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Abstract 

This paper is motivated by the conflicting theories and empirical evidence regarding 
the relationship between business cycle volatility and economic growth. The average 
reported effect of volatility on growth is negative, but the empirical estimates vary 
substantially across studies. We identify the factors that explain the heterogeneity of 
the estimates by conducting a meta-analysis. Our evidence suggests that researchers’ 
choices regarding the measure of volatility, the control set of the estimated equation, 
the estimation methods, and the data characteristics play a significant role in the total 
outcome. Finally, the literature is found to be free of publication bias.  
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1. Introduction 

The connection between the business cycle and economic growth has been extensively 

explored in modern macroeconomics. The direction of the effect of business cycle 

volatility on economic growth, however, is still ambiguous and no consensus exists 

either in the theoretical or in the empirical literature. A number of theoretical models 

attempt to identify the impact of volatility on growth with divergent conclusions.1 

Several theoretical rationales exist suggesting either a positive relationship 

(Schumpeter, 1939, 1942; Black, 1987; Aghion and Saint-Paul, 1998) or a negative 

relationship (Arrow, 1962; Stadler, 1990; Martin and Rogers, 2000), or even no 

association at all (Friedman, 1968) between business cycles volatility and growth. 

Motivated by the absence of a clear theoretical consensus, several studies attempt to 

resolve this issue empirically, overcoming the existing ambiguity. Nevertheless, the 

extensive empirical literature on the link between volatility and growth has also been 

proven inconclusive. 

The extant empirical literature investigating the relationship between volatility 

and growth, builds on the work of Ramey and Ramey (1995). In general, the empirical 

contributions follow two different paths. On the one hand, most studies on the 

volatility-growth link follow the empirical literature on growth determinants 

employing growth regressions. On the other hand, several empirical contributions 

utilise the generalised auto-regressive conditional heteroskedasticity (GARCH) model 

to analyse the relationship between output fluctuations and growth. 

Most of the existing empirical evidence supports a negative association exists 

between business cycles and growth (Ramey and Ramey, 1995; Martin and Rogers, 

2000; Kneller and Young, 2001), while several others (Kormendi and Meguire, 1985; 

Caporale and McKiernan, 1996; Fountas and Karanasos, 2006) point to a positive link. 

Finally, a few studies report a lack of association between the two variables (Speight, 

                                                           
1 See Priesmeier and Stahler (2011) for a review of the literature. 
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1999; Grier and Perry, 2000; Fang and Miller, 2008). In summary, the literature is far 

from reaching a consensus on the sign of the relationship between growth and cyclical 

fluctuations on either theoretical or empirical grounds. 

According to more than one thousand econometric estimates collected from 84 

empirical studies on the effect of output volatility on growth, 41% of the point 

estimates indicate a statistically significant negative effect, 17% find a statistically 

significant positive effect, and 42% are not significant. The empirical studies report, 

on average, a negative impact of volatility on growth equals to -0.05, however, the 

individual estimates vary heavily both within and across studies. The absence of 

conclusive empirical evidence regarding the relationship between output volatility 

and growth motivates the need for a quantitative synthesis of research to explain the 

diverse empirical findings. Thus, we conduct a systematic meta-analysis to explore 

the sources of the heterogeneity in the empirical literature (Stanley and Jarrell, 1989; 

Stanley, 2001). Over the past three decades, meta-analytic studies have been applied 

to interpret the diverse, and often conflicting, empirical findings across many areas of 

economics (Card and Krueger, 1995; Disdier and Head, 2008; Card et al., 2010; 

Doucouliagos et al. 2012; Havranek, 2015). 

To the best of our knowledge, this is the first meta-analytic study on the 

literature of volatility and growth, and, thus, we aim to fill this gap. We collect and 

analyse 1010 estimates on the impact of volatility on economic growth, as reported in 

84 empirical studies over the period 1985-2015. Our meta-analysis relies on two 

alternative methodological approaches to explore the sources of the empirical 

heterogeneity: a Bayesian Model Averaging (BMA) method and an ordered probit 

model, both controlling for several aspects of the empirical research. The BMA method 

allows to address modelling uncertainty stemming from the large number of potential 

explanatory variables in the meta-regression specification. The ordered probit model 

allows to overcome the potential erroneous inference due to the incomparability of 

alternative volatility measures. The empirical literature uses alternative measures for 
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output volatility; e.g., standard deviation (SD) vs. GARCH. This diverse set of 

volatility measures may rise concerns regarding the direct comparison of the 

estimated effect across empirical studies. In total, we take into account for five groups 

of potential factors: i) differences in variables used, ii) modelling specifications, iii) 

dataset characteristics, iv) differences in estimation strategies and v) publication 

characteristics.  

Our results show that certain aspects of the empirical research design are 

crucial in explaining the heterogeneity of the estimates. Specifically, the choice of 

volatility measure matters; the use of an SD instead of a GARCH measure appears to 

be a key determinant of the observed heterogeneity of the collected coefficients. 

Additionally, certain aspects of the volatility-growth equation specification can 

explain the heterogeneous estimates. The presence of proxies for human capital, 

government size, and the inflation rate are significant sources of the observed 

empirical heterogeneity. The results show that studies accounting for the impact of 

human capital and the inflation rate in the empirical modelling increases the 

probability of obtaining a negative effect, while the inclusion of government size 

results in a higher probability of a positive effect. In contrast, the inclusion of proxies 

for financial development, financial integration, and trade openness does not seem to 

influence the results in a systematic way. Furthermore, several aspects of data 

characteristics emerge as decisive in explaining the heterogeneity of the literature 

estimates. These include the number of observations, the short-span of datasets and 

the presence of developing countries in the dataset. Interestingly, the negative 

relationship is more prominent in developing countries rather than in developed ones. 

In contrast, controlling for the period of great moderation does not affect the empirical 

estimates. Furthermore, controlling for endogeneity is an important determinant of 

the results that reveal a negative relationship. Finally, none of the publication-related 

variables is significant, indicating that the empirical literature is free from publication 

bias. 
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The remainder of the paper is structured as follows. Section 2 discusses the 

theoretical and empirical literature on business cycle volatility and economic growth. 

Section 3 describes the data selection process and the data characteristics. Section 4 

analyses the potential factors that explain the observed heterogeneity of the estimates. 

Section 5 presents the results from our meta-regression analysis and, Section 6 

performs several robustness checks and provides further evidence. Finally, Section 7 

concludes. 

 

2. Volatility and Growth: Theory and Empirics  

2.1. The Theory of Volatility and Growth 

Until the early 1980’s, business cycles and economic growth have been typically 

treated as separated areas of macroeconomics (Ramey and Ramey, 1995). The real 

business cycle approach (Kydland and Prescott, 1982; Long and Plosser, 1987, among 

others) changed this perspective, suggesting that business cycle fluctuations 

constitute an integral part of the growth process (Aghion and Banerjee, 2005). 

Subsequently, several theoretical contributions have focused on the relationship 

between volatility and growth, providing alternative rationales for either positive or 

negative link. 

 Within the literature, two broad categories on the link between business cycles 

and economic growth exist, based on their prediction regarding the sign of the 

relationship. The route of the first group of studies traces its origins to Schumpeter’s 

(1939, 1942) theory of ‘creative destruction’ corroborating the view that volatility and 

growth tend to correlate positively. The opposite view builds on Arrow’s (1962) 

contribution on human capital formation with ‘learning by doing’. Several growth 

models incorporating this hypothesis show that higher variability of economic 

fluctuations can have a negative impact on output. 
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According to the Schumpeterian view of economic development, recessions 

have a positive effect on an economy (‘creative destruction’). Schumpeter interprets 

the process of capitalist development as a succession of expansionary and 

recessionary phases, emphasising the role of innovation in production. Over economic 

slowdowns the new technology replaces the old one, causing a rise in average 

productivity and, thus, higher economic growth. In a similar fashion, Black (1987) 

argues that a positive relationship exists between output volatility and growth. The 

implication is that economies face a trade-off between risk and return in their choice 

of technology, as economic agents choose to invest in riskier technologies only if they 

expect to yield a higher rate of return as compensation for the extra risk. Therefore, 

technologies with higher output volatility will be adopted by economic agents only if 

they offer a higher growth rate of output. More recent theoretical models incorporate 

the mechanism of ‘creative destruction’ and provide alternative explanations for the 

positive relationship including the ‘disciplining’ effect (Aghion and Saint-Paul, 1998), 

the ‘cleaning-up’ effect (Caballero and Hammour, 1994) and the ‘opportunity costs’ 

effect (Hall, 1991). 

On the contrary, several approaches that model growth as an endogenous 

process give rise to a negative relation between business cycles and economic growth 

(see Aghion and Howitt, 1997, for a review). King et al. (1988) are the first to integrate 

endogenous growth theory with real business cycles. They show that temporary 

production disturbances can lead to permanent effects on output growth. Models that 

incorporate the ‘learning by doing’ mechanism of Arrow (1962), produce a negative 

effect of business cycle volatility on growth. Stadler (1990) uses the ‘learning by doing’ 

assumption to incorporate technical change and shows that volatility can negatively 

impact long-term growth. Similarly, Martin and Rogers (2000) show that the long-run 

growth rate is negatively related to business cycle volatility. The results of Blackburn’s 

(1999) contribution constitute an exception. Blackburn (1999) uses a stochastic 

endogenous growth model with ‘learning by doing’ technology and suggests that 
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there is a positive relationship between business cycle volatility and growth when 

technological improvements are complementary to production. 

A series of papers exists, providing alternative explanations for a negative 

relationship between volatility and growth. Bernanke (1983) and Pindyck (1991) 

among others, suggest that the negative link between volatility and output growth 

emerges from investment irreversibility. Therefore, a higher level of business cycle 

volatility leads to a reduced level of investment and, consequently, to a lower level of 

capital accumulation and lower output growth. Finally, Aghion and Banerjee (2005) 

explore the interactions between volatility and growth using a Schumpeterian model 

with credit constraints and show that the level of financial development affects the 

negative relationship between volatility and growth. In particular, long-run growth is 

more sensitive to business cycles volatility in economies where the degree of financial 

development is lower. 

 

2.2. The Empirics of Volatility and Growth  

 The empirical branch of the examined literature does not differentiate itself from the 

theoretical one as the evidence remains ambiguous. 2  A considerable number of 

empirical studies point to the presence of a negative link (Ramey and Ramey, 1995; 

Martin and Rogers, 2000; Kneller and Young, 2001; Badinger, 2010), while several 

others (Kormendi and Meguire, 1985; Caporale and McKiernan, 1996; 1998; Fountas 

and Karanasos, 2006) report a positive link. Finally, some studies suggest the absence 

of any association between the two variables (Speight, 1999; Grier and Perry, 2000; 

Fang and Miller, 2008). 

The empirical literature can be divided into two sets of studies. The bulk of the 

empirical studies on the volatility-growth nexus follow the empirical work on growth 

                                                           
2 See Dopke (2004) and Norrbin and Yigit (2005) for an extensive summary of the empirical literature. 
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determinants. According to this view, the specification of the link between business 

cycle volatility and economic growth is part of the growth regression modelling 

literature, where volatility is one of the explanatory variables for growth (e.g., 

Kormendi and Meguire, 1985; Grier and Tullock, 1989; and Ramey and Ramey, 1995; 

among others). 

The second set of studies relies on generalised auto-regressive conditional 

heteroskedacity (GARCH) models to investigate the relationship between output 

fluctuations and growth (e.g., Caporale and McKiernan, 1998; Grier and Perry, 2000; 

Fountas and Karanasos, 2006; among others). Using the GARCH-in-mean model 

specification (Engle et al., 1987) for output growth, these studies allow for the 

simultaneous estimation of both equations for the conditional mean and the 

conditional variance of output growth.  

 

2.2.1. Volatility and Growth: Empirical Specifications 

Kormendi and Meguire (1985) and subsequently Grier and Tullock (1989) are the first 

papers that investigate the relationship between growth and volatility as a part of an 

exploratory cross-country study on the macroeconomic determinants of economic 

growth. Ramey and Ramey (1995), however, set the benchmark in the empirical 

literature on volatility and growth. They calculate the mean and standard deviation 

of per capita annual growth rates over time for each country and examine the cross-

country relationship between growth and volatility. Specifically, they estimate the 

following cross-country regression equation: 

∆yi = α + βσi + ui ,       (1) 

where ∆yi is the average growth rate of output and σi is the standard deviation of 

output growth in country i. In addition, they extend their analysis into a panel context 

and estimate: 
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∆yi,t = α i + βσi,t + X’i,t θ + εi,t ,      (2) 

where ∆yi,t is the growth rate of output for country i in year t, expressed as a log 

difference; αi is the cross-section fixed effects; σi,t is the standard deviation of the 

residuals that account for both the cross-section and time series dimensions; X’i,t is a 

vector of control variables; and θ is a vector of coefficients, which is assumed to be 

common across countries, while εi,t is the error term. In both specifications, a 

significantly positive β estimate indicates that higher volatility is associated with 

higher economic growth, while a negative and significant β coefficient suggests that 

volatility and growth are inversely related. 

Most of the above model specifications rely on the growth determinants 

literature and measure growth volatility with the standard deviation of the output 

growth rate, i.e., σ = SD(∆y). Several authors employ GARCH models to obtain 

estimates of the time varying conditional variance measure of output growth 

variability. A common specification in this literature is the GARCH-in-mean model 

for output growth (see for example, Caporale and McKiernan, 1996; Fountas and 

Karanasos, 2006; Fang and Miller, 2008), which allows to simultaneously estimate 

equations for the conditional mean and variance of output growth.  The empirical 

model can be summarised as follows:  

∆yt = γ0 + βσt + et ;    et ∼ N (0, σt2)    (3) 

with  

σ2t = δ0 + δ1 e2t-1 + δ2 σ2t-1,      (4) 

where σt2 denotes the conditional variance of output growth. The presence of the 

square root of the conditional variance, σt, as a regressor in the mean equation of the 

growth rate makes Equation (3) a GARCH-in-mean specification (Engle et al., 1987). 

Clearly, again, a positive (negative) value of β implies that higher growth volatility 

leads to higher (lower) growth rates.  
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2.2.2. Volatility and Growth: Empirical Evidence 

Early studies that employ cross sectional data provide some evidence for a positive 

link. Specifically, Kormendi and Meguire (1985) using a cross-section of 47 countries 

find a positive relationship between the mean growth rate and volatility of output 

(measured by the standard deviation of the growth rate). Grier and Tullock (1989), 

considering a broader sample of countries and employing pooled cross-section data 

analysis, provide evidence that uphold the positive relationship. 

In contrast to these early findings, Ramey and Ramey (1995), using panel data 

and a sample of 92 countries, document a significant negative relationship between 

volatility and growth, which remains robust to the inclusion of country specific 

control variables. These findings question the Schumpeterian hypothesis of a positive 

nexus between volatility and growth.  Several works confirm the results of Ramey and 

Ramey (1995), including Martin and Rogers (2000), Kneller and Young (2001), Aghion 

and Banerjee (2005) and Aghion et al. (2010), among others. For example, Martin and 

Rogers (2000) consider the impact of the ‘learning by doing’ hypothesis on the relation 

between growth and short-term instability at the aggregate level. Their evidence 

supports a statistically significant negative relation between growth and the 

amplitude of the business cycle, where the last is measured by the standard deviation 

of growth or the standard deviation of unemployment. Similarly, Kneller and Young 

(2001) estimate separately the long-run and short-run effects of volatility on growth, 

and provide evidence of a negative association between the two variables. More recent 

analyses by Dopke (2004), Norrbin and Yigit (2005), and Chatterjee and Shukayev 

(2006) put the Ramey and Ramey (1995) results through various robustness tests. Such 

checks employ several variations regarding the choice of countries, the time periods 

considered, the estimation methodologies, and the measurement of key variables. 

Norrbin and Yigit (2005) provide evidence of a robust negative relationship between 

the volatility and growth of output when the full sample of countries is used in their 

analysis. They show that the results of cross-country analyses are highly sensitive to 
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the choice of time periods, the group of countries in the sample, and the estimation 

method employed.  

Chatterjee and Shukayev (2006) show that the results of Ramey and Ramey 

(1995) are not robust to either the definition of the growth rate or the composition of 

the sample. They conclude that the relationship between the two variables in question 

is not significant. Dopke’s (2004) results challenge further the presence of a negative 

relationship between volatility and growth. Furthermore, Aghion and Banerjee (2005) 

show that that the negative impact of volatility on growth depends on the degree of 

financial development in an economy. Therefore, they reconcile the finding of a strong 

negative effect of volatility on growth in the full sample of countries with that of a 

nonsignificant effect for the OECD countries. Adding further to the controversy, Imbs 

(2007) shows that the link between volatility and growth can be either positive or 

negative depending on the level of aggregation. Specifically, Imbs (2007) documents 

the existence of a negative link at the aggregate level (i.e., across countries), but when 

the analysis focuses on the sectoral level, the correlation among growth and volatility 

becomes positive. 

The second strand in the literature consists of studies employing time series 

techniques (the GARCH-in-mean model) to measure output variability and allowing 

for a simultaneous estimation of the conditional mean and variance equations for 

output growth. A variety of studies that use this approach arrive at conflicting results. 

Caporale and McKiernan (1996) find a positive relationship for the UK and the US, 

whereas Fountas and Karanasos (2006) find a positive relationship for Germany and 

Japan. In contrast, Grier and Perry (2000) and Fountas and Karanasos (2006) conclude 

that no relationship exists for the US. Similarly, Fang and Miller (2008), accounting for 

possible structural changes in the volatility process, report a non-significant 

relationship between the output growth rate and its volatility for the US. Finally, Lee 

(2010) extends the GARCH-in-mean methodology into a dynamic panel context and 

provide evidence for the G7 countries, showing that while higher output growth is 
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associated with higher volatility, higher growth does not lead to more economic 

uncertainty. 

Finally, several papers explore the link of business cycles volatility on economic 

growth by introducing alternative channels, which can affect this relationship. Aghion 

and Banerjee (2005) stress the channel of financial development as an important 

determinant for the negative association between the two variables. Aghion et al. 

(2010) extend this view exploring the effects of financial frictions on the composition 

of investment over the business cycle, and the impact on economic growth. They find 

that financially underdeveloped countries have higher volatility, and exhibit a 

pronounced negative correlation between volatility and growth. Also, Furceri (2009) 

shows that business cycle volatility affects negatively output growth through higher 

levels of fiscal convergence across countries. Finally, Jetter (2014) suggests that 

volatility has not only a positive direct effect on growth, but also a negative indirect 

effect which operates through the insurance mechanism of government size. These 

findings provide some explanations for the ambiguity of the growth effect of 

volatility, which permeates the empirical literature. 

 

3. Data Selection Process and Data Characteristics 

We pursue the data collection process following the methodological steps suggested 

in Stanley et al. (2013). We initiate the paper selection process by searching in Google 

Scholar, which is regarded as the most inclusive database. To eliminate the possibility 

of overlooking any relevant study, we repeat the same process in Econlit and Scopus. 

The search includes several combinations of the keywords ‘growth’, ‘economic 

growth’ or ‘output growth’, with ‘volatility’, ‘variability’ or ‘uncertainty’. This process 

produces 166 papers in total. We characterise each study as appropriate for inclusion 

to our meta-dataset when it reports at least one estimated coefficient of the effect of 

volatility on output growth. We exclude 82 of these studies either because they 
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develop a theoretical argument or they do not provide sufficient information 

regarding the estimation results. This process leaves us with 84 studies.  

Figure 1 portrays how the volatility-growth empirical literature has evolved 

over time. After the two initial publications in mid-1980s, there is a gap of almost one 

decade. The interest in business cycle volatility and its effects on growth resurges in 

the economic literature after the study of Romer and Romer (1995) and a clearly 

increasing trend appears after mid-1990s. A further surge of papers on the volatility-

growth relationship coincides with the end of Great Moderation period. The financial 

turbulence of 2008-9 and the subsequent European sovereign crisis, both associated 

with higher levels of economic variability, motivate interest in the growth process in 

the context of a volatile environment. Since 2010, 31 relevant empirical studies have 

been published in peer-reviewed journals. This renewed interest and the volume of 

recent empirical contributions partly reflects the absence of an empirical consensus. 

 

Figure 1 here – Number of Publications over Time 

 

To obtain an overview of the meta-analytic data set we report the boxplot in 

Figure 2. We show the degree of dispersion of the estimates across and within studies, 

using the partial correlation coefficients from the 84 collected papers. We choose to 

base our analysis on partial correlation coefficients, and not on the direct estimated 

effects reported by the studies or the corresponding t-statistics. The reason is that the 

reported estimates are not comparable across studies due to different measures of 

volatility used. Following Doucouliagos et al. (2012) and Stanley and Doucouliagos 

(2012), we calculate the partial correlation coefficient, rij, from the t-statistics as;  𝑟𝑟𝑖𝑖𝑖𝑖 =

𝑡𝑡𝑖𝑖𝑖𝑖/�𝑡𝑡𝑖𝑖𝑖𝑖2 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖  where t and df are the t-statistics and the degrees of freedom, 

respectively, while i and j refer to the i observation from the j study. The 

corresponding standard errors are equal to �(1 − 𝑟𝑟𝑖𝑖𝑖𝑖2)/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. This approach renders all 
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the estimates comparable regardless of the different volatility proxies used. The full 

sample of 84 studies consists of 70 published papers in peer-reviewed journals and 

the remaining 14 are working papers. Following the current consensus in meta-

analytic literature, we include the working papers in our analysis (Stanley, 2001).3 The 

wide range of variation, displayed by the partial correlation coefficient in the boxplot, 

suggests that a high degree of heterogeneity exists over the estimates, both within and 

across the empirical studies reported in the literature. We model explicitly this feature 

in the next section. 

 

Figure 2 here – Boxplot  

 

A first step in analysing the meta-analytic data on the volatility-growth nexus 

consists in examining the relationship of the estimated effects with their 

corresponding precision. We report in Figure 3 the funnel plot; that is, the scatter plot 

of the partial correlation coefficients along with their inverse standard errors.  

 

Figure 3 here - Funnel Plot 

 

The funnel plot appears quite symmetric around the average effect. Not 

surprisingly, this feature is consistent with the fact that the empirical literature is 

inconclusive as outlined in Section 2. This is an indication that publication bias is quite 

unlikely to occur. In other words, editors and referees do not tend to prefer a specific 

empirical outcome over the other. In Section 4, we explicitly investigate publication 

bias controlling for several publication characteristics of the sample. As it becomes 

evident from both the boxplot and the funnel plot, the values of partial correlation 

coefficient cover the full range, from the maximum value of 0.976 to the minimum 

value of -0.999. Finally, Table 1 reports the computed (unweighted and weighted) 

                                                           
3 Considering only published papers does not alter our results (see Section 6). 
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average of the partial correlation coefficients. The unweighted mean of the reported 

estimates equals -0.049, which suggests that on average the effect of volatility on 

growth is negative. Following the guidelines of Doucouliagos (2011), this average 

partial correlation can be considered as a small effect in economics. This result should 

be cautiously interpreted. As we discuss in more details in Section 4 and 6, the 

dispersion of estimates is vast. However, the number of negative estimates is greater 

than the positive ones, resulting in a negative average effect. Moreover, the mean 

effect remains very close to zero. Further to this, the interval between the 5th and 95th 

percentile (-0.492 to 0.361) implies that there is substantial uncertainty about the 

average effect. The negative effect holds even when we calculate the weighted mean 

of the reported estimates that allows for each study to have the same weight 

irrespectively of the number of the estimates that are included in each study (i.e., the 

mean is weighted by the inverse of the number of observations that are reported in 

each study). However, the average effect that is reported here could be a biased 

estimate of the true effect due to publication bias (Doucouliagos and Stanley, 2013). 

Finally, based on both plots in Figures 2 and 3 as well as on the mean estimates in 

Table 1, it is apparent existence of a substantial heterogeneity of the estimates both 

within and across studies. Thus, the emerging challenge is to model this observed 

heterogeneity. This is the topic of the next section.  

 

Table 1 here - Mean Estimate of the Partial Correlation Coefficient 

 

4. Modelling Heterogeneity  

In the absence of a priori theory regarding the types of moderators, we should take 

into account as many aspects of the literature as possible. Table 2 lists the all the 

potential moderator variables collected from the collected 84 empirical studies along 

with a short description and their summary statistics. We group the moderators into 

five broad categories, which capture the following features: 1) variable factors, 2) 
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specification, 3) data features, 4) estimation methods and 5) publication 

characteristics.  

 

Table 2 here - List of Moderators 

 

The first group accounts for the researchers’ choices regarding the two main 

variables of the estimated model; that is, the growth rate and the proxy of volatility. 

We call them variable factors. Although the majority of studies use the GDP growth 

(or GDP per capita growth) as dependent variable, some researchers use the industrial 

production index instead. Therefore, the first moderator controls whether the 

measurement of growth plays a role. Considering as base category the estimates that 

use either GDP growth or GDP per capita growth, we introduce the dummy 

‘industrial index’, which takes the value 1 when the measure of growth is constructed 

using the industrial production index and the value 0 otherwise.  

The next important designing issue is the measurement of volatility. As we 

mentioned above, there are different ways of modelling volatility. In the first set of 

studies, the usage of standard deviation of growth rates was the norm. Even though, 

GARCH modelling became quite popular, especially in 2000s, some authors 

continued to prefer using standard deviations. We create two dummies considering 

as base the estimates that use GARCH modelling approach. The first dummy (‘SD 

volatility’) takes the value of 1 when a standard deviation is used and 0 in all the 

remaining cases. The second dummy (‘other measure of volatility’) takes 1 when other 

measures (apart from GARCH and SD) are used.4  

Regarding the issues associated with the specification of the estimated model, 

a quick examination of the empirical papers can confirm the use of a large number of 

conditional variables. Trying to be as inclusive as possible, we construct eleven 

moderator variables. The first one is the number of total regressors. This moderator is 

                                                           
4 See for instance Turnovsky and Chattopadhyay (2003).  
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a proxy of how parsimonious a model is. The next nine variables are dummies related 

to whether the estimated equations include proxies that measure one of the following 

variables; 1) agricultural production or primary sector of the economy, 2) population, 

3) government size, 4) inflation rate, 5) measure of investments, 6) measure of human 

capital, 7) financial development, 8) financial liberalization and 9) trade openness. 

Finally, the eleventh variable takes the value of 0 when the models includes only 

growth rate volatility and 1 when it includes the volatility of another macroeconomic 

variable (apart from the growth rate volatility). For instance, some of the GARCH 

studies are examining at the same time the role of inflation volatility. Other 

researchers (e.g., Fatás and Mihov, 2013) have used proxies of policy volatility.   

The third category focuses on several aspects of the datasets that have been 

used so far. Since our pool of primary papers is fairly large, covering almost two 

decades, we are capable of identifying several potential factors of heterogeneity. We 

start by the variable that measures the number of observations. Consequently, we 

distinguish between those that use panel data (almost half of studies) and those that 

use time series and cross-sectional data. Considering studies that use panel data as 

base category, we construct two dummies; one for time series and one for cross-section 

data. Furthermore, an important aspect is the country sample. Since the number of 

country groups examined in the literature is large, the only plausible way to discover 

any potential geographical differentiations is to separate developed (base category) 

from developing economies. So, we use the dummy ‘developing’ that takes only for 

the cases of developing countries. For the cases where the group of countries contains 

both developed and developing countries, we include an additional dummy 

(‘mixed’).  

As the above categorisation is not sufficient enough, we also take into account 

an additional country-group feature. Due to the fact that most of the studies use a 

huge amount of different combinations of countries, we investigate another related 

feature; that is, whether our meta-dataset consists of homogeneous sets of countries 

or not. A dataset is considered as homogeneous when it contains countries that are 
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members of OECD or members of the same geographical region (for instance, Euro 

area, Latin American or sub-Saharan economies). We create a dummy 

(‘homogeneous’) that takes 1 when the paper focuses on a homogeneous set of 

countries. Another closely related aspect regarding the country characteristics is 

whether a paper examines a single country or a multiple set of countries. This is 

captured by the dummy ‘single’ that takes 1 when a single country is examined. 

Another feature of datasets is the time span. We are able to distinguish two cases; 

studies that use very long periods and papers with relatively short ones.5 Assuming 

as a large time span datasets that covers at least 40 years, we create a dummy (‘Short 

span’) that takes 1 when a short span is used and 0 when a study uses a long one. 

Lastly, we examine whether the dataset covers the period of Great Moderation. 

Following the consensus (Bernanke, 2004; Davis and Kahn, 2008), we assume that this 

period includes the years between 1985 and 2007. So, we put 1 when at least ten years 

of this period are covered. 

The forth group consists of one dummy that captures differences in the 

econometric methodology. In the literature under examination, the differences in the 

econometric techniques are mostly captured by the differences in volatility measures, 

and the proxy that distinguished between panel data, time series or cross-section 

dataset. For example, GARCH methodology constitutes one way to calculate a 

volatility proxy and, at the same time, is a distinct econometric method. If we 

introduce additional dummies for these econometric techniques, then our estimation 

may suffer from multicollinearity. To avoid this problem, we construct one moderator 

variable that deals with the issue of endogeneity. This moderator takes the value of 1 

when the results come from estimation methods that account for endogeneity and 0 

for the cases that they do not.  

The last group deals with publication features that are captured by three 

variables. The first is the most typical variable in meta-analysis; i.e., a dummy 

                                                           
5 For instance, Caporale and McKiernan (1998) and Shields et al. (2005) use data since 1870 and 1947, 
respectively.  
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(‘Published’) taking 1 when the study has been published in peered-review journal 

and 0 when it is in a working-paper form. Additionally, we include a trend variable 

(‘Publication date’) starting from 1985 (which is the date of the oldest paper we found) 

until 2015 (most recent paper found). Finally, we include the RePEc recursive impact 

factor of the journals to test whether the quality of the journal plays a role.  

 

5. Meta-Regression Analysis 

The purpose of our analysis is to look into the factors that affect the estimated 

coefficients collected from the empirical studies. In the previous section, 27 moderator 

variables were defined. In this section, we try to identify which of these factors 

systematically affect the estimated outcomes using the following linear model; 

27

,
1

ij k k ij ij
k

r c eγ
=

= + Ζ +∑ ,       (5) 

where r is the partial correlation, the Z matrix contains the moderator variables, γ the 

corresponding coefficients, while i is an index for a regression estimate from the jth 

study. Due to the large number of moderators, the model uncertainty becomes quite 

significant as the ‘general-to-specific’ approach may lead to erroneous results. The 

seriousness of this problem becomes even clearer given the need of applied 

researchers for reporting robust results (Lu and White, 2014). One way to deal with 

model uncertainty is the Bayesian Model Averaging (BMA). Originally applied in 

growth econometrics (Fernandez et al. 2001), this method has recently become popular 

in meta-analysis studies (Havranek and Rusnak, 2013; Havranek et al., 2015). Starting 

from Bayes rule, the posterior probability density is given by the following:   

( , | ) ( )( | , )
( , )

p r pp r
p r

γ γγ Ζ
Ζ =

Ζ
,      (6) 

where p(r,Z|γ) is the marginal likelihood, p(γ) is the prior probability density and 

p(r,Z) is the probability of the data. The main advantage of BMA is that the statistical 
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inference does not rely on individual regressions. On contrary, as its name suggests, 

it gives weighted average of individual regressions. Assuming that N is the number 

of regressors, the maximum number of alternative models, M, is 2N across which the 

researcher must choose the best ones. So overall there are M1,…,Mµ, where µ ∈ [1, 2N]. 

Assuming a likelihood function and a prior probability density we result to the 

posterior probability density for each model Mµ that is written as;  

( | , , ) ( | )
( | , , )

( | , )
p r M p M

p M r
p r M

µ µ µ µ
µ µ

µ

γ γ
γ

Ζ
Ζ =

Ζ
,   (7) 

with each model Mµ depending on the parameters γµ. The criterion of choosing among 

this large number of models is the posterior model probability, p(Mµ|r). More 

precisely, the best models are the ones with higher posterior model probability (PMP). 

According to Bayes’ rule the PMP of model Mµ is equal to: 

2

1

( | , ) ( )
( | , )

( | ) ( )

p r M p M
p M r

p M p M

µ µ
µ

µ µ
µ

Ν

=

Ζ
Ζ =

Ζ∑
 ,     (8) 

where p(r|Mµ,Z) is the likelihood function of model Mµ, p(Mµ) is the model prior, and 

the denominator is the integrated likelihood. In this way, BMA provides a useful 

summary of alternative models. The next step is to identify which regressors seem to 

play a significant role across the estimated models. The answer is given by the 

posterior inclusion probability (PIP) which is defined as: 

2

1
( | )nPIP p M rµ

µ

Ν

=

=∑ ,       (9) 

where n ∈ [1,...N] denotes each individual regressor. As the above equation shows, 

each moderator variable has a specific PIP which is the sum of posterior model 

probabilities of all models where this variable is included. The higher the PIP of a 

variable, the more explanatory power it has.  
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As mentioned above, the maximum number of models that can be estimated 

using N explanatory variables is 2N. In our case of 27 explanatory variables, this means 

that the number of all models is more than 134 million. Due to the limited 

computational capacity of conventional computers, only a subset is estimated using a 

Markov chain Monte Carlo (MCMC) algorithms. In this way, the MCMC provides an 

approximation of the posterior distribution by simulating a sample from it. Following 

Zeugner (2011), we use the Metropolis-Hastings algorithm. We begin our analysis by 

assuming the unit information prior as parameters’ prior. This is a suitable start as it 

provides the same piece of information as one observation in the data set. Regarding 

the model prior, we assume the uniform model prior that gives to each model the 

same prior probability.6 In the next section, we assume an alternative set of priors in 

order to test the robustness of our results.  

Figure 4 depicts a map which is a useful visualisation of our results. In this 

map, the 5000 models with the highest posterior inclusion probabilities are 

summarised. The horizontal axis measures the cumulative model probabilities with 

the best models depicted on the left. As we move to the right, each model’s posterior 

probability is reduced. In the vertical axis, the moderators are sorted by descending 

order according to their PIP. In other words, variables in top of the axis play a more 

significant role in explaining heterogeneity compared to the ones in the bottom. The 

red colour (lighter grey) signifies that the variable is included and its estimated sign 

is negative, while the blue colour (darker grey) indicates a positive sign.    

 

Figure 4 here - Bayesian Map I 

 

According to the best model, 9 variables seem to play a significant role in 

explaining the heterogeneity of the estimated coefficients. Clearly, these variables 

appear to the majority of the estimated model as the red/blue colour intensity shows. 

                                                           
6 See Eicher et al. (2011) for more details.  
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The numerical results are shown in Table 3, where each variable’s PIP as well as the 

posterior mean and its standard deviation are reported. We follow Kass and Raftery’s 

(1995) rule as a guide to the level of significance. Specifically, the effect of a variable is 

considered as weak, positive, strong and decisive if its PIP lies between 0.5-0.75, 0.75-

0.95, 0.95-0.99 and 0.99-1, respectively. Regarding the variable factors, our outcome 

suggests that the way of measuring volatility is significant. Studies that use the 

standard deviation as proxy for volatility tend to report less negative estimates than 

the studies using GARCH-based measures. The usage of other methods used by a 

small number of researchers does not have any systematic influence in the estimates; 

the variable ‘other measure of volatility’ appears only in a small sample of models and 

its PIP is rather low. Also, the choice of the dependent variable does not seem to play 

any role in the reported estimate.  

 

Table 3 here - Bayesian Model Averaging Estimates  

 

Another message from Figure 4 and Table 3 is that model specification matters. 

In other words, the choice of variables that the researcher adds in Equation (2) seems 

to be an important aspect that affects the reported estimates. The variables that have 

a significant influence are the proxies of human capital, inflation rate, and government 

size. Inclusion of measures of human capital tends to give more negative estimates. 

This result is in accordance to the evidence provided by Aghion and Banerjee (2005). 

In the specifications that they take into account secondary school enrollment, the 

reported coefficients of volatility are proved to be more negative. In other words, 

human capital appears to be a key factor that explains the relationship between 

growth and volatility, supporting the negative one. The same conclusion holds for the 

inclusion of the inflation rate in the estimated equation. This output brings support to 

the arguments developed by Bruno and Easterly (1998) and Barro (2013) regarding the 

negative effects of inflation on growth. Interestingly, a distinctive part of the literature, 

besides the primary focus on growth volatility, has also examined the interactions of 
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growth volatility and inflation volatility on growth and inflation rates (Grier and 

Perry, 2000; Grier et al. 2004; Bredin and Fountas, 2009; Neanidis and Savva, 2013). 

Contrary to the case of inflation uncertainty, the inclusion of inflation levels as an 

explanatory variable was never of interest as it was only included to capture the 

broader macroeconomic environment.  

On the contrary, when the government size is considered, more positive 

estimates are reported. The role of the government has attracted a quite significant 

interest in the examined literature. In theoretical grounds, Martin and Rogers (1997) 

and Blackburn (1999) discuss the usefulness of stabilization policies in reducing 

volatility. More recently, Furceri (2009) examines whether the existence fiscal 

convergence (i.e., similar government budget positions) alleviates the business cycle 

variability. Our evidence that proxies of government size are a significant factor is in 

accordance to Jetter (2014) who emphasizes the importance of including government 

size. In line with the above-mentioned research, he supports the view that government 

expanses can act as an insurance mechanism in volatile times. Thus, not accounting 

this channel may lead to erroneous results.  

Regarding the recent issue of how the credit growth can affect the examined 

relationship (Aghion et al. 2010), our evidence suggests that there is no systematic 

pattern in the meta-data set. This probably is because only a small group of studies 

take into account this channel by including corresponding proxies to the estimated 

model. Furthermore, there is no evidence for any significant effects of trade openness. 

In this way, our results confirm previous evidence regarding the limited role of trade 

(e.g., Fatás; 2002 and Hnatkovska and Loayza; 2005).   

Turning to data characteristics, several aspects are found to explain the 

magnitude of the estimated effects. Firstly, the more observations used in a study, the 

more positive the estimated coefficient is. In a similar fashion, studies using shorter 

time spans tend to report more negative evidence. An interesting finding related to 

datasets is the sample country. When the study focuses on developing countries tend 

to report a more negative relationship between growth and volatility. This implies that 
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volatility can be more damaging for growth rate in developing countries, while 

developed ones are more robust. To the best of our knowledge, there are not studies 

that compare the effects of volatility in alternative groups of countries, like developed 

vs. developing economies. In contrast, there are studies that examine specific groups 

of countries, such as Bredin et al. (2009) who restrict their focus only on Asian 

economies. This gap of the literature may bring new research in the area. Finding 

additional empirical evidence and trying to explain the differences between country 

groups seems a new potential direction for the growth-volatility literature. Finally, the 

choice among cross-sectional data, time series and panels data does not seem to 

systematically affect the reported estimates. The researcher’s decision to examine the 

relationship over time or across time cannot explain the reported heterogeneity.  

The last evidence regarding the data characteristics refers to the homogeneous 

data sets. It seems that when more homogeneous country-sets are used, more positive 

estimates tend to be reported. Even though its marginally positive significance, this 

outcome suggests that the arguments of a negative relation are valid when the dataset 

consists of heterogeneous sets. When the examined countries have shared the same 

broad set of characteristics, the negative relation seems to become weaker. This result 

is in accordance with Norrbin and Yigit (2005) who find there is a strong negative 

relationship for a set of 76 economies. When they restrict to OECD countries the 

relationship becomes less strong. Finally, the moderator related to the econometric 

methods appears to be significant to almost all estimated models; studies that consider 

endogeneity issues report more negative estimates. This implies that neglecting 

endogeneity may cause an upward bias. As far as the publication characteristics are 

concerned, neither variable appears to have any systematic influence on partial 

correlation. This confirms the initial visual indication given by the funnel plot; the 

literature on volatility-growth is free from publication bias. Thus, the empirical results 

so far are not driven by any preferential reporting. Interestingly, Ioannidis et al. (2017) 

report that many fields in economics research suffer from this bias. Consequently, 
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growth-volatility relationship seems to be the one of the few empirical topics that are 

free of such a bias.  

 

6. Robustness and Further Evidence  

6.1. Alternative Specifications  

The first robustness test assumes alternative priors. We use Zellner’s g and 

beta-binomial as parameters and model priors, respectively. This set of priors is the 

most appropriate choice for cases where there is not any real knowledge about the 

parameters and the model’s size (Ley and Steel, 2009). As an easy way to compare 

these results with the previous ones we show the map of 5000 models in Figure 5. The 

factors that seem to have a significant influence remain the same, irrespective of 

priors. The numerical results are reported in Table 4. Also, we test the robustness of 

BMA results using a frequentist approach (OLS). The right panel of Table 3 display 

the OLS meta-regression using all explanatory variables with a PIP value higher than 

0.3 (Havranek et al. 2015). The results show that all variables with a high posterior 

inclusion probability in the BMA method continue to have the same sign and 

magnitude and remain statistical significant in the OLS method. Among others, both 

sets of results confirm the absence of publication bias. Even though the distinction 

between published and unpublished studies was found not to play any role, we repeat 

the same analysis using only published papers. As a further additional moderator 

related to publication characteristics, we also include the RePEc recursive impact 

factor. As Figure 6 shows, the BMA exercise continues to distinguish the same 

variables as the most influential. The right-hand panel of Table 4 reports the estimates 

obtained using only the 70 published studies. 

 

Figure 5 here - Bayesian Map II (Robustness: Alternative Priors) 
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Figure 6 here - Bayesian Map III (Robustness: Only Published Papers) 

 

Table 4 here - Bayesian Model Averaging (Robustness: Alternative Models) 

 

6.2 Further Evidence  

One basic feature of the literature examined in this paper is that the very notion 

of volatility is treated by different methodologies. In the previous sections, we account 

for this difference through the moderator variables that capture the alternative 

methods of measuring volatility (see the moderators ‘SD volatility’ and ‘other 

measures of volatility’ in Table 2) as well as for differences on the variables used for 

measuring the growth rates (GDP or industrial index). Additionally, in order to make 

the reported effects comparable, we chose to use partial correlation coefficients. Even 

though the partial correlation can prevent us from ‘comparing apples with oranges’, 

one serious concern is whether so many different studies can be mixed up. With the 

aim of excluding this possibility and reassuring that our previous results are robust, 

we follow an alternative way of analysis. Given the ambiguity of the exact definition 

of volatility, we stress our attention only to the sign and the statistical significance of 

the collected estimates, neglecting their value. This leads to the usage of a probit meta-

analysis (see Koetse et al., 2009; Card et al., 2010; Groot et al., 2015, for recent examples 

in this setting). Specifically, the model assumes the presence of a latent variable *
ijy , 

that is explained by the moderators used in the previous analysis. The model is now 

written as:  

27
*

,
1

ij k k ij ij
k

y Zβ ε
=

= +∑ ,                 (10) 

where *
ijy  is unobservable and εij is the error term that is normally and iid distributed. 

The proxy for *
ijy  is the latent variable yij that constructed as follows:   
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Category A: y=0 if estimate is statistically significant negative 

Category B: y=1 if estimate is insignificant (either negative or positive) 

Category C: y=2 if estimate is statistically significant positive 

 

Using as threshold the 10% level of significance, Table 5 gives a quantitative overview 

of the collected meta-dataset. Interestingly, less than half, but not much lower than 

50%, of the empirical estimates are positive. However, most of these positive estimates 

(62%) are insignificant. On contrary, the 75% of negative coefficients is statistical 

significant.  

 

Table 5 here - Descriptive Statistics of the Sign and the Statistical 

Significance of the Growth-Volatility Estimates 

 

Since the estimated coefficients from an ordered probit model are not 

straightforward and should not be used for inference, we also calculate the marginal 

effects. Under this framework, the marginal effects show the change in the probability 

of finding a specific outcome. Regarding the dummy variables, the marginal effects 

provide information about the change in the probability of an outcome in one of the 

three categories of the dependent variable (i.e., of finding a significant negative, an 

insignificant or significant positive estimate) when the dummy is changing from 0 to 

1. For the case of continuous moderator variables, the marginal effects show the 

probability change from an increase of the dependent variable by one.  

Table 6 shows the results. Overall, the probit analysis confirms the results 

found by the Bayesian model averaging. Apart from the measure of volatility and the 

span of the data used, all the other variables found in Section 5 continue to be 

significant. Beginning with the specification characteristics, the inclusion of specific 

variables seems to affect the reported estimates. The inclusion of proxies of human 
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capital and inflation rate increase the probability of finding a negative effect, while the 

opposite is true for the government size. Furthermore, the evidence regarding 

homogeneous subsets of countries is also confirmed as the probability of a positive 

estimate is increased. Also, studies using data from developing countries and studies 

that account for endogeneity tend to give higher probability for negative coefficients. 

As far as the publication bias is concerned, none of the publication-related variables 

are found to be significant. This evidence reinforces our previous results supporting 

the view that the literature is bias free. As a final robustness test, we estimate a panel 

ordered probit. In this way, we control for the fact each study used in this meta-

analysis contains different numbers of estimates. The results, reported in Table 7, 

remain qualitatively and quantitatively the same to the pooled estimates.  

 

Table 6 here - Pooled Ordered Probit Model 

Table 7 here - Panel Ordered Probit Model 

 

7. Conclusion 

The impact of business cycles volatility on economic growth has gained considerable 

attention over the last decades. Despite the plethora of empirical estimations, there is 

no conclusive evidence. Motivated by a number of divergent theoretical models and 

empirical results, this paper analyses the existing empirical literature to identify the 

factors that affect the reported results. We find that the effect of volatility on growth 

is negative, on average, but the estimates vary considerably across the empirical 

studies. We, thus, conduct a meta-analysis exploring a wide range of potential factors 

that explain the sources of this heterogeneity of the estimates. In total, we use 27 

explanatory variables, grouped into 5 categories. To this end, we employ two distinct 

approaches, a Bayesian model averaging method and an ordered probit model, to deal 

with two critical empirical challenges. The former method captures model 
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uncertainty, while the latter addresses the issue of incomparability of the estimated 

coefficients across studies.  

Our results identify three main sources of the observed heterogeneity of the 

estimates. The choice of the measure of volatility matters in explaining the variation 

of the empirical results; the frequently used measure of volatility based on the 

GARCH family models tend to give more negative results compared to more 

traditional measures. Moreover, certain aspects of the empirical design can explain 

the observed heterogeneity of the estimated coefficients. Specifically, the choice of the 

specification characteristics, such as the inclusion of human capital and inflation rate 

proxies, result to more negative estimates whereas other aspects, such as data and 

estimation characteristics tend to support a positive relationship. Interestingly, the 

negative relationship is found to be stronger for samples of developing countries. This 

evidence may signal a potential research avenue. Finally, our analysis shows that the 

empirical literature on volatility and growth is free from publication bias. This is a 

reflexion of the fact that both positive and negative outcomes have theoretical and 

empirical support. In this way, the growth-volatility literature seems to be one field in 

the economics research that is publication-bias free.  
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Tables 

 

Table 1: 

Mean Estimate of the Partial Correlation Coefficient 

 

Notes: The table reports the mean values of the effect of volatility on growth. 5% and 95% denotes the 
5th and 95th percentile, respectively. Weighted denotes the mean estimate that is weighted by the 
inverse of the number of observations that are reported in each study. 

 

Table 2: 

List of Moderators 

 
Notes: The total number of observations is 1010 collected from 84 studies examining the effect of 
volatility on growth.  

Mean 5% 95% Mean 5% 95%

r -0.049 -0.492 0.361 -0.044 -0.446 0.458

Unweighted Weighted

Variable Name Variable Description Mean SD
Partial Correlation r -0.049 0.254
Variable Characteristics 
Industrial index D=1, if growth rate is based on industrial production index 0.112 0.315
SD volatility D=1, if standard deviation (SD) is used as proxy of volatility 0.607 0.489
Other measures of volatility D=1, if other measure (apart from SD or GARCH) is used as proxy of volati 0.058 0.235
GARCH volatility Base category
Specification Characteristics 
Regressors Number of regressors included 5.081 3.412
Agriculture D=1, if a proxy of agricaltural (primary) sector is included 0.019 0.139
Population D=1, if population is included 0.238 0.426
Government D=1, if a proxy of government size is included 0.098 0.297
Inflation D=1, if a measure of inflation is included 0.041 0.197
Investment D=1, if a proxy of investments is included 0.273 0.446
Human capital D=1, if a proxy of human capital is included 0.231 0.421
Financial development D=1, if a proxy of financial development is included 0.075 0.264
Financial liberalization D=1, if a proxy of financial liberalisation is included 0.059 0.237
Trade openness D=1, if a proxy of trade openness is included 0.098 0.297
Other volatility D=1, if volatility of other variables is included 0.173 0.379
Data Characteristics 
Observations Number of observations 525.963 775.225
Countries Number of countries/units 68.890 185.970
Time series D=1, if time-series data are used 0.287 0.453
Cross section D=1, if cross sectional data are used 0.303 0.460
Panel Base category
Developing D=1, if developing countries are included in the sample 0.052 0.223
Mixed D=1, if a mixed set of countries are included in the sample 0.393 0.489
Developed Base category
Homogeneous D=1, if the group of countries are homogeneous 0.642 0.480
Great moderation D=1, if the period covers the Great Moderation period (1 until 1995) 0.741 0.439
Short span D=1, if short span data are used (less than 40 years period) 0.832 0.374
Single D=1, if single country is examined 0.309 0.462
Endogeneity-Econometric Method
Endogeneity D=1, if the econometric method takes into account the endogeneity 0.205 0.404
Publication Characteristics
Published D=1, if the study is published 0.792 0.406
Publication date A trend variable putting 1 for the year of 1st publication (1985) 3.513 (2007) 5.106
Impact Factor The recursive RePEc impact factor 1.508 1.529
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Table 3: 

Bayesian Model Averaging and OLS Estimates 

 
Notes: We assume unit information prior as parameters’ prior and uniform model prior. PIP stands for 
posterior inclusion probability; post Mean is the posterior mean and post SD is the posterior standard 
deviation. a/b/c denotes decisive/strong/positive evidence of a regressor having an effect respectively, 
according to Kass and Raftery (1995). For the frequentist check, the variables with PIP>0.3 are included. 
Statistical significance is indicated with stars: ***, ** and * denotes statistically significance at the 1%, 5% 
and 10% significance levels, respectively. Clustered standard errors are used based on study level.  
 

 

 

 

 

 

 

 

Categories Variable PIP post Mean post SD Coeff. SD p-value
Variable Characteristics 

Industrial index 0.028 -0.00005 0.005
SD volatility 0.958b 0.08400 0.036 0.085*** 0.019 0.000
Other measures of volatility 0.140 0.01802 0.053

Specification Characteristics 
Regressors 0.215 0.00127 0.003
Agriculture 0.024 0.00005 0.008
Population 0.151 0.00782 0.021
Government 0.959b 0.15842 0.049 0.177*** 0.032 0.000
Inflation 0.935b -0.16571 0.065 -0.177*** 0.046 0.000
Investment 0.274 0.01656 0.031
Human capital 0.999a -0.10514 0.030 -0.089*** 0.019 0.000
Financial development 0.025 -0.00015 0.005
Financial liberalization 0.031 0.00078 0.007
Trade openness 0.036 0.00101 0.008
Other volatility 0.378 0.01863 0.027 0.048** 0.019 0.014

Data Characteristics 
Observations 1.000a 0.00007 0.000 0.00007*** 0.000 0.000
Countries 0.106 0.00001 0.000
Time series 0.138 0.01167 0.035
Cross section 0.039 -0.00085 0.006
Developing 0.998a -0.14282 0.034 -0.148*** 0.033 0.000
Mixed 0.547 -0.07811 0.082 -0.096** 0.039 0.014
Homogeneous 0.721 0.11379 0.083 0.101** 0.039 0.011
Great moderation 0.036 -0.00057 0.005
Short span 0.995a -0.10207 0.025 -0.103*** 0.022 0.000
Single 0.034 -0.00040 0.009

Econometric Method Characteristics
Endogeneity 1.000a -0.11478 0.022 -0.119*** 0.019 0.000

Publication Characteristics
Published 0.030 -0.00004 0.004
Publication date 0.187 -0.00072 0.002

Bayesian Model Averaging Frequentist check (OLS)
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Table 4:  

Bayesian Model Averaging Estimates (Robustness: Alternative Models) 

 
Notes: We assume Zellner’s g prior as parameters’ prior and beta-binomial model prior. PIP stands for 
posterior inclusion probability; post Mean is the posterior mean and post SD is the posterior standard 
deviation. a/b/c denotes decisive/strong/positive evidence of a regressor having an effect respectively, 
according to Kass and Raftery (1995).  
 

Table 5:  

Descriptive Statistics of the Sign and the Statistical 

Significance of the Growth-Volatility Estimates 

 
Notes: The total 1010 observations are separated into two main categories (negative and positive) and 
four subcategories (negative significant, negative insignificant, positive insignificant and positive 
significant).  

Categories Variable PIP post Mean post SD PIP post Mean post SD
Variable Characteristics 

Industrial index 0.019 0.00002 0.004 0.032 -0.00036 0.006
SD volatility 0.931b 0.07911 0.036 1.000a 0.12116 0.034
Other measures of volatility 0.126 0.01780 0.054 0.110 0.01227 0.042

Specification Characteristics 
Regressors 0.167 0.00101 0.003 0.156 0.00094 0.003
Agriculture 0.016 0.00006 0.007 0.031 -0.00130 0.015
Population 0.113 0.00596 0.019 0.220 0.01376 0.030
Government 0.929b 0.15065 0.056 0.995a 0.20531 0.045
Inflation 0.863c -0.14884 0.075 0.992a -0.20701 0.056
Investment 0.199 0.01207 0.027 0.181 0.01013 0.025
Human capital 0.989b -0.09823 0.031 1.000a -0.12784 0.032
Financial development 0.016 -0.00010 0.004 0.027 -0.00013 0.006
Financial liberalization 0.022 0.00053 0.006 0.155 0.01142 0.031
Trade openness 0.024 0.00067 0.007 0.035 0.00067 0.009
Other volatility 0.282 0.01385 0.025 0.422 0.02266 0.030

Data Characteristics 
Observations 0.999a 0.00007 0.000 1.000a 0.00009 0.000
Countries 0.069 0.00001 0.000 0.496 -0.00029 0.000
Time series 0.099 0.00825 0.030 0.135 0.01158 0.035
Cross section 0.029 -0.00068 0.006 0.027 -0.00027 0.004
Developing 0.995a -0.14259 0.035 1.000a -0.16875 0.037
Mixed 0.533 -0.08242 0.086 0.458 -0.08137 0.093
Homogeneous 0.667 0.11003 0.087 0.563 0.10196 0.094
Great moderation 0.024 -0.00039 0.004 0.030 0.00038 0.004
Short span 0.983b -0.10021 0.028 0.994a -0.10572 0.027
Single 0.025 -0.00033 0.008 0.108 0.00733 0.025

Econometric Method Characteristics
Endogeneity 1.000a -0.11378 0.022 1.000a -0.13956 0.022

Publication Characteristics
Published 0.020 -0.00002 0.003 0.102 -0.02707 0.096
Publication date 0.133 -0.00052 0.002 0.048 -0.00009 0.001
Impact Factor 0.034 0.00013 0.001

Alternative priors Only published papers

Sign Significance Number Percentage Number Percentage
significant 410 40.59%
insignificant 135 13.37%
significant 175 17.33%
insignificant 290 28.71%

Total 1010 100.00% 1010 100.00%

Negative

Positive

545

465

53.96%

46.04%
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Table 6:  

Pooled Ordinal Probit Model 

 
Notes: t-statistics are in parentheses. Statistical significance is indicated with stars: ***, ** and * denotes 
statistically significance at the 1%, 5% and 10% significance levels, respectively. Marginal effects are 
calculated as average for all covariates.  
 

Categories Variable Estimated Coefficient Singificantly negative Insignificant Singificantly positive
Variable Characteristics 

Industrial index -0.167 0.064 -0.017 -0.047
(-0.61) (0.61) (-0.63) (-0.61)

SD volatility 0.443 -0.170 0.044 0.125
(1.37) (-1.37) (1.46) (1.30)

Other measures of volatility 0.183 -0.070 0.018 0.052
(0.44) (-0.44) (0.45) (0.44)

Specification Characteristics 
Regressors -0.012 0.005 -0.001 -0.003

(-0.56) (0.56) (-0.55) (-0.56)
Agriculture 1.041∗∗ -0.399∗∗ 0.104 0.295∗∗

(2.10) (-2.10) (1.63) (2.19)
Population 0.132 -0.051 0.013 0.037

(0.35) (-0.35) (0.35) (0.35)
Government 1.964∗∗∗ -0.753∗∗∗ 0.197∗∗ 0.556∗∗∗

(4.42) (-4.43) (2.47) (4.65)
Inflation -1.187∗∗ 0.455∗∗ -0.119∗∗ -0.336∗∗

(-2.40) (2.42) (-1.99) (-2.37)
Investment 0.471 -0.181 0.047 0.133

(1.40) (-1.40) (1.33) (1.38)
Human capital -1.096∗∗∗ 0.420∗∗∗ -0.110∗∗∗ -0.310∗∗∗

(-3.22) (3.25) (-2.71) (-2.94)
Financial development -0.468 0.180 -0.047 -0.133

(-1.21) (1.21) (-1.12) (-1.21)
Financial liberalization 0.173 -0.067 0.017 0.049

(0.66) (-0.65) (0.59) (0.68)
Trade openness -0.586 0.225 -0.059 -0.166

(-1.57) (1.56) (-1.32) (-1.61)
Other volatility 0.295 -0.113 0.030 0.084

(1.36) (-1.35) (1.24) (1.35)
Data Characteristics 

Observations 0.000∗∗∗ -0.000∗∗∗ 0.000∗∗ 0.000∗∗∗
(3.32) (-3.28) (2.29) (3.27)

Countries 0.001∗∗ -0.000∗∗ 0.000∗ 0.000∗∗
(2.45) (-2.41) (1.91) (2.42)

Time series 0.871 -0.334 0.087 0.247
(1.27) (-1.29) (1.23) (1.27)

Cross section 0.152 -0.058 0.015 0.043
(0.46) (-0.46) (0.44) (0.46)

Developing -1.032∗∗∗ 0.396∗∗∗ -0.103∗∗ -0.292∗∗∗
(-2.81) (2.85) (-2.34) (-2.70)

Mixed -0.460∗∗ 0.176∗∗ -0.046∗ -0.130∗∗
(-2.06) (2.09) (-1.73) (-2.10)

Homogeneous 0.851∗∗∗ -0.326∗∗∗ 0.085∗∗ 0.241∗∗∗
(3.48) (-3.36) (2.10) (3.64)

Great moderation -0.170 0.065 -0.017 -0.048
(-0.89) (0.89) (-0.86) (-0.89)

Short span -0.248 0.095 -0.025 -0.070
(-1.13) (1.13) (-1.03) (-1.14)

Single -0.436 0.167 -0.044 -0.124
(-0.67) (0.68) (-0.66) (-0.68)

Econometric Method 
Characteristics

Endogeneity -0.595∗∗ 0.228∗∗ -0.060∗ -0.169∗∗
(-2.31) (2.30) (-1.89) (-2.28)

Publication Characteristics
Published 0.133 -0.051 0.013 0.038

(0.72) (-0.72) (0.74) (0.71)
Publication date 0.004 -0.001 0.000 0.001

(0.16) (-0.16) (0.16) (0.16)
Obs 1010 1010 1010 1010
N 84
McFadden R 2 0.225
Log Likelihood -850.467
X 2 Test 489.615

X 2  Prob 0.000

Marginal Effects
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Table 7:  

Panel Ordinal Probit Model 

 
Notes: t-statistics are in parentheses. Statistical significance is indicated with stars: ***, ** and * denotes 
statistically significance at the 1%, 5% and 10% significance levels, respectively. Marginal effects are 
calculated as average for all covariates.  

Categories Variable Estimated Coefficient Singificantly negative Insignificant Singificantly positive
Variable Characteristics 

Industrial index 0.448 -0.173 0.081 0.092
(1.11) (-1.11) (1.03) (1.12)

SD volatility -0.132 0.051 -0.024 -0.027
(-0.38) (0.38) (-0.37) (-0.38)

Other measures of volatility -0.337 0.130 -0.061 -0.069
(-0.63) (0.63) (-0.61) (-0.64)

Specification Characteristics 
Regressors 0.036 -0.014 0.006 0.007

(1.15) (-1.15) (1.12) (1.10)
Agriculture 1.230 -0.474 0.221 0.253

(1.24) (-1.25) (1.14) (1.25)
Population 0.255 -0.098 0.046 0.053

(0.59) (-0.59) (0.58) (0.59)
Government 1.740∗∗∗ -0.671∗∗∗ 0.313∗∗ 0.358∗∗∗

(3.02) (-3.02) (2.10) (3.00)
Inflation -0.791∗ 0.305∗ -0.142∗ -0.163∗

(-1.91) (1.93) (-1.67) (-1.84)
Investment 0.176 -0.068 0.032 0.036

(0.57) (-0.57) (0.58) (0.56)
Human capital -1.115∗∗∗ 0.430∗∗∗ -0.201∗∗∗ -0.229∗∗∗

(-3.36) (3.45) (-2.68) (-2.68)
Financial development -0.412 0.159 -0.074 -0.085

(-0.96) (0.96) (-0.91) (-0.96)
Financial liberalization -0.053 0.020 -0.010 -0.011

(-0.14) (0.14) (-0.14) (-0.13)
Trade openness -0.597∗ 0.230∗ -0.107 -0.123∗

(-1.72) (1.69) (-1.40) (-1.78)
Other volatility 0.231 -0.089 0.042 0.048

(0.90) (-0.90) (0.85) (0.90)
Data Characteristics 

Observations 0.000∗∗∗ -0.000∗∗∗ 0.000∗∗ 0.000∗∗∗
(2.83) (-2.77) (1.97) (2.86)

Countries 0.001∗∗ -0.000∗∗ 0.000∗ 0.000∗∗
(2.44) (-2.42) (1.96) (2.25)

Time series 1.289 -0.497 0.232 0.265
(1.54) (-1.56) (1.34) (1.60)

Cross section 0.637∗∗ -0.246∗∗ 0.115∗ 0.131∗∗
(2.18) (-2.18) (1.78) (2.12)

Developing -1.010 0.390 -0.182 -0.208
(-1.58) (1.60) (-1.49) (-1.50)

Mixed -0.853∗∗∗ 0.329∗∗∗ -0.154∗∗ -0.176∗∗∗
(-3.56) (3.73) (-2.47) (-3.24)

Homogeneous 0.387∗∗ -0.149∗ 0.070 0.080∗∗
(1.99) (-1.95) (1.57) (2.02)

Great moderation -0.279 0.108 -0.050 -0.057
(-1.30) (1.31) (-1.16) (-1.35)

Short span -0.055 0.021 -0.010 -0.011
(-0.24) (0.24) (-0.24) (-0.24)

Single -1.282 0.495 -0.231 -0.264
(-1.49) (1.51) (-1.32) (-1.53)

Econometric Method 
Characteristics

Endogeneity -0.597∗ 0.230∗ -0.107 -0.123∗
(-1.74) (1.73) (-1.50) (-1.72)

Publication Characteristics
Published 0.090 -0.035 0.016 0.018

(0.28) (-0.28) (0.29) (0.28)
Publication date 0.010 -0.004 0.002 0.002

(0.29) (-0.29) (0.29) (0.29)
Obs 1010 1010 1010 1010
N 84
Log Likelihood -773.597
X 2 Test 121.568

X 2  Prob 0.000
LR Test 153.740
LR Prob 0.000

Marginal Effects
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Figures 

 

Figure 1:  

Number of Publications over Time 

 
Notes: The figure shows the evolution of the empirical literature over time. Numbers indicate the 
number of published studies for each year. The shade line shows the year when the most influential 
study (Ramey and Ramey, 1995) was published. Even though the paper is not the first empirical study, 
it is considered as the seminal one due to the significant amount of citations (approximately, 2192 
citations according to google scholar). 
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Figure 2:  

Boxplot 

 
Notes: The figure depicts the boxplot of the collected estimates from the 84 empirical studies. For better 
exposition of the observed heterogeneity across studies, we have used partial correlation coefficients. 
Studies are sorted alphabetically. The full list of papers is provided in the Appendix.  
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Figure 3:  

Funnel Plot 

 
Notes: Presence of symmetry suggests the absence of publication bias and vice versa; an asymmetrical 
funnel plot indicates a possible publication bias. The dotted line shows the average effect (r = -0.049).  
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Figure 4:  

Bayesian Map I

 
Notes: The vertical axis measures the cumulative posterior model probabilities, while the vertical one 
depicts the moderator variables that are explained in Table 1. Each column shows different model. Each 
variable in the left axis is sorted according to posterior inclusion probability in descending order 
meaning that variables on the top appear more frequently across different models than the ones in the 
bottom. Red colour (light grey) shows negative sign, while blue colour (dark grey) shows positive sign. 
Blank entries mean that the variable is not included in the model. 5000 models with the highest 
posterior probabilities are shown, while assuming unit information prior as parameters’ prior and 
uniform model prior. 
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Figure 5:  

Bayesian Map II (Robustness: Alternative Priors) 

 
Notes: The vertical axis measures the cumulative posterior model probabilities, while the vertical one 
depicts the moderator variables that are explained in Table 1. Each column shows different model. Each 
variable in the left axis is sorted according to posterior inclusion probability in descending order 
meaning that variables on the top appear more frequently across different models than the ones in the 
bottom. Red colour (light grey) shows negative sign, while blue colour (dark grey) shows positive sign. 
Blank entries mean that the variable is not included in the model. 5000 models with the highest 
posterior probabilities are shown, while assuming Zellner’s g prior as parameters’ prior and beta-
binomial model prior. 
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Figure 6:  

Bayesian Map III (Robustness: Only Published Papers) 

 
Notes: See the notes in Table 4. Here, we include only published papers. 
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