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ABSTRACT
Service composition aims to search a composition plan of candidate
services that produces the optimal results with respect to multiple
and possibly con�icting Quality-of-Service (QoS) attributes, e.g.,
latency, throughput and cost. This leads to a multi-objective opti-
mization problem for which evolutionary algorithm is a promising
solution. In this paper, we investigate di�erent ways of injecting
knowledge about the problem into the Multi-Objective Evolution-
ary Algorithm (MOEA) by seeding. Speci�cally, we propose four
alternative seeding strategies to strengthen the quality of the initial
population for the MOEA to start working with. By using the real-
world WS-DREAM dataset, we conduced experimental evaluations
based on 9 di�erent work�ows of service composition problems
and several metrics. The results con�rm the e�ectiveness and e�-
ciency of those seeding strategies. We also observed that, unlike
the discoveries for other problem domains, the implication of the
number of seeds on the service composition problems is minimal,
for which we investigated and discussed the possible reasons.
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1 INTRODUCTION
Service Oriented Computing is a paradigm that allows software
application to be composed from di�erent, seamlessly connected
services deployed over the Internet according to a given work-
�ow [2]. Such a software application, namely service composition,
is the key to enable the rapid realization and integration of di�erent
functionalities that are required by the stakeholders.

However, there are often a large number of services to ful�ll
the same functional requirement, but come with di�erent levels on
some possibly con�icting non-functional Quality-of-Service (QoS)
attributes, e.g., latency, throughput and cost, thereby optimizing
and �nding the good service composition plans (solutions) and their
trade-o�s becomes a complex and challenging problem which is
known to be NP-hard [11][13][12]. For example, Amazon EC2 o�ers
di�erent services on operating systems, CPU options and backup
settings, etc, which has already resulted in around 16,991 possible
service composition plans that lead to diverse overall QoS [11]. The
problem becomes even more di�cult to solve when considering a
market of services, where di�erent parties (e.g., Amazon, Google
etc) provide di�erent services for the same set of functionalities.

Search-Based Software Engineering (SBSE) techniques, e.g., evo-
lutionary algorithms, have been successfully applied to optimize dif-
ferent software engineering problems [10][6][8][5], including ser-
vice composition [3][11][13][16]. Such a population-based searcher
has been recognized as a convenient approach to deal with multi-
objective problems (termed as Multi-Objective Evolutionary Al-
gorithms, MOEAs) as it returns a set of composition plans, each
of which achieves di�erent trade-o�s on all the concerned QoS
attributes [11]. However, when used to deal with multiobjective
problems, MOEAs typically work on a set of randomly-generated
initial candidate solutions (i.e., composition plans here), despite it is
commonly believed that leveraging the information and knowledge
of the problem for the initialization can considerably improve the
algorithms’ performance [8][10].

In this paper, we propose four alternative seeding strategies,
aiming to strengthen the search-based optimization for service
composition by injecting knowledge of the problem into MOEAs.
Those strategies were designed to prepare a set of high quality
seeds as part of the initial population for a MOEA to start working
with. In particular, our contributions include:

— We proposed two seeding strategies, namely AO-Seed and SO-
Seed, that rely on di�erent forms of pre-optimization to obtain
knowledge about the problem: the former assumes weighted
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sum aggregation of the objectives to obtain the seed while the
latter focuses on single objective optimization for �nding the
best of each concerned QoS attribute as the seeds.

— We proposed another two seeding strategies named H-Seed
and R-Seed that exploit the readily optimized composition
plans for historical and similar service composition problems as
the knowledge, i.e., those have the same work�ow but di�erent
sets of candidate concrete services. In particular, H-Seed uses
non-dominated sorting on historical composition plans and
the seeds are selected from the top ranked front(s) (i.e., from
the non-dominated front). R-Seed simply selects the historical
composition plans in a random manner.

— Based on the real-world WS-DREAM dataset [18], we con-
ducted extensive experiments on 9 work�ows of service com-
position problem with di�erent work�ow structures and the
number of possible services. The results show that, when com-
pared with the classic approach where no seed is used, all pro-
posed seeding strategies help to produce better composition
plans, and the overall QoS of service composition is improved
quicker throughout the evolution. However, unlike other work
on seeding for software testing [8][14] in which the number
of seeds were found to be an important parameter, we did not
observe signi�cant distinction on the impact of di�erent num-
bers of seeds to the overall QoS for the service composition
problem, i.e., as long as there is good seed to start working
with, how many seeds is less important. We then discovered
the reason behind this is due to only the composition plans
that are the descendants of the seeds can survive in the �nal
solution set. Finally, the experiments reveal ignorable running
time caused by the seeding strategies.

The paper is organized as the follows: Section 2 formally de-
scribes the service composition problem and presents the research
questions. Section 3 discusses the seeded MOEA and the proposed
seeding strategies in details. Section 4 presents the experimental
evaluations. Section 5, 6 and 7 discusses the threats to validity, the
related work and concludes the paper, respectively.

2 PROBLEM FORMULATION
The fundamental of service computing lies in the fact that a service-
oriented system can be composed from a set of seamless services,
each bringing di�erent QoS values. The ultimate goal is to opti-
mize di�erent, and possibly con�icting QoS attributes for the entire
service work�ow. An example has been shown in Figure 1, where
there is often a prede�ned work�ow containing a set of abstract ser-
vices, denoted as A = {a1,a2 · · · ,an }, and the connectors between
them (e.g., sequence or parallel). Each of the abstract service can be
realized by a concrete service, selected from a set of functionally
equivalent ones, each of which comes with di�erent QoS values.
Such a set of candidate concrete services of an abstract service
an is denoted as Cn = {cn1, cn2 · · · , cnm }. The work�ow and the
related candidate concrete services of each abstract service can be
usually provided by existing service brokers and the service dis-
covery approaches [11][13], respectively. Intuitively, our goal is to
select the optimal (or near-optimal) composition plans of concrete
services, e.g., P = {c13, c25 · · · , cn2}, that achieves the best of each
QoS attribute. Formally, the service composition problem can be
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Figure 1: Example work�ow of the service composition
problem.

expressed as:

argmaxor argmin f1 (P), f2 (P) · · · , fk (P) (1)

Given
• A prede�ned work�ow of abstract services A = {a1,a2 · · ·an }
and their connectors.
• All the candidate concrete services for each of the abstract
services C = {(c11, c12 · · · , c1m1 ), (c21, c22 · · · , c2m2 ) · · · ,
(cn1, cn2 · · · cnmn )}.
• A set of �tness functions (i.e., f1, f2, · · · , fk ) for evaluating all
the QoS attributes of the service composition1, which we will
elaborate in details in Section 4.2.

It is easy to see that the problem can be reduced to a multi-objective,
combinatorial optimization problem which, depending on the num-
ber of combinations (i.e., the number of abstract services and the re-
lated concrete services), is likely to be computationally intractable.
This means it could be unrealistic to use an exact optimization
solver (e.g., linear programming solver) and thereby urges the use
of SBSE techniques in which metaheuristics, such as evolutionary
algorithms, play a central role.

In this work, we are particularly interested in understanding the
e�ectiveness of various ways to ’plant seeds’ in the MOEA for the
service composition problem. Speci�cally, we aim to investigate
the following research questions:
• RQ1: Whether all or any of the proposed seeding strategies
help to improve the overall QoS of the service composition?
• RQ2: Does it matter how many seeds to create with respect
to the overall QoS of the service composition? What are the
reasons for the observations?
• RQ3: What is the extra execution time imposed by seeding?

3 SEEDED MOEA FOR OPTIMIZING SERVICE
COMPOSITION

Seeded MOEA for service composition operates similarly to the
classic MOEAs, but the initial population additionally contain some
selected ’seeds of composition plan’, representing some prior knowl-
edge of the problem to in�uence the evolutionary search. In the
following, we explain the encoding, the reproduction operators
and the four alternative seeding strategies proposed. Note that we
1In this work, we consider latency, throughput and cost as the objectives; however,
more objectives can be easily appended.
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Figure 2: Encoding of the service composition.

have omitted the discussion of mating and environmental selection,
as they are often problem agnostic and algorithm dependent (e.g.,
dominance-based comparison in NSGA-II [7]).

3.1 Gene Encoding
To solve the service composition problem using MOEAs, one would
need to transpose the composition plan into the chromosome rep-
resentation, a thread-like encoding, to represent the individual in
MOEAs. As shown in Figure 2, the encoding regards each gene as
an abstract services, each of which is associated with its set of can-
didate concrete services. Thus, the value of a gene represents which
concrete service (its index) has been selected for the corresponding
abstract service.

3.2 Reproduction operators
In this work, mutation and crossover operators are both applied to
change the individuals (composition plans). As shown in Figure 3a,
we follow the uniform crossover, where two genes, each of which
from a di�erent parent and both are at the same position in the
chromosome, might be swapped subject to a crossover rate. The
uniform crossover operator was chosen because di�erent genes (ab-
stract services) may have di�erent numbers of candidate concrete
services, and thereby such crossover operator helps to eliminate
the risk that an abstract service selects an invalid concrete service.

For mutation operator (Figure 3b), we follow boundary mutation
where the value of a gene can be randomly selected from the related
set of candidate concrete services, subject to a mutation rate.

3.3 Seeding Strategies
Seeding the MOEAs has been proven to be an a�ective way to
improve the algorithms in other SBSE domains, e.g., Software Test-
ing [8] and Software Product Line [10]. In this section, we proposed
four alternative seeding strategies for the problem of service com-
position. These seeding strategies are explained as below.

3.3.1 Pre-optimization based seeding. Two seeding strategies,
i.e., AO-Seed and SO-Seed, generate seeds using pre-optimization
based on di�erent perspectives. The reason for this is because there
are readily available approaches for service composition by opti-
mizing a single objective or a weight sum aggregation of multiple
objectives [17][1][4][3].

—AO-Seed: As in Figure 4, the seed here is generated by per-
forming an aggregated, single objective optimization based on ap-
proaches from the literature. It is known that those approaches do
not generate well-diversi�ed composition plans in contrast to the
multi-objective perspective we follow in this work [13]. However,
the single composition plan resulted from those readily available
approaches may serve as useful seed to initialize an multi-objective
optimization process, as they express certain preferences to the
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Figure 3: The reproduction operators.
objectives. In general, any optimization algorithms can be applied
to �nd the seeds, but in this work, we applied a single-objective
genetic algorithm considering the large search space of the problem.
To ensure fairness on the objectives, we have used equal weights.

—SO-Seed: similar to AO-Seed, the seed here is produced by
conducting single objective optimization, as in Figure 4. However,
instead of using a weight sum aggregation, each time, we used a
single objective as the sole optimization target. As a result, this
strategy would always generate n seeds where n equals to the num-
ber of objectives. The intention behind this is that, when initializing
a multi-objective optimization process, the strong bias toward each
single objective may help to �nd emergent and good composition
plans that would otherwise di�cult to identify. Here, again, we
have used single-objective genetic algorithm for each objective.

It is worth noting that for AO-Seed and SO-Seed, the same seed(s)
is copied to �ll the required number of seeds. In particular, for
SO-Seed, the number of copies for the best composition plan of
each objective needs to be the same, e.g., suppose there are three
objectives and there are total of 50 seeds needed, then the number
of seed is reduced to 48 because it is only possible to have at most
16 copies of the best composition plan for each objective.

3.3.2 History based seeding. Two seeding strategies, i.e., H-Seed
and R-Seed, generate seeds using the readily available historical
composition plans that were optimized for similar problems. The
assumption is that very often, there are composition plans available
for historically similar service composition problem(s), i.e., those
with (marginally) di�erent sets of candidate concrete services but
the same work�ow. The historical composition plans can be re-
evaluated and used as seeds for the current problem. The reason
is obvious as the same set of plans that have been optimized for a
problem is also very likely to be helpful for another similar problem.

—H-Seed: As in Figure 4, in this strategy, there is no need for
extra optimization run. Here, suppose there are m historical com-
position plans extracted from a historically similar problem, we
perform non-dominated sorting to them under the current problem,
and randomly select n non-dominated plans as the seeds (we need
n seeds). Note that it is not uncommon thatm > n. If the number
of non-dominated plans is less than n, we then repeat the same
process to the next front (i.e., the ones that being dominated by 1
other plan) till the n seeds have been identi�ed.

—R-Seed: As in Figure 4, this is similar to H-Seed in the sense
that it relies on historical composition plan without extra optimiza-
tion run. However, instead of using non-dominated sorting, we
randomly select n historical composition plans to re-evaluate and
use them as seeds for the current problem.

The similarity between the current problem and a historical one
with the same work�ow can be measured by using d

t , where d is
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Figure 4: The proposed alternative seeding strategies.

the number of di�erent concrete services and t is the total number
of concrete services. Of course, such similarity can in�uence the
quality of seeds for H-Seed and R-Seed. We believe that in the real
world scenarios, one can easily �nd large amount of data from
which some very similar composition problems can be identi�ed.
The problem(s) with the largest similarity to the current problem is
the one(s) that we are seeking.

In H-Seed and R-Seed, we presume that the number of available
historical composition plans is at least equal to the number of
required seeds, thus the seeds in the initial population do not need to
be copied as they are selected from the historical composition plans
(unless the historical set includes redundant plans). It is important to
ensure the historical composition plans are still valid if the selected
concrete service is no longer available. For instance, suppose an
abstract service in the historical composition plan selects a concrete
service; but if in the current problem, such a selected concrete
service is no longer available, we then change that selection to a
random one within the new set of candidate concrete services.

3.3.3 MOEA without seeding. We use the following to denote
the baseline approach:

—NONE: This is the classic MOEA that runs without seeding, it
serves as a baseline to reason about whether seeding strategies can
improve the overall QoS of the services composition.

The number of seeds to be placed in the initial population of
MOEA is another factor to investigate [14]. In this work, we have
evaluated all the four seeding strategies under di�erent number of
required seeds (see Section 4.4).

4 EVALUATION
To answer the research questions in Section 2, we conducted a set
of experiments2 based on the real-world dataset WS-DREAM [18].
Such a dataset contains realistic latency and throughput recorded
for 5,000 services, which can be used as the basic QoS values for the
concrete services. To enrich the con�icts of objectives, we simulate
the third objective, namely cost, in such a way that a concrete
service with better throughput/latency would always have higher
cost, following a normal distribution.

2The source code and experimental results can be accessed at:
https://github.com/taochen/ssase#seeding-seeding-the-search-based-multi-
objective-sas

4.1 Metrics
To assess the overall QoS of service composition, we apply a variety
of metrics to evaluate the seeding strategies presented in Section 3.3:

• QoS value of each attribute: we report on the individual
raw value of the latency, throughput and cost in the service
composition over all repeated runs.
• Hypervolumn (HV) [19]:we illustrate themeanHV achieved
by each of the considered approaches over all repeated runs.
HV measures the volume enclosed by a solution set and a
speci�ed reference point and can provide a combined qual-
ity of convergence and diversity. HV is arguably the most
popular metric in multiobjective optimization, thanks to its
desirable theoretical properties (e.g., strictly compatible with
Pareto dominance) and usability (e.g., no need of a reference
set that represents the Pareto optimal front). In addition, HV
tends to be more appropriate than the other metrics when the
preferences over di�erent objectives are unclear [9]. Formally,
given a solution set S ✓ Rm and a reference point r 2 Rm , HV
can be de�ned as:

HV (S, r ) = �(
[

s 2S
{x |s � x � r }) (2)

where m is the number of objectives and r is the reference
point, which is set as the approximate nadir point represented
by a vector of the worst values found for all the objectives; ‘�’
denotes ‘to Pareto dominate’, and � denotes the Lebesgue mea-
sure. A high HV value is preferable, re�ecting the set having
good comprehensive quality. Note that HV is normalized using
the maximum and minimum value of each objective found.
• Execution time: we will also examine the mean execution
time incurred by the seeding strategies for all repeated runs.

4.2 Experiment Setup
We randomly generate 9 di�erent work�ows consist of diverse mix-
ture of parallel and sequential connectors, each of which represents
di�erent instances of the service composition problem. The total
number of abstract services are 5 (Work�ow 1-3), 10 (Work�ow 4-6)
and 15 (Work�ow 7-9). Each abstract service can select one from its
set of candidate concrete services with di�erent QoS values on la-
tency, throughput and cost. The total number of candidate concrete
services for each abstract service is also di�erent: ranging from 86
to 123. Those concrete services and their QoS values are randomly
chosen from the WS-Dream dataset. The setup gives problems with
di�erent search space: between 1.1⇥ 1010 and 3⇥ 1030 composition
plans, which makes exact optimization unrealistic. Depending on
the connectors, the objective functions that are used to calculate the
overall QoS of the entire work�ow are shown in Table 1. Those func-
tions are widely adopted in the literature [17][1][4][11][13], which
have been serving as standard formulas for calculating the overall
QoS of service composition in the service computing community.

We have used NSGA-II [7] as the underlying MOEA for our
evaluation, because it is regarded as one of the most popular algo-
rithms in the SBSE community. The parameters of NSGA-II were
tailored to our service composition problems studied. In particular,
the population size is 100 with 50 generations, which is su�cient to



Table 1: The objective functions for service composition (an
refers to the nth abstract service; A is the set of abstract
services in the work�ow; Lan , Tan and Can denote the corre-
sponding QoS values of the chosen concrete service for an )

QoS A�ribute Parallel Sequence
Latency (L) Max Lan , an 2 A

P
anLan , an 2 A

Throughput (T) Min Tan , an 2 A Min Tan , an 2 A
Cost (C)

P
anCan , an 2 A

P
anCan , an 2 A

stabilize the search process, i.e., using more population and genera-
tions cannot provide signi�cant improvements on the quality of the
�nal solution set. The mutation rate and crossover rate are 0.1 and
0.9, respectively, which are the most commonly used values from
the literature. The same setups are used for the single-objective
genetic algorithm in the pre-optimization of AO-Seed and SO-Seed.

For H-Seed and R-Seed, the historically similar service compo-
sition problems were emulated by changing 10% of the concrete
services of the current problem. Those historical problems are as-
sumed to have been optimized by NSGA-II without seeding. The
number of available historical composition plan is set to 100. This
setup has been found to be a reasonable balance between the simi-
larity and di�erence of the historical and current problems.

On all metrics, we repeat the experiment for 30 runs and report
on the mean values. Wilcoxon Signed-Rank test has been applied to
validate the statistical signi�cance for each pair of the comparisons.

4.3 The Performance of Seeding
We �rstly assess if any of the seeding strategies can outperform the
classic NSGA-II without seeds. To this end, we �xed the number of
seeds as 50% of the initial population size, i.e., 50. This is because as
stated in previous SBSE work on seeding for other problems [14],
seeding half of the population tends to be the best practice. The
average results of the �nal solution set over 30 runs are reported.

4.3.1 The Overall Results. As we can see from Table 2, when
comparing the mean value of each single objective, the seeding
strategies yield the best for 21 out of 27 cases3. The 6 cases where
NONE performs the best are the results of a signi�cantly bad value
of the third objective (i.e., cost). As for the di�erent seeding strate-
gies, we see that AO-Seed and SO-Seed often result in a strong
bias towards some objectives, mostly the latency and throughput.
While the H-Seed and R-Seed are relatively more balanced. This is
inline with the fact that AO-Seed and SO-Seed are seeded by seeds
that were optimized by single/aggregated objective, but H-Seed and
R-Seed are based on seeds from the multi-objective optimization of
similar problems.

The improvements achieved by seeding strategies are more ob-
vious when focusing on the mean HV values, which represent an
overall convergence and diversity of the �nal solution set. We note
that the seeding strategies outperform NONE across all the cases,
particularly forWork�ow 4-9 when the problem is more complex
due to the increment on the number of abstract services. We can
also see that AO-Seed tends to have the best HV when the number
of abstract services is more than 5, i.e.,Work�ow 4-9. Such obser-
vations imply that the possible true Pareto front for most of the
3Total 9 work�ows, 3 di�erent objectives each

Table 2: The mean latency (s), throughput (request per sec-
ond), cost ($) andHV of the �nal solution set for 30 runs (the
best is highlighted)

AO-Seed SO-Seed H-Seed SO-Seed NONE

W
or
k�

ow
1 Latency 10.936 4.361 1.455 1.479 1.661

Throughput 0.085 0.184 0.380 0.373 0.345
Cost 21.965 33.984 39.411 39.184 40.452
HV 9.744E-01 9.744E-01 9.745E-01 9.746E-01 9.710E-01

W
or
k�

ow
2 Latency 0.842 1.161 0.850 0.853 0.790

Throughput 0.413 0.300 0.410 0.408 0.440
Cost 31.921 29.384 31.970 31.900 34.464
HV 9.575E-01 9.575E-01 9.576E-01 9.576E-01 9.545E-01

W
or
k�

ow
3 Latency 3.040 3.138 3.163 3.124 2.579

Throughput 0.603 0.582 0.572 0.579 0.740
Cost 47.629 47.116 47.061 48.003 53.292
HV 9.770E-01 9.771E-01 9.771E-01 9.770E-01 9.729E-01

W
or
k�

ow
4 Latency 1.614 1.616 1.559 1.528 1.319

Throughput 0.353 0.351 0.367 0.366 0.416
Cost 47.240 50.046 48.827 48.800 66.347
HV 9.994E-01 9.966E-01 9.970E-01 9.968E-01 9.715E-01

W
or
k�

ow
5 Latency 2.508 2.532 2.270 2.483 2.509

Throughput 0.762 0.772 0.845 0.768 0.739
Cost 59.648 61.978 69.052 67.538 81.105
HV 9.819E-01 9.802E-01 9.725E-01 9.726E-01 9.572E-01

W
or
k�

ow
6 Latency 1.013 0.903 0.776 0.808 0.956

Throughput 1.430 1.669 1.948 1.814 1.489
Cost 70.034 72.410 87.939 90.190 96.836
HV 9.955E-01 9.951E-01 9.837E-01 9.861E-01 9.736E-01

W
or
k�

ow
7 Latency 1.415 1.754 1.386 1.184 1.518

Throughput 0.412 0.358 0.405 0.464 0.396
Cost 71.575 83.497 80.576 84.024 129.797
HV 9.924E-01 9.836E-01 9.832E-01 9.818E-01 9.354E-01

W
or
k�

ow
8 Latency 1.284 1.027 1.559 1.084 2.201

Throughput 0.523 0.659 0.425 0.592 0.304
Cost 101.590 110.680 114.854 118.525 159.150
HV 9.799E-01 9.762E-01 9.658E-01 9.691E-01 9.219E-01

W
or
k�

ow
9 Latency 3.546 3.698 3.811 3.733 3.913

Throughput 0.103 0.100 0.098 0.098 0.100
Cost 94.213 99.808 95.136 96.932 138.321
HV 9.918E-01 9.885E-01 9.901E-01 9.902E-01 9.626E-01

problems are likely to be convex, and therefore when seeding the
MOEAwith equal weight (as in AO-Seed), the seeds can better steer
the search into regions close to such convex surface.

For all metrics, the Wilcoxon Signed-Rank test have revealed
statistical signi�cance (p < 0.05) for all comparisons between a
seeding strategy and NONE. However, the comparison between
seeding strategies exhibit di�erent levels of signi�cance: they are
often not statistically di�erent in simpler problem, i.e.,Work�ow
1-3, but more of their comparisons become statistically signi�cant
for complex ones i.e., Work�ow 4-9.

4.3.2 Changes During Evolution. Next, we take a closer look on
how the mean HV values change with respect to the number of
function evaluation as the search evolves. To this end, we report on
the mean HV of the populations for each 500 function evaluation
over 30 runs. Here, we present 3 selected work�ows due to space
constraint, but we observed similar results on all other work�ows.

As we can see from Figure 5, all the seeding strategies have
reached better HV values than that of the NONE throughout the
evolution. In general, the HV of the initial population on H-Seed
and R-Seed have been signi�cantly better than the others for all
cases. This is because the NONE relies on random initial plans
while the AO-Seed and SO-Seed have limited diversity due to the
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Figure 5: The changes of mean HV (30 runs) with respect to the number of evaluations on 3 selected work�ows.
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Figure 6: The changes of mean HV (30 runs) with respect to the number of seeds on 3 selected work�ows.

fact that the same seed(s) are copied. However, the AO-Seed and
SO-Seed are able to improve their mean HV values very quickly
once the diversity has been improved, and thereby all the seeding
strategies have obtained similar HV after the initial generations,
e.g., after 1,000 evaluations. In particular, the AO-Seed and SO-Seed
outperform H-Seed and R-Seed for the case of 10 abstract services.
Further, for the cases of 10 and 15 abstract services, AO-Seed tends
to be better than the other strategies after 1,000 evaluations.

Overall, to answer RQ1, in contrast to NONE, all seeding
strategies help to improve the overall QoS of service composi-
tion, not only for individual objective value, but also for the
overall HV of the �nal solution set. They also help to create
steady and better improvement along the evolution process.

4.4 The Impact of the Number of Seeds
In this section, we analyze how the number of seeds can impact the
overall QoS of service composition optimization. To this end, we
run the seeding strategies using di�erent number of seeds, these
are 10, 30, 50, 70 and 90, each of which were run 30 times and
the overall QoS of �nal solution sets (mean HV) are assessed. Due
to space constraint, we present 3 selected work�ows, but similar
observations have been made on all work�ows.

As we can see from Figure 6, surprisingly, we did not observe
signi�cant implications of the number of seeds to the HV of the �nal

solution set for di�erent work�ows in general. This has also been
con�rmed by the fact that the statistical tests have failed (p � 0.05)
when comparing the HV using di�erent number of seeds. The only
exception is the presentedWork�ow 6 where for both H-Seed and
R-Seed, the di�erence between 10 seeds and 90 seeds is statistically
signi�cant.

To further investigate the reason behind the above observations,
we examined how many composition plans that were evolved from
seeds in the �nal solution set (i.e., at least one of their ascendants is
a seed) when changing the number of seeds. For all the work�ows,
Figure 7 shows the maximum number of evaluations required in
order to evolve a population which contains only the composition
plans that are descendants of the seeds. We can clearly see that
all seeding strategies, with number of seeds from 10 to 90, have
eliminated all other randomly initialized composition plans in the
population within less than 900 evaluations. In other words, all the
composition plans in the �nal solution set are evolved from the
seeds. This �nding explains why the implication of the number of
seeds has been insigni�cant: because following the natural evolu-
tion and environmental selection in MOEAs, it does not matter how
many seeds were put into the initial population, as the seeds and
their descendants would survive during the evolution and dominate
the entire population anyway. As the speci�c exception of H-Seed
and R-Seed on Work�ow 6 when comparing 10 seeds and 90 seeds,
we believe this is due to two reasons: (i) the randomness introduced
by the stochastic nature of MOEAs under the particular instance
of service composition problem; (ii) there are chances that very
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Figure 7: Themaximumnumber of function evaluations (on
all work�ows and 30 runs) for the population contains only
the composition plans that are descendants of the seeds.

di�erent seeds exist in the historical composition plans and thus
when comparing the cases of 10 and 90 seeds, the results could be
quite di�erent. Yet, this is only observed onWork�ow 6.

In summary, to answer RQ2, we did not observe signi�cant
implication of the number of seeds to the optimization quality
on the 9 service composition problems studied. The result is
due to the fact that the seeds can e�ectively steer the evolu-
tionary search, causing the �nal solution set contains only the
composition plans that are evolved from those seeds. However,
this observation cannot rule out the role of non-seed individu-
als (i.e., randomly initialized composition plans), as they may
help to produce promising o�spring in conjunction with the
seeds in the crossover operation.

4.5 Seeding Overhead
The seeding strategies could impose extra running time overhead
due to the prerequisite optimization process and the selection of
the historical composition plans. In particular, the overhead of AO-
Seed and SO-Seed is sensitive to the number of function evaluation
in the pre-optimization while that of H-Seed and R-Seed can be
in�uenced by the number of historical composition plans.

Figure 8 shows the extra running time overhead of seeding with
respect to function evaluation and the number of historical com-
position plans. Due to space limits, we illustrate only the case for
Work�ow 9, but similar observations have been made for the other
work�ows. As we can see, SO-Seed has bigger overhead than AO-
Seed because the former needs to run optimization for each of the
concerned objectives; while the latter aggregates all objectives to-
gether. For H-Seed, the extra overhead increases exponentially as
the number of historical composition plans increase. In contrast,
the overhead of R-Seed remains una�ected. This is because the
non-dominated sorting in H-Seed needs to rank all the historical
composition plans while R-Seed only rely on random selection.
However, it is clear that the extra overhead caused by the seeding
strategies is less than 700ms with up to 30,000 function evaluations
and 3,000 historical composition plans. As such, the overhead is neg-
ligible considering the large search space of the service composition
problems. Further, as we have shown, for the studied composition
problems, the seeding strategies only require 5,000 function evalua-
tion and 100 historical composition plans to signi�cantly improve
the overall QoS of service composition than the case of no seeds.
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Figure 8: The mean running time of seeding (30 runs) with
respect to function evaluation and the number of historical
composition plans (Workflow 9).

Overall, to answer RQ3, the running overhead imposed by the
seeding strategies are negligible, especially considering the
search space of the service composition problems.

5 THREATS TO VALIDITY
Construct threads can be introduced by the stochastic nature of
MOEA, which may create bias to the metrics used. To mitigate such
bias, we have repeat the optimization run for each work�ow 30
times. Statistical signi�cant test is also used to further validate the
meaningfulness of the results.

Internal threats may arise from the settings used in MOEA. In
this work, the parameters are set as either commonly used values
or carefully tailored such that it produces good trade-o� between
the quality of optimization and the overhead.

External threats are linked to the selected benchmark setup, the
experimental data and the particular MOEA studied. In the experi-
ments, we have relied on the real-world WS-DREAM dataset, based
onwhichwe extracted data to form 9 distinct work�ows. Indeed, the
fact that only NSGA-II and three quality objectives are considered
may lead to this threat; however, we would rather regard this work
as the �rst step to validate the e�ect of seeding for search-based
multi-objective service composition, after which we will extend it
towards diverse quality objectives and other MOEAs.

6 RELATEDWORK
The service composition problem has been traditionally rendered
as single-objective optimization where only one QoS attribute is
considered or multiple QoS attributes are aggregated together.

Among the exact single-objective optimization approaches, lin-
ear programming algorithm and its variants are the most widely
studied one on the service composition problem [17][1][4]. Those
approaches were designed to �nd single optimal composition plan
for problems with small number of candidate concrete services.
However, they su�er two major limitations: (i) they are not scalable
and can incur high computational overhead when the search space
becomes large, which is common for modem service systems. (ii)
They rely on aggregation of objectives which cannot properly re-
veal the trade-o� of the problems and it is often di�cult to correctly
weight the aggregation. In contrast, Canfora et al. [3] apply single-
objective genetic algorithm to solve the problem. Such approach



is capable to �nd optimal (or near-optimal) solution for problem
with large search space. However, it solves the scalability issue but
remain a�ected by the unwise aggregation of objectives.

More recently, service composition has been rendered and ad-
dressed as amulti-objective optimization problem, which often have
multiple con�icting QoS attributes. Existing e�orts have been fo-
cusing on designing and extending MOEAs or other meta-heuristic
algorithms to search composition plans in particular regions of the
objective space or of speci�c distribution. For example, Wada et
al. [13] have proposed two variants of the NSGA-II by extending
its environmental selection phase: one for searching composition
plans that are uniformly distributed and another for �nding those
that are close to a set of given QoS requirements. Yin et al. [15]
have also used an extended multi-objective version of the Particle
Swarm Optimization (PSO) to �nd diverse composition plans.

Another direction of e�orts is about scaling the number of ob-
jectives, i.e., optimizing service composition with more than three
QoS attributes. Trummer et al. [12] investigate the ability of PSO on
optimizing service composition with 5 con�icting QoS attributes.
Similarly, Yu et al. [16] extend NSGA-II, namely F-MGOP, to handle
4 QoS attributes. Those approaches have been speci�cally tailored
to handle a high number of objectives. Ramírez et al. [11] have
compared 7 MOEAs for optimizing up to 9 QoS attributes. Their
study reveals that most of the algorithms have little sensitivity to
the problem structure, i.e., the work�ow.

Seeding strategies for SBSE problems was initially applied for
Software Testing [8] and Software Product Line [10] domain. How-
ever, those approaches have heavily relied on the nature of the
problem and thus cannot be compared with ours directly in the
context of service composition. For example, in search-based soft-
ware testing [8], one of the seeding strategies is to seed existing
constant values of the code into the newly generated test cases.

Overall, existing work on service composition has focused on
the algorithm level and has not considered seeding, a perhaps obvi-
ous but surprisingly ignored way to improve service composition
optimization when using MOEAs. This paper is the �rst to propose,
investigate and discuss about the e�ectiveness of di�erent seeding
strategies for the problem of service composition. Although we
have used NSGA-II in the experiments, those seeding strategies
are independent to the speci�c MOEA, as they are designed for
generically improving the quality of the initial population.

7 CONCLUSION
Service composition would continuous to be an important and chal-
lenging problems due to the large variety of available candidate
services. This paper is the �rst to investigate the e�ects of four pro-
posed seeding strategies, which provide knowledge of the problem
to consolidate the MOEA for optimizing service composition. A
wide range of experimental results con�rm that all the four seeding
strategies can help to improve the overall QoS of service composi-
tion better and quicker with negligible running overhead. Further,
unlike the discoveries for other problem domains [8][14], we did
not observed signi�cant implication of the number of seed on the
overall QoS of service composition, because only the composition
plans evolved from the seeds can survive in the �nal solution set.

In future work, we plan to improve the seeding strategies by
systematically combining more complex knowledge represented in
software engineering notations, e.g., the Goal Model. We will also
study the case of more than three QoS attributes, in which seeding
is expected to be more important as the objective space enlarges.
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