
Bayesian Inference implemented on FPGA
with Stochastic Bitstreams for an Autonomous Robot

Hugo Fernandes, M. Awais Aslam
ISR - Institute of Systems and Robotics

University of Coimbra, Portugal
{hfernandes, mawais}@isr.uc.pt

Jorge Lobo, João Filipe Ferreira
ISR - Institute of Systems and Robotics
DEEC, University of Coimbra, Portugal

{jlobo, jfilipe}@isr.uc.pt

Jorge Dias
ISR, DEEC, Univ. Coimbra, Portugal
Khalifa University, Abu Dhabi, UAE

jorge@isr.uc.pt

Abstract—This paper presents an FPGA implementation of a
machine performing exact Bayesian inference using stochastic
bitstreams. We revisited stochastic computing, not to perform
better computations with unreliable hardware, but to perform
approximate computations with less hardware. The underly-
ing trade-off is between precision and computation time. An
automatic design of probabilistic machines that compute soft
inferences with an arithmetic based on stochastic bitstreams
is presented. The computation tree provided by a Bayesian
inference software is used to define the stochastic circuit. Tests
were performed and results presented concerning accuracy and
resource usage of the stochastic computing implementation of
Bayesian machines performing exact inference. An application
example is given of a Bayesian sensorimotor system that performs
obstacle avoidance for an autonomous robot, fully implemented
on an FPGA. Some conclusions were drawn on the followed
approach, providing insights for future implementations.

I. INTRODUCTION

A key challenge in robots that are required to autonomously
operate in complex environments is the lack of cognitive sys-
tems able to efficiently deal with uncertainty when behaving
in real world situations.

Biological neural systems excel in robustness and power-
efficient operation, despite relying on low-precision, unreliable
and massively parallel neural elements. To build devices with
adequate computational power to dwell in uncertainty and
decide with incomplete data, with limited resources and power,
new approaches can learn from biology.

Probabilistic modelling approaches allow artificial sys-
tems to cope with the uncertainty and incompleteness. The
Bayesian programming paradigm [1] allows the specification
of Bayesian models, and questions can then be asked to the
model about the phenomenon, generating specific Bayesian
Machines implementing the computation corresponding to the
desired probabilistic inference. However on standard architec-
tures these translate to a heavy computational burden, limiting
their application. Since we are operating on full probability
distributions, we have a scalability issue even for a few
variables with a low discretisation cardinality. However due to
the nature of the computations, an approximate computation
can be used.

We revisited stochastic computing, not to perform better
computations with unreliable hardware, but to perform approx-

This work was made possible thanks to the EU collaborative FET Project
BAMBI FP7-ICT-2013-C, project number 618024 (www.bambi-fet.eu).

imate computations with less hardware. The underlying trade-
off is between precision and computation time. The flexibility
of reconfigurable logic allowed us to have a working circuit
performing Bayesian inference using stochastic bitstreams (not
to be confused with FPGA configuration bitstream).

Bayesian theory and probabilistic inference is already used
in robotics [2] [1] [3]. However, probabilistic computations
easily overload standard von Neumann architecture computers
due to the large dimensionality of the underlying entities,
leading to slow computations. FPGAs have been used in
several probabilistic applications providing very significant
performance gains with respect to conventional computers. In
[4] FPGAs were used to construct a high throughput Bayesian
computing machine, suitable for directed graph probabilistic
networks, addressing compilation and scheduling issues. Re-
search on probabilistic gates has also resorted to reconfigurable
logic to test proposed models. In [5] combinational stochastic
logic is presented as an abstraction that generalizes determin-
istic digital circuit design (based on Boolean logic gates) to
the probabilistic setting.

Stochastic Computing was proposed by von Neumann [6]
and later by Gaines [7] as an alternative to perform better
computations with unreliable hardware, using stochastic bit
streams to encode probabilities and simple logic gates to
perform arithmetic operations. In [8] and [9] we revisited
stochastic computing to perform approximate computations
with less hardware. A compilation toolchain was proposed,
and simulation results presented. In this work we take it to
the next step and have a full implementation on an FPGA for
a target robotic application, presenting results on accuracy and
resource usage.

II. THE BAYESIAN MACHINE AND COMPILATION
TOOLCHAIN

A Bayesian Machine (BM) is a machine that solves an
inference problem by taking probability distributions, or soft
evidences, as inputs and outputs probability distributions over
the searched variables [8]. Soft evidences represent uncertainty
over known variables whereas hard evidences are deterministic
observations.

In [8] and [9] a compilation toolchain which starts from
a Bayesian model described in a Bayesian programming
language, namely ProBT [10], automatically designs the prob-
abilistic machine which implements the inference over the



described model. This provides the computation tree that needs
to be implemented in hardware. The ProBT software package,
that runs on standard computers, also provides a ground truth
reference for the expected outputs. Our aim here is to have a
simpler circuit that can be used in embedded robotic devices.

The Bayesian machine is defined using properties, notation
and formalism of Bayesian programming [10]. To design our
machine we need to define the Bayesian model, the soft
evidence inputs, the constant parameters of the model, and the
inference to compute. A compilation toolchain starts from the
Bayesian model in ProBT and generates a VHDL circuit using
a library of generic components that we generated specifically
to perform stochastic computing.

To illustrate this, let us assume a generic test-bed Bayesian
model, consisting of a joint distribution on a conjunction
of discrete variables P (D ^ M), in which D and M are
themselves conjunctions of discrete variables, representing
observed data and the variable for which we want to infer
a posterior distribution, respectively [8]. More specifically, in
the case of D we can write D = D1 ^D2 ^D3 . . .^Dn. Let
us now assume that D1 . . . Dn are not directly observable,
and that we only have access to probability distributions over
possible observations, eP (Di). Since these distributions are
defined over observed variables, they are called “soft evidence”
over these variables, in opposition to “hard evidence”, which
would refer to a situation where these variables would be
completely observable and hence instantiated directly as a
specific value. The joint distribution defining this particular
Bayesian Machine would be given by

P (M ^D1 ^ . . . ^Dn) = P (M)P (D1 | M) . . . P (Dn | M) (1)

By applying Bayes’ rule and factoring in the soft evidence on
observations, we know that the output of the corresponding
Bayesian Machine would be given by the following equation:

P
⇣
M | P 0(D)

⌘
=

= 1
Z

P
D1

eP (D1) . . .
P

Di
eP (Di) . . .

P
Dn

eP (Dn)P (M ^D) (2)

in which Z is a normalisation constant that can in turn be
expressed as

Z =
X

M

⇣X

D

eP (D)P (M ^D)
⌘
. (3)

Let us denote the resulting Bayesian machine as BM. A BM
with two inputs and one output is shown in Figure 1. These
two inputs are the probability distributions representing soft
evidence on two finite and discrete variables, D1 = [1...n1]
and D2 = [1...n2], and can be written as eP (D1) and eP (D2).
The resulting output P (M) ⌘ P (M | eP (D)) is also a probabil-
ity distribution over a finite and discrete variable M = [1...k].

The ProBT software, developed by ProBAYES [11], enables
an almost direct specification of Bayesian Programs such as
the one defined above using C++ or Python bindings. This
has allowed for the development of a compilation toolchain
add-on to ProBT that transforms these bindings into VHDL
that is then instantiated into a Bayesian Machine supported

Bayesian 
Program 

𝑛ଵ 

𝑃෨(𝐷ଵ) 

𝑃෨(𝐷ଶ) 

𝑃 𝑀 𝑃෨(𝐷)  𝑛ଶ 

𝑘 ProBT 

specification symbolic 
simplification 

& 
compilation 

Bayesian Machine 

Fig. 1. Simple Bayesian Machine with two inputs and one output, and no free
variables. The compilation toolchain takes a Bayesian program specification
and uses ProBt to have a symbolic description of the computation used to
synthesise the machine.

by any computational approach we wish to implement, in our
case we will use stochastic computing.

III. BAYESIAN MACHINE IMPLEMENTATION WITH
STOCHASTIC COMPUTING

In the above specification of Bayesian machines discrete
variables are being used, and given that the required compu-
tation expressed in equation 2 relies on a regular set of sums
and multiplications, this can be efficiently implemented by
exploiting the parallelism offered by the FPGA. Using stochas-
tic computing, we can perform multiplication and addition
with very simple circuits. The toolchain instantiates the set
of stochastic arithmetic units required by the problem under
consideration. They are then used in the Bayesian Machine
design.

A. Stochastic Computing

Stochastic Computing (SC) is an alternative to conventional
binary computing in which digitalised probabilities are used
to represent and process information. Stochastic signals are
generated by continuous time stochastic processes which pro-
duce either ’0’ or ’1’. A stochastic stream [12], [6] is defined
as a sequence of stochastic signals over time, and its value is
defined as the number of ’1s’ over the total number of bits
for a specific time window. Due to its low implementation
cost and robustness to errors, SC has recently re-gained the
attention of the scientific community [12]. However a linear
increase in the precision of stochastic computations requires
an exponential increase in the length of the bitstream, and the
dynamic range of the representation in SC is also limited.

B. Bayesian Machine Stochastic Circuit

To implement a Bayesian machine with a stochastic circuit
we need to look at equation 2 and map it to a circuit. While
sums and multiplications can be performed using a simple
AND gate and a simple multiplexer [12], division is not so
trivial and leads to complicated circuits. We can however
avoid or delay the division. Since the output is a probability
distribution, we can delay the normalisation.

One can use a set of n stochastic bitstreams as an alternative
coding scheme for the n values of the probability distribution
on a discrete variable. A signal bus carrying a stochastic
bitstream is called a “stochastic bus” or “probabilistic bus”.
Because the encoded probability values in a probabilistic bus
are not normalised, the sum is not equal to ‘1’. In fact
values will tend to be low, and that allows us to perform
stochastic addition with an ”OR” gate and a memory (OR+)



Binary 
to 

Stochastic

216x32 Full Bayesian 
Machine

216
Stochastic

to 
Binary

5 5x32

Control Register

M
em

or
y

M
em

or
y

Fig. 2. Block diagram of the BM implementation.

[13], avoiding scaling that occurs with the multiplexer used
as an adder. The actual p-value in a probabilistic bus can be
obtained by counting the number of ‘1’s over the total number
of bits in the ith bitstream of the stochastic bus.

Figure 2 presents a block diagram view of the BM imple-
mentation using a robot application example from [9]. At the
core of the machine, the computations are made using cascades
of stochastic operators in parallel. The additional blocks are
required to have the system running on the FPGA. Binary
values are loaded from memory, converted into stochastic
bitstreams, and fed into the Bayesian Machine to perform
the stochastic arithmetic operation. The output of the BM is
then converted back to binary, with accumulator counters, and
stored in memory.

IV. RESULTS FOR AUTONOMOUS ROBOT
SENSORIMOTOR SYSTEM

A classic robotic application is used to show our BM FPGA
implementation for a realistic problem, with a significant
number of variables and components. In [9] we presented the
Bayesian sensorimotor system that performs obstacle avoid-
ance for an autonomous robot. The robot adjusts its trajectory
to avoid obstacles by controlling its rotation velocity while
moving forward, given a distance estimate provided by 3
infrared and 3 ultrasonic sensors. Three levels of distance are
defined: close, medium and far, and both sensor modalities
used in the inference. The result of this inference is the
probability distribution over the rotation velocity, defined over
5 discrete values: speed on the left, half speed on the left, null,
half speed on the right, speed on the right. After describing
the problem in ProBT, the toolchain is able to translate it into
a VHDL circuit.

The robot example was synthesised and implemented in an
Altera Cyclone IV FPGA. The generated circuit involves about
2500 components and several thousands of signals. The circuit
is duplicated five times in parallel, since the searched variable
has five possible values. All the binary inputs are converted
into stochastic bitstreams using 32 bit linear feedback shift
registers as the source of entropy (LFSRs [12] are compact
and effective), and the 5 outputs are converted from stochastic
bitstreams back to binary with accumulator counters.

To perform stochastic operations we used the logic AND
gate for multiplication and the OR+, from [13], for the
stochastic addition. Tests were run at a conservative clock
frequency of 25 MHz, but optimising for speed this could
easily be doubled with the current FPGA.

We performed extensive tests with the robot example in
order to evaluate the accuracy of the BM output, the resource

utilisation and the energy consumption on the FPGA. The out-
put probability distributions were compared with the ground
truth results acquired from the ProBT software running on a
PC. Two sets of probability values need to be specified in
order to test the circuit output. The first set includes internal
parameters and the second set includes the soft evidence.
Internal parameters of the model are the hard coded values
that represent joint probability distributions. These describe the
model knowledge associated to the inference computed by the
circuit. The second set is the input of the circuit and represents
probability distributions that depend on observations which
can change over time.

A. Accuracy

Results were gathered over 20 test runs with different
initialisation seeds for the LFSRs. Each test ran for 40 seconds
at 25 MHz to generate stochastic bitstreams with lengths up to
109 bits. The output of the BM is displayed in Table I where it
is compared with the ground truth value computed in ProBT.

TABLE I
COMPARISON BETWEEN THEORETICAL RESULT AND FPGA OUTPUT FOR

DIFFERENT BITSTREAM LENGTHS IN THE ROBOT EXAMPLE

Bitstream
Size VROT0 VROT1 VROT2 VROT3 VROT4

Ref. 0.0048 0.0119 0.0682 0.2929 0.6220
103 0 0.0062 0.0958 0.2166 0.6312
104 0.0074 0.0078 0.0601 0.2780 0.6466
105 0.0034 0.0121 0.0677 0.3024 0.6142
106 0.0048 0.0122 0.0698 0.2909 0.6221
107 0.0050 0.0120 0.0683 0.2927 0.6218
108 0.0047 0.0118 0.0678 0.2931 0.6223
109 0.0048 0.0119 0.0680 0.2929 0.6222

To check the accuracy, KL divergence, a statistical measure
that quantifies how close a probability distribution is to a
reference model distribution [3], was also computed between
the output distribution values and the expected ground truth
computed in ProBT (Fig. 3). From the KL divergence plot, we
can conclude that with a bitstream length of 106 bits we can
achieve a KL divergence lower than 0.0001. At 25 MHz, this
would require just 40 ms of computation time.

103 104 105 106 107 108 109
10−8

10−6

10−4

10−2

100

Bit Stream Length (Log Scale)

KL
 D

iv
er

ge
nc

e 
(L

og
 S

ca
le

)

Fig. 3. KL divergence as a function of bitstream length.

B. Resource Utilisation

In Table II we can see that the robot problem used 60%
of the total FPGA Logic Elements (LE). Although the BM
itself uses a small amount of resources, in this case the



main contribution is the bin-to-sto circuits which require 216
LFSRs. Compared to a stochastic multiplier, which is only an
AND gate, LFSRs require a significant amount of resources.

TABLE II
RESOURCE UTILISATION ON ALTERA CYCLONE IV (EP4CE115F29C7)

Entity Logic Elements LC Registers Memory Bits
BM 2820 1328 0

Bin-to-Sto circuits 47520 36936 0
System Total 68,832 (60%) 43,840 (38%) 257 (< 1%)

C. Power Consumption
The estimation of power consumption was based on simu-

lation tools provided by the FPGA vendor. Results show a low
instantaneous power consumption but from the energy point of
view, we have to consider the trade-off between total energy
and bitstream length required. In Table III power is shown for
25 and 50 MHz and we also included the energy estimation
for two given lengths of bitstreams.

TABLE III
ESTIMATED POWER AND ENERGY CONSUMPTION.

Frequency 25 MHz 50 MHz
Core Dynamic 211.09 mW 421.07 mW
Core Static and I/O 133.78 mW 134.68 mW
Total Power Dissipation 344.87 mW 555.75 mW
Energy (103 bits) 13.79 uJ 11.1 uJ
Energy (105 bits) 1379.48 uJ 1111.5 uJ

If we were to use a current energy efficient computer, as
listed in the Green500 (http://www.green500.org/), with an
average performance per watt of 223.50 MFPLOS/W (Intel
Core family), we get an estimate of 4.47 nJ for a floating
point operation. For our robot example that requires 2665
operations we need about 11.9 uJ. This is the same order
of magnitude as the BM for low precision, so our approach
is limited. For a robot application the above numbers can be
interesting when the onboard computing power is very limited,
and problems with big cardinality need to be tackled. The
required accuracy is also a key factor, since a shorter bitstream
length has less accuracy, but gets a usable result with less
energy. If direct stochastic bitstreams can be used by both
sensors and actuators, this approach does have a significant
edge, since the conversion circuits dominate resource usage.

V. CONCLUSIONS AND FUTURE WORK

We present a Bayesian machine FPGA implementation to
perform exact inference using stochastic bitstreams. The main
benefits of the proposed framework are the formal specification
and design automation, and the ability to scale to any design
size, depending on the resources available on the FPGA. The
framework enables the automatic implementation of Bayesian
Machines to perform computations using stochastic bitstreams.
The approach allows us to have massively parallel circuits
performing the desired computations. The trade-off between
computation time and accuracy can be exploited in an adaptive
way by the end use.

We present performance and resource usage of an FPGA
implementation of a Bayesian sensorimotor system that per-
forms obstacle avoidance for an autonomous robot.

Concerning accuracy, results showed an average KL diver-
gence of less than 0.001 for bitstream lengths above 105 and
less than 10�6 for bitstream lengths above 109.

The resource consumption for the stochastic circuits alone
is very low, the generation of the bitstreams that has the
LFRSs is what uses up most resources. The robot example
uses up 60% of a low end FPGA, with the random number
generation requiring most resources. Larger problems can still
be implemented on higher end FPGAs.

Concerning power, for a robot application our implemen-
tation can be interesting when the onboard computing power
is very limited, and problems with big cardinality need to be
tackled. The required accuracy is also a key factor, since a
shorter bitstream length has less accuracy, but gets a usable
result with less energy.

Future work will address more target applications and
higher dimension problems. As we saw, a limiting factor is
the amount of resources used up to generate the random
numbers, and we will look into more efficient solutions for this
to be implemented in future custom reconfigurable devices.
Nevertheless, for applications where the inputs and outputs can
be direct bitstreams, FPGA implementations of the proposed
Bayesian machine can be a viable solution.

REFERENCES

[1] Pierre Bessière, Christian Laugier, and Roland Siegwart. Probabilistic
reasoning and decision making in sensory-motor systems, volume 46.
Springer Science & Business Media, 2008.

[2] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. MIT Press, 2005.

[3] João Filipe Ferreira and Lobo Dias. Probabilistic approaches to robotic
perception. Springer, 2014.

[4] Mingjie Lin, Ilia Lebedev, and John Wawrzynek. High-throughput
bayesian computing machine with reconfigurable hardware. In Pro-
ceedings of the 18th Annual ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, FPGA ’10, pages 73–82, New York,
NY, USA, 2010. ACM.

[5] Joshua B. Tenenbaum, Eric M. Jonas, and Vikash K. Mansinghka.
Stochastic digital circuits for probabilistic inference. Technical report,
Massachusetts Institute of Technology, November 2008.

[6] John Von Neumann. Probabilistic logics and the synthesis of reliable
organisms from unreliable components. Automata studies, 34:43–98,
1956.

[7] B. R. Gaines. Stochastic computing. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), pages
149–156, New York, NY, USA, 1967. ACM.

[8] M. Faix, E. Mazer, R. Laurent, M. Othman Abdallah, R. Le Hy, and
J. Lobo. Cognitive computation: A bayesian machine case study. In
Cognitive Informatics Cognitive Computing (ICCI*CC), 2015 IEEE 14th
International Conference on, pages 67–75, July 2015.

[9] M. Faix, J. Lobo, R. Laurent, D. Vaufreydaz, and E. Mazer. Stochas-
tic bayesian computation for autonomous robot sensorimotor systems.
In Workshop on Unconventional Computing for Bayesian Inference,
IEEE/RSJ International Conference on Intelligent Robot and Systems
(IROS), 2015.

[10] Pierre Bessière, Emmanuel Mazer, Juan Manuel Ahuactzin, and Kamel
Mekhnacha. Bayesian programming. CRC Press, 2013.

[11] Kamel Mekhnacha, Juan-Manuel Ahuactzin, Pierre Bessière, Emmanuel
Mazer, and Linda Smail. Exact and approximate inference in ProBT.
Revue d’intelligence artificielle, 21(3):295–331, 2007.

[12] Armin Alaghi and John P. Hayes. Survey of stochastic computing. ACM
Trans. Embed. Comput. Syst., 12(2s):92:1–92:19, May 2013.

[13] Marvin Faix, Emmanuel Mazer, Raphael Laurent, and Jorge Lobo.
Cognitive computation: a bayesian machine case study. In Cognitive
Informatics and Cognitive Computing. IEEE, 2015.


