
Neurocomputing 322 (2018) 22–37

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Deep-FS: A feature selection algorithm for Deep Boltzmann Machines

Aboozar Taherkhani a , ∗, Georgina Cosma

a , T. M McGinnity

a , b

a School of Science and Technology, Nottingham Trent University, Nottingham, UK
b Intelligent Systems Research Centre, Ulster University, Northern Ireland, Derry, UK

a r t i c l e i n f o

Article history:

Received 5 March 2018

Revised 12 August 2018

Accepted 17 September 2018

Available online 22 September 2018

Communicated by Jiayu Zhou

Keywords:

Deep Boltzmann Machine

Deep learning

Deep Neural Networks

Feature selection

Restricted Boltzmann Machine

Generative models

Missing features

a b s t r a c t

A Deep Boltzmann Machine is a model of a Deep Neural Network formed from multiple layers of neu-

rons with nonlinear activation functions. The structure of a Deep Boltzmann Machine enables it to learn

very complex relationships between features and facilitates advanced performance in learning of high-

level representation of features, compared to conventional Artificial Neural Networks. Feature selection

at the input level of Deep Neural Networks has not been well studied, despite its importance in reduc-

ing the input features processed by the deep learning model, which facilitates understanding of the data.

This paper proposes a novel algorithm, Deep Feature Selection (Deep-FS), which is capable of remov-

ing irrelevant features from large datasets in order to reduce the number of inputs which are modelled

during the learning process. The proposed Deep-FS algorithm utilizes a Deep Boltzmann Machine, and

uses knowledge which is acquired during training to remove features at the beginning of the learning

process. Reducing inputs is important because it prevents the network from learning the associations be-

tween the irrelevant features which negatively impact on the acquired knowledge of the network about

the overall distribution of the data. The Deep-FS method embeds feature selection in a Restricted Boltz-

mann Machine which is used for training a Deep Boltzmann Machine. The generative property of the

Restricted Boltzmann Machine is used to reconstruct eliminated features and calculate reconstructed er-

rors, in order to evaluate the impact of eliminating features. The performance of the proposed approach

was evaluated with experiments conducted using the MNIST, MIR-Flickr, GISETTE, MADELON and PAN-

CAN datasets. The results revealed that the proposed Deep-FS method enables improved feature selection

without loss of accuracy on the MIR-Flickr dataset, where Deep-FS reduced the number of input features

by removing 775 features without reduction in performance. With regards to the MNIST dataset, Deep-FS

reduced the number of input features by more than 45%; it reduced the network error from 0.97% to

0.90%, and also reduced processing and classification time by more than 5.5%. Additionally, when com-

pared to classical feature selection methods, Deep-FS returned higher accuracy. The experimental results

on GISETTE, MADELON and PANCAN showed that Deep-FS reduced 81%, 57% and 77% of the number of in-

put features, respectively. Moreover, the proposed feature selection method reduced the classifier training

time by 82%, 70% and 85% on GISETTE, MADELON and PANCAN datasets, respectively. Experiments with

various datasets, comprising a large number of features and samples, revealed that the proposed Deep-

FS algorithm overcomes the main limitations of classical feature selection algorithms. More specifically,

most classical methods require, as a prerequisite, a pre-specified number of features to retain, however in

Deep-FS this number is identified automatically. Deep-FS performs the feature selection task faster than

classical feature selection algorithms which makes it suitable for deep learning tasks. In addition, Deep-

FS is suitable for finding features in large and big datasets which are normally stored in data batches for

faster and more efficient processing.

© 2018 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
∗ Corresponding author.

E-mail addresses: aboozar.taherkhani@ntu.ac.uk (A. Taherkhani),

georgina.cosma@ntu.ac.uk (G. Cosma), martin.mcginnity@ntu.ac.uk (T.M. McGin-

nity).

1

t

b

l

o

https://doi.org/10.1016/j.neucom.2018.09.040

0925-2312/© 2018 The Authors. Published by Elsevier B.V. This is an open access article u
. Introduction

The successful performance of deep learning in various applica-

ions such as image recognition [1,2] , speech recognition [3] and

ioinformatics [4] , has captured considerable attention in recent

iterature. Deep learning (DL) methods provide promising results

n problems for which conventional machine learning methods
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.neucom.2018.09.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.09.040&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:aboozar.taherkhani@ntu.ac.uk
mailto:georgina.cosma@ntu.ac.uk
mailto:martin.mcginnity@ntu.ac.uk
https://doi.org/10.1016/j.neucom.2018.09.040
http://creativecommons.org/licenses/by/4.0/

A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37 23

h

v

c

a

d

t

m

w

i

m

r

f

m

u

H

t

t

i

t

m

[

o

H

m

t

p

l

b

m

i

r

f

r

t

t

l

e

t

p

w

o

a

S

p

o

c

n

v

a

i

w

l

r

i

m

t

(

s

c

f

m

i

F

t

o

m

t

c

F

l

t

m

t

w

d

S

v

e

f

2

c

2

t

m

i

u

C

t

I

a

c

u

[

t

t

s

i

p

t

r

b

t

[

t

c

d

a

n

r

r

t

p

o

i

c

f

l

i

b
ave not made major progress, despite many attempts [1] . Con-

entional machine learning methods have limited ability to pro-

ess raw data, and for this reason considerable effort is tradition-

lly placed on feature engineering. Feature engineering represents

ata in a manner such that machine learning algorithms can iden-

ify patterns and classify the data. An important advantage of DL

ethods over conventional approaches (e.g. Artificial Neural Net-

ork, Support Vector Machine, Naïve Bayes), is that DL methods

ntegrate the feature extraction and learning process into a single

odel, and thus feature engineering is dealt with as an integrated

ather than a separate task.

Feature selection, aims to eliminate redundant and irrelevant

eatures via different criteria. The most commonly used criteria

easure the relevance of each feature to the desired output, and

se this information to select the most important features [5 , 6] .

ighly dependent features can be considered as redundant fea-

ures and some of these can be eliminated during a feature selec-

ion process. Eliminating irrelevant and redundant features, results

n a permanent reduction in the dimensionality of the data, and

his can increase the processing speed and accuracy of the utilized

achine learning methods.

Deep Neural Networks (DNNs), such as those proposed in

1,7,8] use feature extraction rather than feature selection meth-

ds for extracting underlying features from big data. For example

inton et al. [1] proposed a DNN method which reduces data di-

ensionality through a non-linear combination of all input fea-

ures in a number of layers of the neural network, and this ap-

roach inspired the development of new algorithms in the deep

earning field [9,10,11] . DNNs can learn very complex relationships

etween variables through their high numbers of non-linear ele-

ents. However, if there exist a high number of irrelevant features

n the input feature space, then the relationship between these ir-

elevant features may also be modelled. Modelling the irrelevant

eatures acts as noise, and learning the associations between ir-

elevant features negatively impacts on the acquired knowledge of

he network about the overall distribution of the data, as well as

he computational time. Modelling the irrelevant features can also

ead to overfitting a model [10] , because the method learns irrel-

vant details from the training data and it becomes more biased

o previously seen data [12] . A technique called Dropout [10] was

roposed to increase the generalisation ability of neural networks

hich have a high number of neurons. However, a major limitation

f the Dropout method is that it could retain all the input features

nd neurons that include redundant and irrelevant features.

The Deep Belief Networks (DBNs) proposed by Hinton and

alakhutdinov [1] , and the Deep Boltzmann Machines (DBMs) pro-

osed by Srivastava and Salakhutdinov et al. [7] are two types

f DNNs which use densely connected Restricted Boltzmann Ma-

hines (RBMs). The high number of processing elements and con-

ections, which arise because of the full connections between the

isible and hidden units, increase the RBM’s computational cost

nd training time. In addition, training several independent RBMs

ncreases the training time [13–15] . When the scale of the net-

ork is increased, the required training time is also increased non-

inearly. Reducing the number of input features can significantly

educe the size of the constructed weight matrix, and consequently

t can reduce the computational cost of running deep learning

ethods, especially when a large network size is required for prac-

ical applications [16] .

This paper proposes a novel algorithm, Deep-Feature Selection

Deep-FS), for embedding feature selection capabilities into DBMs,

uch that irrelevant features are removed from raw data to dis-

over the underlying feature representations that are required for

eature classification. DBMs primarily use an unsupervised learning

ethod to initialize the learning parameters of a DNN. Then the

nitialized DNN is fine-tuned by a backpropagation method. Deep-
S combines the feature extraction property of DBM with a fea-

ure selection method which is based on the generative property

f RBMs. RBMs are generative models and they can reconstruct

issing input features. The proposed Deep-FS uses an RBM that is

rained during the learning procedure of DBM to improve the effi-

iency of the method in dealing with high volumes of data. Deep-

S returns a reduced subset of features and improves the deep

earning method’s computational efficiency by reducing the size of

he constructed network. DBMs are known to have good perfor-

ance for feature extraction, and adding a feature selection ability

o DBMs can lead to a new generation of deep learning models

hich have an improved ability to deal with highly dimensional

ata.

The remainder of the paper is structured as follows:

ection 2 discusses the background to the work; Section 3 pro-

ides details of the proposed method; Section 4 describes the

xperimental results; and Section 5 provides a conclusion and

uture work.

. Background

This section provides a background on Deep Boltzmann Ma-

hines and feature selection methods.

.1. Deep Boltzmann Machine

Deep Neural Networks (DNNs) are mainly based on stochas-

ic gradient descent and backpropagation training algorithms. Two

ain techniques are used for training DNNs. The first technique

s based on a filtering strategy and the second one is based on

nsupervised pre-training. The first filtering technique is used by

onvolutional Neural Networks (CNNs) to locally filter inputs. Fil-

ering is performed by convolving the input by weight matrices.

n the second technique, information processing starts by using

n unsupervised learning method. In this stage, unlabelled data

an be used. Then, the DNN is fine-tuned by a supervised method

sing labelled data. Deep Belief Networks (DBN) [1] and DBMs

7,17] are examples which use this semi-supervised technique. Pre-

raining using an unsupervised method improves the generalisa-

ion of the trained network especially when the dataset contains a

mall amount of labelled data. This paper is focused on DBMs that

nclude unsupervised learning during their first stage of training

rocedure.

DBMs have been used in different applications such as image-

ext recognition [7] , facial expression recognition [18] , 3D model

ecognition [19] , and audio-visual person identification [20] and

elong to a group of DNNs that uses a pre-training procedure. After

he pre-training procedure, DBM is fine-tuned using labelled data

11,20] . A DBM is composed of a set of visible units corresponding

o input data. Additionally, there are a network of symmetrically

oupled stochastic binary units called hidden units. The binary hid-

en units are arranged in different layers and there are top-down

nd bottom up couplings between two adjacent layers. There are

o direct connections between units in the same layer. A DBM rep-

esents the input data in several layers with increasingly complex

epresentations. In DBM a learning procedure is executed to pre-

rain a number of layers in conjunction with each other. DBM can

otentially be used to capture a complex internal representation

f input data. The interaction of different hidden layers during the

nitial learning generates a deep network with a high ability to re-

onstruct ambiguous inputs through top-down feedback using dif-

erent interacting layers. During the pre-training stage of a DBM, a

earning procedure similar to RBMs is used. The RBM is discussed

n Section 3 .

Recently, a multimodal data processing method was designed

ased on DBMs [20] . In the multimodal data processing method,

24 A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37

F

s

q

A

a

m

t

t

c

p

b

c

m

t

a

m

o

a

a

a

n

m

a

o

i

m

2

t

[

f

n

t

D

t

h

l

p

s

i

a

l

c

C

t

b

t

p

w

H

d

c

a

v

e

h

o

s

T

t

initially two networks of DBMs are trained separately on visual and

auditory data. Then the output of the two DBMs are combined in

a joint layer. The representation extracted from the joint layer is

considered as input to a Restricted Boltzmann Machine (RBM). The

RBM is trained on the joint layer representation. Then the entire

network is fine-tuned by labelled data.

The fully interconnected network between the visible and hid-

den units increase the computational cost of a DBM, and finding

a method to reduce the number of input feature through feature

selection method can reduce the computational cost of a DBM.

2.2. Feature selection

The amount of data available to machine learning models is

increasing exponentially. The number of features in datasets is

also increasing, and many of the features are irrelevant or redun-

dant, and thus not needed to improve the performance of a ma-

chine learning model [12] . Feature Selection (FS) can accelerate

the learning process of a machine learning method because it al-

lows the algorithm to learn using a smaller number of features.

Additionally, it can improve the classification performance by pre-

venting overfitting [12,21] . A feature selection method reduces the

number of input features without significant decrease in the per-

formance of a machine learning method [6,12,22] .

Feature selection methods for classification can be divided into

three main categories: filter, wrapper and embedded methods.

These approaches are used to combine feature selection with a

classification model. In filter methods, feature selection is per-

formed as a prepossessing stage which is independent of the clas-

sification model. Each filter method ranks the features based on a

criteria, and the highest ranked features are selected [6] . In fea-

ture ranking methods, the relevance of each feature to a class la-

bel is evaluated individually, and a weight is calculated for each

feature. Then, features are ranked based on their weights and the

top features with the highest weights are selected [12,21] . Maxi-

mum Relevance (MR) feature selection is a type of feature ranking

algorithm, where Mutual information and kernel-based indepen-

dence measures are usually employed to calculate the relevance

score [23] . Feature ranking methods are simple and have low com-

putational cost. Kira and Rendell’s “Relief” algorithm [24] , and the

feature selection method proposed by Hall [25] are examples of

feature selection methods that work based on the dependency of

features to the class labels. Although the selected top features have

the highest relevance to the class labels, they might be correlated

with each other and have redundant information, and do not in-

clude all the useful information in the original feature sets.

The feature selection method proposed by Fleuret [26] consid-

ers the dependency between input features using conditional Mu-

tual Information. The method considers the dependency of a new

feature to the already selected features and eliminates that fea-

tures that are similar to the previously selected features, because

the main idea is that if a feature is dependent on previously se-

lected features then it does not contain new information about the

class, and it can be eliminated.

Peng et al. [27] proposed a feature selection method called

Minimum Redundancy Maximum Relevance (mRMR) to solve the

problem of feature redundancy. A subset of features which have

high relevance to class labels and which are non-redundant are

selected. The mRMR method has better performance compared to

the method that only works based on the relevant features. In the

mRMR filtering feature selection method, the dimension of the se-

lected feature space is not set at the start of procedure.

In wrapper methods, the performance of a classifier is used

to evaluate a subset of features. Different subsets of features are

searched using different searching algorithms to find the optimal

feature subset that gives the highest classification performance [6] .
or an initial feature space dimensionality of N , a total of 2 N sub-

ets can be evaluated, and that becomes an NP-hard problem. Se-

uential search, and evolutionary algorithms such as the Genetic

lgorithm or Particle Swarm Optimization can be used to design

 computationally feasible method for wrapper feature selection

ethods [6] . Wrappers have higher computational cost compared

o filter feature selection methods.

With Embedded feature selection methods, the feature selec-

ion procedure is integrated into the training procedure of the

lassifier. It reduces the computational cost compared to wrap-

er methods where a high number of subsets should be retrained

y the classifiers [6] . Guyon et al. [28] used Support Vector Ma-

hine (SVM) as a classifier to design an Embedded feature selection

ethod. Features are evaluated during iterations of learning and

he features that decrease the separation margin between classes

re removed.

Feature selection algorithms coupled with feature extraction

ethods, can improve the performance of machine learning meth-

ds [12,21] . Feature selection algorithms can reduce the inputs to

 classifier which in turn reduces computational cost and increases

ccuracy. However, classical feature selection algorithms are usu-

lly designed for small datasets and thus there is an emerging

eed to implement feature selection algorithms which can opti-

ally search through large datasets with thousands of samples and

 high number of features. This paper focuses on taking the idea

f feature selection coupled with the feature extraction capabil-

ty of deep learning to improve the performance of deep learning

odels.

.3. Deep learning and feature selection

This section discusses a number of feature selection methods

hat are used with Deep Learning methods. Ruangkanokmas et al.

29] have used a classical filter-based feature selection approach

or sentiment classification. A filter-based feature selection tech-

ique, called the chi-squared method, was proposed to select fea-

ures and, thereafter the selected features were utilised to train a

BN. Feature selection and training the DBN were performed in

wo separate stages. Combining feature selection and DBN training,

as the potential to improve the efficiency of a classifier.

Ibrahim et al. [30] have also used DBN, classical feature se-

ection methods, and the unsupervised Active Learning method to

rocess gene expression data. DBN was used to model high dimen-

ional input data and to extract higher level representation of the

nput data. Then statistical classical feature selection methods, such

s the t -test method, were used to select features from the higher

evel extracted features. Ibrahim et al’s [30] method has used three

ascaded independent modulus with separate computational costs.

omputational costs can significantly increase when the number of

raining data is high. DBN is designed to work with a high num-

er of training data samples and it requires feature selection func-

ionality which is suitable for training large datasets, in order to

revent unnecessary computational cost.

Nezhad et al. [31,32] proposed a feature selection method

hich is based on a five-layer stacked Auto-Encoder deep network.

igher-level representative features were extracted from the hid-

en layer placed in the middle of the Auto-Encoder. Then, a classi-

al feature selection method based on the feature ranking method

nd random forest was used to select features. After that, a super-

ised learning method was trained on the selected features and

valuated using the Mean Squared Error (MSE). The number of

idden neurons in the Auto-Encoder hidden layers, is adjusted to

ptimize the structure of the network based on the obtained re-

ults. This process is continued until reaching an acceptable result.

his method has used different modules that increase the compu-

ational cost of the method.

A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37 25

i

l

i

b

fi

s

s

c

l

c

m

d

t

s

c

f

s

a

n

q

w

T

s

D

q

i

D

t

3

d

F

s

s

t

p

i

t

3

m

t

a

s

c

t

o

v

l

f

c

f

c

g

a

l

l

[

Fig. 1. Structure of a Restricted Boltzmann Machine. It is composed of two layers

of neurons, namely the visible and hidden neurons. There are D visible neurons and

F hidden neurons in this RBM.

t

s

b

s

4

t

a

A

h

r

E

w

t

i

a

s

P

w

t

Z

a

t

a

c

P

P

p

p

w

c

r

a

j
Li et al. [33] proposed a deep feature selection (DFS) model us-

ng a deep structure of nonlinear neurons. They have used a multi-

ayer perception (MLP) neural network to learn the nonlinearity of

nput data. Additionally, they use a sparse one-to-one linear layer

efore the MLP to select input features. The weight matrix of the

rst linear layer is a sparse matrix and the input features corre-

ponding to nonzero weights are selected. Their proposed feature

election method is flexible such that the one-to-one linear layer

orresponding to the feature selection can be added to other deep

earning architectures. Despite the flexibility of the method, its ac-

uracy is not perfect and experimental results have shown that the

ethod did not outperform the random forest method.

Zhang and Wang [34] proposed a feature selection method for

eep learning to classify scenes. They converted a feature selec-

ion method to a feature reconstruction problem. In a scene clas-

ification task they have selected the features that are more re-

onstructive than discriminative. However, removing discriminative

eatures might reduce the classification accuracy in a typical clas-

ification task.

Deep learning methods, such as DBM, are usually composed of

 high number of nonlinear processing elements that need a high

umber of training samples. On the other hand, the number of re-

uired observations (training samples) should grow exponentially

ith the number of input features [23,35] to train a DL method.

hrough feature selection, the number of input features and con-

equently the required number of training samples for training a

BM can be reduced. Therefore, feature selection is strongly re-

uired to help deep learning methods to be trained with less train-

ng data. In this paper, a feature selection method is proposed for

BM to improve its processing ability and reduce the computa-

ional cost of feature selection for DBM.

. Principles of the proposed deep feature selection method

In this section, the mathematical properties of RBM are first

escribed. Then, the RBM is used to design the proposed Deep-

S feature selection method. The principle of the proposed feature

election method which works based on RBM is presented in the

econd part of this section. Two versions of the proposed deep fea-

ure selection algorithm are presented. In the first version of the

roposed feature selection algorithm, the RBM is not trained dur-

ng feature selection. However, in the second version, the RBM is

rained during the feature selection procedure.

.1. Mathematical properties of Restricted Boltzmann Machines

A Boltzmann Machine (BM) is a parameterised probabilistic

odel. The parameters of a BM are trained to approximately model

he important aspects of an unknown target distribution by using

vailable samples drawn from the target distribution. The available

amples that are used to train the parameters of the model are

alled training samples [36] . There are two types of units in a BM,

hese are the visible and hidden units (or neurons). The two sets

f units are arranged in two layers. The first layer is constructed of

isible units, and the hidden units (or neurons) are in the second

ayer. Each neuron or unit in the first layer corresponds to an input

eature. For instance, if the input is an image then each visible unit

orresponds to a pixel. In general, the visible units can accept dif-

erent types of input features. The hidden units are used to model

omplex dependencies between visible units.

Restricted Boltzmann Machines (RBMs) are a special case of the

eneral BM where there are no inter-connections between units in

 single layer, i.e. each unit is fully connected to all units in another

ayer but does not have any connections with any units in its own

ayer (Fig. 1). RBMs have a close connection with statistical physics

37] , and represent a type of energy-based model. During training,
he parameters of an RBM are adjusted to generate a model repre-

enting a probability distribution that is close to the actual proba-

ility distribution from which the data are drawn. RBMs have been

uccessfully used for processing binary and real-value data [1,38–

0] .

Consider an RBM with D binary visible units. Let V be a vector

hat contains the states of the D binary visible units, i.e. V ∈ {0, 1} D ,

nd let h be a vector containing the states of the hidden units.

ssume there are F hidden units in the RBM. The F dimensional

idden variables can be denoted by h ∈ {0, 1} F . The joint configu-

ation of V and h define the energy function (1) .

 (V , h) = −
D ∑

i =1

F ∑

j=1

W i j v i h j −
D ∑

i =1

b i v i −
F ∑

j=1

a j h j (1)

here W ij is a weight that connects the i th visible unit, v i , and

he j th hidden unit, h j . b i and a j are biases that are related to the

 th visible and the j th hidden units. The energy function is used to

ssign a joint distribution over the visible and hidden variables as

hown in (2) .

 (V , h) =

1

Z

exp (−E (V , h)) (2)

here Z is a normalizing term and it is called the partition func-

ion. Z is calculated by (3) .

 =

∑

V

∑

h

exp (−E (V , h)) (3)

The sum is calculated over all possible pairs of (V , h). Let V be

 D dimensional vector and let h be an F dimensional binary vec-

or. There are 2 D + F different pairs of (V , h) when the visible units

re binary. The conditional probabilities P (h | V) and P (V | h) can be

alculated by (4) and (5) .

 (h | V) =

F ∏

j=1

p
(
h j | V

)
(4)

 (V | h) =

D ∏

i =1

p (v i | h) (5)

Conditional Probabilities (4) and (5) can be written as follows:

(
h j = 1 | V

)
= g

(

D ∑

i =1

W i j v i + a j

)

(6)

 (v i = 1 | h) = g

(

F ∑

j=1

W i j h j + b i

)

(7)

here g (x) is the logistic function, 1 / (1 + exp (−x)) . The network

an be trained to increase its assigned probability to an input by

educing the energy related to the input. The network parameters

re updated by using the gradient-based method to reach the ob-

ective. Eq. (8) shows the derivative of the log probability of visible

26 A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37

v

t

t

b

a

t

s

T

i

T

t

p

d

f

i

w

s

l

t

o

t

s

o

n

E

e

i

e

T

e

R

m

o

t

s

j

t

i

r

t

i

−

w

l

m

v

D

s

(

t

v

w

s

c
inputs on a set of observations, { V n } N n =1
, with respect to a weight,

W ij .

1

N

N ∑

n =1

∂ log (P (V n))

∂ W i j

= E data

[
v i h j

]
− E model

[
v i h j

]
(8)

The first term, E data [v i h j], is the expectation of v i h j with respect

to data distribution. E data [v i h j], shows the frequency in which both

visible unit, v i , and hidden unit, h i , have the binary values of one.

E model [v i h j] is the same expectation with respect to the distribution

defined by the model. The one-step contrastive diversion approx-

imation is used to approximate E model [v i h j] [11,39] . It is calculated

by running one iteration of the Gibbs sampler to reconstruct the

visible unit using (6) and (7) to obtain (9) .

1

N

N ∑

n =1

∂ log (P (V n))

∂ W i j

≈ E data

[
v i h j

]
− E model

[
˜ v i h j

]
(9)

where ˜ v i is the reconstructed i th visible unit obtained through

Gibbs sampling. Using the Gibbs sampler to approximate

E model [v i h j] is called the contrastive approximation method. A

similar procedure can be used to extract (10) and (11) for updating

biases.

1

N

N ∑

n =1

∂ log (P (V n))

∂ a j
≈ E data

[
h j

]
− E model

[
˜ h j

]
(10)

1

N

N ∑

n =1

∂ log (P (V n))

∂ b i
≈ E data [v i] − E model [̃ v i] (11)

Gaussian-Bernoulli RBMs [1,7] are used for modelling real-

valued vectors. In this case, the visible vector is V ∈ R D , and the

hidden units are binary, h ∈ {0, 1} F . The RBM assigns the condi-

tional distribution shown in (12) and (13) .

p

(
h j = 1 | V

)
= g

(

D ∑

i =1

W i j

v i
σi

+ a j

)

(12)

p (v i | h) = N

(

b i + σi

F ∑

j=1

W i j h j , σ
2
i

)

(13)

A Gaussian distribution with mean μ = b i + σi

∑ F
j=1 W i j and

variance σ 2
i

is used for modelling a visible unit, i.e. N(μ, σ 2
i
) . The

derivative of the log probability on a set of observations, { V n } N n =1
,

is given by (14) , which is similar to (8) .

1

N

N ∑

n =1

∂ log (P (V n))

∂ W i j

= E data

[v i
σi

h j

]
− E model

[v i
σi

h j

]
(14)

Similar to the binary visible unit, the first expression on the

right side of (14) can be calculated from the training data and the

second expression can be approximated through a Gibbs sampler

[7] . The result is obtained using (15) .

1

N

N ∑

n =1

∂ log (P (V n))

∂ W i j

≈ E data

[v i
σi

h j

]
− E model

[v i
σi

h j

]
(15)

The input features, v i , are usually normalized to have zero

mean, μ = 0 , and a variance of one, σi = 1 . This simplifies (15) and

it becomes similar to (9) . The following sections refer to (9) for

both binary and real value input data.

3.2. Proposed RBM-based deep feature selection algorithm

An RBM is a generative probabilistic model and can generate

the probability of the value of a visible unit given the states of

hidden units. This property can be used to reconstruct missing
isible units. The generative property of RBMs has been adopted

o draw samples from the learned distribution to extract tex-

ures from images [41] . The generative property of RBMs has also

een used to sample the missing parts of an input image in im-

ge denoising tasks [42] . The proposed Deep-FS algorithm adopts

he generative property of RBM to define a method for feature

election.

Deep-FS aims to find a set of features with useful information.

herefore, features that do not hold useful information about the

nput data are removed by the generative property of the RBM.

he final selected features have a lower number of features and

hey reduce the complexity of the network. Feature selection is

erformed via three steps 1) Initial training: of RBM on training

ata with all the features; 2) Feature elimination: Removing extra

eatures by the initially trained RBM; and 3) Main Training: Train-

ng the DBM with the initially trained RBM on the training data

hich consists of the selected features. Each of these steps is de-

cribed in the remainder of this section.

Step 1 - Initial training: The first step is performed via the

earning method described in Section 3.1 by using (9) . During the

raining procedure, training data is input into the RBM. Then the

utputs of hidden neurons are calculated for all training data, and

he first expression in (9) is calculated, i.e. E data [v i h j]. In the next

tep the inputs are reconstructed by Gibbs sampling and the sec-

nd expression in (9) , E model [̃ v i h j] , is calculated accordingly. Fi-

ally, the RBM weights are adjusted by calculating the difference

 data [v i h j] − E model [̃ v i h j] as shown in (9) .

Step 2 - Feature elimination: In the second step, features are

liminated through a proposed feature selection algorithm which

s describing in this step. The proposed algorithm can be tuned to

liminate a single feature or a group of features in each evaluation.

he proposed algorithm starts with the set of all input features and

valuates the effect of each group of features by using the trained

BM. The learning aim in RBM is to minimize the network error or

aximize the log-likelihood as shown in (9) . The derivative of loss

r error function of RBM can be obtained by multiplying (9) by

he value of minus one [11] . During the learning process, the ab-

olute value of the error is reduced. Consequently, the weight ad-

ustments are stabilized. The learning procedure is stopped when

he error reaches zero or a predefined number of learning epochs

s reached. The weight adjustment can become zero when the er-

or reaches zero. In particular, consider the error related to one of

he input features. The error related to the i th visible unit is given

n (16) by using (9) .

1

N

∑ N

n =1

∂ log (P (V n))

∂ W i j

≈
(
E model

[
˜ v i h j

]
− E data

[
v i h j

])
(16)

The reconstruction error is defined using (17) :

e i ∝

([
˜ v i h j

]
−

[
v i h j

])2 =

(
(̃ v i − v i) h j

)2

e i = E model

[
(̃ v i − v i)

2
]

(17)

here e i is the reconstruction error related to input feature i . A

ower e i can cause a lower absolute weight adjustment.

The RBM learning rule is based on feature extraction and di-

ension reduction. In RBM’s feature extraction method, different

isible inputs are combined and hidden features are extracted.

uring this learning procedure, the value of weight adjustment is

tabilized and consequently the absolute value of error shown in

16) is reduced. e i described in (17) is used to define an elimina-

ion criterion for the proposed feature selection method.

The input features are investigated to find whether a feature

 i can be reconstructed by using other input features, i.e. to find

hether the other features contain enough information to recon-

truct the v i . The i th visible unit, v i , is eliminated and it is re-

onstructed by the trained RBM. To eliminate v , it is initialized
i

A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37 27

t

d

(

v

d

d

c

v

a

w

e

i

a

o

t

t

t

s

(

s

j

t

i

a

f

v

j

i

T

E

t

f

e

d

R

E

s

t

t

i

c

m

T

i

i

f

a

t

t

a

a

t

r

p

i

t

t

i

i

t

p

i

Fig. 2. In each iteration, a number of input features, N e , are investigated, as a group

of features which can potentially be eliminated. The investigated group of features

are temporary removed by setting their values to zero, and then they are recon-

structed by the trained RBM. Setting N e to a high value reduces the number of

RBM reconstruction iterations required to investigate the entire input features. N e

is set at the start of learning and a fixed N e is used in the all iterations.

r

f

i

c

i

f

i

t

t

k

l

t

j

r

o

t

N

i

m

e

e

n

fi

N

t

I

u

w

i

A

u

t

i

l

f

i

m

t

f

t

s

b

t

w

r

t
o zero. Therefore, the visible unit v i with the initial value of zero

oes not contribute to the output of the hidden variables (see

6) and (12)). The hidden features are generated only by the other

isible inputs. Then the i th visible unit is reconstructed by the hid-

en units using (7) for binary or (13) for continuous or real value

ata. The i th reconstructed feature is called v̄ i . Then (17) is used to

alculate the reconstruction error, ē i = E model [(̄v i − v i) 2]. Note that

¯
 i and

˜ v i both are reconstructed visible units. However, v̄ i is gener-

ted when the initial value of v i is set to zero, and

˜ v i is generated

hen v i is set to its original value.

If the reconstruction error after elimination of i th visible unit,

¯ i , is equal or less than the original reconstruction error of the vis-

ble unit, e i , it becomes evident that the visible unit does not add

ny knowledge to the network or it reduces the general knowledge

f the network. Therefore, removing the i th input feature reduces

he complexity of the network and may also reduce the error of

he network. Additionally, reducing the error can lead to the reduc-

ion of the absolute value of the learning error shown in (16) . Con-

equently, the absolute value of the weight adjustment shown in

9) is reduced and the weights become stabilized. Thus, the feature

election method can cooperatively work with the RBM weight ad-

ustment method to reduce the final error.

The proposed feature selection has been designed based on

raining aim of RBM. Suppose that a RBM is trained on all the

nput features. The weights are updated based on (9) . The weight

djustment is dependent on E data [v i h j] − E model [̃ v i h j] , a high value

or the expression leads to high weight adjustment and a low

alue leads to low weight adjustment. If the weights are ad-

usted in such way that the RBM can regenerate the trained data,

.e. v i =

˜ v i , then [v i h j] = [̃ v i h j] leads to E data [v i h j] = E model [̃ v i h j] .
he equality leads to zero adjustment for the weights, i.e.

 data [v i h j] − E model [̃ v i h j] = 0 which implies that the network has

rained perfectly. So an absolute value close to zero is desirable

or the expression E data [v i h j] − E model [̃ v i h j] , the zero value for the

xpression means that the network is trained successfully and it

oes not need more weight adjustments.

Based on the abovementioned desired aim for training an

BM, reducing the weight adjustments by making E data [v i h j] −
 model [̃ v i h j] close the zero, the proposed feature selection is de-

igned. The features are checked (individually or in groups) to de-

ermine whether removing the features makes the RBM close to

he training aim. If the reconstructed visible unit is close to the

nitial value of the visible unit i.e. v i =

˜ v i , the learning has become

lose to its training aim and it does not need a high weight adjust-

ent (because E data [v i h j] − E model [̃ v i h j] has a value close to zero).

herefore, if by removing a visible unit a similar situation occurs,

.e. the error of the reconstructed visible unit is reduced, which

mplies that the removed feature not only does not add new in-

ormation to the network (to reconstruct the visible unit) but it

lso reduces the overall knowledge by increasing the reconstruc-

ion error. Therefore, it is better to remove the visible unit from

he selected feature set to make RBM become close to its training

im. The proposed method, similar to the optimal brain surgeon

pproach [43] , works based on the comparison of two errors. In

he optimal brain surgeon approach the difference in the two er-

ors is created by pruning of learning parameters, however in the

roposed method the difference in errors is generated by eliminat-

ng the features. Then based on the derived reconstruction error

he features are selected. Additionally, the proposed feature selec-

ion is designed to work with DBM.

The procedure of the proposed feature selection is summarized

n the pseudocode described in Table 1 . After training the RBM, it

s used to calculate the reconstruction error e i for i th input fea-

ures by using (17) for all i . In the while loop in Table 1 , the pro-

osed method investigates a group of N e visible features. In each

teration a group of N e features are eliminated by setting the cor-
esponding visible units to zero. Investigation of a group of input

eatures when N e > 1 (see Fig. 2), reduces the number of required

terations and consequently it reduces the processing time. The re-

onstruction error ē k is calculated for the N e eliminated features. ē k
s the reconstruction error of k th visible unit in the N e eliminated

eatures in the while loop in Table 1 . For the k th eliminated feature

f ē k < e k , where e k is the reconstruction error of same input fea-

ure before eliminating the features, then the k th eliminated fea-

ure is removed from input features permanently. Otherwise, the

 th eliminated feature is considered as selected features. The while

oop in Table 1 is continued until all the input features are inves-

igated.

In Fig. 2 the investigated group of features are selected by ad-

acency. Reconstruction error ē i is utilized to evaluate the effect of

emoving groups of features which have not been selected based

n adjacency; and groups of features which contain adjacent fea-

ures. ē i is the reconstruction error of the i th input feature when

 e input features are eliminated by setting them to zero. As shown

n Table 1 , the ē k < e k condition is used to decide whether to re-

ove the k th feature, i.e. a visible unit with a lower reconstruction

rror is removed permanently. Therefore, visible units with lower

¯ i in the current iteration are more likely to be removed in the

ext feature selection iteration. Consequently, ē i can be used to

nd the next N e features that should be tested for removal. The

 e visible units that have the lowest ē i in current iteration of fea-

ure selection are selected for elimination test in the next iteration.

n this case, the N e selected visible units usually are not adjacent

nits.

An alternative version of the algorithm is presented in Table 2 ,

here the RBM is trained before feature selection on the all the

nput features (similar to the first version presented in Table 1).

dditionally, it is trained during the feature selection procedure

sing the reduced number of features. In the alternative version,

he RBM is first trained, then, e i is calculated using (17) for all vis-

ble features (see Table 2). After that, a set of N e features are se-

ected as candidate features and they are temporarily eliminated

rom the input feature set by setting their values to zero. Then it

s decided if the k th eliminated feature should be removed per-

anently by using ē k . The elimination of N e features are repeated

o investigate all the input features. After removing of every N th

eature the RBM is trained with the reduced number of input fea-

ures. Then the new trained RBM is used to continue the feature

election procedure (see Table 2).

Step 3 – Main training: After eliminating redundant features

y using one of the two algorithms provided in Tables 1 and 2 , the

raining of the RBM continues using the selected features, i.e. RBM

ith the remaining visible units is initialized by the previous cor-

esponding weights and the learning is continued. The RBM and

he selected features are used for training the DBM similar to the

28 A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37

Table 1

Pseudocode of the proposed feature selection method when the initially trained RBM is not trained during feature selection.

Train RBM on the training data.

Calculate the initial reconstruction error e i by the trained RBM using (17) for all i .

N v =

′ number of v isible f eatures ′
i = 1

While i < N v :

Select N e features for evaluation.

N s = N e
Set v k = 0 f or k ∈ { N e selected features} (elimination of the N e features).

Calculate the reconstruction error ē k for each eliminated feature using (17) .

for k ∈ { N e eliminated features}:

if ē k < e k then :

Remove the k th visible unit.

N v = N v – 1

N s = N s – 1

else :

Reset v k from 0 to its original value, and add it to selected features.

i = i + N s

Table 2

Pseudocode of the alternative version of the proposed feature selection method when the RBM is trained during the feature

selection procedure.

Train RBM on the training data.

Calculate the initial reconstruction error e i by the trained RBM using (17) for all i .

N v =

′ number of v isible f eatures ′
i = 1

N r = 0 ; # number of removed features

While i < N v :

Select N e features for evaluation.

N s = N e
Set v k = 0 f or k ∈ { N e selected features} (elimination of the N e features).

Calculate the reconstruction error ē k for each eliminated feature using (17) .

for k ∈ { N e eliminated features}:

if ē k < e k then :

Remove the k th visible unit.

N v = N v – 1

N s = N s − 1

N r = N r + 1

else :

Reset v k from 0 to its original value, and add it to selected features.

i = i + N s
If N r > N th :

Train RBM with current reduced number of features.

Calculate the initial reconstruction error e i by the trained RBM using (17) .

N r = 0

f

m

a

t

h

m

3

f

E

w

c

4

t
method used in [17] . The learning method proposed in [17] has an

unsupervised learning procedure where a DBM is initially trained.

Then the learning parameters of the trained DBM are used to ini-

tialize a corresponding multilayer neural network. Finally, a stan-

dard back propagation method is used to train the multilayer neu-

ral network.

In the proposed methods, the knowledge acquired during the

training process of the DBM (i.e. training of the RBM as a building

block of the DBM) is used to perform the feature selection, i.e. the

result of pre-training of DBM is used for feature selection. There-

fore, the computation cost of the feature selection task is reduced,

because feature selection is performed during the DBM’s learning

process.

The proposed feature selection method uses the generative abil-

ity of RBM to reconstruct eliminated features and then calculates

reconstruction errors to determine whether to retain or remove

features. Other deep learning algorithms that have the generative

property can also be used by the proposed method. For instance,

the Deep Belief Network (DBN) is a deep learning method that

uses RBM during its training procedure; therefore, the proposed
eature selection method can be used with DBN. The Auto-Encoder

ethod is also a deep learning method that reconstructs its input

t the network output. Therefore, the proposed method can be ex-

ended to an Auto-Encoder. The proposed feature selection method

as the ability to work with data that are suitable for deep learning

ethods.

.3. Normalized error

The normalized error shown in (18) is used to evaluate the per-

ormance of the proposed method.

 =

∑ D
i =1 ē i
D

(18)

here D is the number of visual input features, and ē i is the re-

onstruction error related to the i th visible unit calculated by (17) .

. Experimental results

This section first presents the experimental results of applying

he proposed Deep-FS method on five benchmark datasets, namely

A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37 29

Fig. 3. Deep-FS removes those peripheral pixels that are shown by dark dots on the

right column. The removed pixels do not have useful information about a digit.

M

C

i

s

s

s

c

4

a

f

m

l

t

t

u

a

e

m

4

M

a

d

t

a

f

i

L

a

4

d

p

c

r

m

h

r

Fig. 4. (a) Histogram of removed pixels. (b) Order of indexing the pixels. The his-

togram shows that a high number of pixels which are located in the upper and

lower sections (corresponding to the first and the last columns in the histograms)

are removed. The removed pixels do not contain useful information about the digit.

d

d

b

r

t

7

F

o

s

F

p

A

a

f

i

c

a

p

t

i

m

d

a

s

r

t

n

a

t

4

t

i

l

p

t

c
NIST [44] , MIR-Flickr [7] , GISETTE [45] , MADELON [45] , and PAN-

AN [46] . Datasets with a high number of features and train-

ng samples were selected in order to evaluate the accuracy and

peed of the proposed feature selection method on high dimen-

ional datasets. Thereafter, Deep-FS is compared with other feature

election methods using the MNIST dataset. Finally, Deep-FS’s time

omplexity is analysed using MNIST and randomly generated data.

.1. Experimental results on MNIST

This section provides a brief description of the MNIST im-

ge dataset, and provides an explanation and illustration of how

eatures are selected and removed using the proposed Deep-FS

ethod. Next, the effect of training an RBM during the feature se-

ection procedure is discussed via an empirical comparison with

he two proposed methods described in Tables 1 and 2 . After that

he effect of the application of the two selection methods for eval-

ating the features, i.e. selecting the N e adjacent features (Fig. 1),

nd selecting the N e features that have the lowest reconstruction

rror, ē i , are investigated. Finally, the proposed feature selection

ethod, Deep-FS, is compared with the original DBM [17] .

.1.1. MNIST image dataset

In the first set of the experiments, Deep-FS is applied on the

NIST image dataset [44] . MNIST contains 60,0 0 0 training samples

nd 10,0 0 0 test image samples of handwritten digits. In the MNIST

ataset, each image is centred in a 28 × 28 pixel box. Each image in

he MNIST dataset is obtained from an original image which is in

 20 × 20 pixel box through a transformation. The transformation is

ully performed in such a way that the centre of mass of the pixels

s preserved in the two images. This pre-processing is described by

eCun et al. [44] . The handwritten digits have different thickness,

ngular alignment, height and relative position in the image frame.

.1.2. Illustration of the selected and removed features on the MNIST

ataset

Fig. 3 illustrates some samples of reconstructed images after ap-

lying Deep-FS described in Table 2 on the MNIST dataset. The left

olumn of Fig. 3 shows samples of the original images and the

ight-hand column shows the reconstructed images with the re-

oved pixels filled by black pixels. Fig. 3 shows that the method

as in practice removed pixels surrounding the digits. The pe-

ipheral pixels do not contain any useful information about the
igit, and therefore were removed. Some other pixels in the mid-

le area of the images have been removed. The removed pixels can

e reconstructed by the information from neighbouring pixels, and

emoving these pixels does not destroy the general appearance of

he digits.

In Fig. 4 (a), a histogram illustrating the removed pixels for digit

 is shown. The pixels are indexed from 1 to 784 as shown in

ig. 4 (b). The pixel located at the top right corner has the index

f 1, the pixel next to it on its right side has the index of 2 and

o forth. The first and last columns in the histogram, shown in

ig. 4 (b), have higher values than others and correspond to the

ixels that are at the top and bottom of the figure, respectively.

s shown in Fig. 3 , there is not much information in those pixels,

nd therefore these were removed appropriately by the proposed

eature selection algorithm. Less pixels are removed from the area

n the middle part of each image of the digits, as shown by shorter

olumns in the middle part of Fig. 4 (b).

In this paper the learning method proposed by Salakhutdinov

nd Hinton [17] is used as the baseline learning method for com-

arison purposes. In this baseline learning method, a DBM is ini-

ially trained, and thereafter the trained DBM is used to initial-

ze a multilayer neural network. Then, a standard back propagation

ethod is used to train the multilayer neural network.

The input vector has 28 × 28 = 784 units. The DBM has two hid-

en layers. The first hidden layer has 500 hidden units and there

re 10 0 0 hidden neurons in the second hidden layer. A similar

tructure is used is used in the proposed method to compare the

esults. The difference between the Deep-FS and DBM [23] is in

he first layer. Deep-FS selects a set of input pixels to reduce the

umber of input units. The maximum number of learning epochs

re the same for all the methods. For example, the DNNs are fine-

uned for 100 learning epochs using backpropagation methods.

.1.3. The effect of training the RBM during feature selection

Table 3 shows the experimental results when N e adjacent fea-

ures are used during the feature selection s stage. In this exper-

ment, the results of training the first RBM during the feature se-

ection stage(using the algorithm described in Table 1) are com-

ared with those results when the RBM is not trained during fea-

ure selection (i.e. using the algorithm of Table 2). In the first

olumn, Deep-FS , Deep-FS , and Deep-FS are proposed meth-
1 5 10

30 A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37

Table 3

Experimental results on the MNIST data when adjacent features are used.

Method N e
a #Input features Classification error during

testing out of 10,0 0 0 b

Processing time in

seconds (s)

RBM is not trained during feature selection (See Table 1)

Deep-FS 1 1 413 101 55,872 s

Deep-FS 5 5 482 100 53,925 s

Deep-FS 10 10 488 97 53,425 s

RBM is trained during feature selection (See Table 2)

Deep-FS 1 1 406 106 56,087 s

Deep-FS 5 5 483 95 53,989 s

Deep-FS 10 10 488 96 53,287 s

a Number of eliminated features before a reconstruction.
b Classification–error during Training Out of 60,0 0 0 is zero for all the methods.

Table 4

Experimental results on the MNIST dataset when the features with the lowest reconstruction error, ē i , are used.

Method N e
a #Input features Classification error during

testing out of 10,0 0 0 b

Processing time in

seconds (s)

RBM is not trained during feature selection (Algorithm shown in Table 1)

Deep-FS 1 1 415 103 55,134 s

Deep-FS 5 5 430 94 52,805 s

Deep-FS 10 10 430 90 52,442 s

RBM is trained during feature selection (Algorithm shown in Table 2)

Deep-FS 1 1 409 101 55,571 s

Deep-FS 5 5 416 100 53,106 s

Deep-FS 10 10 428 94 52,716 s

a Number of eliminated features before a reconstruction.
b Classification–error during Training Out of 60,0 0 0 is zero for all the methods.

(

m

F

D

t

t

s

e

s

t

p

t

i

s

p

f

a

h

t

b

4

[

t

t

T

S

u

t

n

D

d

c

ods when N e is set 1, 5, and 10, respectively. N e is the number

of pixels that are eliminated before feature reconstruction. In each

iteration of the feature selection phase, N e features are eliminated

and thereafter reconstructed together by RBM as explained in

Section 3.2 and Table 1 . Deep-FS can evaluate features (pixels) one

by one (N e = 1) or it can evaluate a group of features (pixels) as

described in Section 3.2 (N e > 1). In the later situation, instead of

searching by a single feature, N e = 1, the search process searches by

a group of features in groups of 5 and 10, i.e. N e = 5 and N e = 10,

respectively. The third column, #Input Features, is the number of

input pixels (features) which are selected during feature selection.

The fourth column, Classification Error During Testing, shows

the classification error on the testing data (i.e. test images). Each

test image is input into the network then the output of the ten

neurons, each of which is corresponding to a class, on the out-

put layer are investigated. The test input is assigned to a class

that corresponds to the output neuron that has the maximum

output value. The number of incorrect assignments are collected

over 10,0 0 0 testing images and the results are reported in col-

umn Classification Error during Testing. The processing time col-

umn, is the total required time for the methods to perform training

on 60,0 0 0 training images and also to test the trained network on

the 10,0 0 0 testing images. Experiments were performed on an In-

tel E5-2640 v4 2.40 GHz processor with 64 GB RAM. Table 3 shows

training RBM during feature selection slightly reduces the errors

when N e > 1 adjacent features are used.

4.1.4. The effect of evaluating the features with the lowest ē i
Table 4 shows the results when the N e features that have

the lowest reconstruction error, ē i , are used during the fea-

ture selection process. The N e features with the lowest recon-

struction errors in the current iteration of feature selection are

evaluated in the next iteration of the feature selection proce-

dure, and these features are usually not adjacent. Comparing

Tables 3 and 4 reveals that using the features that have the low-

est reconstruction error, ē , during the feature selection procedure
i
 Table 4) improves the accuracy of the proposed feature selection

ethod, compared to when adjacent features are used (Table 3).

or instance, comparing Tables 3 and 4 , the classification error for

eep-FS 10 is reduced from 97 (Table 3 when RBM is not trained)

o 90 (Table 4 when RBM is not trained). The results show that

he approach which eliminates N e features with the lowest recon-

truction error has higher accuracy compared to the method that

liminates N e features which are adjacent.

Additionally, the results in Table 4 show that using the feature

election method, which does not train the RBM during the fea-

ure selection procedure (see Table 1), has higher accuracy com-

ared to when RBM is trained during feature selection in addi-

ion to the initial training of RBM (see Table 2) when N e > 1. For

nstance, Table 4 shows that Deep-FS 10 misclassified fewer image

amples when RBM was not trained during the feature selection

rocedure, and the number of misclassified images was reduced

rom 94 to 90.

In conclusion, highest classification accuracy is achieved when

 RBM is not trained during the feature selection procedure, and

ence when Deep-FS 10 uses the initially trained RBM before fea-

ure selection and then performs the feature selection procedure

y the initially trained RBM.

.1.5. Comparing Deep-FS with the baseline DBM

The proposed Deep-FS method was compared against the DBM

17] method using the MNIST dataset. The comparison considered

he effect of each approach on reducing the number of input fea-

ures and misclassified cases, and reduction in processing time.

he baseline DBM is the one which was originally introduced by

alakhutdinov and Hinton [17] . In this comparison, Deep-FS 10 is

sed because the experiments in Sections 4.1.3 and 4.1.4 revealed

hat removing features in groups of 10 is a better feature elimi-

ation strategy which provides higher classification accuracy. For

eep-FS 10 , RBM is not trained during the feature selection proce-

ure. Additionally, features are evaluated based on the lowest re-

onstruction error, ē , as its results are reported in Table 4 .
i

A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37 31

Table 5

Experimental results on the MNIST dataset when the features with the lowest reconstruction error,

ē i , are used and the RBM is trained during feature selection.

Method #Input features Classification error during

testing out of 10,0 0 0 b
Processing time

in seconds (s)

Baseline DBM [17] 784 97 55,505 s

Deep-FS 10
a 430 90 52,442 s

a RBM is not trained during feature selection, and features with the lowest reconstruction error,

e i , are used (see Table 4).
b Classification–error during Training Out of 60,0 0 0 is zero for all the methods.

fi

F

p

t

p

p

9

t

c

f

w

t

t

f

m

i

t

5

f

i

t

n

i

i

n

N

o

t

t

t

o

t

t

l

f

p

p

4

p

4

F

c

a

t

t

s

s

t

a

Fig. 5. Samples from the MIR-Flickr dataset. The top words are the annotations and

the words behind each image are tags written by users. The first image has no tags.

Most of the images belong to various classes with different annotations as shown

in the top row.

a

c

i

n

t

a

t

d

b

s

M

t

a

f

a

f

i

t

t

u

t

t

I

t

r

t

f

(

D

t

t

D

a

s

l

The baseline DBM is trained on all 748 input pixels (see

rst row of Table 5). Table 5 shows that the proposed Deep-

S 10 method has reduced the number of input features. The pro-

osed method selected 430 features out of 784 total input fea-

ures (see second row of Table 5). The results show that the pro-

osed method removes more than 45% of the input features. The

roposed method reduced the number of misclassified cases from

7 to 90 for the baseline DBM and the proposed method respec-

ively (see Table 5). The results show that the proposed method’s

apability in finding redundant features that do not add new in-

ormation to the network and removing these redundant features

ithout reducing the classification accuracy and it is much faster

han the baseline DBM. Selecting appropriate features based on

he lowest error difference helps the algorithm find appropriate

eatures, and increases accuracy. The classification error of all the

ethods on the 60,0 0 0 training samples are zero.

The processing time of the experiment for the proposed method

s reduced by about 5% when N e is increased from 1 to 10 fea-

ures. The processing time is reduced from 55,134 s for N e = 1 to

2,442 s for N e = 10 (see Table 4 when RBM is not trained during

eature selection). Eliminating a number of input features, N e > 1,

n each investigation reduces the required number of reconstruc-

ion procedures which consequently reduces processing time. The

umber of selected features is increased by about 4% when N e is

ncreased from 1 to 10 (see Table 4 when RBM is not trained dur-

ng feature selection). A reconstruction error related to each elimi-

ated feature is increased when the number of eliminated features,

 e , before the reconstruction is high. Eliminating a high number

f input features during feature selection increases the reconstruc-

ion errors, ē k . Consequently, a high number of features is kept in

he selected feature set when ē k < e k is used for removing the fea-

ures (Table 1). Moreover, Table 5 shows that the processing time

f Deep-FS 10 is lower than the baseline DBM [17] . The processing

ime of the proposed Deep-FS 10 is 52,442 s while the processing

ime of the baseline DBM [17] is 55,505 s, i.e. it has about 5.5%

ower processing time. The low number of selected features, 430,

or Deep-FS 10 compared to the initial 784 features that should be

rocessed by the baseline DBM reduces the processing time of the

roposed Deep-FS 10 .

.2. Experimental results on the MIR-Flickr dataset

In the second set of experiments, the performance of the pro-

osed Deep-FS 1 method, that was used for MNIST data in Section

.1 , is tested using the MIR-Flickr dataset obtained from the

lickr.com social photography site [7,47] . The MIR-Flickr dataset

ontains one million samples. Each input sample consists of an im-

ge which may have user-defined image tags. Additionally, some of

he input samples, image and user text tags, are labelled. Out of

he one million input samples, only 25,0 0 0 images with user as-

igned tags are annotated with labels and the remaining 975,0 0 0

amples are unlabelled. Labelling large data is a very demanding

ask. The images and their corresponding user assigned tags are

nnotated by 38 labels including object and scene categories such
s tree, bird, people, clouds, indoor, sky, and sunset. Each sample

an belong to a number of classes.

The unsupervised learning ability of RBMs, which are the build-

ng blocks of a DBM, enables DBMs to be trained using a huge

umber of unlabelled data, and RBMs and DBMs are known for

heir suitability in training unlabelled data. After initial training,

 limited number of labelled data can be used for fine-tuning

he model. Out of the 25,0 0 0 labelled samples in the MIR-Flickr

ataset, 10,0 0 0 samples are used for training and another 50 0 0 la-

elled samples are used as a validation set. The remaining 10,0 0 0

amples are used during the testing stage [7] . Each sample in the

IR-Flickr dataset has two sets of features, i.e. text and image fea-

ures. First, the text features are described then the image features

re introduced.

Many words which appear in the user defined tags are not in-

ormative and some of them are filtered. To organize the text input,

 dictionary is generated. The dictionary contains the 20 0 0 most

requent tags, which were extracted from a set of user tags found

n one million samples. Then each text input is refined, and each

ext input contains only the text in the dictionary. Therefore, the

ext data of each sample is represented by the vocabularies of its

ser tags that are in the dictionary (i.e. the tags are restricted to

he ones in the dictionary). Additionally, different f eature extrac-

ion methods are used to extract real value features for each image.

n the previous experiment on the MNIST dataset, (see Section 4.1)

he inputs had binary values, however, here there are a number of

eal value features for each image. In total, 3857 features were ex-

racted for each image [7] . The following features were extracted

or each image [7] : 1. Concatenating Pyramid Histogram of Words

PHOW) (20 0 0 features), 2. Gist (960 features), 3. Colour Layout

escriptor (192 features), 4. Colour Structure Descriptor (256 fea-

ures), 5. Scalable Colour Descriptor (256 features), 6. Edge His-

ogram Descriptor (150 dimensions), and 7. Homogenous Texture

escriptor (150 features). The different features extract different

spects of an image. Three samples from MIR-Flickr dataset are

hown in Fig. 5 . The top row of Fig. 5 shows the annotations or

abels and the bottom row shows the user tags.

32 A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37

Table 6

Classification results using features extracted from the first hidden layer of

image pathway.

Layer MAP Prec@50 Image features

Baseline DBM [7] 0.476 ± 0.003 0.756 ± 0.005 3857

Proposed Deep-FS 0.478 ± 0.003 0.756 ± 0.008 3082

Table 7

Classification results using features extracted from joint hidden layer.

Layer MAP Prec@50 Image features

Based DBM [7] 0.622 ± 0.003 0.880 ± 0.005 3857

Proposed Deep-FS 0.622 ± 0.003 0.879 ± 0.005 3082

Fig. 6. Comparison of the error of Deep-FS against the error of the baseline DBM

[7] on (a) training and (b) validation sets at different learning steps using the MIR-

Flickr dataset. In each learning step a batch of training data is trained. The errors

are reported after every 50 0 0 steps. The proposed method significantly reduces the

errors.

fi

a

o

4

b

t

t

T

t

d

9
The DBM used in [7] is employed as the baseline learning

method for comparison, for the MIR-Flickr image-text data in this

set of experiments. There are 3857 Gaussian visible units with real

number output values for image input, and there are two hidden

layers for image pathway each of them composed of 1024 binary

units. A Replicated Softmax model [7] with 20 0 0 input units is

used for text inputs. The text pathway is completed by two hidden

layers each of which has 1024 binary units. A joint layer with 2048

binary hidden units is placed after the image and text pathways.

Each sample, image with corresponding user text tags, found

in the MIR-Flickr dataset can belong to a number of classes.

Mean Average Precision (MAP) and precision at top-50 predictions

(Prec@50) are two standard methods commonly adopted to evalu-

ate multi-label classification tasks [7] . MAP and Prec@50 are also

used in this research to evaluate the classification performance of

the proposed Deep-FS and the baseline DBM on the MIR-Flickr

data.

Deep-FS uses the first 50 0 0 batches of data with whole features

to train the RBM. There are 128 samples in each batch. Then the

proposed feature selection method uses the trained RBM to select

features. The learning process is continued with the reminder of

the training data by using the selected features. Extracted features

from the first hidden layer of the image pathway are classified by

the logistic regression method to show the effect of the feature se-

lection method on the classification results. The results are shown

in Table 6 . Deep-FS returned a higher MAP than the baseline DBM

method, achieving values of 0.478 and 0.476 respectively. There is

no notable difference in Prec@50. Deep-FS selects 3082 out of 3857

image features. The proposed feature selection method removes

775 features to reduce the number of input features. The classi-

fication results on the hidden features extracted from joint hidden

layer are shown in Table 7 . Deep-FS removes features without af-

fecting the classification performance of the testing data.

In Fig. 6 the errors of the Deep-FS method on the training and

evaluation sets are compared to those of the baseline method,

DBM [7] , across various learning steps. In each learning step a

new batch of data is trained. Eq. (17) is used to calculate the er-

rors. Until step 50 0 0 the two methods use the all the features so

they reach the same error levels of 0.4228 and 0.2658 on training

and evaluation sets respectively. In the next steps of the learning

process, the errors of both methods are reduced, however, the er-

ror drops faster and reaches a final lower value when using the

proposed method. For instance, the proposed method reaches the

level of 0.2590 on the training set which is lower than that of

the base method, i.e. 0.3075 (Fig. 6 (a)) at the end of the learn-

ing steps. Similarly, the proposed method reaches the error level of

0.1745 compared to 0.2278 for the baseline method on evaluation

set (Fig. 6 (b)). The errors for the proposed Deep-FS method and the

baseline DBM are 34% and 14% lower than the error at step 50 0 0,

i.e. 0.2658, respectively. The feature selection method removes the

redundant and irrelevant features and consequently prevents over-
tting the training data. The proposed method finds 775 irrelevant

nd redundant features. The removed features construct about 20%

f the initial 3857 features.

.3. Experimental results on the GISETTE dataset

The GISETTE dataset [45] is a benchmark dataset generated for

inary classification tasks. GISETTE is a handwritten digit recogni-

ion dataset, which was part of the Advances in Neural Informa-

ion Processing Systems (NIPS 2003) feature selection challenge.

he GISETTE training data contains 60 0 0 samples and 50 0 0 fea-

ures. The GISETTE learning task is a binary classification task to

iscriminate between two confusable handwritten digits of 4 and

. In GISETTE, each digit has a dimension of 28 × 28. The pixels

A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37 33

Table 8

Performance comparison on the GISETTE dataset.

Method # Features 10-fold classification

accuracy (%)

Classifier training

time in seconds (s)

No feature

selection

5,0 0 0 92.9 262 s

Proposed Deep-FS 951 93.5 47 s

Table 9

Performance comparison on the MADELON dataset.

Method # Features 10-fold classification

accuracy (%)

Classifier training

time in seconds (s)

No feature

selection

500 79.4 6.34 s

Proposed Deep-FS 214 80.3 1.90 s

a

t

a

c

6

D

w

p

s

t

i

T

t

e

p

9

c

w

s

i

2

i

i

t

4

p

(

s

i

e

u

p

i

a

i

p

s

s

w

4

R

f

a

2

t

T

f

p

f

t

v

t

n

u

(

4

p

p

t

S

f

d

o

D

t

t

n

fi

f

G

j

t

I

i

s

s

a

c

i

e

t

a

u

g

b

t

i
re normalised on the dataset to put their values in the [0,1] in-

erval. The feature set contains the normalized values of pixels in

ddition to other features which have useful information for dis-

riminating between digits 4 and 9. In the experiment on GISETTE,

0 0 0 samples are used to train and test the proposed method. The

ecision Tree classifier was adopted and k-fold cross validation

ith k = 10 was applied to evaluate the performance of the pro-

osed feature selection method. The Decision Tree classifier was

elected experimentally as it had achieved the highest classifica-

ion accuracy compared to alternative conventional machine learn-

ng methods. Additionally, experiments showed that the Decision

ree classifier was trained in shorter time compared to most of

he other methods. The number of splits in the Decision Tree was

xperimentally selected and set to 30. Table 8 shows that the pro-

osed Deep-FS reduces the number of input features from 50 0 0 to

51, i.e. reduction of 81% of input features. The accuracy of the De-

ision Tree classifier on the selected features is 93.5%. Its accuracy

hen using the entire set of features decreased to 92.9%. Using a

maller subset comprising the selected features reduced the train-

ng time of the classifier (see Table 8). The classifier needed about

62 s to train using all 50 0 0 features, however, when the train-

ng was performed using the selected features (i.e. 951) features,

t only needed 47 s to train. The proposed method reduced 82% of

he classifier’s training time (see Table 8).

.4. Experimental results on the MADELON dataset

The MADELON dataset [45] is an artificial dataset, which was

art of the Advances in Neural Information Processing Systems

NIPS 2003) feature selection challenge. This is a two-class clas-

ification problem with continuous input variables. The challenge

s that the problem is multivariate and highly non-linear. In this

xperiment, 20 0 0 training samples from the MADELON dataset are

sed, and each sample has 500 features. The performance of the

roposed Deep-FS method on the MADELON dataset is reported

n Table 9 . Deep-FS reduces more than 57% of input features and

chieves a higher classification accuracy, i.e. 80.3%. Additionally,

t reduced the computation time of training the classifier, as re-

orted in Table 9 . It reduced 70% of the classifier training time. In

ummary, higher or very close accuracy is achieved using a much

maller set of features, but in less time (i.e. 4.44 fewer seconds)

hen Deep-FS is used.

.5. Experimental results on the PANCAN dataset

PANCAN [46] was obtained from TCGA Pan-Cancer Clinical Data

esource (TCGA-CDR) [48] . The data contains 801 data samples

rom patients with 5 types of tumours: COAD, LUAD, PRAD, BRCA

nd KIRC. Each patient sample contains 20,531 features. A total of
64 features had the same value for all samples in the dataset and

hese were removed, resulting in a total number of 20,264 features.

able 10 shows thatDeep-FS has reduced the number of features

rom 20,264 to 4765, i.e. 76.49% reduction in the number of in-

ut features, and increased the accuracy from 97.1% to 98.5%. 10-

old cross validation was applied to achieve the results for each of

he two situations reported in Table 10 . Importantly, the results re-

ealed significant reduction in the time needed by the classifier to

rain using the selected features. Training on the selected features

eeded 59.19 s compared to 400.39 s when all the features are

sed. Hence, training on the selected features was 341.20 s faster

i.e. it reduced 85% of the classifier’s training time).

.6. Comparison of Deep-FS with other feature selection approaches

In the following experiments the proposed Deep-FS is com-

ared with other feature selection approaches. The comparison is

erformed in the following two steps. Step 1: Select features using

he proposed and other existing feature selection algorithms; and

tep 2: Train DBM using the selected subset of features.

Step 1: Initially, the proposed Deep-FS method and three other

eature selection methods were separately applied to the MNIST

ataset. Each feature selection method returned a selected subset

f features, and then the selected features were used to train a

BM (results are presented in Table 11). Please note that most of

he conventional existing feature selection algorithms are compu-

ationally very expensive and not suitable for large data. The Ge-

etic Algorithm (GA) for feature selection described in [49] , the In-

nite Feature Selection (InfFS) [50] , and the Laplacian Score (LS)

or feature selection [51] methods were compared to Deep-FS. The

A-based mRMR freature selection algorithm [49] calculates the

oint mutual information matrix between pairs of features and

his makes the algorithm impractical for high dimensional datasets.

nfFS [50] is a filter feature selection method that selects the most

mportant features based on their ranks. All other features are con-

idered to evaluate the score of a feature. InfFS maps the feature

election task to a graph and the feature selection is considered as

 subset of features that make a path in the graph. A cost matrix is

onstructed to give pairwise associations between the features us-

ng variance and correlation of the features. The matrix is used to

valuate relevance and redundancy of a feature with respect to all

he other features. Laplacian Score (LS) for feature selection [51] is

nother well-known method with the ability of finding features in

nlabelled data [52,53] . The LS method uses a nearest neighbour

raph to evaluate local geometric structures and selects features

ased on the constructed graph.

Step 2: The selected features identified by each feature selec-

ion method are used to train DBMs. The weights of each DBM are

nitialized randomly, then the DBM is trained on the selected fea-

34 A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37

Table 10

Performance comparison on the PANCAN dataset.

Method # Features 10-fold classification

accuracy (%)

Classifier training

time in seconds (s)

No feature

selection

20,264 97.1 400.39 s

Proposed Deep-FS 4765 98.5 59.19 s

Table 11

Experimental results with the MNIST dataset. Applying different feature selection methods and

using the selected features to train a DBM. The number of selected features was set to 430. The

training accuracy reached 100% for all the methods.

Feature Selection method

Number of misclassified images

during testing

(out of 10,0 0 0)

Processing time

for FS in seconds

(s)

GA [49] with DBM 184 30,784 s

InfFS [50] with DBM 156 151 s

Laplacian [51] with DBM 143 14,269 s

Proposed Deep-FS 10 90 133 s

Table 12

Improvement in the number of misclassified images and processing time of Deep-FS 10 vs other methods.

Feature selection method Improvement in the number

of misclassified images

Improvement in processing

time in seconds (s)

Deep-FS 10 vs GA [49] + 94 + 30,651 s (510.9 min)

Deep-FS 10 vs InfFS [50] + 66 + 18 s

Deep-FS 10 vs Laplacian [51] + 53 + 14,136 s (235.6 min)

l

[

l

s

s

s

a

b

p

F

h

p

l

4

m

t

p

D

s

n

s

e

c

o

0

c

t

o

c

c

t
tures. In the proposed Deep-FS 10 , the weights which are trained

during feature selection are used for initializing the DBM. The re-

sults are reported in Table 11 .

Table 11 shows that the proposed Deep-FS 10 has achieved

higher accuracy than the alternative approaches. Additionally, the

proposed Deep-FS method can find the number of the selected fea-

tures, i.e. 430, automatically. However, the other three feature se-

lection methods require that the user specifies the number of se-

lected features at the start of the feature selection procedure. The

number of features (i.e. 430), obtained by the proposed method, is

used by the other feature selection methods. The datasets are large

and it is computationally very expensive to run the experiments

using various numbers of features to experimentally determine the

most suitable number of features to select. For this reason, there is

a need for feature selection algorithms, such as Deep-FS, which can

automatically identify the most relevant features in large data. The

simulation results in Table 11 show that the proposed method has

misclassified 90 images out of 10,0 0 0 (0.9% of the images) which

is a lower error rate than the alternative methods. The training

accuracy of the trained DBMs for all the methods is 100%. Table

11 also shows that the proposed feature selection method has the

shortest processing time compared to the other methods. The GA

[49] and Laplacian [51] methods need a much longer computation

time to perform the feature selection task compared to Deep-FS.

For instance, GA [49] took 30,784 s while the proposed method

only took 133 s for the same feature selection task. The classical

feature selection methods have high computational cost when ap-

plied to large datasets that have a high number of features and/or

training samples. The improvement in performance and time when

using the proposed Deep-FS 10 method instead of the other meth-

ods is provided in Table 12 .

Most Classical feature selection methods have not been de-

signed to work on datasets which contain a large number of fea-

tures. Furthermore, classical feature selection methods have been

designed to take as input a single matrix that contains all the

training samples, and this is another reason which makes them

unsuitable for large data. For instance, the unsupervised feature se-
 o
ection for multi-cluster data (MCFS) method proposed by Cai et.al.

54] was applied to the MNIST dataset, but computational prob-

ems were encountered. In particular, because MCFS constructs a

quare matrix with size N × N , where N is the number of training

amples, and there exist N = 60,0 0 0 image samples in MNIST, the

quare matrix was very big and MCFS could not converge when

pplied to the MNIST data. Other methods such as GA method can

e applied to MNIST and other large datasets but have a high com-

utation cost and computation time. However, the proposed Deep-

S overcomes the difficulties of working with datasets containing a

igh number of features and samples by dividing the training sam-

les in a number of batches similar to what is performed in deep

earning methods.

.7. Time complexity analysis of the proposed method

In order to analyse the time complexity of the proposed

ethod, two experiments are performed. The time complexity of

he method is analysed in regard to the number of training sam-

les and the number of input features.

In the first experiment, the computation times of the proposed

eep-FS method are obtained for different numbers of training

amples. The MNIST dataset is used in the first experiment. The

umber of training samples is increased from 50 0 0 to 50,0 0 0 in

teps of 50 0 0, and the running time of the proposed method for

ach number of training samples is calculated. Fig. 7 shows the

omputation time of the proposed Deep-FS against the number

f training samples. A line with the equation of T (n) = 0.0043 n +
.8140 can fit to the data points. The equation shows that the time

omplexity of the proposed method in regard to the number of

raining samples is O (n) in the big O (.) notation.

In the second experiment for analysing the time complexity

f the proposed method, the total number of input features is

hanged and the computation time of the proposed Deep-FS is cal-

ulated for the different number of input features. Uniformly dis-

ributed random datasets in [0,1] interval with different numbers

f input features are generated to perform the second time com-

A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37 35

Fig. 7. Computation time of the proposed Deep-FS method when using various syn-

thetic datasets each containing a different number of features. A line fits to the data

points which are shown by ‘O’.

Fig. 8. Running time of the proposed Deep-FS method when using various syn-

thetic datasets each containing a different number of features. A polynomial equa-

tion with the degree of 2 fits to the data points.

p

g

t

d

t

a

c

=

c

T

p

t

O

5

F

a

a

m

o

r

o

t

i

t

c

m

i

r

t

p

t

i

t

t

s

g

f

G

s

f

m

p

t

p

T

r

p

t

r

E

t

v

G

s

(

i

t

c

c

s

w

t

i

h

v

d

h

n

p

a

f

t

v

l

n

f

a

i
lexity analysis. There are 10 0 0 training samples in the randomly

enerated dataset. The number of features are increased from 100

o 1900 with the interval of 200 features. Therefore, 10 random

atasets, each with a different number of features. The running

ime of the proposed Deep-FS is calculated for each of the datasets

nd it is plotted in Fig. 8 with the sign ‘o’. Then, a polynomial

urve fits to the data points. The equation of the fitted curve is T(n)

 10 −3 (0.0188 n 2 −3.2 n + 1171.8). The equation shows that the time

omplexity of the algorithm is O (n 2) using the big O (.) notation.

he simulation results show that the time complexity of the pro-

osed method in regard to the number of input features is higher

hat its complexity related to the number of training samples, i.e.

 (n 2) vs O (n).

. Conclusion

This paper proposes a novel feature selection algorithm, Deep-

S, which is embedded into the DBM classifier. DBM is considered

s a non-linear feature extractor that can reduce the dimension-

lity of large or big data. The proposed Deep-FS feature selection
ethod works in conjunction with the feature extraction method

f DBM to reduce the number of input features and learning er-

ors. Deep-FS uses a RBM that is trained during the training stage

f a DBM to reduce computational cost. Deep-FS uses the genera-

ive property of RBMs which enables RBMs to reconstruct missing

nput features. A group of features is temporary eliminated from

he input feature set to evaluate reconstruction error using a new

riterion based on RBM. RBM treats the eliminated feature(s) as

issing feature(s) and reconstructs these feature(s) by using the

nformation from other input features. Then, the reconstruction er-

or is used as a criterion for feature selection. The proposed fea-

ure selection method has two versions. In the first version of the

roposed method, a RBM is initially trained, then it is used for fea-

ure selection. In the second version of the proposed method, the

nitially trained RBM is additionally trained on the reduced fea-

ure set during a feature selection procedure. Experiments revealed

hat the first version has a higher classification accuracy than the

econd version. Experiments also revealed that removing selected

roups of features instead of single adjacent features improves per-

ormance and feature selection time.

Deep-FS was evaluated using the MNIST, MIR-Flickr, PANCAN,

ISETTE and MADELON benchmark datasets. The results demon-

trated that Deep-FS can reduce the number of inputs without af-

ecting classification performance. Deep-FS reduced the number of

isclassified samples on the MNIST data from 97 to 90. The pro-

osed method automatically selected 430 features out of 784 fea-

ures and it reduced the total processing time by 3063 s. When ap-

lied to the MIR-Flickr dataset it altered MAP from 0.476 to 0.478.

he impact on classification accuracy is minor, which is a desirable

esult given that the number of inputs was reduced.

Moreover, Deep-FS has reduced the computation time. The pro-

osed algorithm was effective in reducing the number of input fea-

ures, i.e. it removed 15,499 features out of 20,264 features, and

educed classifier training time by 85% for the PANCAN dataset.

xperiment results also revealed that the proposed feature selec-

ion method reduced the number of input features, improved cross

alidation accuracy, and reduced classifier training time on the

ISETTE and MADELON datasets.

The proposed method was compared with three other feature

election methods namely the: GA [49] , Infinite feature selection

InfFS) [50] , and Laplacian Score for feature selection [51,55] us-

ng the MNIST dataset. The results showed that the proposed fea-

ure selection method reduced the number of misclassified images

ompared to the other methods. Additionally, it reduced the pro-

essing time of feature selection, for instance the proposed feature

election method performed automatic feature selection in 133 s

hile the GA method [49] performed the same feature selection

ask in 30,784 s.

Deep-FS can improve the processing ability of the deep learn-

ng method for multimodal data. Recently, Deep Neural Networks

ave shown their ability to process multimodal data with a large

olume of data [1] . One common property of the multimodal

ata is their high dimensionality. Not all the input features might

ave useful information and irrelevant input features can introduce

oise and degrade the performance. Reducing the number of in-

ut features and removing the irrelevant features can improve the

bility of a deep learning model to process multimodal data. The

eature selection method reduces computational cost by reducing

he size of reconstructed matrix.

DBNs [1] belong to a group of DNNs that uses an unsuper-

ised pre-training stage. During the first learning phase of DBNs,

ayer-wise unsupervised training is performed. Each layer learns a

on-linear transformation from its input to capture the main in-

ormation of its input. Each adjacent pair of layers is considered

s an RBM [1,8] . An RBM is used to govern the unsupervised train-

ng and to extract features. The proposed feature selection method,

36 A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37

which works based on RBM, can be applied to DNNs to improve its

processing abilities. DBNs [1] have demonstrated good results in

different applications such as speech recognition [11] , audio [56] ,

image and text classification [7] . To apply the proposed method

to other deep learning methods, the proposed feature selection

method can be initially used to select features which will be

input into the deep learning classifier (or other classifier), and the

classifier can be trained on the selected features.

Koller and Sahami’s Markov Blanket filtering feature selection

method [12,57] eliminates a feature if there is a Markov Blanket

for the feature. For a target feature, a Markov Blanket is a minimal

set of variables from a feature space on which all other variables

are conditionally independent of the target feature. However, it is

not straightforward to determine whether a set of features makes a

Markov Blanket for the target feature, especially when the number

of input features is high [12,57,58] . The proposed Deep-FS method

defines a criterion for each feature and checks whether other fea-

tures can reconstruct the target feature. In particular, with the pro-

posed method, when the reconstruction error of a feature is re-

duced, the other features can contain a Markov Blanket for the tar-

get feature and that feature can be eliminated.

The proposed feature selection method will be very useful to

researchers working with large and big data. Currently there are

not many feature selection methods suitable for large data. The pa-

per demonstrates that the proposed Deep-FS can be applied to uni-

modal and multimodal data for various tasks. In particular, Deep-

FS has been applied to unimodal handwriting digit recognition

datasets (MNIST, and GISETTE), a multi-modal dataset comprising

images and text (MIR-Flickr), and a biomedical dataset (PANCAN).

Reducing the number of inputs and consequently the size of

constructed weight matrix can be useful to manage limited hard-

ware resources during hardware implementation of DNNs for com-

plex tasks [1,59,60] . Deep-FS can be used to reduce the input size,

and the trained network for a specific task can be implemented

with less silicon area on hardware. Future work includes exploring

the capability of the proposed Deep-FS in reducing the complexity

of deep learning networks, through reducing the number of the in-

put features in real world applications when the inputs are gener-

ated by sensors. Reduction of input features leads to the reduction

of the number of sensors which can consequently reduce imple-

mentation costs. Deep-FS can offer a systematic way to find an op-

timized number of sensors. For example, Deep-FS can be applied

to optimize the number and selected positions of sensors. Future

work also includes applying the algorithm to large-scale data ana-

lytics tasks, such as human activity recognition which require use

of deep learning algorithms.

Acknowledgements

The work was funded by The Leverhulme Trust Research Project

Grant RPG-2016-252 entitled “Novel Approaches for Constructing

Optimised Multimodal Data Spaces”.

References

[1] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neu-

ral networks, Science 313 (5786) (2006) 504–507, doi: 10.1126/science.1127647 .
[2] G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief

nets, Neural Comput 18 (2006) 1527–1554, doi: 10.1162/neco.2006.18.7.1527 .
[3] G. Hinton, L. Deng, D. Yu, G.E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-

houcke, P. Nguyen, T.N. Sainath, B. Kingsbury, Deep neural networks for acous-
tic modeling in speech recognition, IEEE Signal Process. Mag (2012) 82–97,

doi: 10.1109/MSP.2012.2205597 .
[4] H.Y. Xiong, B. Alipanahi, L.J. Lee, H. Bretschneider, D. Merico, R.K.C. Yuen,

Y. Hua, S. Gueroussov, H.S. Najafabadi, T.R. Hughes, Q. Morris, Y. Barash,

A.R. Krainer, N. Jojic, S.W. Scherer, B.J. Blencowe, B.J. Frey, The human splicing
code reveals new insights into the genetic determinants of disease, Science

347 (6218) (2015). http://science.sciencemag.org/content/347/6218/1254806.
abstract .

[5] E. Alpaydin , Introduction to Machine Learning, MIT press, 2014 .
[6] G. Chandrashekar, F. Sahin, A survey on feature selection methods, Comput.
Electr. Eng. 40 (2014) 16–28, doi: 10.1016/j.compeleceng.2013.11.024 .

[7] N. Srivastava, R. Salakhutdinov, Multimodal learning with deep Boltzmann
machines, J. Mach. Learn. Res 15 (2014) 2222–2230. http://jmlr.org/papers/

volume15/srivastava14b/srivastava14b.pdf .
[8] F. Liu, B. Liu, C. Sun, M. Liu, X. Wang, Deep belief network-based approaches

for link prediction in signed social networks, Entropy 17 (2015) 2140–2169,
doi: 10.3390/e17042140 .

[9] Y. Bengio , P. Lamblin , D. Popovici , H. Larochelle , Greedy layer-wise training of

deep networks, Adv. Neural Inf. Process. Syst. 19 (2007) 153 .
[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout:

a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.
15 (2014) 1929–1958, doi: 10.1214/12-AOS10 0 0 .

[11] G.E. Dahl, D. Yu, L. Deng, A. Acero, Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition, IEEE Trans. Audio, Speech

Lang. Process. 20 (2012) 30–42, doi: 10.1109/TASL.2011.2134090 .

[12] K. Javed, H.A. Babri, M. Saeed, Feature selection based on class-dependent den-
sities for high-dimensional binary data, IEEE Trans. Knowl. Data Eng. 24 (2012)

465–477, doi: 10.1109/TKDE.2010.263 .
[13] J. Su, D.B. Thomas, P.Y.K. Cheung, Increasing network size and training through-

put of FPGA restricted Boltzmann machines using dropout, in: Proceedings of
the 24th IEEE International Symposium on Field-Programmable Custom Com-

puting Machine, FCCM, 2016, 2016, pp. 48–51, doi: 10.1109/FCCM.2016.23 .

[14] N. Lopes, B. Ribeiro, Towards adaptive learning with improved convergence of
deep belief networks on graphics processing units, Pattern Recognit 47 (2014)

114–127, doi: 10.1016/j.patcog.2013.06.029 .
[15] K. Ueyoshi, T. Marukame, T. Asai, M. Motomura, A. Schmid, Memory-error tol-

erance of scalable and highly parallel architecture for restricted Boltzmann
machines in deep belief network, IEEE Int. Symp. Circuits Syst. (2016) 357–

360, doi: 10.1587/nolta.7.395 .

[16] S.K. Kim, P.L. McMahon, K. Olukotun, A large-scale architecture for restricted
Boltzmann machines, in: Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machine, FCCM, 2010, 2010, pp. 201–208,
doi: 10.1109/FCCM.2010.38 .

[17] R. Salakhutdinov, G. Hinton, Deep Boltzmann machines, Aistats 1 (2009) 448–
455, doi: 10.1109/CVPRW.2009.5206577 .

[18] S. He, S. Wang, W. Lan, H. Fu, Q. Ji, Facial expression recognition using deep

Boltzmann machine from thermal infrared images, in: Proceedings of the 2013
Humaine Association Conference on Affecting Computing and Intelligent Inter-

action, 2013, pp. 239–244, doi: 10.1109/ACII.2013.46 .
[19] B. Leng, X. Zhang, M. Yao, Z. Xiong, A 3D model recognition mechanism based

on deep Boltzmann machines, Neurocomputing 151 (2015) 593–602, doi: 10.
1016/j.neucom.2014.06.084 .

[20] M.R. Alam , M. Bennamoun , R. Togneri , S. Member , F. Sohel , A Joint deep Boltz-

mann machine (jDBM) model for person identification using mobile phone
data, IEEE Trans. Multimed. 19 (2017) 317–326 .

[21] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J. Mach.
Learn. Res. 3 (2003) 1157–1182, doi: 10.1016/j.aca.2011.07.027 .

[22] J. Li, K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang, H. Liu, Feature
selection: A data perspective, ACM Comput Surv (CSUR) 50 (6) (2017) 94.

https://arxiv.org/abs/1601.07996 .
[23] M. Yamada, J. Tang, J. Lugo-Martinez, E. Hodzic, R. Shrestha, A. Saha,

H. Ouyang, D. Yin, H. Mamitsuka, C. Sahinalp, P. Radivojac, F. Menczer,

Y. Chang, Ultra High-Dimensional nonlinear feature selection for big biological
data, IEEE Trans Knowl Data Eng 14 (8) (2016) 1352–1365, doi: 10.1109/TKDE.

2018.2789451 .
[24] K. Kira , L.A. Rendell , A practical approach to feature selection, in: Proceed-

ings of the Ninth International Workshop on Machine Learning, 1992, pp.
249–256 .

[25] M.A. Hall , Correlation-based feature selection of discrete and numeric class

machine learning, in: Proceedings of international conference on machine
learning (ICML), 20 0 0, pp. 359–366 .

[26] F. Fleuret, Fast binary feature selection with conditional mutual information, J.
Mach. Learn. Res. 5 (2004) 1531–1555, doi: 10.1007/s10182-011-0155-4 .

[27] H. Peng, F. Long, C. Ding, Feature selection based on mutual information: crite-
ria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pat-

tern Anal. Mach. Intell. 27 (2005) 1226–1238, doi: 10.1109/TPAMI.2005.159 .

[28] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer clas-
sification using support vector machines, Mach. Learn. 46 (2002) 389–422,

doi: 10.1108/03321640910919020 .
[29] P. Ruangkanokmas, T. Achalakul, K. Akkarajitsakul, Deep belief networks with

feature selection for sentiment classification, in: Proceedings of the 7th Inter-
national Conference on Intelligent Systems, Modelling and Simulations, 2016,

pp. 9–14, doi: 10.1109/ISMS.2016.9 .

[30] R. Ibrahim, N.A. Yousri, M.A. Ismail, N.M. El-Makky, Multi-level gene/MiRNA
feature selection using deep belief nets and active learning, in: Proceedings

of the 36th Annual International Conference on IEEE Engineering in Medicine
and Biology Society, 2014, pp. 3957–3960, doi: 10.1109/EMBC.2014.694 4 490 .

[31] M.Z. Nezhad, D. Zhu, X. Li, K. Yang, P. Levy, SAFS: A deep feature selection
approach for precision medicine, in: Proceedings of the IEEE International

Conference on Bioinformatics and Biomedical, BIBM, 2016, 2017, pp. 501–506,

doi: 10.1109/BIBM.2016.7822569 .
[32] M.Z. Nezhad, D. Zhu, N. Sadati, K. Yang, A Predictive Approach Using Deep Fea-

ture Learning for Electronic Medical Records: A Comparative Study, arXiv, 2018.
http://arxiv.org/abs/1801.02961 .

https://doi.org/10.1126/science.1127647
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1109/MSP.2012.2205597
http://science.sciencemag.org/content/347/6218/1254806.abstract
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0005
https://doi.org/10.1016/j.compeleceng.2013.11.024
http://jmlr.org/papers/volume15/srivastava14b/srivastava14b.pdf
https://doi.org/10.3390/e17042140
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0009
https://doi.org/10.1214/12-AOS1000
https://doi.org/10.1109/TASL.2011.2134090
https://doi.org/10.1109/TKDE.2010.263
https://doi.org/10.1109/FCCM.2016.23
https://doi.org/10.1016/j.patcog.2013.06.029
https://doi.org/10.1587/nolta.7.395
https://doi.org/10.1109/FCCM.2010.38
https://doi.org/10.1109/CVPRW.2009.5206577
https://doi.org/10.1109/ACII.2013.46
https://doi.org/10.1016/j.neucom.2014.06.084
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0020
https://doi.org/10.1016/j.aca.2011.07.027
https://arxiv.org/abs/1601.07996
https://doi.org/10.1109/TKDE.2018.2789451
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0023a
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0023a
https://doi.org/10.1007/s10182-011-0155-4
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1108/03321640910919020
https://doi.org/10.1109/ISMS.2016.9
https://doi.org/10.1109/EMBC.2014.6944490
https://doi.org/10.1109/BIBM.2016.7822569
http://arxiv.org/abs/1801.02961

A. Taherkhani et al. / Neurocomputing 322 (2018) 22–37 37

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

i

o

[33] Y. Li, C.-Y. Chen, W.W. Wasserman, Deep feature selection : theory and applica-
tion to identify enhancers and promoters, J. Comput. Biol. 23 (5) (2015) 322–

336, doi: 10.13140/2.1.3673.6327 .
34] T. Zhang, Q. Wang, Deep learning based feature selection for remote sensing

scene classification, IEEE Geosci. Remote Sens. Lett. 12 (2015) 1–5, doi: 10.1109/
LGRS.2015.2475299 .

[35] Y. Saeys, I. Inza, P. Larranaga, A review of feature selection techniques in bioin-
formatics, Bioinformatics 23 (2007) 2507–2517, doi: 10.1093/bioinformatics/

btm344 .

36] A. Fischer, C. Igel, Training restricted Boltzmann machines: an introduction,
Pattern Recognit 47 (2014) 25–39, doi: 10.1016/j.patcog.2013.05.025 .

[37] J. Chen, S. Cheng, H. Xie, L. Wang, T. Xiang, The equivalence of restricted boltz-
mann machines and tensor network states, Phys. Rev. B 97 (8) (2018) 085104,

doi: 10.1103/PhysRevB.97.085104 .
38] N. Srivastava, R. Salakhutdinov, Multimodal learning with deep Boltzmann ma-

chines, Adv. Neural Inf. Process. Syst. (2012) 2222–2230, doi: 10.1109/CVPR.

2013.49 .
39] G.E. Hinton, Training products of experts by minimizing contrastive divergence,

Neural Comput 14 (2002) 1771–1800, doi: 10.1162/089976602760128018 .
40] G.E. Hinton, Learning multiple layers of representation, Trends Cogn. Sci. 11

(2007) 428–434, doi: 10.1016/j.tics.2007.09.004 .
[41] N. Le Roux, N. Heess, J. Shotton, J. Winn, Learning a generative model of im-

ages by factoring appearance and shape, Neural Comput 23 (2011) 593–650,

doi: 10.1162/NECO _ a _ 0 0 086 .
42] Y. Tang, R. Salakhutdinov, G. Hinton, Robust Boltzmann machines for recogni-

tion and denoising, in: Proceedings of the IEEE Computer Society Conference
Computer Vision and Pattern Recognition, 2012, pp. 2264–2271, doi: 10.1109/

CVPR.2012.6247936 .
43] B. Hassibi, D.G. Stork, G. Wolff, OptimalBrain Surgeon, Extensions

and performance comparisons, in: J.D. Cowan, G. Tesauro, J. Al-

spector (Eds.), Advances in Neural Information Processing System
6, Morgan-Kaufmann, 1994, pp. 263–270 http://papers.nips.cc/paper/

749- optimal- brain- surgeon- extensions- and- performance- comparisons.pdf .
44] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to

document recognition, Proc. IEEE. 86 (1998) 2278–2323, doi: 10.1109/5.726791 .
45] I. Guyon , S. Gunn , M. Nikravesh , L.A. Zadeh , Feature Extraction: Foundations

and Applications, Springer, 2008 .

46] D.A. and fellow graduate Students, UCI Machine Learning Repository: gene
expression cancer RNA-Seq Data Set, (n.d.). https://archive.ics.uci.edu/ml/

datasets/gene+expression+cancer+RNA-Seq (accessed 23 May 2018).
[47] M.J. Huiskes, M.S. Lew, The MIR flickr retrieval evaluation, in: Proceeding of

the 1st ACM International Conference on Multimedia Information Retrieval
MIR, 2008, p. 39, doi: 10.1145/1460096.1460104 .

48] Chang, et al., The Cancer Genome Atlas Pan-Cancer analysis project, Nat. Genet.

45 (2013) 1113–1120, doi: 10.1038/ng.2764 .
49] O. Ludwig, U. Nunes, Novel maximum-margin training algorithms for su-

pervised neural networks, IEEE Trans. Neural Networks. 21 (2010) 972–984,
doi: 10.1109/TNN.2010.2046423 .

50] G. Roffo, S. Melzi, M. Cristani, Infinite feature selection, in: Proceedings of
the IEEE International Conference on Computer Vision, 2015, pp. 4202–4210,

doi: 10.1109/ICCV.2015.478 .
[51] X. He, D. Cai, P. Niyogi, Laplacian Score for Feature Selection, Adv. Neural

Inf. Process. Syst. 18 (2005) 507–514. http://books.nips.cc/papers/files/nips18/

NIPS2005 _ 0149.pdf .
52] Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised

learning, in: Proceedings of the 24th international conference on Machine
learning, ACM, 2007, pp. 1151–1157, doi: 10.1145/1273496.1273641 .

53] B. Wang, J. Zhu, E. Pierson, D. Ramazzotti, S. Batzoglou, Visualization and anal-
ysis of single-cell RNA-seq data by kernel- based similarity learning, Bioarxiv

1 (2016) 1–50, doi: 10.1101/052225 .

54] D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data,
in: Proceedings of the 16th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining KDD, 2010, p. 333, doi: 10.1145/1835804.
1835848 .
55] S. Alelyani , J. Tang , H. Liu , Feature selection for clustering: a review, Data Clus-
tering: Algorithms and Applications 29 (2013) 110–121 .

56] H. Lee, Y. Largman, P. Pham, a. Ng, Unsupervised feature learning for audio
classification using convolutional deep belief networks, Adv. Neural Inf. Pro-

cess. Syst. 22 (2009) 1096–1104, doi: 10.1145/1553374.1553453 .
[57] D. Koller , M. Sahami , Toward optimal feature selection, Int. Conf. Mach. Learn

(1996) 284–292 doi:citeulike-article-id:393144 .
58] Y. Zeng, J. Luo, S. Lin, Classification using Markov blanket for feature selection,

in: Proceedings of the IEEE International Conference on Granular Computing,

2009, pp. 743–747, doi: 10.1109/GRC.2009.5255023 .
59] C. Wang, Q. Yu, L. Gong, X. Li, I.Y. Xie, DLAU: a scalable deep learning accel-

erator unit on FPGA, IEEE Trans. Comput. Des. Integr. Circuits Syst. 36 (2017)
513–517, doi: 10.1109/TCAD.2016.2587683 .

60] D. Le Ly, P. Chow, D. Le Ly, P. Chow, D. Le Ly, P. Chow, High-performance recon-
figurable hardware architecture for restricted boltzmann machines, IEEE Trans.

Neural Networks. 21 (2010) 1780–1792, doi: 10.1109/TNN.2010.2073481 .

Aboozar Taherkhani received a B.Sc. degree in electrical
and electronic engineering from Shahid Beheshti Univer-

sity, Tehran, Iran, an M.Sc. degree in biomedical engineer-
ing from the Amirkabir University of Technology, Tehran,

and a Ph.D. degree from Ulster University, Londonderry,
U.K., in 2017. He is currently a Research Fellow with the

Computational Neuroscience and Cognitive Robotics Labo-

ratory, Nottingham Trent University, Nottingham, U.K. His
current research interests include artificial intelligence,

deep neural networks, spiking neural network, and non-
linear signal processing.

Georgina Cosma received a Ph.D. degree in Computer Sci-

ence from the University of Warwick, Coventry, UK, in

2008 and a First Class Honours BSc degree in Computer
Science from Coventry University, Coventry, UK, in 2003.

She is currently an Associate Professor at Nottingham
Trent University, Nottingham, UK. Dr Cosma is a member

of the IEEE Computer Society with Computational Intelli-
gence, Big Data Community, and Brain Community mem-

berships. She is recipient of The Leverhulme Trust project

grant entitled “Novel Approaches for Constructing Opti-
mised Multimodal Data Spaces.” Her research interests

are in computational intelligence, nature-inspired feature
selection, feature extraction, conventional machine learn-

ng and deep learning algorithms.

Martin McGinnity (SMIEEE, FIET) received a First Class

(Hons.) degree in Physics in 1975, and a Ph.D. degree from
the University of Durham, UK in 1979. He is currently

a part-time Professor in Nottingham Trent University UK

(NTU). Formerly he was Pro Vice Chancellor for Student
Affairs and Head of the College of Science and Technol-

ogy at NTU, Professor of Intelligent Systems Engineering
and Director of the Intelligent Systems Research Centre in

the Faculty of Computing and Engineering, University of
Ulster. He is the author or co-author of over 300 research

papers and has attracted over £25 million in research

funding. His research interests are focused on computa-
tional intelligence, computational neuroscience, modelling

f biological information processing and cognitive robotics.

https://doi.org/10.13140/2.1.3673.6327
https://doi.org/10.1109/LGRS.2015.2475299
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.1016/j.patcog.2013.05.025
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1109/CVPR.2013.49
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1016/j.tics.2007.09.004
https://doi.org/10.1162/NECO_a_00086
https://doi.org/10.1109/CVPR.2012.6247936
http://papers.nips.cc/paper/749-optimal-brain-surgeon-extensions-and-performance-comparisons.pdf
https://doi.org/10.1109/5.726791
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0042
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0042
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0042
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0042
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0042
https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq
https://doi.org/10.1145/1460096.1460104
https://doi.org/10.1038/ng.2764
https://doi.org/10.1109/TNN.2010.2046423
https://doi.org/10.1109/ICCV.2015.478
http://books.nips.cc/papers/files/nips18/NIPS2005_0149.pdf
https://doi.org/10.1145/1273496.1273641
https://doi.org/10.1101/052225
https://doi.org/10.1145/1835804.1835848
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0050a
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0050a
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0050a
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0050a
https://doi.org/10.1145/1553374.1553453
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0051
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0051
http://refhub.elsevier.com/S0925-2312(18)31102-0/sbref0051
https://doi.org/10.1109/GRC.2009.5255023
https://doi.org/10.1109/TCAD.2016.2587683
https://doi.org/10.1109/TNN.2010.2073481

	Deep-FS: A feature selection algorithm for Deep Boltzmann Machines
	1 Introduction
	2 Background
	2.1 Deep Boltzmann Machine
	2.2 Feature selection
	2.3 Deep learning and feature selection

	3 Principles of the proposed deep feature selection method
	3.1 Mathematical properties of Restricted Boltzmann Machines
	3.2 Proposed RBM-based deep feature selection algorithm
	3.3 Normalized error

	4 Experimental results
	4.1 Experimental results on MNIST
	4.1.1 MNIST image dataset
	4.1.2 Illustration of the selected and removed features on the MNIST dataset
	4.1.3 The effect of training the RBM during feature selection
	4.1.4 The effect of evaluating the features with the lowest
	4.1.5 Comparing Deep-FS with the baseline DBM

	4.2 Experimental results on the MIR-Flickr dataset
	4.3 Experimental results on the GISETTE dataset
	4.4 Experimental results on the MADELON dataset
	4.5 Experimental results on the PANCAN dataset
	4.6 Comparison of Deep-FS with other feature selection approaches
	4.7 Time complexity analysis of the proposed method

	5 Conclusion
	 Acknowledgements
	 References

