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Abstract. Human gaze is one of the most important cue for social
robotics due to its embedded intention information. Discovering the lo-
cation or the object that an interlocutor is staring at, gives the machine
some insight to perform the correct attentional behaviour. This work
presents a fast voxel traversal algorithm for estimating the potential
locations that a human is gazing. Given a 3D occupancy map in log-
spherical coordinates and the gaze vector, we evaluate the regions that
are relevant for attention by computing the set of intersected voxels be-
tween an arbitrary gaze ray in the 3D space and a log-spherical bounded
section defined by ρ ∈ (ρmin, ρmax), θ ∈ (θmin, θmax), φ ∈ (φmin, φmax).
The first intersected voxel is computed in closed form and the rest are ob-
tained by binary search guaranteeing no repetitions in the intersected set.
The proposed method is motivated and validated within a human-robot
interaction application: gaze tracing for artificial attention systems.

Keywords: human-robot interaction (HRI), artificial attention, gaze
tracing, log-spherical, voxel traversal algorithm

1 Introduction

With the forthcoming social or assisted living robotic platforms, interlocutor gaze
has become a valuable cue to interpret intentionality [3, 11]. The next generation
of robotic platforms should be able to interpret and generate social signals [17]
by means of non-verbal communication. This emotional, body and attentional
language will help roboticists to develop low cost robots with high user accep-
tance. In this sense, the direction of other’s attention is crucial for mastering
social interaction [16]. In fact, in the case of joint attention [3, 7], where two
individuals perform a triadic relationship between them and an object, gaze di-
rection provides useful information to know if the human is looking at the robot
as well as about the direction of the shared object [2]. This location is potentially
important for the correct social interaction and can also play a significant role
in the task being effectuated.

Figure 1 describes a generic and simple example of social interplay within
human-robot interaction (HRI) in assisted living applications. An old lady is
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Fig. 1. Representational stage in joint attention. The artificial system should be able
to build an internal representation of the environment and infer the object that the
interlocutor is gazing during gaze following.

inside the social space and engages the robot meaning that he wants to initiate
interaction. Afterwards she switches the focus of attention towards somewhere
outside the field of view (e.g., a computer). In order to infer intention, and there-
fore construct the correct attentional behaviour, we need to discover the location
or the object that the interlocutor is gazing because it could be important for
the interaction being performed. In this case she could want to call by internet
to her daughter.

In the study presented in [7], where an artificial attention system is tested
without integrating the gaze interpretation ability, it is clear that the robot can-
not infer the complete non-verbal message intended by the interlocutor. In that
experiment, the interlocutor shows an object to the robot by deictic fixation
(e.g. gazing or grabbing the object) and then the machine should search another
object with similar characteristics. They show that just using the preatentive
scene segmentation the robot is not able to understand the user needs, as the
robot sometimes does not figure out which object is being showed. We hypoth-
esise that enabling the machine with a full attentional system1 will improve
reciprocity, expectation fit and interaction [6]. This requires the implementation
of the representational skill, which toddlers achieve in early stages of develop-
ment [12], and involves discovering the object that the interlocutor is referring
to. One of the possible approaches discussed in the literature is to provide an
internal representation of the environment that works as a short-term memory
and stores important information for attention [4, 8], and then use the gaze cue
to modulate the potential attended objects.

1 The majority of the works in attention lacks from the integration of all needed func-
tionalities [3]. They usually use just visual sources, there is no top-down modulation
nor emotional context and social signals are not taken into account.
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In this paper we present a discrete log-spherical gaze tracing algorithm to be
integrated in a full-fledged attention system [7] that establish a correspondence
between a set of discretised cells with potential objects being fixated by the ob-
server. We integrate the egocentric representation of the environment, Bayesian
Volumetric Map (BVM) [4], with the gaze cue, improving the capacity of the
machine to infer important regions even if they are outside the field of view and
providing the robot with the representational stage, thus laying the foundation
for non-verbal social HRI. Although the algorithm is focused on attention in HRI,
it can be used as a general voxel traversal algorithm in bounded log-spherical
space representations.

The paper is organised as follows: section 1.1 and 1.2 detail the motivation
of this work and the current state-of-the art methods for gaze tracing; section 2
describes the proposed solution, formalizes it mathematically and presents the
tracing algorithm; section 3 shows gaze tracing working, the computational anal-
ysis and the final results when integrating the BVM with the traversal algorithm
in a real HRI scenario; finally, section 4 summarises the work.

1.1 Egocentric Representation and Gaze Tracing in Artificial
Attention

Regarding to attention, the information provided by the different sensors must
be subjected to a spatial correspondence [3]. For instance, a sound source should
be related with its potential origin location in order to make possible the cor-
respondent attention action [8]. In fact, in overt attention, where the scene is
partially observed and changes depending on the actions (e.g., head movements),
if we do not enable the machine to have an internal representation of the en-
vironment with temporal registration, its actions will become reactive for each
location and angles setup. Furthermore, when placing the machines in a social or
human interaction context, joint attention, a primal non-verbal communication
process driven by attention, should be fulfilled [3, 6]. This mechanism, where an
object or location of interest is shared just by engaging and deictic cues such
as gaze, seems to be the backdrop for many social cognitive skills in humans
[2]. For enabling this behaviour in machines, they must have their own spatial
representation of the environment to correlate the gaze cues with the potential
shared objects or locations. Therefore, any perception (e.g., visual, auditory,
etc.), should be related and integrated into a single egocentric reference. Recent
research works have introduced cluster [5] and spherical [13, 4] representations
of egocentric space to deal with these issues. In this work we will use the 3D
log-spherical representation proposed in [4] to codify the perceived environment.
The method is also valid when the saliency of the scene is modelled [8].

The gaze cue provides interesting information about intention and it is crucial
for social development [16, 3]. In humans’ social interaction, when an interlocutor
wants to share an object, he switches the focus of attention from the other’s face
towards the object. The other interlocutor starts a phase called gaze following
[12, 2] to search the object or location that it is being shared. Therefore, first
we need to estimate the interlocutor gaze direction and afterwards perform the
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gaze following until the object is discovered. Techniques to estimate and track
the gaze are out of the scope of this paper. Nevertheless, an overview of recent
approaches to infer gaze are described in [9]. For gaze following, apart from the
naive and deterministic solution of redirecting the robot head according to the
gaze vector, some developmental learning approaches have been researched [10].

1.2 Ray Tracing

Ray tracing in 3D has become very popular in games and simulators (e.g., Pow-
erVR Ray or NVIDIA Iray) for light rendering and in medicine for image recon-
struction [14, 15]. There are three key aspects for a good ray tracing algorithm:
the computational speed, the generality to multiple inputs and the implementa-
tion simplicity. On one hand, we can find in the literature two optimal algorithms
in the Cartesian space for different purposes. AmanatidesWoo’s algorithm [1] is
a general purpose method that computes the voxels that an arbitrary ray tra-
verse in a bounded region (box). This algorithm computes the initial intersection
point to speed up the computation. Siddon’s Algorithm [14] uses ray tracing to
optimize the reconstruction of medical images. Finally, Thibaudeau et al. [15] de-
veloped an algorithm that traces a ray using spherical or cylindrical coordinates.
It analyses each dimension of the 3D space separately (radial, and azimuthal and
elevation angles) and stores the entry and exit point of each voxel. Then the in-
tersection points of all dimensions are sorted and the repetitions are eliminated.

2 Gaze Tracing in Log-spherical Coordinates

We generalize and abstract the problem as depicted in Figure 2. The interlocutor
and the robot are represented by the green ball and the orange ball respectively.
The gaze direction is described by the dashed black line and the log-spherical
region is defined by the radius ρ and two angles (θ, φ). The gaze ray cuts through
the bounded region starting in the intersection (green cross) and traverses a set
of log-spherical voxels (represented in as red shapes in the figure) until it reaches
the exit point. Note that further voxels from the robot are bigger because of the
logarithm influence. Besides, ρmin defines the egocentric gap [4]. Whilst this is
the general case, the subject will usually be inside the spherical bounded region
and therefore, the ray starting point will correspond to the gaze initial location2.

2.1 Mathematical Formulation

We place the robot at the (0, 0, 0) in the Cartesian coordinate system and define
the perceptive space as a bounded spherical region by its radius ρ and azimuth

2 The gaze initial location is commonly placed at the sellion: the point of the deepest
depression of the nasal bones at the top of the nose.
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Fig. 2. Gaze tracing in a bounded log-spherical space partition. The region is compound
of discrete voxels constrained by the minimum and maximum values of ρ, θ and φ.

θ and elevation φ angle ranges.

ρmin ≤ ρ ≤ ρmax (1a)

θmin ≤ θ ≤ θmax (1b)

φmin ≤ φ ≤ φmax (1c)

The perceptive space of the robot is modelled by means of the BVM, an egocen-
tric and metric inference grid that encodes the spatial occupation of the envi-
ronment and its dynamics [4] as well as saliency [8]. The BVM space is defined
in the log-spherical coordinate systems as follows,

Y ≡]logbρmin; logbρmax]×]θmin; θmax]×]φmin;φmax] (2)

where the logarithmic base is,

b = aloga(ρmax−ρmin)/N ,∀a ∈ R (3)

and N is the number of partitions in ρ dimension. The BVM is finally discretised
into cells by defining the increment in the angles ∆θ and ∆φ. Therefore, cell is
indexed as Cijk and represents the occupancy probability in the interval [bi +
ρmin, b

i+1+ρmin]×[θ, θ+∆θ]×[φ, φ+∆φ]. Note that i represents dlogb(ρ−ρmin)e
(see Appendix). Furthermore, for a detailed explanation of the BVM see [4].

The gaze is represented as a ray expressed by the origin p0 = (x, y, z) ∈ R3

and the director vector v0. Thus, given the parameter t ∈ R+
0 gaze is described

by its Cartesian parametric equations,

y = p0 + tv0 (4)

The proposed method computes the collection of unique voxels traversed C =
{c1, . . . , cn} by the gaze ray inside the bounded region. With abuse of notation,
the collection expressed in BVM indexes, as a matrix, is C = {ci1j1k1 , . . . , cinjnkn}.
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2.2 Voxel Traversal Algorithm

Given an arbitrary gaze ray defined by Eq. (4) and the bounded region described
by Eq. (1), we propose Algorithm 1 to compute the set of traversed voxels C.
The algorithm guaranties that C contains no repetitions and all voxels are inside
the spherical region. First the logarithmic base is obtained using Eq. (3) and the
initial intersection point between the ray and the region is computed as explained
in section 2.3. Afterwards, we compute the next ray point using the default step.
If the next ray point does not match the next voxel (i.e., the difference of indexes
is not equal to 1) we apply binary search by reducing the step parameter dt to
the half or incrementing by the half depending if we have fallen sort or long. In
case of overshooting, when incrementing dt, in the next step we will arrive to
the same cell, thus the middle point of the segment is computed. Finally, the
new voxel found is added to the collection. The algorithm returns the collection
C when the next point computed is out of bounds.

Algorithm 1 Log-spherical Gaze Tracing Algorithm

Require: p0,v0 . Ray origin and director vector
Require: ρmin, ρmax, θmin, θmax, φmin, φmax . Region bounds
Require: N, defaultT . Number of partitions of radius and initial increment

1: C = ∅, dt = defaultT

2: b = e
ln (ρmax−ρmin)

N . Eq. (3)
3: t0 = initialT (p0, v0) . See section 2.3
4: while inside do . Eq. (1)
5: pxyz = p0 + t0v0

6: pijk = Cartesian2DiscreteLogSpherical(pxyz, b) . See Appendix
7: while ¬found do
8: t1 = t0 + dt
9: p′

xyz = p0 + t1v0

10: p′
ijk = Cartesian2DiscreteLogSpherical(p′

xyz, b)
11: ∆ = |pijk − p′

ijk|
12: if block then . overshoot or undershoot according to previous state
13: dt = 0.5(tprev + t1)− t0 . the middle point is selected
14: else if ∆i > 1 ∨∆j > 1 ∨∆k > 1 then
15: dt = 0.5dt
16: else if ∆i = 0 ∧∆j = 0 ∧∆k = 0 then
17: dt = 1.5dt
18: else
19: found = true, t0 = t1, dt = defaultT
20: C = C ∪ Cijk . Add new voxel to the set
21: end if
22: end while
23: end while
24: return C
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The complexity of the algorithm is in worst case O(n logm) due to the inner
loop that uses binary search. In practice the number of iterations m that binary
search is processed for each outer iteration is quite smaller than n and depends
on the defaultT parameter used. This means that the method theoretically is
faster than any optimal sorting algorithm, but again, in practice this approach
depends on the function Cartesian2DiscreteLogSpherical that transforms the
Cartesian point into the discrete log-spherical coordinates (i.e., BVM matrix
indexes). The algorithm is generalizable as it works for any kind of discrete
representation just by substituting the conversion function.

2.3 Computing the Initial Intersection Point

We can rewrite the spherical region defined by inequalities (1a),(1b),(1c) into
Cartesian coordinates by converting the spherical parameters (ρ, θ, φ) into the
Cartesian system following the equations defined in (8) (see appendix). The new
inequalities become:

ρmin ≤
√
x2 + y2 + z2 ≤ ρmax (5)

θmin ≤ arctan
(x
z

)
≤ θmax (6)

φmin ≤ arctan

(
y√

x2 + y2

)
≤ φmax (7)

Then we substitute x, y, and z with Eq. (4), and solve for t as it is detailed in the
appendix. The minimum t value that satisfies the equations defines unequivocally
the initial intersection point t0.

3 Results

3.1 Gaze tracing algorithm example

By means of a prepared example we show the algorithm functioning. The robot is
stationary at (0, 0, 0) and the gaze is defined by its initial point p0 = (0, 20, 20)
and its direction v0 = (−0.3,−0.01, 0). The bounded spherical region is con-
strained to: ρ ∈ (10, 80), θ ∈ (−180, 180) and φ ∈ (−90, 90). Figure 3(a) shows
in Cartesian coordinates the abstracted scene where the subject is gazing down
and left. Figure 3(b) shows the same scene in spherical coordinates (i.e., φ and
ρ plane). The dashed lines describe the separation between cells in the ρ axis
defined by bi + ρmin in the logarithmic space. We can see that the distance be-
tween the boundaries increase exponentially making closer regions to be more
fine grained. The output of the algorithm, the set of traversed voxels, is shown in
Fig. 3(c), where the indexes in all three dimensions are plotted as boxes. In this
presented sub region of the BVM matrix (i.e., discretised log-spherical structure)
we can see that as the ray goes further from the robot θ angle is increased re-
sulting in a j decrement. Note that the angles values are positive as they are the
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Fig. 3. Gaze tracing example. (a) Cartesian plot with a subject looking left and down;
(b) Gaze ray converted to spherical; (c) Output of the algorithm: set of traversed voxels
and their indexes in the BVM matrix; (d) Computed voxels transformed into Cartesian
space overlay figure (a). Note that we represent Cartesian units in decimeters.

indexes of the matrix. Finally Fig. 3(d) shows the voxels defined by the indexes
converted into the Cartesian coordinate system. The egocentric nature of the
log-spherical representation make the red trapezoids that represent the voxels
to face the robot location.

3.2 Computational Results

In order to analyse the computational complexity of the proposed algorithm
we compare it with two other state-of-the-art voxel traversal algorithms: Ama-
natidesWoo that works in the Cartesian space [1] and Thibaudeau that com-
putes the intersections in the spherical space [15]. The comparison is performed
by modifying the number of voxels that must be traversed. All implementations
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have been developed in Matlab and have been tested on an Intel Core i7-4700MQ
CPU computer with 8Gb of RAM. To reduce the noise due to tasks latency we
have run the algorithms 200 times for each number of voxels value.

Figure 4 shows the time comparison in ms of the three algorithms. We can
see that AmanatidesWoo wins but it is constrained to Cartesian configurations
that can exploit the mathematical properties of 3D rectangles. Although our
algorithm behaves similar to Thibaudeau in terms of time computation works
for log-spherical spaces, it is simpler and more generalizable. In contrast, our
algorithm requires experimental tuning of the defaulT parameter to minimize
the computation time. For the statistical analysis we have set it to 1.5531 metres.
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Fig. 4. Computational time comparison depending on the number of voxels traversed.

3.3 Integrating the Gaze tracing with the 3D occupancy
representation

We combine the gaze tracing proposed algorithm with the log-spherical occu-
pancy grid (BVM) to achieve our final goal that is to discern the potential objects
that the interlocutor is staring at. The BVM stores as a short-term memory the
probability of occupied regions. Thus, the gaze traversed voxels that intersects
the occupied ones are the locations of interest. We define the experimental set-
up, as depicted in Fig. 5(a), with a subject that enters in the field of view of the
robot and looks to an object placed on the table. The wanted voxels must sat-
isfy that are traversed by the gaze ray and are occupied. We define an occupied
voxel when its probability is higher than 0.6. The gaze tracing algorithm output
is shown in Fig. 5(c) and the final pursued intersected locations are plotted as
green trapezoids in Fig. 5(d). We can see that the voxels are correctly found on
the table.
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(a) Scene (b) BVM

(c) Gaze tracing (d) BVM-Gaze intersection

Fig. 5. Gaze trace combined with the BVM. (a) Robot camera; (b) Occupancy log-
spherical grid (red trapezoids) with the overlaid gaze ray (yellow line); (c) voxels tra-
versed by the gaze in the log-spherical space (yellow trapezoids); (d) Intersected voxels
between the gaze ray and the occupancy grid (green trapezoids). Note that the red
intensity determines the probability of a voxel being occupied and that the point cloud
is overlaid in blue in (b), (c) and (d).

4 Conclusion

The penetration of social robots in assisted living applications is slowly occur-
ring mostly due to the incapability of deploying machines with enough coherent
behaviour according to human expectations. The presented results have shown
how easy the proposed approach is integrated into an artificial attention sys-
tem in order to identify the potential objects of interest. Thus, this proposal,
as it allows to combine a social signal (gaze) and the short term-memory (ego-
centric representation of the environment and some stored important objects),
will enable machines to understand other’s attention based on his deictic gaze
fixations. Furthermore, it will help the robot to recognise where the interlocu-
tor is attending, improve subject’s gaze following and enhance reciprocity and
non-verbal social interplay.
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We have presented a fast voxel traversal algorithm for gaze tracing in dis-
cretised log-spherical bounded spaces that works in real time. Its worst case
complexity is O(n logm) and m depends on a parameter that can be experimen-
tally optimized. The comparison of other state-of-the-art algorithms shows that
the proposed approach, which is simple to implement, behaves as fast as them
but allowing generalization to any bounded discretised space configuration.

When representing the subject’s gaze with just one ray the uncertainty and
error associated with the gaze detection measurement is not taken into account.
For that purpose, we will extend the algorithm to compute a cone of rays, whose
parameters will model the gaze uncertainty. Moreover, we will look for optimized
implementations of the algorithm by including some of the nice properties of
[15]. The extended implementation of the algorithm will be embedded in a full
artificial attentional mechanism to evaluate if artificial systems can be improved
when enabling the attention skill [6].

5 Appendix

Conversion from Cartesian to spherical coordinates.

ρ =
√
x2 + y2 + z2 φ = arctan

(
y√

x2 + y2

)
θ = arctan

(x
z

)
(8)

Conversion from Cartesian to discretised log-spherical. Applying Eq. (8), and
the following equations, the discretised log-spherical indexes are found.

i = ceil(logb(ρ− ρmin)) j = floor(φ)− φmin + 1 k = floor(θ)− φmin + 1

Computing the initial intersection point. Substituting the ray equation (4) into
the inequalities presented in (5), (6) and (7) and solving for the parameter t we
obtain the first intersection point of the gaze ray with the bounded spherical
region.

tρ = − (x0vx + y0vy + z0vz)

v2xv2yv2z
∓

∓

√(
(x0vx + y0vy + z0vz)

v2xv2yv2z

)2

− x02 + y02 + z02 − ρmin2

v2xv2yv2z
(9a)

tφ = − (x0vx + z0vz − y0vy tan(ρ)2)

v2x + v2z − v2y tan(ρ)2
±

±

√
0.5(x0vx + z0 × vz − y0vy tan(ρ)2)

v2x + v2z − v2y tan(ρ)2

2

− x02 + z02 − y02 tan(ρ)2

v2x + v2z − v2y tan(ρ)2
(9b)

tθ =
x0 tan(θ)− z0
vz − vx tan(θ)

(9c)

Each resultant tρ, tφ, tθ will be the minimum value calculated using each
bound. The final t is computed by overlapping the intervals and extracting the
closest one to the gaze ray origin that satisfy the conditions.
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