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 

Abstract—The energy consumption of Consumer Electronic 

(CE) devices during media playback is inexorably linked to the 

computational complexity of decoding compressed video. 

Reducing a CE device’s the energy consumption is therefore 

becoming ever more challenging with the increasing video 

resolutions and the complexity of the video coding algorithms. To 

this end, this paper proposes a framework that alters the video 

bit stream to reduce the decoding complexity and simultaneously 

limits the impact on the coding efficiency. In this context, this 

paper (i) first performs an analysis to determine the trade-off 

between the decoding complexity, video quality and bit rate with 

respect to a reference decoder implementation on a General 

Purpose Processor (GPP) architecture. Thereafter, (ii) a novel 

generic decoding complexity-aware video coding algorithm is 

proposed to generate decoding complexity-rate-distortion 

optimized High Efficiency Video Coding (HEVC) bit streams. 

The experimental results reveal that the bit streams generated by 

the proposed algorithm achieve 29.43% and 13.22% decoding 

complexity reductions for a similar video quality with minimal 

coding efficiency impact compared to the state-of-the-art 

approaches when applied to the HM16.0 and openHEVC decoder 

implementations, respectively. In addition, analysis of the energy 

consumption behavior for the same scenarios reveal up to 20% 

energy consumption reductions while achieving a similar video 

quality to that of HM 16.0 encoded HEVC bit streams.  

 
Index Terms—Complexity-rate-distortion, decoding 

complexity, decoding energy, energy minimization, HEVC  

 

I. INTRODUCTION 

HE ever-increasing consumption of High Definition (HD) 

and Ultra High Definition (UHD) video contents and the 

proliferation of mobile media consumption habits in end-

users, are making video playback on resource constrained 

Consumer Electronic (CE) devices (e.g., smartphones, tablets 

etc.,) increasingly necessary and challenging [1]. In fact, the 

actual resource consumption of video decoding is tightly 

coupled with the complexity of the video content as well as 

the compression format. Therefore, the adoption of high 
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resolution video contents and complex video coding standards 

such as the High Efficiency Video Coding (HEVC) [2][3] 

substantially affect the energy usage of a CE device. 

Traditionally, energy reductions in video decoding devices 

are achieved by either improving the efficiency of the radio 

receiver interface, modifying the decoder architecture and 

decoding operations, or by modifying the media content to 

reduce the complexity of the decoding process [1]. The latter 

being in the domain of video coding, consists of simplistic 

approaches that alter the basic coding parameters such as the 

Quantization Parameter (QP), frame resolution, frame rate. 

[4][5]. More state-of-the-art solutions manipulate the motion 

compensation and in-loop filtering operations in HEVC [6][7] 

or adopt Dynamic Voltage and Frequency Scaling (DVFS) [8] 

– [11] techniques to reduce the decoder’s power consumption. 

However, the state-of-the-art methods in the literature do not 

exploit the variations of the computational complexity that 

exist between different decoding operations to determine the 

optimum coding parameters at the encoder itself. 

In this context, this paper proposes a novel encoding 

algorithm that exploits the relationship between decoding 

complexity, rate and distortion to derive trade-off coefficients 

for the rate and decoding complexity at a given QP. The 

proposed algorithm advances the state-of-the-art by 

determining the whole spectrum of coding modes (i.e., HEVC 

quadtree structure, prediction modes, motion vectors and 

transform decisions etc.,) required to encode a given content 

by minimizing the decoding complexity, while balancing its 

impact on the coding efficiency. Thus, the experimental 

results reveal that the bit streams generated by the proposed 

algorithm achieve a significant decoding complexity and 

energy reduction for a similar video quality to that of the HM 

16.0 encoded bit streams with a minimal bit rate increase, 

compared to the state-of-the-art methods. 

The remainder of this paper is organized as follows. An 

overview of the state-of-the-art is presented in Sec. II, 

followed up by a comprehensive analysis on the decoding 

complexity, rate and distortion parameters and the proposed 

encoding algorithm in Sec. III. Finally, Sec. IV and V present 

the experimental results and the concluding remarks along 

with potential future work, respectively.  

II. BACKGROUND AND RELATED WORK 

The relationship between a CE device’s energy 

consumption and the many factors that affect it (e.g., the 
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complexity of the content, video coding algorithm, 

communication protocols and technologies, hardware 

architecture, etc.) have resulted in research focused on 

reducing the power consumption on all layers of the IP stack. 

Yet, they can be broadly categorized into two areas [1]; 

solutions that operate on the physical and link layer protocols, 

and those that operate in the application layer. The former 

attempt to reduce the energy consumed in communication 

activities, whereas the latter attempt to reduce the complexity 

of processing the content being consumed. The focus of this 

work is on the application layer, i.e., adapting the content 

during the encoding process, and thereby reducing the 

decoding complexity of the HEVC coded video bit stream. 

Hence, the following discussion focuses on the state-of-the-art 

approaches relevant to the second category. 

The energy consumption in Complementary Metal-Oxide-

Semiconductor (CMOS) circuits exhibits a linear relationship 

with the Central Processing Unit (CPU) clock frequency [12]. 

Therefore, exploiting the relationship between computational 

complexity, execution time and clock frequency, the energy 

consumed per decoding operation can be mapped to a 

quadratic relationship to the operation’s computational 

complexity [12] for a given decoder architecture. Thus, 

simplifying the decoding operation, and thereby reducing the 

device’s energy consumption has been attempted on numerous 

occasions. The Green-MPEG initiative by Moving Picture 

Experts group (MPEG) is one of the recent developments that 

standardizes green meta-data [13], which can be used to 

reduce the decoding complexity and tweak display parameters 

to reduce the device’s energy consumption [13]. Other recent 

developments constitute structural modifications at the data- 

and task-level for parallelized decoder implementations to 

support real-time decoding of high resolution, high frame rate 

HEVC bit streams [14]. Furthermore, the utilization of Just-In-

Time adaptive decoder engine [15], and OpenMP and actor-

based dataflow models [16] have resulted in energy-aware 

HEVC decoder implementations over the last few years. 

In a diverging approach, the work in [7] proposes the use of 

simplified in-loop and interpolation filters during motion 

compensation. Here, in-loop filtering is skipped to suit the 

desired level of complexity. In addition, 7- and 8-tap luma and 

4-tap chroma filters in HEVC are reduced to 3-tap luma and 1-

tap chroma filters, respectively. Along the same vein, the 

algorithmic level approximate computing applied for energy 

efficient HEVC decoding [17] reduces decoding complexity, 

but in common with [7], suffers from severely compromised 

video quality due to the modified interpolation filters. As such, 

in general, decoder modifications can lead to two drawbacks; 

incompatibility with or irrelevance to existing decoder 

implementations, and the degradation of video quality.  

In contrast to decoder modifications, DVFS seeks to 

achieve energy reductions by maintaining the minimum 

required CPU frequency and voltage level that satisfies the 

decoding complexity demands. In these algorithms, energy use 

is balanced with respect to the video quality [8] – [10]. In 

general, these methods estimate and modify the operating 

frequency of the processor for the subsequent frames based on 

the decoding complexities of the preceding frames. Their 

operating principle is similar to that of Linux ondemand 

governor [18], but the frequency selection is solely governed 

by the decoder’s operational complexity. The drawbacks of 

aggressive DVFS algorithms are frame drops and an impact on 

the overall system performance for which the general purpose 

devices may adversely affect the user’s quality of experience. 

A third approach to reducing the decoding energy 

consumption is dynamic content adaptation. This generally 

entails the adoption of scalable video coding architectures that 

use proxy servers [19], media transcoding [20], or dynamic 

adaptive streaming technologies [21]. However, these as well 

as device oriented [4] and battery-aware [5] adaptive 

multimedia delivery schemes are typically restricted to 

manipulating basic video coding parameters such as QP, 

spatial resolution, frame rate and scalable bit streams [22] to 

adapt video content to achieve energy savings. In fact, 

although energy-aware HEVC streaming solutions [6] do 

exist, they are limited to prediction mode and motion vector 

selection. As a result, diverse coding features available in the 

more modern coding standards remain unexploited, and the 

approach itself can suffer from variability of the perceived 

video quality with time. Overall, it can be observed that the 

state-of-the-art approaches (to reduce the energy consumption) 

do not alter how the bit stream itself is created, but instead 

focus on mitigating the effects of complex decoding 

operations after the fact. Furthermore, the preparation of a less 

complex bit stream at the encoder will retain the applicability 

of other decoder energy reduction strategies while allowing 

further energy consumption reductions. 

III. DECODING COMPLEXITY – RATE – DISTORTION ANALYSIS 

FOR ENCODING 

In order to consider the decoding complexity, together with 

rate and distortion during the encoding phase, the encoder 

must be aware of the decoding complexity of operations for all 

coding parameter combinations. Thus, detailed and accurate 

modelling of the decoding operation complexity is crucially 

important. To similar ends, the state-of-the-art techniques have 

exploited high-level complexity analysis of decoding 

operations [23], energy estimation based on decoding time 

[24], and mapping of decoding energy to the content and QP 

[25]. Yet, the level of details in these models is inadequate for 

a Coding Unit (CU) level decoding complexity estimation. 

In general, the energy consumption of a decoder depends on 

a number of factors that are both architecture and 

implementation dependent (instruction set, memory 

management, CPU load balancing, voltage and frequency 

levels, etc.). Yet, with respect to a given architecture, the 

energy consumed when decoding the video bit stream is 

tightly coupled to the computational complexity [9]-[12] of 

the decoding operations. Hence, this coupling can be used to 

indirectly reduce the energy consumed to decode a bit stream 

during the video encoding process itself. To this end, a 

decoding complexity profiling for individual decoding 

operations relating to the HEVC coding modes and features 

has been carried out in our previous works [27][28] using 
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open source instruction level profiling tools [34]. In this 

context, the computational complexities in terms of CPU 

cycles identified in [27][28] are embedded within HM16.0 

implementation to make the encoder aware of the relative 

complexities of the decoding operations (The CU level 

decoding complexity estimation models in [27] and [28] for 

intra- and inter-prediction, respectively, have been verified to 

predict the decoding complexity within the encoder with only 

< 5% prediction error). The encoder now possesses the 

resulting bit rate, distortion and decoding complexity for a 

particular coding mode and QP of a given content which can 

then be used to form the decoding complexity, rate and 

distortion analysis, as described next.  

A. Decoding complexity, rate and distortion analysis and 

trade-off 

The selection of a coding mode and a structure that is 

appropriate in terms of decoding complexity and coding 

efficiency requires an in depth analysis of the impact of 

various coding parameters in a range of situations. In this 

context, prior investigations carried out in [29] and [30] define 

the relationship between the bit rate and distortion. A similar 

analysis and a defined relationship between the decoding 

complexity, rate and distortion with respect to HEVC coding 

parameters is crucial to develop a comprehensive model that 

facilitates decoding complexity-aware video encoding.  

The HEVC encoder typically adopts a Rate-Distortion (RD) 

optimization process to determine the optimum coding modes 

for a given content. In this context, the minimization cost 

function used for coding mode selection can be expressed as, 

),()(min pRpDJJ rRDRD
Pp




                 (1) 

where p is a particular coding parameter combination in the 

set of all possible coding parameters P, and D(p) and R(p) are 

the distortion and rate associated with p, respectively. Here, λr 

≥ 0 denotes the Lagrangian multiplier that trades-off the 

distortion for the bit rate of a particular coding mode. The 

relationship between D and R has been extensively studied and 

a QP dependent relationship for λr is defined in [29]. 

In contrast, for the proposed encoding scheme, decoding 

complexity is introduced as another constraint requiring a 

modified Lagrangian cost function which constitute both bit 

rate and a decoding complexity as constraints. In this case, the 

modified cost function which is used for coding mode 

selection in the encoder is expressed as, 

)()()( |min pCpRpDJJ cCRDCRD
Pp

 


                (2) 

where C(p) is the decoding complexity associated with the 

coding parameter set p, and λρ ≥ 0 and λc ≥ 0 are the bit rate 

and decoding complexity trade-off parameters, respectively. 

Determining the appropriate values for λρ and λc in (2) now 

becomes crucial for the optimization of the encoding 

algorithm. To this end, the experimental approach adopted in 

this work is based on and builds upon the empirical 

observations presented in the following subsections. 

B. Decoding complexity - rate - distortion space 

The relationship that exists among the decoding complexity, 

rate and distortion (i.e., the CRD space) is both complex and 

content dependent. In order to visualize and understand this 

parameter space, the behavior of C, R and D for multiple video 

contents was analyzed (50 frames of 3 HD and 3 Common 

Intermediate Format (CIF) sequences that exhibit diverse 

motion and texture characteristics were encoded and analyzed) 

for multiple  51,,0 QP  and combinations of   ,0  

and   ,0c . As an example, the resulting decoding 

complexity, rate and distortion values in terms of complexity 

per pixel (cpp), bits per pixel (bpp) and Mean Square Error 

(MSE) are illustrated for a particular video content in Fig. 1. 

Here, each observed point in the CRD space corresponds to a 

set of coding modes, selected for a particular content and QP, 

for an arbitrary combination of λρ and λc values. As such, the 

selection of combinations of λρ and λc to be used in the 

encoder’s optimization function in (2) boils down to an 

engineering decision; i.e., selecting an appropriate trade-off 

between decoding complexity, rate and distortion for a 

specific requirement. The decision criteria and the process 

adopted for selecting generic values for λρ and λc that were 

deemed appropriate in this work are described next. 

C. Determining an appropriate and generic  and c  

In order to determine a suitable operating point in the CRD 

parameter space, the rate, distortion and decoding complexity 

obtained using different combinations of λρ and λc are 

compared with those values obtained when using the 

traditional Lagrangian cost function in (1). To facilitate this 

analysis, first the percentage differences of each parameter, 

i.e., ∆R, ∆D and ∆C given by, 

RD

RDCRD




 100                   (3) 

is computed. Here, Γ represents the distortion D, bit rate R and 

decoding complexity C, while ΓRD and ΓCRD correspond to 

those same parameters obtained when using the cost functions 

in (1) and (2), respectively. 

Fig. 2 illustrates the distribution of ∆R and ∆D for a 

particular sequence and a selection of QPs. Each data point 

corresponds to the deviation of the operating point in CRD 

space (when using (2) as the mode selection cost function), 

i.e., a unique λρ and λc combination, with respect to the 

traditional RD optimized operating point (when using (1) as 

the mode selection cost function). Here, the differences in the 

behavior for different frame types and λρ and λc pairings can 

be observed. Moreover, it can also be observed that distortion, 

  
(a) CRD space: inter-

prediction 

(b) CRD space: intra-

prediction 
 

Fig. 1. An illustration of CRD space that exist between the decoding 

complexity (cpp), rate (bpp), and distortion (MSE) parameters, for different 
combinations of λρ and λc at QP=25. Each point on the surface corresponds to 

a particular parameter combination of λρ and λc. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

4 

for example deviates significantly from the RD optimized 

value for some λρ and λc combinations. Therefore, selecting an 

appropriate λρ and λc becomes a matter of the preferred trade-

off of each parameter against the other.  

The following approach is adopted in this work to constrain 

the impact on the coding efficiency and to achieve a decoding 

complexity reduction, as per the objectives outlined in the 

introduction. To this end, in the empirical analysis of the data 

obtained for the many combination of λρ and λc in Sec. III-B, 

the appropriate design constraints are enforced to obtain the 

relevant Lagrangian multiplier parameter combination. Thus, a 

constraint is first placed on the bit rate such that %.1R  

Thereafter, from the subset of λρ and λc combinations that 

satisfy this criteria, the operating point, i.e., λρ and λc 

combination, that minimizes ∆D is derived (the operating 

point selected in this manner for the Kimono 1080p sequence 

in Fig. 2 is highlighted in red). It should be noted that the 

reduction in decoding complexity achieved here is governed 

by the coding efficiency trade-off defined above, and a 

different set of constraints will naturally result in another λρ 

and λc combination and different performance. Moreover, it is 

observed that the λρ and λc combination that satisfy the 

aforementioned criteria is both QP and content dependent; 

thus, a set of generic values for λρ and λc are obtained by 

averaging of the individual optimized parameters of the 6 test 

sequences in Sec. III-B. The final generic values for λρ and λc 

are given by: 
















frameIntere

frameIntrae
QP

QP

genericc .03029.03

.1327.05

.1034825.0

.1053431.2
      (4) 

and  










frameInter

frameIntra

r

r
generic






01.1

95.0 .              (5) 

In this case, λr is the QP dependent Lagrangian multiplier 

defined in [29]. Fig. 3 graphically illustrates the variation in λc 

across the range of QPs 0 – 51 for both inter- and intra-

predicted frames. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

This section presents the performance of the proposed 

algorithm, in terms of the decoding complexity, power 

consumption and the impact on the coding efficiency. 

A. Simulation environment 

The proposed algorithm is implemented in the HM 16.0 

reference software [31], where the complexity models 

presented in [27][28] perform the decoding complexity 

estimations and the proposed Lagrangian cost function in (2) 

determines the coding modes for both inter- and intra-

prediction (Fig. 4). The resulting bit streams are decoded using 

the HM 16.0 [31] and openHEVC [32] software decoders on a 

system (8GB RAM, with 9 CPU frequency steps ranging from 

759 MHz – 1600MHz) running the Linux kernel 4.10, and the 

system’s inbuilt Graphics Processing Unit (GPU) based 

hardware decoder.  The algorithm’s performance is compared 

   
(a) Intra frames, QP = 20 (b) Intra frames, QP = 30 (c) Intra frames, QP = 40 

   
(d) Inter frames, QP = 20 (e) Inter frames, QP = 30 (f) Inter frames, QP = 40 

 

Fig. 2.  The distribution of ∆D and ∆R for different combinations of λρ and λc value pairs for “Kimono 1080p” sequence at three sample QP values. Each point 

represent the deviation (%) of rate, and distortion of the proposed algorithm from that of the RD optimized mode selection. The “green” points represent the 
subset of operational points that satisfy the criteria ∆R ≤ 1%. The “red” highlighted point corresponds to the selected operational point that gives the minimum 

∆D within the subset of “green” highlighted data points.  

  
(a) Inter-frames (b) Intra-frames 

 

Fig. 3.  The generic λc behavior with respect to the QP and frame type. 

  

 
Fig. 4. A high level illustration of the proposed encoding algorithm. Once λρ 

and λc are determined, the coding mode selection is performed using (2). 
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with two state-of-the-art approaches; a tunable HEVC decoder 

proposed by Nogues et al. [7] and the power-aware encoding 

algorithm proposed by He et al. [6]. The CIF and HD video 

sequences used in this experiments are encoded using random 

access configuration with QPs 22, 27, 32, and 37. The 

complexities of the decoding processes are measured using the 

open source instruction-level analysis tools callgrind/valgrind 

[33]. Finally, the decoding energy consumption is determined 

by measuring the energy dissipated by the system during 

playback. A high level overview of this experimental setup is 

graphically illustrated in the Fig. 5. 

B. Evaluation metrics 

The performance of the proposed and state-of-the-art 

algorithms is evaluated by the measuring the decoding 

complexity reduction achieved by the different bit streams. To 

this end, percentage decoding complexity reduction achieved 

for the same video quality to that of the reference given by 

BD-C is evaluated by utilizing the Bjøntegarrd Delta-Bit Rate 

(BD-BR) calculation specified in [34] and by considering the 

area under the decoding complexity, distortion curve [35][36]. 

Similarly, the device’s percentage energy consumption 

reduction for the same video quality given by BD-E is 

evaluated by utilizing the energy dissipated when decoding the 

bit streams generated by the HM reference encoder and any 

other algorithm, with Peak Signal-to-Noise Ratio (PSNR) as 

the quality metric. Finally, the impact on the coding efficiency 

is measured in terms of BD-BR [34], which illustrates the 

impact on the bit rate for the same resultant video quality.  

C. Performance evaluation and analysis 

This section initially discusses the complexity reduction 

performance of the proposed method with respect to state-of-

the-art decoding complexity reduction techniques, and 

thereafter investigates its potential energy savings with respect 

to the voltage-frequency scaling approaches in different 

application scenarios.  

 

1) Comparison with modified decoder implementations: 

Modifications of the motion compensation filters in the 

decoder (MC) and the intermittent skipping of the loop filter 

(LF), proposed by Nogues et al. [7] contributes significantly to 

reduce the complexity of the decoding operations (ref. BD-C 

results in Table I). However, this impacts visual quality 

considerably due to the distortions introduced by the modified 

motion compensation filtering operations. For example, the 

reduced filter sizes in [7] results in a different predicted image 

than that is used by the encoder to calculate the motion vectors 

for the Prediction Unit (PU). Hence, this partially filtered PU 

now gets compensated with a somewhat incorrect residual, 

which in turn distorts the reconstructed PU. Furthermore, the 

propagation of these errors to future frames further impacts the 

visual quality of the video as a whole. Although, the intra-

refresh in the random access configuration marginally limits 

the impact of error propagation, these distortions nevertheless 

result in an increased BD-BR (ref. Fig. 6(c), 6(f)). 

Moreover, as illustrated in the Table I, the impact on quality 

would be content dependent when the decoding operations are 

altered in this fashion, especially since the distortions would 

be significant in complex video sequences with high motion 

Laptop

Display

Display buffer

Software decoder 
(openHEVC)

Hardware 
decoder

Linux 
userspace

Linux 
ondemand

Storage

Lithium ion 
battery

Linux power 
monitoring

Streaming buffer

Use case 2: online video 

streaming

Video contents are streamed 

from a streaming server using 

a wireless router.

Use case 1: Offline 

video playback

Video contents are 

stored in the local 

storage

Video encoding and 
streaming server

Wireless 
router

 
 

Fig. 5.  A graphical illustration of the simulation environment. The two use 
cases considered in this work are indicated as use case 1 (offline video 

playback) and use case 2 (online video streaming). 

  

   
(a) Decoding complexity (HM16.0) vs. 

PSNR 

(b) Decoding complexity (openHEVC) vs. PSNR (c) RD performance 

   
(d) Decoding complexity (HM16.0) vs. PSNR (e) Decoding complexity (openHEVC) vs. PSNR (f) RD performance 

 

Fig. 6.  The decoding complexity (in CPU cycles) – distortion curves and rate-distortion curves for the “kimono” (top row), and “parkscene” (bottom row) 

sequences illustrating the relative performance of the proposed and state-of-the-art techniques. 
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and textured content (e.g., “musicians” and “coastguard” vs. 

“container” and “Poznan street”). However, the proposed 

method in contrast, shows a negligible change in BD-BR 

compared to the method proposed by Nogues et al. [7]. This is 

due to the proposed algorithm operating at the encoder-side 

which determines the type of the motion vector (integer-pel 

vs. fractional-pel) based on the optimization cost function in 

(2); thus, requiring no changes to the decoding process itself. 

Skipping the loop filter (LF) on the other hand, as in [7], 

reduces the decoding complexity with minimal impact on 

video quality and can also be implemented when decoding the 

proposed bit stream. For example, the experimental results 

presented in the Table I illustrate the BD-C improvements that 

can be achieved for the proposed algorithm in this manner. 

Here, the de-blocking and the Sample Adaptive Offset (SAO) 

filters are skipped by the decoder based on the complexity 

level specified. In this case, the performance of the proposed 

method can be improved, albeit for an additional BD-BR 

increase of 6.47%. 

 

2) Comparison with power-aware encoding mechanisms: 

The encoding algorithm proposed by He et al. [6] attempts 

to reduce the complexity of the filtering operations during 

motion compensation and the de-blocking operation 

performed by the decoder. In this context, the energy 

optimized motion vector selection algorithm (PUM) and the 

de-blocking  filter disabling algorithm (DBLK) produce a bit 

stream which demonstrates a moderate complexity reduction 

as seen in the Table I and decoding complexity, distortion 

curves in Fig. 6. In comparison to [7], a much higher BD-BR 

loss is observed, especially for the sequences with high motion 

and complex texture properties. Here, although the motion 

vector and PU mode decisions are made at the encoder, the 

selection of the trade-off factors do not consider the impact of 

both rate and distortion which significantly affects the coding 

efficiency. Hence, despite the 12% and 7% BD-C reduction 

achieved by the algorithm, its applicability is limited due to 

the bit rate increase required to achieve similar quality to the 

HM 16.0 encoded bit streams. Furthermore, the lack of the 

detailed decoding complexity model and the QP agnostic 

trade-off factor selection in [6] results in a poor BD-C 

reduction and increased loss of coding efficiency. In addition, 

the algorithm by He et al. [6] requires the communication of 

the de-blocking filter decisions to the decoder, which requires 

additional overhead as either multiple Picture Parameter Set 

(PPS) Network Abstraction Layer (NAL) units or metadata 

must be exchanged between the encoder and decoder.  

In contrast, the proposed algorithm demonstrates 

considerable improvements in decoding complexity reduction 

with the minimal impact of a BD-BR increase to 6.47% on 

average and delivers BD-C reductions of 29.43% and 13.22% 

for the HM16.0 and openHEVC decoders, respectively, for a 

similar video quality compared to HM encoded bit streams. 

This is aided by the use of more detailed and accurate HEVC 

decoding complexity estimation models [27][28] which yield 

more accurate decoding complexity estimations for the 

decoding complexity rate distortion optimization in (2). 

 

3) Energy consumption behavior-offline video playback: 

Next, the overall energy consumed when decoding the bit 

streams generated by the proposed method is investigated and 

compared to those of the HM 16.0 encoder. In this case, the bit 

streams are stored within the mobile device and are decoded in 

real time using openHEVC [32] software decoder (Use case 1 

in Fig. 5). They are displayed on screen for 20 minutes 

simulating an offline video playback use case on a mobile 

device. The energy consumption during the whole decoding 

and playback process is measured in terms of the reduction in 

battery capacity via Linux’s power measurement tools. The 

energy consumed for each QP (22, 27, 32, 37) is recorded and 

together with decoded stream’s PSNR is used to calculate BD-

E which represents the energy consumed to achieve the same 

video quality as the reference HM 16.0 generated bit streams. 

The energy reduction under these conditions with different 

TABLE I 

DECODING COMPLEXITY REDUCTION PERFORMANCE IN THE RANDOM ACCESS CONFIGURATION 

Sequence Proposed (model only) Proposed (model + LF [7]) He et al. [6] (PUM + DBLK) Nogues et al. [7] (MC + LF) 

 BD-C* 

(%) 

BD-CϮ 

(%) 

BD-BR 

(%) 

BD-C* 

(%) 

BD-CϮ 

(%) 

BD-BR 

(%) 

BD-C* 

(%) 

BD-CϮ 

(%) 

BD-BR 

(%) 

BD-C* 

(%) 

BD-CϮ 

(%) 

BD-BR 

(%) 

Akiyo -27.3 -9.8 5.5 -38.0 -15.7 11.7 -7.0 -6.6 9.5 -16.5 -9.5 6.4 

Waterfall -19.6 -12.6 5.6 -25.1 -16.6 7.2 -15.9 -9.1 14.9 -29.4 -6.4 18.4 

Container -21.7 -8.7 2.7 -29.0 -12.7 11.2 -10.2 -6.8 5.9 -16.0 -8.4 10.9 

Coastguard -17.2 -9.9 4.5 -23.3 -13.2 15.0 -12.3 -4.9 21.3 -25.1 -5.7 14.6 

Band -34.0 -12.3 7.7 -43.3 -18.9 18.2 -3.6 -4.5 40.1 -20.5 -9.6 16.2 

Beergarden -25.8 -11.4 2.5 -35.7 -16.3 11.1 -7.1 -6.4 7.0 -21.4 -9.3 11.1 

Café -36.6 -12.2 5.8 -46.6 -18.2 13.3 -13.4 -9.4 9.9 -20.6 -10.4 12.4 

Dancer -34.9 -17.9 9.7 -43.7 -23.7 13.0 -18.3 -10.7 15.4 -33.1 -7.1 15.5 

GT Fly -40.0 -18.5 9.1 -51.1 -26.1 12.9 -17.5 -6.3 50.5 -34.8 -8.7 35.0 

Kimono -38.6 -20.3 6.7 -45.4 -26.1 14.0 -19.8 -13.5 16.5 -32.2 -8.9 15.9 

Musicians -34.5 -16.5 9.9 -44.1 -23.4 17.4 -16.3 -6.4 40.8 -33.5 -7.0 25.9 

Parkscene -31.4 -17.3 7.3 -40.0 -23.5 10.3 -19.6 -11.3 14.4 -34.3 -7.2 18.4 

Poznan street -32.6 -12.4 2.7 -33.7 -18.6 11.3 -12.6 -9.6 6.5 -20.4 -10.9 11.8 

BasketDrill -26.7 -10.7 9.1 -37.1 -16.9 17.0 -2.7 -1.2 26.6 -22.9 -7.6 21.0 

BasketPass -20.6 -7.9 8.3 -31.4 -13.4 13.1 -7.8 -0.2 38.3 25.1 -5.7 29.7 

Average -29.43 -13.22 6.47 -37.83 -18.88 13.11 -12.27 -7.12 21.17 -25.72 -8.16 17.54 

* BD-C (%) achieved when using HM 16.0 reference decoder.  

Ϯ BD-C (%) achieved when using openHEVC decoder. 
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DVFS schemes and bit streams is reported in Table II.  

Next, the impact of using a more sophisticated DVFS 

scheme is investigated. In this context, the dynamic frequency 

selection algorithm proposed by Raffin et al. [11] has been 

integrated in the openHEVC decoder. Here, the operating 

frequency of the processor is controlled based on the estimated 

complexity of the subsequent frame (assessed using the 

moving weighted average of the complexities of previously 

decoded frames). Therefore, the selection of the CPU 

frequency becomes application and content specific, i.e., in 

this context the decoder and the current bit stream. The energy 

consumption behavior shown in Table II and graphical 

illustrations in Fig. 7 for the bit streams emphasize how an 

application specific DVFS governor can indeed outperform a 

generic DVFS governor. However, as was the case before, the 

increased complexity of the HM 16.0 bit streams limits the 

potential energy savings that can be achieved. In fact, the 

complexity reduction by the proposed algorithm’s bit stream 

allows the DVFS algorithm to select much lower CPU 

frequencies that lead to greater energy savings. Hence, an 

improvement of -5.04% (-14.12% vs -9.08%) BD-E reduction 

when compared to the HM 16.0 bit stream with DVFS is 

observed for the proposed algorithm. Moreover, as illustrated 

in Fig. 7 and Table II, the BD-E reduction of the proposed 

algorithm when utilized with a decoder that skips the loop 

filtering process (similar to the algorithm proposed in [7]), is 

on average -20.45%. This suggests that the video playback 

devices can reduce the energy consumption by approximately 

20% by decoding the bit streams generated by the proposed 

algorithm and by skipping the de-blocking filters; a significant 

decoding energy reduction for a similar quality to that of the 

HM encoded bit streams, when considering the software based 

HEVC decoder implementations. 

 

4) Energy consumption behavior-other use cases: 

In this subsection, we discuss the energy consumption 

behaviour of the proposed algorithm for two other video 

playback scenarios in addition to the off-line playback 

scenario analyzed in the previous subsections. First, consider 

the decoding energy consumption behaviour in Table III when 

using the proposed algorithm and a GPU based hardware 

HEVC decoder for the off-line video playback scenario. In 

this case, CPU and GPU clock frequencies can be maintained 

at their minimums while the GPU is managed by the hardware 

itself. Crucially, the results demonstrate that the proposed 

algorithm outperforms HM 16.0 in terms of the decoding 

energy consumption by -1.85% to achieve a similar video 

quality. This is attributed to the reduced complexity of the bit 

streams generated by the proposed algorithm, which increases 

the GPU’s idle time, which in turn causes the BD-E reduction 

observed1. That being said, the absolute power consumption 

will still depend on the power management policy of the GPU 

driver, inter-process communications, etc., and since the 

efficient management of these resources are outside the scope 

of the this work, the results presented here correspond to 

system’s default GPU power management settings in the 

processor architecture. 

Finally, the proposed algorithm exhibited a BD-BR increase 

of 6.47% (in Table I) due to no attempt being made to strictly 

control the bit rate. Naturally, this raises the question of what 

impact the increased bit rate would have on the energy 

consumption of the proposed method in a use case such as on-

line video streaming (use case 2 in Fig. 5). Thus, this too was 

investigated for QPs 22, 27, 32, and 37 and the results are 

presented in Table III. Here, the bit stream is streamed over a 

802.11n wireless link to be decoded by the openHEVC 

software decoder using the Linux ondemand DVFS governor. 

 
1 The remaining state-of-the-art algorithms require modifications to the 

decoder implementations which are not feasible for hardware implementation. 

Hence, the experimental results for the hardware HEVC decoder is presented 
solely for the proposed algorithm. 

TABLE III 
ENERGY CONSUMPTION

Ϯ
 BEHAVIOR OF THE PROPOSED ALGORITHM 

sequence Software decoding 
Hardware 

decoding 

 Offline 

playback 

Online 

streaming 

 

 BD-E (%) BD-E (%) BD-E (%) 

Band -9.2 -5.8 -1.6 

Beergarden -5.1 -2.1 -1.6 
Café -4.5 -1.8 -1.5 

Dancer -3.5 -5.0 -3.2 

GT Fly -2.7 -2.5 -1.2 
Kimono -5.3 -4.2 -1.3 

Musicians -3.8 -3.4 -1.1 

Parkscene -7.1 -2.9 -1.9 
Poznan street -2.3 -4.9 -3.3 

Average -4.83 -3.62 -1.85 
ϮBD-E is expressed with respect to the energy consumed to decode the 

HM16.0 reference encoder’s bit streams when using the openHEVC decoder 

and Linux’s ondemand frequency governor.  

TABLE II 

ENERGY CONSUMPTION BEHAVIOR OF THE ENCODING ALGORITHMS IN THE RANDOM ACCESS CONFIGURATIONS 

Sequence 
Proposed + 

ondemand 

HM 16.0 + 

DVFS [11] 

Proposed + 

DVFS [11] 

He et al. [6] + 

DVFS [11] 

Nogues et al. [7] 

+ DVFS [11] 

Proposed + LF 

+ ondemand 

Proposed + LF 

+ DVFS [11] 

 BD-E (%) BD-E (%) BD-E (%) BD-E (%) BD-E (%) BD-E (%) BD-E (%) 

Band -9.2 -10.3 -15.4 -17.3 -4.7 -13.0 -22.0 

Beergarden -5.1 -12.5 -15.5 -18.7 -3.7 -8.5 -22.6 

Café -4.5 -5.9 -12.8 -14.0 -1.6 -8.0 -17.0 
Dancer -3.5 -9.7 -13.5 -16.0 -1.7 -8.5 -21.0 

GT Fly -2.7 -8.4 -11.6 -12.6 -1.3 -8.0 -19.1 

Kimono -5.3 -7.1 -13.8 -16.7 -1.9 -7.0 -21.2 
Musicians -3.8 -8.8 -16.0 -14.5 -2.1 -7.8 -20.7 

Parkscene -7.1 -10.4 -17.8 -18.4 -4.0 -14.1 -22.3 

Poznan street -2.3 -8.7 -10.7 -10.3 -4.0 -7.7 -18.2 

Average -4.83 -9.08 -14.12 -15.38 -2.77 -9.17 -20.45 

BD-E is expressed with respect to the energy consumed to decode HM 16.0 encoded bit streams using openHEVC software decoder and Linux’s ondemand 

frequency governor. 
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The total energy consumed in the process (including 

consumption by the wireless interface) is measured and 

reported in terms of BD-E in Table III. The results illustrate a 

-3.62% BD-E decoding energy reduction is achieved by the 

proposed algorithm for a similar video quality to that of HM 

16.0 encoded streams. It is therefore evident that the decoding 

energy reduction via proposed method exceeds the increased 

energy consumed during transmission for the somewhat 

greater bit rate that results from the proposed approach. In this 

context, the results suggest that the proposed encoding 

algorithm has potential benefits in content preparation for both 

off-line and on-line video playback and streaming scenarios; a 

crucial improvement compared to the state-of-the-art in 

energy-efficient multimedia content preparation and 

distribution mechanisms. 

V. CONCLUSION 

Reducing the complexity of the encoded bit streams is seen as 

a potential application layer solution for the increased energy 

demands in mobile video playback. In this context, this paper 

proposes a decoding complexity-aware video coding 

algorithm which makes use of a comprehensive decoding 

complexity, rate and distortion analysis to determine the QP 

dependent generic trade-off factors for the three parameters 

involved in the new mode selection cost function. The 

proposed encoding algorithm considers the overall impact of 

the three parameters to determine the optimum trade-off 

between the coding efficiency and decoding complexity, when 

selecting a particular coding mode. Thus, the HEVC bit 

streams generated by the proposed algorithm results in a 

higher decoding complexity and energy reduction (up to 

20.45%) for a similar video quality to that of HM16.0 encoded 

bit streams with minimal coding efficiency impact compared 

to state-of-the-art approaches. 

The future work will focus on developing a joint energy and 

rate controlled video encoding algorithm for video streaming 

applications that serve resource constrained mobile devices. 
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