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ABSTRACT
In recent years, the increasing propagation of hate speech on social
media and the urgent need for effective counter-measures have
drawn significant investment from governments, companies, as
well as empirical research. Despite a large number of emerging sci-
entific studies to address the problem, existing methods are limited
in several ways, such as the lack of comparative evaluations which
makes it difficult to assess the contribution of individual works. This
paper introduces a new method based on a deep neural network
combining convolutional and long short term memory networks,
and conducts an extensive evaluation of the method against several
baselines and state of the art on the largest collection of publicly
available datasets to date. We show that our proposed method out-
performs state of the art on 6 out of 7 datasets by between 0.2 and
13.8 points in F1. We also carry out further analysis using automatic
feature selection to understand the impact of the conventional man-
ual feature engineering process that distinguishes most methods
in this field. Our findings challenge the existing perception of the
importance of feature engineering, as we show that: the automatic
feature selection algorithm drastically reduces the original feature
space by over 90% and selects predominantly generic features from
datasets; nevertheless, machine learning algorithms perform better
using automatically selected features than the original features.
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1 INTRODUCTION
The exponential growth of social media such as Twitter and com-
munity forums has revolutionised communication and content
publishing, but is also increasingly exploited for the propagation of
hate speech and the organisation of hate based activities [2, 3]. The
anonymity andmobility afforded by suchmedia has made the breed-
ing and spread of hate speech - eventually leading to hate crime -
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effortless in a virtual landscape beyond the realms of traditional
law enforcement.

The term ‘hate speech’ was formally defined as ‘any communi-
cation that disparages a person or a group on the basis of some
characteristic such as race, color, ethnicity, gender, sexual orienta-
tion, nationality, religion, or other characteristic’ [23]. In the UK,
there has been significant increase of hate speech towards the mi-
grant and Muslim communities following recent events including
leaving the EU, the murder of MP Jo Cox (in which case there was a
surge of conversations chanting the murderer as ‘hero’ on Twitter
[1]), the Manchester and the London attacks [13]. This correlates
to record spikes of hate crimes [25, 34], and cases of threats to
public safety due to its nature of inciting hate crimes, such as that
followed the Finsbury van attack [21]. In the EU, surveys and re-
ports focusing on young people in the EEA region show rising hate
speech and related crime based on religious beliefs, ethnicity, sexual
orientation or gender, as 80% of respondents have encountered hate
speech online and 40% felt attacked or threatened [20]. Statistics
also show that in the US, hate speech and crime is on the rise since
the Trump election [24].

For years, social media companies such as Twitter, Facebook,
and YouTube have been combating this issue [14, 18], and it has
been estimated that hundreds of millions of euros are invested ev-
ery year on counter-measures including manpower [10]. However,
they are still being criticised for not doing enough. This is largely
because such measures involve manually reviewing online contents
to identify and delete offensive materials. The process is labour in-
tensive, time consuming, and not sustainable or scalable in reality
[4, 10, 34].

The pressing need for scalable, automatedmethods of hate speech
detection has attracted increasing research from both the Natural
Language Processing (NLP) and Machine Learning (ML) commu-
nities in the last few years. State of the art primarily casts the
problem as a supervised document classification task [28]. These
methods can be divided into two categories: one relies on manual
feature engineering that are then consumed by algorithms such as
SVM, Naive Bayes, and Logistic Regression [3, 7, 9, 12, 16, 19, 32–
36] (classic methods); the other represents the more recent deep
learning paradigm that employs neural networks to automatically
learn multi-layers of abstract features from raw data [10, 22, 27, 31]
(deep learning methods).

Existing works are still limited in a number of ways. First, de-
spite the increasing amount of studies, there is still no comparative
evaluation and it remains difficult to compare their performance
on different tasks [28]. One primary reason for this is the lack of
public datasets. Second, for deep learning methods, existing ones
are largely based on convolutional neural networks (CNN) or long
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short term memory (LSTM), a type of recurrent neural networks.
Intuitively, the first learns features similar to n-gram sequences
while the second learns sequence orders that are both useful for
classification tasks. Hence a natural question would be whether
we can combine both types of networks in a single architecture
to leverage benefits from both. Third, for classic methods, while a
plethora of task-specific features have been investigated in the lit-
erature [28], it is not clear what their individual contribution to the
task really is, and the comparison against deep learning methods
so far is rather inconclusive.

In this work, we introduce a CNN+LSTM neural network model
extending that in [30] by adding dropout and pooling layers to
regularise learning for better performance, and carry out extensive
experiments to address the above mentioned limitations in the
state of the art. We also create a public dataset of hate speech by
collecting tweets on the subjects of religion and refugees, which
extends currently available datasets [7, 33, 34] by both quantity and
subject coverage. We test our model on all these public datasets, and
set new benchmark as we show our model outperforms state of the
art on 6 out of 7 datasets by as much as 13.8% in F1. Our experiments
also contain a classic method (SVM) for comparison where our
analysis shows that the benefits of the manual feature engineering
practice significantly diminish with the use of automatic feature
selection techniques, as the latter tend to select predominantly
generic features, reducing the original feature space by more than
90% and often discarding certain types of features completely. Yet
this still leads to better results on all datasets compared against
cases when the full feature sets are used, and on some datasets even
produces performance that is on par with our proposed CNN+LSTM
model.

The remainder of this paper is structured as follows. Section
2 reviews related work on hate speech detection and other rele-
vant fields; Section 3 introduces the CNN+LSTM model; Section
4 describes our data collection and annotation process; Section 5
discusses experiment results, including all comparative models and
on all datasets; finally Section 6 concludes this paper.

2 RELATEDWORK
2.1 Terminology
Recent years have seen an increasing number of research on hate
speech detection as well as other related areas. As a result, the term
‘hate speech’ is often seen to co-exist or become confused with other
terms such as ‘offensive’, ’profane’, and ‘abusive’ languages, and
‘cyber bullying’. To distinguish them, we identify that hate speech
1) targets individual or groups on the basis of their characteristics
(targeting characteristics); 2) demonstrates a clear intention to incite
harm, or to promote hatred; 3) may or may not use offensive or
profane words. For example:

‘Assimilate? No they all need to go back to their
own countries. #BanMuslims Sorry if someone disagrees
too bad.’

In contrast, ‘All you perverts (other than me) who
posted today, needs to leave the O Board. Dfasdfdasfadfs’
is an example of abusive language, which often bears the purpose
of insulting individuals or groups, and can include hate speech,
derogatory and offensive language [22]. ‘i spend my money how

i want bitch its my business’ is an example of offensive or
profane language, which is typically characterised by the use of
swearing or curse words. ‘Our class prom night just got
ruined because u showed up. Who invited u anyway?’ is an
example of bullying, which has the purpose to harass, threaten or
intimidate typically individuals rather than groups.

In the following, we cover state of the art in all these areas with
a focus on hate speech. Our experiments will only involve hate
speech, due to both dataset availability and the focus of this work.

2.2 State of the Art
As mentioned before, we divide state of the art into classic and
deep learning based methods depending on whether there is an
automated feature learning process.

Classic methods requires manually designing and encoding fea-
tures of data instances into feature vectors, which are then directly
used by classifiers.

[28] summarised several types of features used in the state of the
art. Simple surface features such as bag of words, word and character
n-grams have shown to be highly predictive in hate speech detec-
tion [3, 12, 16, 19, 31–34], as well as other related tasks [4, 22, 36, 37].
Recent research [19] has also shown character n-grams to be more
effective than word n-grams, as they are more likely to capture the
similarities of prevalent unusual spellings (e.g., ‘ki11 yrslef’).
Other surface features can include URL mentions, hashtags, punc-
tuations, word and document lengths, capitalisation, etc [4, 7, 22].
Word generalisation includes the use of word clusters [32], and
techniques such as topic modelling [35, 37] and word embedding
learning [9, 22, 31, 36] that learn low-dimensional, dense feature
vectors for words from unlabelled corpora. Such word vectors are
then used to construct feature vectors of messages. Sentiment anal-
ysis makes use of the degree of polarity expressed in a message
[3, 7, 11, 31]. Lexical resources are often used to look up specific nega-
tive words (such as slurs, insults, etc.) in messages as the presence of
such words can be predictive features of hate speech [3, 11, 22, 35].
It is worth to note that early methods such as [29] are heavily based
on lexical resources. However it has been shown that such features
alone are not very effective [4]. Linguistic features utilise syntactic
information such as Part of Speech (PoS) and certain dependency
relations as features [3, 4, 7, 11, 37]. For example, [3] noted that ‘oth-
ering phrases’ denoting a ‘we v.s. them’ stance are common in hate
speech, while [4] and [37] used dependency relations as features for
detecting offensive language and cyber bullying. Meta-information
refers to data about messages, such as gender identity of a user
associated with a message [33, 34], or high frequency of profane
words in a user’s post history [6, 35]. In addition, Knowledge-Based
features such as messages mapped to stereotypical concepts in a
knowledge base [8] and multimodal information such as image cap-
tions and pixel features [37] are used in cyber bully detection but
only in very confined context [28].

In terms of classifiers, existing methods are predominantly su-
pervised. Among these, Support Vector Machines (SVM) is the
most popular algorithm [3, 4, 7, 12, 19, 32, 35, 36], while other al-
gorithms such as Naive Bayes [4, 7, 16, 19, 36], Logistic Regression
[7, 9, 19, 33, 34], and Random Forest [7, 35] are also used.
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Despite the diverse types of features introduced, little is known
about the contributions of different types of features in a single
classifier. Most methods simply ‘use them all’ by concatenating all
feature types into high-dimensional, sparse feature vectors that are
prone to over-fitting, especially on short texts such as tweets [31].
Some [3, 7] apply an automated statistical feature selection process
to reduce and optimise the feature space, while others [4, 11] did
this manually. However, the impact of feature selection is unknown
and therefore, whether the different types of features are contribut-
ing to the classification remains questionable.

Deep learning basedmethods employ Deep artificial Neural Net-
works (DNN) to learn abstract feature representations from input
data through its multiple stacked layers for the classification of
hate speech. The input can take various forms of feature encoding,
including any of those used in the classic methods. However, the
key difference is that in such a model the input features are not
directly used for classification. Instead, the multi-layer structure
learns new abstract feature representations that prove to be more
effective for learning. For this reason, deep learning based methods
typically shift its focus from manual feature engineering to the net-
work topology, which is carefully designed to automatically extract
useful features from a simple input feature representation. Note
that this categorisation excludes those methods ([9, 19, 36]) that
use DNN to learn word or text embeddings and subsequently apply
another classifier (e.g., SVM, logistic regression) to use such embed-
dings as features for classification. Instead, we focus on DNNs that
performs the classification task itself.

To the best of our knowledge, methods belonging to this category
in the domain of hate speech detection and related areas include
[2, 10, 27, 31], all of which use simple word and/or character based
one-hot encoding as input features to their models, while [31] also
use word polarity. The most popular network architectures are
Convolutional Neural Network (CNN) and Long Short-Term Mem-
ory network (LSTM). In the literature, CNN is well known as an
effective network to act as ‘feature extractors’, whereas LSTM is a
type of powerful recurrent network for modelling orderly sequence
learning problems [17, 26]. In the context of hate speech classifi-
cation, intuitively, CNN extracts word or character combinations
[2, 10, 27] (e.g., phrases, n-grams), LSTM learns long-range word
or character dependencies in tweets [2, 31].

While each type of network has proved effective for hate speech
classification, no work has explored combining both structures in a
single network. In theory, CNN+LSTM networks are powerful struc-
tures to capture long-term dependencies between features extracted
by CNNs. In practice, they are found to be more effective than struc-
tures solely based on CNNs or LSTMs in tasks such as gesture [30]
and activity recognition [26] where the networks learn temporal
evolutions of different regions between frames, and Named Entity
Recognition [5] where the class of a word sequence can depend
on the class of its preceding word sequence. We hypothesize that
CNN+LSTM can be also effective for hate speech classification, as
it may capture co-occurring word n-grams as useful patterns for
classification, such as the pairs (muslim refugees, deported)
and (muslim refugees, not welcome) in the sentence ‘These
muslim refugees are not welcome in my Country they
should all be deported ...’.

2.3 Datasets
It is widely recognised that amajor limitation of state of the art is the
lack of comparative evaluation on publicly available datasets [28].
The large majority of existing works were evaluated on privately
collected datasets, often for different problems. [22] claimed to have
created the largest datasets for abusive language by annotating
comments posted on Yahoo! Finance and News. The datasets were
later used by [19]. However, the datasets are not publicly available.
Also, as we illustrated before, abusive language can be different
from hate speech.

Currently, the only publicly available hate speech datasets in-
clude those reported in [7, 10, 27, 33, 34]. [34] annotate 16,914
tweets, including 3,383 as ‘sexist’, 1,972 as ‘racist’ and 11,559 as
‘neither’. The corpus is collected by searching for tweets containing
frequently occurring terms (based on some manual analysis) in
tweets that contain hate speech and references to specific entities.
It is then annotated by crowd-sourcing over 600 users. The dataset
is later expanded in [33], where some 6,900 tweets are collected,
where about 4,000 are new to their previous dataset. This dataset
is then annotated by two groups of users to create two different
versions: domain experts who are either feminist or anti-racism
activist; and amateurs that are crowd-sourced. Experiments show
that amateur annotators are more likely than expert annotators to
label tweets as hate speech. However, systems trained on expert
annotations outperform that trained on amateur annotations. Later
in [10], the authors merge both expert and amateur annotations
in this dataset by using majority vote, giving expert annotations
double weight; and in [27], the dataset in [34] is merged with the
expert annotations in [33] to create a single dataset. [7] annotate
some 24,000 tweets for ‘hate speech’, ‘offensive language but not
hate’, and ‘neither’. They begin with filtering tweets using a hate
speech lexicon from Hatebase.org, and select a random sample for
annotation. It is found that distinguishing hate speech from non-
hate offensive language is a challenging task, as hate speech does
not always contain offensive words while offensive language does
not always express hate.

3 METHODOLOGY
This section introduces our method for hate speech detection. We
firstly describe a light pre-processing procedure (Section 3.1), then
introduce our CNN+LSTM model (Section 3.2), followed by our
choice of input features initialisation for the model (Section 3.3).

3.1 Pre-processing
Given a tweet, we apply light pre-processing to normalise its text
as follows:
• remove the following characters: | : , ; & ! ? \
• normalise hashtags into words, so ‘#refugeesnotwelcome’
becomes ‘refugees not welcome’. This is because such
hashtags are often used to compose sentences. We use dic-
tionary based look up to split such hashtags.
• lowercase and stemming, to reduce word inflections
• removing any tokens with a document frequency less than 5

The pre-process reduces vocabulary size in a dataset (particu-
larly prominent in tweets due to the colloquial nature of the texts)
and to some degree, addresses the sparsity in word-based feature
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representations. We also tested other alternatives such as keeping
word inflections, using lemmatisation instead of stemming, and
lower document frequencies. But empirically we found the above
mentioned process to contribute to slightly better accuracy.

3.2 The CNN+LSTM architecture
Our CNN+LSTM network is illustrated in Figure 1. The first layer is
a word embedding layer, which maps each text message (in generic
terms, a ‘sequence’) into a a real vector domain. To do so, we map
each word onto a 300 dimensional real valued vector, where each
element is the weight for that dimension for that word. We also
constrain each sequence to be 100 words, truncating long messages
and pad the shorter messages with zero values. We experiment
different ways of generating word vectors and describe these in
Section 3.3.

The embedding layer passes an input feature space with a shape
of 100 × 300 to a drop-out layer with a rate of 0.2, the purpose of
which is to regularise learning to avoid overfitting. Intuitively, this
can be thought of as randomly removing a word in sentences and
forcing the classification not to rely on any individual words. The
output feeds into a 1D convolutional layer with 100 filters with a
window size of 4, padding the input such that the output has the
same length as the original input. The rectified linear unit function
is used for activation. This convolves the input feature space into
a 100 × 100 representation, which is then further down-sampled
by a 1D max pooling layer with a pool size of 4 along the word
dimension, producing an output of shape 25 × 100. Each of the 25
dimension can be considered an ‘extracted feature’. These then feed
into the LSTM layer, which treats the extracted feature dimension
as timesteps and outputs 100 hidden units per timestep. A global
max pooling layer follows to ‘flatten’ the output space by taking
the highest value in each timestep dimension, producing a 1 × 100
vector. Finally, a softmax layer takes this vector as input to predict
probability distribution over all possible classes (n), which will
depend on individual datasets. We use the categorical cross entropy
loss function and the Adam optimiser [15] to train the model on a
batch size of 100 and 10 epochs.

Our network architecture is similar to those in [5, 26, 30]. The key
difference is the use of drop-out to regularise learning and global
max pooling to extract features from the LSTM layer. Both designs
are task-specific and found to be empirically helpful in our exper-
iments. [5] also use bi-directional LSTM to capture context from
both sides of a word in the Named Entity Classification task, while
[26, 30] stack multiple convolutional layers to extract hierarchical
features in image processing. We do not use such complex models
as we show that a simple CNN+LSTM is already performing well in
our task, which confirms our hypothesis. For the same reason, we
build our model on only word embeddings although many suggest
that character-level features can be more effective. We show later
in experiments that such a structure is very powerful that it even
outperforms DNN models based on character embeddings.

3.3 Word embedding learning
We test two types word embeddings. For the first, we initialise
the weights in the embedding layer randomly and let our model
learn the embeddings (i.e. weights) on the fly (emb-learn). For the

Figure 1: The CNN+LSTM network architecture

second, we use pre-trained word embeddings to set the weights of
our embedding layer. In this work, we use the one trained on the
3-billion-word Google News corpus with a skip-gram model1.

A potential issue with using pre-trained word embeddings is
out-of-vocabulary (OOV) words. We use two methods to address

1https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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this: 1) randomly setting the OOV word vector following a contin-
uous uniform distribution (emb-ggl1); 2) randomly selecting an
in-vocabulary word to use its vector (emb-ggl2).

4 DATASET CREATION
As introduced before, the only publicly available hate speech datasets
include that of [7] and [33, 34], which are later used to create vari-
ants used in [10, 27]. While [7] classify hate speech in general with-
out identifying the targeting characteristics, [33, 34] collected data
for sexism and racism. In this work, we create a different dataset
by collecting tweets discussing refugees and Muslims, which were
focus of discussion during the time of writing due to various recent
incidents [1, 13, 21]. All tweets are annotated for two classes: hate
and non-hate, firstly by a computational linguistic researcher and
then cross-checked by a student researcher. Disputed annotations
were discussed among them and corrected to ensure both agree
with the correction. Annotators followed the general definition in
[34] for annotation.

To collect the data, we follow the mainstream bootstrapping ap-
proach [34] that starts with an initial search for tweets containing
common slurs and terms used pertaining to targeting characteris-
tics, then manually identify frequently occurring terms in tweets
that contain hate speech and references to specific entities (fre-
quent keywords), then further filter the tweets with these frequent
keywords.

Specifically, we started with using the Twitter Streaming API to
collect tweets containing any of the following words for a period
of 7 days: muslim, islam, islamic, immigration, migrant,
immigrant, refugee, asylum. This created a corpus of over
300,000 tweets (duplicates and retweets removed), from which we
randomly sampled 1,000 for annotation (batch 1). However, it was
found that tweets annotated as hate speech were extremely rare
(< 1%). Therefore, we manually inspected the annotations and
further filtered the remaining tweets (disjoint with batch 1) by the
following words found to be frequent for hate speech: ban, kill,
die, back, evil, hate, attack, terrorist, terrorism,
threat, deport. We then sampled another 1,000 tweets (batch 2)
from this collection for annotation. However, the amount of true
positives is still very low (1.1%).

Therefore we created another batch (batch 3) by using the Twit-
ter Search API to retrieve another 1,500 tweets with the follow-
ing hashtags considered to be strong indicators of hate speech:
#refugeesnotwelcome, #DeportallMuslims, #banislam, #banmuslims,
#destroyislam, #norefugees, #nomuslims. The dataset how-
ever, contains over 400 tweets after removing duplicates, and about
75% were annotated as hate speech. Finally we merge all three
batches to create a single dataset, which we make public to encour-
age future comparative evaluation2.

5 EXPERIMENT
5.1 Datasets
We use a total of 7 public datasets including ours for evaluation, as
shown in Table 1. To our knowledge, this is by far the most com-
prehensive collection of hate speech datasets used in any studies.
2As per Twitter policy, only the tweet IDs are shared. Download at: https://github.
com/ziqizhang/chase/tree/master/data

Dataset #Tweets Classes
(#tweets)

Targeting char-
acteristics

WZ-L 16,093 racism (1,934)
sexism (3,149)
neither (11,010)

racism, sexism

WZ-
S.amt

6,594 racism (123)
sexism (1,073)
both (15)
neither (5,383)

racism, sexism

WZ-S.exp 6,594 racism (85) sex-
ism (777) both
(35) neither
(5,697)

racism, sexism

WZ-S.gb 6,594 racism (90) sex-
ism (911) both
(27) neither
(5,564)

racism, sexism

WZ-LS 18,625 racism (2,012)
sexism (3,769)
both (30)
neither (12,810)

racism, sexism

DT 24,783 hate (1,430)
non-hate
(23,353)

general

RM 2,435 hate (414) non-
hate (2,021)

refugee, Muslim

Table 1: Statistics of datasets used in the experiment

WZ-L is the larger dataset created in [34]. WZ-S.amt is the
smaller dataset created in [33], annotated by amateurs; while WZ-
S.exp is the same dataset annotated by experts. In [10], the authors
take the WZ-S.amt and WZ-S.exp datasets to create a new version
by taking the majority vote from both amateur and expert annota-
tions where the expert is given double weights. We follow the same
practice and in case of tie, we take the expert annotation. We refer
to this dataset asWZ-S.gb. Further, [27] combine theWZ-L and the
WZ-S.exp datasets into a single dataset and in case of duplicates, we
take the annotation from WZ-L. We refer to this dataset asWZ-LS.
All these datasets only contain the tweet IDs, some of which have
been deleted or made private at the time of writing and therefore,
the numbers in Table 1 may be slightly different from the original
studies.

DT refers to the dataset created in [7]. It also contains tweets
annotated as ‘abusive (but non-hate)’. In this work, we set such
annotations to be ‘non-hate’ so the dataset contains only two classes.
Finally, our dataset on refugees and Muslims is referred to as RM.

5.2 Baseline and comparative models
Baselines We create a number of baselines. First, we use a linear
SVM model described in [7]3. Each tweet is firstly pre-processed
using the procedure described in Section 3.1. Next, following the
original work, a number of different types of features are used as
below. We refer to these as the Basic feature set:
3Code: https://github.com/t-davidson/hate-speech-and-offensive-language

https://github.com/ziqizhang/chase/tree/master/data
https://github.com/ziqizhang/chase/tree/master/data
https://github.com/t-davidson/hate-speech-and-offensive-language
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• Surface features: unigram, bigram and trigram eachweighted
by TF-IDF (ngrams); number of mentions (#mentions), and
hashtags4 (#hashtags); number of characters (#char), and
words (#word);
• Linguistic features: Part-of-Speech (PoS) tag unigrams, bi-
grams, and trigrams (pos-ngrams), also weighted by their
TF-IDF and removing any candidates with a document fre-
quency lower than 5; number of syllables (#syllb); Flesch-
Kincaid Grade Level (FKGL) and Flesch Reading Ease (FRE)
scores that are functions calculating a numeric score based
the number words and syllables in a sentence, to measure
the ‘readability’ of a document
• Sentiment features: sentiment polarity scores of the tweet
(sntm).

Extending on this, we add additional features as follows and
refer to these as the Enhanced feature set:
• TODO: ADD DAVID’S TEXT HERE

As discussed before, classic methods using diverse feature sets
like these often end up with a high-dimensional, sparse feature
space that can lead to problems such as overfitting. One approach to
get around the problem is feature selection. While many techniques
are available, we use a state of the art feature selection process based
on Logistic Regression with L1-regularization as the estimator on
the training data5. This calculates a ‘feature importance’ score for
each feature, which is discarded if its score is below a threshold
parameter6. To investigate the impact of feature selection, we create
four baseline models: SVM using the linear SVM model on all Basic
features identified above; SVMfs that applies the feature selection
process to the Basic features; SVM+ using the linear SVM model
with the Enhance feature set; and SVMfs+ that applies feature
selection to the Enhanced features.

Second, we also create another baseline bymodifying our CNN+LSTM
network. To do so, we remove the drop-out between the embedding
and convolutional layer, and the global max pooling layer between
the LSTM and the softmax layers. We show that these two lay-
ers can contribute to improved accuracy in the task. This baseline
model will be referred to as CNN+LSTMbase.

We apply all three baselines on all six datasets and compare the
results against our model, CNN+LSTM.

State of the art In addition to the baselies, we also compare our
results against those reported figures in [10, 27, 33, 34] on the cor-
responding datasets.

5.3 Implementation, parameter tuning, and
evaluation metrics

We used the Python Keras7 with TensorFlow backend 8 and the
scikit-learn9 library to implement all models10. For each dataset,

4These are extracted from the original tweet before pre-processing which splits
hashtags.
5http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.
SelectFromModel.html
6For Logistic Regression with L1-regularization the default value of 1e − 5 is used.
7https://keras.io/
8https://www.tensorflow.org/
9http://scikit-learn.org/
10Our code is shared here:https://github.com/ziqizhang/chase

we split it into 75:25 to use 75% for parameter tuning using 5-fold
cross-validation experiments, and test the optimised model on the
25% held-out data. All the previously mentioned parameter settings
are tuned in this way.

We report our results on the 25% held-out data for each dataset,
using the standard Precision (P), Recall (R), and F1-measure below.

5.4 Results and discussion
To be comparable with results reported in the state of the art, we
calculate micro-average P, R, F1 over all classes in each dataset.
Tables 2 to 8 compare our model against the baselines as well as
the reported figures by state of the art (on an ‘as-is’ basis where
available, indicated by citations) on each of the seven datasets. The
highest figures are highlighted in bold. Note that the SVM baseline
represents the model in [7] and therefore, we do not repeat it in
the tables.

Models Precision Recall F1
SVM (also [7]) 73.5 73.6 73.6
SVMfs 81.5 81.4 81.4
SVM+ 74.3 74.2 74.2
SVM+fs 81.3 81.3 81.3
CNN+LSTMbase, emb-learn 78.8 78.8 78.8
CNN+LSTMbase, emb-ggl1 79.1 79.1 79.1
CNN+LSTMbase, emb-ggl2 80.2 80.2 80.2
Waseem et al. (best F1 in
[34])

72.9 77.7 73.9

CNN+LSTM, emb-learn 79.0 78.7 78.8
CNN+LSTM, emb-ggl1 80.9 80.9 80.9
CNN+LSTM, emb-ggl2 80.3 80.2 80.2

Table 2: Results against baselines on the WZ-L dataset

Models Precision Recall F1
SVM (also [7]) 89.2 89.1 89.1
SVMfs 91.0 90.0 90.4
SVM+ 91.1 89.7 90.4
SVM+fs 90.9 90.8 90.9
CNN+LSTMbase, emb-learn 90.3 90.0 90.2
CNN+LSTMbase, emb-ggl1 90.6 90.6 90.6
CNN+LSTMbase, emb-ggl2 91.0 90.9 91.0
Waseem et al. (The ‘best’
feature set in [33])

92.5 92.5 91.2

CNN+LSTM, emb-learn 89.9 89.8 89.8
CNN+LSTM, emb-ggl1 90.9 90.8 90.9
CNN+LSTM, emb-ggl2 91.4 91.3 91.4

Table 3: Results against baselines on the WZ-S.exp dataset

Baseline SVMs First, comparing SVM+ against SVM, on all but one
(DT) dataset, we notice improvement in all of Precision (0.8~2.8),
Recall (0.2~2.9) and F1 (0.5~2.9), suggesting that in most cases, the
enhanced features are indeed useful to the task. Second, comparing
either of SVM or SVM+ against its feature selected version (SVMfs,

http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://keras.io/
https://www.tensorflow.org/
http://scikit-learn.org/
https://github.com/ziqizhang/chase
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Models Precision Recall F1
SVM (also [7]) 86.1 86.3 86.2
SVMfs 90.3 90.6 90.5
SVM+ 86.9 86.5 86.7
SVM+fs 90.2 89.8 90.0
CNN+LSTMbase, emb-learn 88.2 88.3 88.2
CNN+LSTMbase, emb-ggl1 91.4 91.4 91.4
CNN+LSTMbase, emb-ggl2 90.2 90.2 90.2
Waseem et al. (The ‘best’
feature set in [33])

85.5 86.7 83.9

CNN+LSTM, emb-learn 89.9 89.1 89.0
CNN+LSTM, emb-ggl1 91.2 91.6 91.4
CNN+LSTM, emb-ggl2 91.4 91.2 91.3

Table 4: Results against baselines on the WZ-S.amt dataset

Models Precision Recall F1
SVM (also [7]) 86.1 86.3 86.2
SVMfs 90.3 90.6 90.5
SVM+ 86.8 86.6 86.7
SVM+fs 90.2 89.8 90.0
CNN+LSTMbase, emb-learn 90.7 90.4 90.5
CNN+LSTMbase, emb-ggl1 91.9 91.8 91.8
CNN+LSTMbase, emb-ggl2 91.4 91.3 91.3
Gamback et al. (Best F1 in
[10])

85.7 72.1 78.3

CNN+LSTM, emb-learn 91.4 91.4 91.4
CNN+LSTM, emb-ggl1 92.1 92.1 92.1
CNN+LSTM, emb-ggl2 91.8 91.8 91.8

Table 5: Results against baselines on the WZ-S.gb dataset

Models Precision Recall F1
SVM (also [7]) 71.7 71.5 71.6
SVMfs 81.0 80.9 80.9
SVM+ 72.6 72.5 72.5
SVM+fs 81.1 81.2 81.2
CNN+LSTMbase, emb-learn 79.8 79.2 79.5
CNN+LSTMbase, emb-ggl1 79.5 79.8 79.6
CNN+LSTMbase, emb-ggl2 79.5 79.2 79.4
Park et al. [27]
- WordCNN 81.8 81.6 81.6
- CharacterCNN 80.1 81.1 81.1
- HybridCNN 82.7 82.7 82.7
CNN+LSTM, emb-learn 80.3 80.6 80.4
CNN+LSTM, emb-ggl1 81.9 81.8 81.8
CNN+LSTM, emb-ggl2 81.6 81.5 81.5

Table 6: Results against baselines on the WZ-LS dataset

SVM+fs), it is apparent that both can benefit significantly as we
notice positive improvement in most datasets in Precision (1.8~9.3
for SVMfs, 0.4~8.5 for SVM+fs), Recall (0.9~9.4 for SVMfs, 0.2~8.7
for SVM+fs), and F1 (1.3~9.3 for SVMfs, 0.5~8.7 for SVM+fs), except
only one occasion of a slight drop in Precision (SVM+fs vs SVM+ on

Models Precision Recall F1
SVM (also [7]) 86.6 86.4 86.5
SVMfs 89.5 89.4 89.4
SVM+ 86.2 86.4 86.3
SVM+fs 89.5 89.7 89.6
CNN+LSTMbase, emb-learn 93.3 93.3 93.3
CNN+LSTMbase, emb-ggl1 93.3 93.3 93.3
CNN+LSTMbase, emb-ggl2 92.7 92.4 92.6
CNN+LSTM, emb-learn 93.4 92.9 93.1
CNN+LSTM, emb-ggl1 94.2 93.9 94.1
CNN+LSTM, emb-ggl2 94.0 94.1 94.0
Table 7: Results against baselines on the DT dataset

Models Precision Recall F1
SVM (also [7]) 85.7 85.7 85.7
SVMfs 88.8 88.7 88.7
SVM+ 88.1 87.8 88.0
SVM+fs 88.5 88.8 88.7
CNN+LSTMbase, emb-learn 87.4 87.4 87.4
CNN+LSTMbase, emb-ggl1 89.6 89.7 89.6
CNN+LSTMbase, emb-ggl2 90.5 90.5 90.5
CNN+LSTM, emb-learn 91.4 90.6 91.0
CNN+LSTM, emb-ggl1 90.9 90.9 90.9
CNN+LSTM, emb-ggl2 91.9 91.9 91.9
Table 8: Results against baselines on the RM dataset

WZ-S.exp). Notice also that with feature selection the SVM-based
models achieved close-to-best performance on several datasets and
even won on one (WZ-L). Third, comparing the two feature selected
models SVMfs vs SVM+fs, interestingly, the benefit of the enhanced
features diminishes, as we notice only on 3 datasets (WZ-L, WZ-LS,
DT) an improvement in F1 by SVM+fs over SVMfs. The range of
improvements also shrinks and on other datasets, dips into negative
region (-0.3~0.1 for Precision, -0.8~0.8 in Recall, -0.5~0.5 in F1).

These observations suggest that, on the one hand, feature se-
lection can be a very powerful technique to improve performance
of classic methods while in the mean time, reducing the need for
feature engineering as it appears that regardless of the feature set
used, SVM produced similar results when using feature selection.
On the other hand, the Logistic Regression based feature selector
may be discriminating features too aggressively, losing some useful
features and resulting in decreased performance in SVM+fs against
SVMfs on some datasets. While investigating alternative feature
selection algorithms is beyond the scope of this work, in Section 5.5
we gauge into details of feature selection to understand the impact
of different features.

Baseline neural network models Among the different types of
word embeddings used, it is clear that those pre-trained on the
Google News corpus (emb-ggl1, emb-ggl2) are more effective than
that learned from the training data (emb-learn). This is likely be-
cause the size of the training data is comparatively very small. Com-
pared against SVM based baselines, neural network based models
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seem to be slightly better as the best performing model outperforms
the best performing SVM based model in F1 on all but one dataset
(WS-L). This is likely because that the neural networks managed to
capture abstract features that are useful for learning but cannot be
modelled in SVM.

CNN+LSTM Results of our different CNN+LSTMmodels also show
that the model learns better with the pre-trained word embeddings,
where the best F1 is achieved with emb-ggl1 on 5 datasets and
with emb-ggl2 on 2 datasets. Compared against baselines, our best
performingmodel achieves the highest F1 on 6 datasets (an improve-
ment in F1 between 0.2 and 4.5 on the ‘best against best’ basis) but
WZ-L, on which it is close to the SVMfs model. In particular, when
compared against the baseline neural network models on the same
word embedding choice, the proposed CNN+LSTM model has pre-
dominantly gained better F1, suggesting that the addition of the
drop-out and the global max pooling layers is helpful for learning.

Compared against state of the art, it is interesting to note that
the proposed baselines are very strong, particularly the feature se-
lected SVM models and the baseline neural network models, which
obtain higher than the previously reported figures on 5 datasets
(except WZ-S.exp and WZ-LS). Our CNN+LSTM models extend the
strength by winning on 6 datasets in F1 with an improvement of:
7 over [34] on WZ-L, 0.2 over [33] on WZ-S.exp, 7.5 over [33] on
WZ-S.exp, 13.8 over [10] on WZ-S.gb, 7.6 over [7] on DT, and 6.2
over [7] on RM. On the WS-LS dataset, our best model outperforms
[27] on both their word-only and character-only CNN models, los-
ing 0.9 point to their hybrid model that combines both word and
character features. Similarly, [10] also used character features in
their CNN model. As discussed before, the literature generally ac-
knowledges that character-based features are more effective than
word-based. Hence taking into account the above results, we argue
that the better results obtained by our CNN+LSTM models using
only word-based features is due to the superiority in the network
architecture. In other words, stacking CNN and LSTM together
with drop-out and pooling has led to better feature extraction that
are helpful for learning.

5.5 Impact of feature selection on SVM
Our results of SVM based models showed that feature selection
can significantly enhance the model learning accuracy. Since this
is the first work that conducts this comparison, we believe that it is
beneficial to undertake further analysis to understand the impact
of feature selection in classic methods.

To do so, we analyse: 1) the amount of original features retained
by the feature selection algorithm; and 2) the distribution of differ-
ent feature types in the selected features.

Table 9 shows the retained features after feature selection as
percentage of the number of original features for the Basic and
Enhanced feature sets. The figures indicate that the original fea-
tures are drastically discarded after feature selection. And as shown
before, on most occasions, this significantly improved learning
accuracy.

Tables 10 and 11 further explore this by analysing the distri-
bution of selected features across different datasets. For discrete

Dataset Retained fea-
tures (Basic)

Retained fea-
tures (Enhanced)

WZ-L 5.1% 5.1%
WZ-S.amt 3.4% 3.1%
WZ-S.exp 3.9% 3.9%
WZ-S.gb 3.4% 3.2%
WZ-LS 4.4% 4.0%
DT 4.4% 3.8%
RM 0.7% 0.6%

Table 9: Retained features as a percentage of the number of
original features (each of the Basic and Enhanced feature
sets) after applying feature selection to each dataset.

feature types such as word n-grams, we count the number of se-
lected features and calculate its percentage over the number of total
selected features. For continuous feature types that have only one
value per type such as the number of words (#words), we show the
number of datasets on which it is selected (e.g., 2/7).

Feature type Distribution across datasets
word n-gram 21~81% (avg. 51%) of all features,

7/7 datasets
pos n-gram 18~78% (avg. 49%) of all features,

7/7 datasets
#char 1/7 dataset
sntm 2/7
#syllb 1/7
#word 2/7

Table 10: Selected features from the Basic feature set and
their distribution across datasets.

Feature type Distribution across datasets
word n-gram 23~64% (avg. 47%) of all features,

7/7 datasets
pos n-gram 9~70% (avg. 40%) of all features,

7/7 datasets
hashtag 3~18% (avg. 11%) of all features,

7/7 datasets
CAP 1/7 dataset
#char 4/7
FRE 1/7
#hashtags 1/7
sntm 1/7
#syllb 1/7
#word 1/7

Table 11: Selected features from the Enhanced feature set
and their distribution across datasets. Features that are ad-
ditional to the Basic set are highlighted in bold.

Using Table 10 for example, only 6 out of the 10 feature types
from the Basic feature set are used on at least one dataset. The
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completely discarded features include #mentions, #hashtags, FRE,
and FKGL. Out of the 6 feature types, word and PoS n-grams are
most indicative as they are selected on all datasets. Other feature
types appear to be only useful on isolated cases (i.e., 1 or 2 datasets).
Similar situation is found for the Enhanced feature set, with only
2 out of the X TODO added feature types are selected on at least
one dataset. The hashtag features are also used on all datasets,
suggesting that they can be quite useful for the task. For both
feature sets, word and PoS n-grams remain to be dominant.

Our results raise an arguably controversial question that is whether
the practice of feature engineering found to be fundamental to clas-
sic methods is really worthwhile. As it appears that with basic
features such as word and PoS n-grams combined with feature
selection, the systems perform just as well or even better than so-
phisticated sets of features without feature selection, and on several
occasions, achieving close-to-best F1 among all models. Notice for
example, that on theWZ-L dataset where the SVMfs model achieved
the best results (Table 2), all feature types are discarded but word
and PoS n-grams.

6 CONCLUSION AND FUTUREWORK
The propagation of hate speech on social media has been increasing
significantly in recent years. Despite substantial effort from law
enforcement departments, legislative bodies as well as millions of
investment from social media companies, it is widely recognised
that effective counter-measures rely on automated data mining
techniques. This work makes several contributions to this prob-
lem. First, we introduced a method for automatically classifying
hate speech using a deep neural network model combining CNN,
LSTM with drop-out and pooling that are found to empirically im-
prove classification accuracy. Second, we conducted comparative
evaluation on the largest collection of public datasets and show
that the proposed method outperformed baselines as well as state
of the art in most cases. Our results make new reference for fu-
ture comparative studies. Third, we created and published another
hate speech dataset, complementing existing ones by focusing on
Muslim (religion) and refugees. Finally, we showed that for classic
methods that depend on pre-engineered features, there is often
no need for sophisticated feature engineering activity; but using
automatic feature selection techniques on generic features such as
as n-grams can in fact, produce better results.

We will explore future work in the following directions: 1) to
further fine tune our neural network to consider, e.g., stacking mul-
tiple convolutional layers which are good for extracting hierarchical
features; 2) to integrate user-centric features, such as the frequency
of a user detected for posting hate speech and the user’s interaction
with others; and 3) to study and quantify the difference between
hate speech detection and other related tasks such as offensive
language, and cyber bullying.
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