g(1+1)(sl))

>

k−1∑
l=0

P (sk, sl)(g
(1+1)(sk)− g(1+1)(sl))

=∆(1+1)(sk) = 1.

Then we have ∆(λ+λ)(X) > 1. Since Φ0 ∈ Pnon, we have for
any t ≥ 0, the average drift ∆̄

(λ+λ)
t > 1. Applying Theorem

9, we get PS(λ+ λ) > 1.
Here is an explanation of the proposition. For unimodal

functions, the higher the fitness of a point is, the closer to the
optimal set the point is. The probability of the (λ + λ) EA
(where λ ≥ 2) to generate a better individual is strictly larger
than that of the (1 + 1) EA. Thus the expected hitting time is
shortened.

B. Case study 4: unimodal functions

It is an intuitive belief that using a population can not
reduce the expected running time of elitist EAs for maximizing
unimodal functions. The proposition below asserts this is true
for unimodal functions on the time-fitness landscape.

Consider a (µ+ λ) elitist EA.
• Mutation. Select λ individuals in Φt and mutate them.

Then generate a children population consisting of λ
individuals;

• Elitist Selection. First select one individual with the
highest fitness in Φt∪Ψt; and then probabilistically select
µ− 1 individuals from Φt ∪Ψt.

Proposition 4: Given the (1+1) elitist EA and a (µ+λ) EA
(where µ ≥ 2 or λ ≥ 2) for maximizing a unimodal function,
let Φ

(1+1)
0 = x and Φ

(µ+λ)
0 = (x, · · · , x) where x ∈ Pnon,

then PS(µ+ λ | x) ≤ λ and if λ ≥ 2, PS(µ+ λ | x) < λ.
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Proof: It is sufficient to consider the case of λ > 1.
The analysis of the (µ + 1) EA is almost the same as that
of Proposition 2, except two places: (1) without the global
mutation condition, Inequality (25) is changed from < to ≤;
(2) the conclusion is changed from PS(µ+1) < 1 to PS(µ+
1) ≤ 1.

For the (1 + 1) EA, choose g(1+1)(x) to be its distance
function. According to Theorem 1, for any sk ∈ {s1, · · · , sK},
the pointwise drift satisfies ∆(1+1)(sk) = 1. Since selection
is elitist and the function is unimodal, we have

∆(1+1)(sk) =
∑k−1
l=0 Pm(sk,sl)(g

(1+1)(sk)−g(1+1)(sl))=1. (30)

For the (µ + λ) EA where λ ≥ 2, let its distance function
d(µ+λ)(X) = min{g(1+1)(x) : x ∈ X}.

Let Pk denote the set of populations whose best individual
is sk (where k = 0, 1, · · · ,K). Provided that the parent
population is X ∈ Pk (where k > 0), the children population
is Y and the next generation population is Z ∈ Pl.

Since the (µ+λ) EA adopts elitist selection and the fitness
function is unimodal, the pointwise drift satisfies

∆(µ+λ)(X)

=
∑k−1
l=0

∑
Z∈Pl

P (X,Z)(g(1+1)(sk)−g(1+1)(sl))

=
∑k−1
l=0

∑
Y∈Pl

Pm(X,Y )(g(1+1)(sk)−g(1+1)(sl)). (31)

Denote the children population Y by (s1(Y ), · · · , sλ(Y )).
Let (s1(X), · · · , sλ(X)) be the parents from which Y are
mutated. Children Y ∈ Pl (where l < k) only if one or more
parents is muted into sl. The probability of mutating si(X) to sl
is Pm(si(X), sl). Since each parent is mutated independently,
the probability of one or more parents is muted into sl is not
more than the sum of each parents is mutated into sl. Then
we have∑

Y ∈Pl Pm(X,Y )
(
g(1+1)(sk)− g(1+1)(sl)

)
≤
∑λ
i=1 Pm(si(X), sl)(g

(1+1)(sk)− g(1+1)(sl)). (32)

The above inequality is strict if X = (sk, · · · , sk).
Since l < k ≤ i(X), we have

g(1+1)(sl) < g(1+1)(sk) ≤ g(1+1)(si(X)),

and then∑
Y ∈Pl Pm(X,Y )

(
g(1+1)(sk)− g(1+1)(sl)

)
≤
∑λ
i=1 Pm(si(X), sl)(g

(1+1)(si(X))− g(1+1)(sl)).

Inserting the above inequality into Equality (31), we get

∆(µ+λ)(X)

≤∑k−1
l=0

∑λ
i=1 Pm(si(X),sl)(g

(1+1)(si(X))−g(1+1)(sl))

=
∑λ
i=1

∑k−1
l=0 Pm(si(X),sl)(g

(1+1)(si(X))−g(1+1)(sl)). (33)

Since sk is the best parent in X , we have for i = 1, · · · , λ,
the indexes satisfy i(X) ≥ k. Then∑k−1

l=0 Pm(si(X), sl)(g
(1+1)(si(X))− g(1+1)(sl))

≤
∑i(X)−1
l=0 Pm(si(X), sl)(g

(1+1)(si(X))− g(1+1)(sl)) = 1.

The drift satisfies

∆(µ+λ)(X) ≤
λ∑
i=1

1 = λ.

The above inequality is strict if X = (sk, · · · , sk).
Since Φ0 = (sk, · · · , sk) for some k ≥ 1, the average drift

∆̄
(µ+λ)
0 < 1. When t ≥ 1, the average drift ∆̄

(µ+λ)
t ≤ 1.

Applying Theorem 8, we obtain PS(µ+ λ) < λ.
The explanation of the proposition is simple. For unimodal

functions, the higher the fitness of a point is, the closer to the
optimal set the point is. The probability of the (µ + λ) EA
to generate a better individual is not more than λ times that
of the (1 + 1) EA. Thus the expected hitting time cannot be
shortened by 1/λ.

Example 3: Consider the TwoMax function [32] where x ∈
{0, 1}n.

f(x) = max{|x|, n− |x|}. (34)

A (1 +λ) EA (where λ ≥ 1) with elitist selection and bitwise
mutation is used for maximizing the function.

• Bitwise Mutation. Flip each bit with a probability 1/n.
Then generates λ children.

• Elitist Selection. Select the best individual from Φt∪Ψt.

Table III shows that using a population reduces the expected
hitting time, but increases the expected running time.

TABLE III
EXPERIMENTAL RESULTS FOR EXAMPLE 3 AVERAGED OVER 1000 RUNS.

n = 200. THE EA STARTS AT x0 WITH |x0| = 100.

population size 1 3 5 7 9

hitting time 2536 864 529 395 315

running time 2536 2592 2645 2765 2835

Let’s apply Proposition 4 to a special instance: the (1 + λ)
EA (using bitwise mutation and elitist selection) for maximiz-
ing the OneMax function. According to Proposition 4, using
a population will increase the running time. The population
threshold is 2. This conclusion is more accurate that that in
[8]. The result in [8] asserts that the expected running time of
the (1 +λ) EA is in the same order of that of the (1 + 1) EA
by a constant factor when λ is smaller than the cut-off point.
The constant could be = 1, > 1 or < 1. But the two results
are not contrary. Our result indicates that the constant factor
is strictly less than 1 when λ ≥ 2.

VI. SCENARIO 3:USING A POPULATION CAN REDUCE
RUNNING TIME

A. Case study 5: two-paths-II functions

In the previous section, it has been proven that using a
population cannot reduce the expected running time of an
EA for maximizing any unimodal function on the time-fitness
landscape. But this intuitive belief is not true in terms of
the distance-based fitness landscape. It is demonstrated by the
following case study of two-paths-II functions.
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Definition 7: Let S = {s0, s1, · · · , sK+L, sK+L+1} where
L < K and f a fitness function such that

f(s0) > f(sK+1) > f(sK+2) > · · · > f(sK+L)

>f(s1) > f(s2) > · · · > f(sK) > f(sK+L+1). (35)

Given a (1 + 1) elitist EA to maximise f , f is called a
two-paths-II function to the (1 + 1) EA if there exist two
paths to the optimum: Path1(sK+L+1, sK , · · · , s1, s0) and
Path2(sK+L+1, sK+L, · · · , sK+1, s0) such that
• for k = 1, · · · ,K and k = K + 2, · · · ,K + L, mutation

probabilities Pm(sk, sk−1) = 1;
• for k = K + 1, mutation probability Pm(sk, s0) = 1;
• for k = K+L+1, mutation probabilities P (sk, sK) = p

and Pm(sk, sK+L) = 1− p where 0 < p < 1;
• for any other i, j, Pm(si, sj) = 0.

Fig. 3 visualises the a two-paths-II time-fitness landscape.

s0

s1

sK−1
sK

sK+L+1

s0 sK+1

sK+L

sK+L+1

g(1+1)(x)

f
(x

)

Fig. 3. A two-paths-II time-fitness landscape. The x axis represents the
expected hitting time of the (1 + 1) EA. The y axis is the fitness function.

Consider a (1 + λ) EA where λ ≥ 2.
• Mutation. Mutation probabilities are identical to those in

the (1 + 1) EA in the above definition.
• Elitist Selection. Select the best individual from Φt∪Ψt.
Under certain condition, using a population may reduce the

expected hitting time.
Proposition 5: Given the (1 + 1) EA and a (1 + λ) EA

(where λ ≥ 2) for maximizing a two-paths-II function, let
Φ

(1+1)
0 = sK+L+1 and Φ

(1+λ)
0 = sK+L+1, if the population

size satisfies λ < λ∗ where λ∗ is given by

λ∗ = 1 + (p− λpλ)
K − L
L+ 1

, (36)

then PS(1 + λ | sK+L+1) > λ. The scalability threshold is
not less than λ∗.

Proof: For the (1+λ) EA, define its distance function as
follows:

d(1+λ)(x) =


0, if x = s0,
g(1+1)(sK+L+1), if x = sK+L+1,
λg(1+1)(x), otherwise.

(37)

Consider the pointwise drift at sK+L+1. There are two
potential events.

1) The (1 +λ) EA moves from sK+L+1 to sK . This event
happens if and only if all mutated children are sK . The
probability for the event happening is pλ.

2) The (1 + λ) EA moves from sK+L+1 to sK+L. This
event happens if and only if at least one mutated child is
sK+L. The probability for the event happening is 1−pλ.

Calculate the pointwise drift at sK+L+1 as follows:

∆(1+λ)(sK+L+1)

=(1− pλ)(g(1+1)(sK+L+1)− λg(1+1)(sK+L))

+ pλ(g(1+1)(sK+L+1)− λg(1+1)(sK))

=(1− pλ)[1 + pK + (1− p)L− λL]

+ pλ[1 + pK + (1− p)L− λK]

=1 + pK + (1− p)L− λL+ pλλL− pλλK
=1 + (p− pλλ)(K − L) + L(1− λ)

>λ. (use λ < λ∗ and (36)) (38)

Calculate the pointwise drift at s ∈ {s1, · · · , sK+L},

∆(1+λ)(s) =
∑
s′∈S

[λg(1+1)(s)− λg(1+1)(s′)]

= ∆(1+1)(s) = λ.

Since Φ0 = sK+L+1, the average drift ∆̄
(1+λ)
0 > λ. For any

t ≥ 1, Φ
(1+λ)
t has left the point sK+L+1, then average drift

∆̄
(1+λ)
t = λ. According to Theorem 9, we get that PS(1+λ |

sK+L+1) > λ.
It is easy to understand the proposition. There are two paths

to the optimum: short and long. Using a lager population, the
short path is more likely to be chosen than the long path. Thus
the expected hitting time is reduced.

Example 4: Consider an instance of two-paths-II functions.
Let x ∈ {0, 1}n and |x| denote its number of 1-valued bits.

f(x) =

 n, if |x| = 0 or |x| = n,
−|x|, if |x| ≤ θ where θ = n− 2,
|x|, otherwise.

(39)

The (1 + λ) EA is the same as that in Example 1 in
Section IV-A. Table IV shows that using a population reduces
the expected running time.

TABLE IV
EXPERIMENTAL RESULTS FOR EXAMPLE 4 AVERAGED OVER 1000 RUNS.

n = 1000. THE EA STARTS AT x0 WITH |x0| = 998.

population size 1 5 9 13 17

hitting time 507 28 2 2 2

running time 507 140 18 26 34

f is a unimodal function under Hamming distance but a two-
path-II function (multi-modal) to the (1 + 1) EA on the time-
fitness landscape. When the (1 + 1) EA starts at |x| = n− 2,
there are two paths towards the optima |x| = 0, n. The long
path is |x| = n − 2 → n − 3 → · · · → 0. The short path is
|x| = n − 2 → n − 1 → n. This example shows that using
a population shortens the expected running time of an EA
on a unimodal function in terms of the distance-based fitness
landscape. It doesn’t contradict Proposition 4, which holds for
any unimodal functions on the time-fitness functions.
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B. Case study 6: deceptive-like functions

It is an intuitive belief that using a population may shorten
the runtime of EAs on deceptive functions. This was proven
for an elitist EA on a deceptive function under Hamming
distance [7]. In this case study, the conclusion is generalised to
deceptive-like functions in any finite set. Deceptive functions
and deceptive-like functions are defined on the time-fitness
landscape [32] .

Definition 8: Let S = {s0, s1, · · · , sK} and f a fitness
function such that f(s0) > f(sK) > · · · > f(s1). Given a
(1 + 1) elitist EA to maximise f , f is called deceptive to the
(1 + 1) EA if g(1+1)(sK) > · · · > g(1+1)(s1).

According to [32], deceptive functions to a (1 + 1) elitist
EA are the hardest among all fitness functions with the same
optimum at s0. Furthermore, according to [32], for any fitness
function f(x), we can construct a (1 + 1) elitist EA to which
f is the hardest (deceptive).

Definition 9: Let S = {s0, s1, · · · , sK} and f a fitness
function such that

f(s0) > f(sK) > max{f(s1), · · · , f(sK−1)}. (40)

Given a (1+1) elitist EA to maximise f , f is called deceptive-
like to the (1 + 1) EA if g(1+1)(sK) > g(1+1)(sk) for any
k < K.

A deceptive-like time-fitness landscape is visualised in
Fig. 4. Deceptive functions belong to deceptive-like functions.

s0

s1

sK−1

sK

g(1+1)(x)

f
(x

)

Fig. 4. A deceptive-like time-fitness landscape. The x axis is the expected
hitting time of the (1 + 1) EA. The y axis is the fitness function.

Given a fitness function f(x), consider an elitist (1 + 1)
uses global mutation for maximising f(x).
• Global Mutation. Mutation probability Pm(si, sj) >

0 for any i, j and mutation probability Pm(si, s0) >
Pm(sK , s0) for any i < K.

• Elitist Selection. select the best from Φt ∪Ψt.
The fitness function f is deceptive-like to the (1 + 1)

EA because g(1+1)(sK) > g(1+1)(si) for any i < K. This
can be proven by pointwise drift analysis. Let the distance
function to be d(1+1)(s) = g(1+1)(sK) for s ∈ {s1, · · · , sK}
and d(1+1)(s) = 0 for s = s0. The pointwise drift satisfies
∆(1+1)(s) = 1 for s = sK and ∆(1+1)(si) > 1 for
si ∈ {s1, · · · , sK−1} due to Pm(si, s0) > Pm(sK , s0). Hence
g(1+1)(sK) > g(1+1)(si) (deceptive-like).

Consider a (λ+λ) EA (where λ ≥ 2) using global mutation
and elitist selection with fitness diversity for maximising f(x).
• Global Mutation. The same as that in the (1 + 1) EA.
• Elitist Selection with Fitness Diversity.

1) If all individuals in Φt ∪Ψt have the same fitness,
then choose λ individuals at random;

2) Otherwise, first select one individual with the high-
est fitness from Φt ∪ Ψt and then select one indi-
vidual with a lower higher fitness. Thereafter select
λ− 2 individuals from Φt ∪Ψt using any selection
scheme.

We will show that the running time of the (λ + λ) EA
(where λ ≥ 2) is shorter than that of the (1 + 1) EA. Before
the theorem and its proof, the following notation is introduced.

SK
def
= {x ∈ S; f(x) < f(sK)}, (41)

PK
def
= {X ∈ P; f(x) < f(sK) for any x ∈ X}, (42)

Pm(x,SK)
def
=
∑
y∈SK

Pm(x, y), (43)

Pm(X,PK)
def
=
∑
x∈X

Pm(x,SK). (44)

Proposition 6: Given the (1+1) elitist EA and a (λ+λ) EA
(where λ ≥ 2) for maximizing any deceptive-like function, if
the population size satisfies λ < λ∗ where λ∗ is given by

λ∗ =
Pm(sK ,SK) min0<i<K Pm(si,s0)

(Pm(sK ,SK)+min0<i<k Pm(si,s0))Pm(sK ,s0)
, (45)

then PS(λ+λ | sK) > λ. The scalability threshold is not less
than λ∗.

Proof: For the (λ + λ) EA, given a population X , let
f(X) = max{f(x);x ∈ X} the maximal fitness of its
individuals. Define the distance distance as follows:

d(λ+λ)(X)=


d0 = 0, if f(X)=f(s0),

dK = g(1)(sK), if f(X)=f(sK),

dK = λ
min0<i<K Pm(si,s0)

, if f(X)<f(sK).

(46)

We calculate the pointwise drift at X = (sK , · · · , sK):

∆(λ+λ)(sK , · · · , sK)

=P (X,Popt)(dK − d0) + P (X,PK)(dK − dK)

>P (X,Popt)(dK − dK) + P (X,PK)(dK − dK)

=
(
P (X,Popt) + P (X,PK)

)
(dK − dK)

>Pm(sK ,SK)(dK − dK)

=Pm(sK ,SK)

(
1

Pm(sK , s0)
− λ

min0<i<K Pm(si, s0)

)
>λ. (use λ < λ∗ and (45)) (47)

Calculate the pointwise drift at any X ∈ Pnon in which at
least one of its individuals is not sK :

∆(λ+λ)(X) =P (X,Popt)(dK − d0)

≥λmaxx∈X Pm(x, s0)

min0<i<k Pm(si, s0)
≥ λ. (48)

Since Φ
(λ+λ)
0 = (sK , · · · , sK), from (47) we have the aver-

age drift ∆̄
(λ+λ)
0 > λ. For any t ≥ 1, we know, ∆̄

(λ+λ)
t ≥ λ.

According to Theorem 9, we have PS(λ+ λ | sK) > λ.
The proposition can be explained as follows. In the (1 + 1)

algorithm, elitist selection cannot accept an worse solution,
which is a bad strategy for deceptive-like functions. But in the
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population-based EA, selection with the fitness diversity can
accept a worse solution. This helps the EA find the optimum
more quickly.

Example 5: Consider an instance of deceptive functions. Let
x ∈ {0, 1}n and |x| denote its number of 1-valued bits.

f(x) =

{
n, if |x| = 0 or |x| = n,
min{|x|, n− |x|}, otherwise. (49)

There are two optima: |x| = 0, n. Consider a (λ+λ) EA using
elitist selection and bitwise mutation:
• Bitwise Mutation. Flip each bit with probability 1/n.

Each parent generates one child.
• Elitist Selection + Random Selection. Select one indi-

vidual with the highest fitness from Φt ∪ Ψt and then
select λ− 1 individuals from Φt ∪Ψt at random.

According to [32], f(x) is a deceptive function to the (1 +
1) EA. Table V shows that using a population reduced the
expected running time.

TABLE V
EXPERIMENTAL RESULTS FOR EXAMPLE 5 AVERAGED OVER 1000 RUNS.

n = 10. THE EA STARTS AT x0 WITH |x0| = 5.

population size 1 5 9 13 17

hitting time 82774 1411 370 188 116

running time 82774 7055 3330 2444 1972

VII. DISCUSSION (CASE STUDY 7)
It must be pointed out that population scalability depends on

the benchmark EA. Let’s show this through a simple instance
of deceptive functions. Let x ∈ {0, 1}2 be a binary string with
length 2. The fitness function is given by

f(x) =

{
3, if |x| = 0,
|x|, if |x| = 1, 2.

(50)

If the benchmark (1+1) EA is changed from elitist selection
to random selection, then using a population cannot shorten
the running time any more.
• Bitwise Mutation. Flip each bit with probability 1/n.
• Random Selection. Select one individual from Φt ∪ Ψt

at random.
Let 0, 1, 2 represent the points |x| = 0, 1, 2 respectively.

Transition probabilities of the (1 + 1) EA among non-optimal
points are given in Table VI.

TABLE VI
TRANSITION PROBABILITIES AMONG NON-OPTIMAL POINTS

P (x, y) 1 2

1 5
8

1
8

2 1
4

2
4

According to Theorem 1, the expected hitting time of the
(1 + 1) EA satisfies a linear equation system:{

3
8g

(1+1)(1)− 1
8g

(1+1)(2) = 1,
− 1

4g
(1+1)(1) + 2

4g
(1+1)(2) = 1.

(51)

Solving the equations, we get the expected hitting time as
follows:

g(1+1)(1) = g(1+1)(2) = 4. (52)

Starting from any non-optimal point, the expected running
time of the (1 + 1) EA is 4.

Now we consider a simple (2 + 2) EA which runs the
two copies of the above (1 + 1) EA independently. Let (i, j)
represent the population (x1, x2) such that |x1| = i, |x2| = j
where i, j = 0, 1, 2. Transition probabilities of the (2+2) EA
among non-optimal points are given in Table VII.

TABLE VII
TRANSITION PROBABILITIES AMONG NON-OPTIMAL POINTS

P (X,Y ) (1, 1) (1, 2) (2, 1) (2, 2)

(1, 1) 5
8
· 5
8

5
8
· 1
8

1
8
· 5
8

1
8
· 1
8

(1, 2) 5
8
· 1
4

5
8
· 2
4

1
8
· 1
4

1
8
· 2
4

(2, 1) 1
4
· 5
8

1
4
· 1
8

2
4
· 5
8

2
4
· 1
8

(2, 2) 1
4
· 1
4

1
4
· 2
4

2
4
· 1
4

2
4
· 2
4

According to Theorem 1, the expected hitting time of the
(2+2) EA satisfies a linear equation system:

39
64g

(2+2)(1, 1)− 5
64g

(2+2)(1, 2)
− 5

64g
(2+2)(2, 1)− 1

64g
(2+2)(2, 2) = 1,

− 5
32g

(2+2)(1, 1) + 22
32g

(2+2)(1, 2)
− 1

32g
(2+2)(2, 1)− 2

32g
(2+2)(2, 2) = 1,

− 5
32g

(2+2)(1, 1)− 1
32g

(2+2)(1, 2)
+ 22

32g
(2+2)(2, 1)− 2

32g
(2+2)(2, 2) = 1,

− 1
16g

(2+2)(1, 1)− 2
16g

(2+2)(1, 2)
− 2

16g
(2+2)(2, 1) + 12

16g
(2+2)(2, 2) = 1.

(53)

Solving the equations, we get the expected hitting time as
follows:

g(2+2)(1,1)=g(2+2)(1,2)=g(2+2)(2,1)=g(2+2)(2,2) =
16

7
. (54)

Staring from any non-optimal point, the expected running
time of the (2 + 2) EA is 2 × 16/7 = 32/7 ≥ 4. Therefore
using a population doesn’t shorten the expected running time
on the deceptive function if the EA uses random selection. The
reason is simple: the (1 + 1) EA with random selection can
accept a worse solution. This is a good strategy for deceptive
functions. Hence using a population doesn’t help too much.

VIII. CONCLUSIONS

This paper proposes population scalability for studying how
population-size affects the computation time of population-
based EAs. Population scalability is the ratio of the expected
hitting time between a benchmark EA and an EA using a
larger population size. Average drift analysis is presented as a
tool of comparing the expected hitting time of two EAs and
estimating lower and upper bounds on population scalability.

Our results can be regarded as a rigorous analysis of several
intuitive beliefs.

1) “Using a population may reduce the expected hitting
time of an EA to find an optimal point.” This belief is
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not always true. Two counter-examples are given, which
are a (1+λ) EA on two-paths-II functions and a (µ+1)
EA on unimodal functions.

2) “Using a population cannot shorten the expected running
time of an elitist EA on unimodal functions.” This belief
is always true for any (µ+λ) EAs with elitist selection
on unimodal functions on the time-fitness landscape, but
not always true in terms of the distance-based fitness
landscape.

3) “Using a population can reduce the expected running
time of an EA on deceptive functions.” This belief is
true under conditions. It is true for a (λ+ λ) EA if the
benchmark (1+1) EA uses elitist selection, but not true
if the benchmark EA uses random selection.

More generally, for any fitness function f , there exist
“good” (1 + 1) elitist EAs to which f is unimodal [32]. Thus
using a population is useless if a function is unimodal to
the benchmark EA (or the benchmark EA is “good” to the
function). In contrast, for any fitness function f , there exist
“bad” (1 + 1) elitist EAs to which f is deceptive [32]. Thus
using a population may be useful if a function is deceptive
to the benchmark EA (or the benchmark EA is “bad” to the
function).

There still exist many open questions. For example, how to
estimate the scalability threshold? how to analyse population
scalability of EAs with crossover? what are practical criteria
for judging population scalability? what is the optimal popu-
lation size that maximises population scalability?
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